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We analyze the time-domain dynamics of resonators supporting exceptional points (EPs), at which
both the eigenfrequencies and the eigenmodes associated with perfect capture of an input wave
coalesce. We find that a time-domain signature of the EP is an expansion of the class of waveforms
which can be perfectly captured. We show that such resonators have improved performance for
storage or transduction of energy. They also can be used to convert between waveforms within this
class. We analytically derive these features and demonstrate them for several examples of coupled
optical resonator systems.

PACS numbers:

Optimal energy transfer via electromagnetic waves is
of high importance for a variety of applications, such
as transmitting information in integrated photonics and
quantum processors, and energy transduction in abla-
tion and solar cells. The limit of perfect transfer (zero
scattering) in general has solutions only at discrete (pos-
sibly complex) frequencies. One form of optimal trans-
duction of an electromagnetic wave is Coherent Perfect
Absorption (CPA), the time-reversed process of lasing at
threshold, in which by tuning the degree of absorption
in a structure, a specific continuous wave (CW) input
at real frequency will be perfectly absorbed [1]. It has
recently been shown that an analogous phenomenon can
be achieved in lossless systems by exciting a zero scatter-
ing state at a complex frequency with an exponentially
rising input wave. In this case, the system will simply
store the input until the ramp is turned off and the en-
ergy is released [2]. Showing that it is possible to access
such states raises a natural question: what are the time
domain signatures of degeneracies of these states, known
as exceptional points (EPs).

When a non-Hermitian system is tuned to have a de-
generacy, two or more eigenvalues and eigenfunctions
coalesce. EPs of resonances have been shown to lead
to enhanced wave-matter interactions, improved sens-
ing, asymmetric state transfer, and novel lasing behavior
[3–24]. Recently, phenomena associated with the pres-
ence of EPs of CPAs have been studied and probed in
the frequency domain, focusing on real frequencies. An
anomalous quartic line broadening was predicted due to
the presence of the EP [25], and observed in a coupled

ring resonator system, [26]. However, this earlier work
considered only the CW input.

Here we show that the implication of this coales-
cence of eigenfunctions at a real or virtual CPA EP is
that a second wave-equation solution arises, of the form
(vt − z)eikz−iωt, where v is the propagation speed and
k is the wavevector. Here ω, k ≡ (ω/v) are real for
CPA EP and complex for virtual CPA EP. More gen-
erally for an mth order degeneracy, solutions of the form
(vt − z)m−1eikz−iωt and all lower powers exist and any
superposition thereof satisfies the zero scattering bound-
ary condition. These modes are growing temporally and
decaying spatially along the propagation axis. Impor-
tantly, from time-reversal arguments one can show that
the time reversal of these more general waveforms de-
scribes the emission of systems at resonance EPs [27, 28].
The possibility of exciting a zero scattering state with any
superposition of these waveforms hasn’t been explored
prior to this work. Not only is this of fundamental in-
terest, but it allows increased flexibility in exciting such
a structure without generating reflections; we will show
that this leads to improved impedance matching of finite
pulses and the ability to load and potentially empty a
cavity faster.

The fact that these waveforms are reflectionless can be
seen from the following general argument, which applies
both to CPA and the recently discussed Reflectionless
Scattering Modes (RSMs). While at a CPA, with appro-
priate spatial excitation, there is no reflection to any of
the input channels, RSMs are states which are defined
by zero reflection into a chosen subset of the input chan-
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nels [30, 31], but for which the input is partially or fully
transmitted into the complementary outgoing channels.
For both CPA and RSMs, an eigenvalue of a suitably de-
fined reflection matrix is zero at a particular ω, and an
EP of order m is created by the coalescence of m such
frequencies and eigenvectors at ωEP. The single remain-
ing reflection eigenvalue vanishes as ρ(ω) ∼ (ω − ωEP)m

at the EP [25], and hence all derivatives of ρ(ω) up to
order m− 1 vanish. Specializing this to the case m = 2,
which will be our focus here, we consider inputs at z = 0
of eiω1t and teiω1t; we Fourier transform (FT) them, and
then apply the inverse FT to their product with ρ(ω):

F
(
eiω1t

)
= δ (ω − ω1) , F

(
teiω1t

)
= δ′ (ω − ω1) ,∫

δ (ω − ω1) ρ (ω) eiωtdω = ρ (ω1) eiω1t, (1)∫
δ′ (ω − ω1) ρ (ω) eiωtdω = ρ′ (ω1) eiω1t + ρ (ω1) iteiω1t.

Thus, at a CPA or RSM EP, since ρ (ω) = ρ′ (ω) = 0,
there is no reflection of any linear combination of such
inputs at real or complex ωEP. This obviously applies
to the inputs tm−1 exp(iω1t) with m ≥ 3 at higher-order
EPs. To satisfy the wave equation, the input has to be
of the form f(vt− z) and we obtain the explicit solution
mentioned above. In addition, it can be seen that at a
generic CPA, in which only ρ(ω) = 0, the growing input
t exp(iωt) is reflected but is converted to the constant-
amplitude output exp(iωt). We will discuss such conver-
sion processes, which generalize to higher orders, briefly
below and in the SM Sec. 1 at [29].

The above argument neglects the effect of the turn
on and off of the input wave. To estimate the effect
of the turn on at a CPA and CPA EP, we FT the in-
puts of the form θ̃(t)eiω1t and θ̃(t)teiω1t, where θ̃(t) ≡
θ(t) or (tanh(t) + 1)/2 and multiply the results by ρ = r,
the reflection coefficient, to get

lim
ω→ωCPA

F
(
θ̃ (t) eiωt

)
· rCPA ∝

ω − ωCPA

ω − ωCPA
= constant,

lim
ω→ωEP

F
(
θ̃ (t) eiωt

)
· rCPA EP ∝

(ω − ωEP)
2

ω − ωEP
= (ω − ωEP) ,

lim
ω→ωEP

F
(
θ̃ (t) teiωt

)
· rCPA EP ∝

(ω − ωEP)
2

(ω − ωEP)
2 = constant.

Interestingly, we see that for input eiωt the effect of the
turn on (introducing a pole) is strongly damped at CPA
EP, as the response at ωEP is zero, whereas at a CPA it
is a constant, corresponding to a slower temporal decay
for the same input. In addition, while the response to
teiωt at a CPA EP is also constant, the input in this sec-
ond case is much larger for long excitation times, which
implies smaller relative reflection. Moreover, due to the
linear dependency on t in t exp(iωt), the scattered field
that originates from the incoming field at earlier times
is smaller in magnitude than the current input and the

scattered field before the destructive interference starts is
small, which results in small relative reflection compared
to exp(iωt).

We now demonstrate these general properties in an an-
alytically solvable model oriented towards optics; similar
excitation properties apply in AC circuits, acoustics, and
quantum scattering. For simplicity we take a structure
with a single input channel, terminated with a perfect
mirror. A property of the response at an EP, which has
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Figure 1: (a) Model of two coupled cavities terminated
on the right with a perfect mirror and separated by two
lossless partially reflecting mirrors of reflectivities r1, r2.
At a real CPA EP ωEP is real and there is no scattering
of the inputs associated with exp (iωt) and t exp (iωt) .
At a virtual CPA EP ωEP is complex and there is no
scattering of the inputs associated with exp (iωrt+ Γt)
and t exp (iωrt+ Γt) , where ωr ≡ Re (ω) = krv and
Γ ≡ Im (ω) = kiv. This model can represent 3 mirrors in
a uniform medium, 2 slabs, and 2 slabs with Bragg
mirrors. (b) Example of a virtual CPA for the two-slab
setup with r2 EP = 0.574 (n2 = 4.52), r1EP = 0.1 (n1 =
1.22), l1 = l2 = 1 where we varied r2. For this special
case, additional CPA EPs occur in each free spectral
range. (c) Meeting of two CPAs at a real CPA EP for
the two-slab and Bragg-mirror setup as we varied l2.
The EP is at N1 = 5 N2 = 7, n3 = 1.9, n4 = 1.5, n1 =
1.083 + 0.005i, n2 = 2.17 + 0.107i, l1 = 1, l2 EP = 1.5.

been exploited for sensing applications, is that the EP
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leads to higher sensitivity of the eigenvalues to perturba-
tions in the parameters of the system [32–35]. In the con-
text of modeling this implies a higher degree of difficulty
in locating EPs by pure numerical search. To avoid this,
as a first step we consider the single-port three-mirror
model shown in Fig. 1, which is analytically tractable
and still rather general. It consists of two regions of
length l1, l2 and uniform refractive index n1, n2 termi-
nated by a perfect mirror. There are lossless mirrors of
reflectivity r1, r2 on the left surface of each region; the
model can represent three specific setups (see Fig. 1a).

The total reflection amplitude coefficient for any real-
ization of this model is give by

r = −r1

(
e2ikn2l2r2 + 1

)
+ e2ikn1l1

(
r2 + e2ikn2l2

)
1 + e2ikn2l2r2 + e2ikn1l1 (r2 + e2ikn2l2) r1

. (2)

To find the EPs of this model analytically we impose the
two conditions r(ω) = r′(ω) = 0 simultaneously. Defin-
ing x = e2ikn2l2+2πip, y = e2ikn1l1+2πiq, we get

x =
r2
2

(
1
Λ − 1

)
− 1

Λ − 1±
√(

r2
2

(
1− 1

Λ

)
+ 1 + 1

Λ

)2 − 4r2
2

2r2
,

y = r1

r2
2 (Λ− 1)− Λ− 1∓

√
(r2

2 (Λ− 1) + Λ + 1)
2 − 4Λ2r2

2

2r2
,

(3)

where Λ ≡ n1l1
n2l2

is the ratio of the optical lengths of the
slabs. By expressing k = ω/c using x and y and equating,
we obtain a general analytic condition for a CPA EP that
holds in the weak and strong coupling regimes, (see SM
Sec. V [29] for details):

ye2πipΛ = xΛ. (4)

Using this method we can find quite easily continuous
curves of EPs in the parameter space of the model (see
Fig. S3), allowing design flexibility. Assuming Λ is an in-
teger, neglecting dispersion and other non-idealities, the
model gives an infinite number of simultaneous EPs for
the same parameter values, labeled by an integer p. For
Λ = 1, equal optical length, we obtain analytical solu-
tions for the EPs

ω

c
=

ln

(
−r2(r±1 +1)

2

)
+ 2pπi

2in1l1
, r±1 =

−r2
2 + 2± 2

√
1− r2

2

r2
2

.

EPs for virtual CPA with Λ = 1 are shown in Fig 1b.
In the generic case, Λ 6= 1, the solution of Eq. (4) only
gives a single EP; such an example is shown in Fig. 1c.
Further examples are given in the SM Sec. V [29].

We now choose an appropriate model for a virtual CPA
EP and calculate the temporal response for the relevant
finite-time inputs, where ωr = Re(ω), Γ = Im(ω). To
that end, we proceed similarly to Ref. [36], see SM Sec.
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Figure 2: Scattered field at a virtual CPA EP for the
inputs of (a) eiωrt+Γt and (b) teiωrt+Γt multiplied by
(θ (t− t1)− θ (t− t2)) , where
ω1 = (1.57 + 0.575i)/2 + π, same parameters as Fig. 1b,
except both optical lengths are doubled. Both inputs
captured almost perfectly after an initial transient; the
relative scattering for eiωrt is larger, see insets. (c)
Relative integrated scattered energies for both inputs
compared with a virtual CPA in one cavity with the
same total length, Im(ω), and r1.

VI at [29]. We present in Fig. 2 the scattered fields for
the inputs exp(iωrt+Γt) (a) and t exp(iωrt+Γt) (b) mul-
tiplied by the step functions (θ (t− t1)− θ (t− t2)) , in a
lossless two-slab system similar to that in Fig. 1 (a),(b).
As expected, after a transient, both inputs are not scat-
tered, but the relative instantaneous scattering for the
input teiω1t is much smaller compared to eiω1t, see insets.
In Fig. 2 (c) we present the relative integrated reflected
energies as functions of time for both inputs in Fig. 2 (a)
and (b), compared to eiω1t at a virtual CPA in a single-
cavity setup with the same total length, Im(ω), and r1.
Clearly, the impedance matching is superior for both in-
puts at the virtual CPA EP, and the input teiωt performs
significantly better. In addition, the total energy accu-
mulated and released in the slab system is larger by two
orders of magnitude for teiωt (see SM Fig. S5 [29]).

Now we calculate the temporal responses for CPA EP
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Figure 3: Scattered wave at a real CPA EP for the
inputs of eiω1t (a) and teiω1t (b) multiplied by
(tanh (t) + 1− (tanh (t− t1) + 1)) /2, for a high Q
cavity with Bragg mirrors and EP parameters in Fig. 1.
Both inputs are absorbed in steady state.

(real ω) in a two-slab setup with loss. Here we seek
efficient transduction, so we must keep track of energy
which is scattered after the input is turned off. To al-
leviate several computational challenges, we developed a
general approach to perform a numerical inverse FT of
the output, see SM Sec. VI B [29]. Since the FT of a
step function decays slowly at high frequencies, we used
tanh(t) as a smooth switching function. Importantly, we
show there that a term in the FT of θ̃(t − t1)t exp(iωt)
is proportional to the switching-off time t1. This implies
that for t exp(iωt) there is negligible accumulation of un-
absorbed energy at a CPA EP (due to the double zero),
whereas for the conversion process, at an ordinary CPA
there would be a large accumulation of unabsorbed en-
ergy in the resonator which will be emitted after turn
off.

In Fig. 3 we present the temporal responses to exp(iωt)
and t exp(iωt) at a real CPA EP in a high-Q two-slab
setup with Bragg mirrors. In a high-Q cavity since the
reflection is large and the absorption is low, the scattered
field and equilibration time are larger. Evidently, at the
CPA EP, the scattering from both input signals is rela-
tively small and does decay in time while the pulse is on,
as seen in the inset of Fig. 3 (b) (the moving-average of
the scattered power normalized by the average incident
power), implying large dissipation within the medium.
For the increasing input t exp(iωt) it is noteworthy that
negligible scattering occurs after turn off of the input,
in agreement with our conclusion above. This contrasts
with the response at ordinary CPA (single zero) shown
in Fig. 4 in a low-Q two-slab system without Bragg mir-
rors. Here, exp(iωt) is absorbed as expected and teiω1t

is converted to eiω1t in agreement with our CW analysis.
Moreover, the scattered field in response to eiω1t at the
CPA is larger than at the CPA EP even though the Q-
factor of the CPA EP setup is much larger, which means
that taking into account the Q-factor difference the ef-
fective transient scattering at a CPA EP is much smaller
(approximately 2 orders of magnitude for the times in the
insets in Figs. 3 (a) and 4 (a)). Finally, after stopping
the signal for the input teiω1t, the substantial accumu-
lated energy is released, in agreement with our analysis
above, see Fig. 4 (b). We validate our model analysis
by simulating a realistic setup of a photonic integrated
circuit (PIC) that can be easily tuned to a CPA EP on
the real axis, and verify its unique scattering features
with full-wave simulations. The PIC consists of coupled
ring-optical waveguide (CROW) resonators with a geom-
etry that can be readily implemented using conventional
PIC technology, see Fig. 5(a). The coupling parameters
between the waveguides and the ring resonator g and g0,
which are determined by their distances, allow us to tune
the setup to a CPA EP, and in this platform they can be
tuned with high accuracy using a nanopositioner stage,
making it highly promising for an experimental imple-
mentation. The parameters of the setup were chosen to
have the CPA EP close to the optical telecommunication
wavelength λ0 = 1.56µm, see SM, Sec. VIII [29]. In Fig.
5 (b) we plot the electric field distribution for a sinusoidal
excitation and input power Pin = 1(W/m) at a CPA EP
occurring at g/g0 = 1.08. As expected, there is no reflec-
tion at the right port. Finally, we plot the time domain
response for both inputs in Fig. 5 (c) and (d), showcasing
the same dynamics predicted in the three-mirror model.

We conclude that cavities tuned to an EP provide supe-
rior performance for wave capture and impedance match-
ing, for both energy storage (virtual case) and trans-
duction (coherent absorption). Particularly interesting
is the possibility of perfectly absorbing a linearly grow-
ing wave as well as a CW wave, which hasn’t been previ-
ously explored. The generalization of this work to higher-
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Figure 4: Scattered wave at a real CPA (not an EP) in
a low-Q two-slab setup for the inputs eiω1t (a) and teiω1t

(b) multiplied by (tanh (t) + 1− (tanh (t− 50) + 1)) /2,
with l1 = 1, l2 = 1.5, n1 = 1.533, n2 = 1.4 + 0.3i,
ωCPA = 1.27. It can be seen that teiω1t is converted to
eiω1t (constant amplitude) and there is emission of the
accumulated energy after the input stops.

degeneracy EPs was mentioned above and is straightfor-
ward. While we have only shown single port realizations
of absorbing structures tuned to an EP, our conclusions
are valid for multiport excitation, as long as the appro-
priate wavefront is imposed at each port.
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