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Quantum optics with giant emitters has shown a new route for the observation and manipulation
of non-Markovian properties in waveguide-QED. In this paper we extend the theory of giant atoms,
hitherto restricted to the perturbative light-matter regime, to deal with the ultrastrong coupling
regime. Using static and dynamical polaron methods we address the low energy subspace of a
giant atom coupled to an Ohmic waveguide beyond the standard rotating wave approximation. We
analyze the equilibrium properties of the system by computing the atomic frequency renormalization
as a function of the coupling characterizing the localization-delocalization quantum phase transition
for a giant atom. We show that virtual photons dressing the ground state are non-exponentially
localized around the contact points but decay as a power-law. Dynamics of an initially excited
giant atom are studied, pointing out the effects of ultrastrong coupling on the Lamb shift and the
spontaneous emission decay rate. Finally we comment on the existence of the so-called oscillating
bound states beyond the rotating wave approximation.

I. INTRODUCTION

The coupling of a single quantum emitter to a contin-
uum of electromagnetic modes is an important problem
since the birth of quantum theory [1]. Current exper-
iments, involving different technological platforms have
shown that propagating photons can be coupled effi-
ciently to localized quantum emitters. This field, known
as waveguide quantum electrodynamics (wQED), has re-
ceived a lot of attention due to the interesting theoretical
and experimental applications [2–4]. In most scenarios,
emitters are described as point-like particles of negligible
size compared with the wavelength of the electromagnetic
radiation. This justifies the standard dipole approxi-
mation widely employed in quantum optics. In recent
years, however, experiments involving artificial emitters
coupled at different points to a waveguide have required
going beyond the treatment of emitters as point-like mat-
ter coupling locally to a waveguide. This comes as a con-
sequence of the distance between coupling points, which
can reach lengths of the order or larger than the charac-
teristic wavelength of the electromagnetic radiation [5, 6].
In the literature, these type of emitters are called giant
atoms. As a consequence of the non-local light-matter
interaction, remarkable phenomena have been reported.
Examples are non-Markovian dynamics [6–10], tunable
decay rates and Lamb shifts [11–13], tunable couplings
[14], structure-waveguide mediated atom-atom interac-
tions [15], engineering of energy levels [16], as well as
bound states emerging from interference between cou-
pling points, including oscillating [17, 18] and chiral [19]
bound states. In addition, bound states originating from
photonic band edges for giant atoms have been studied in
[20]. The large size of the system also allows for a giant
emitter to be coupled to a waveguide in between the con-

nection points of other giant atoms. The many possible
configurations can lead to decoherence-free interactions
between giant emitters [12, 13] or nonreciprocal excita-
tion transfer [21]. See Ref. [22] for a recent overview of
the field.

The breakdown of the dipolar approximation leads to
the appearance of deviations form Markovian dynam-
ics. These typically arise from the coupling of quantum
emitters to structured environments with non-flat spec-
tral functions [23–25]. However, it has been shown that
retardation effects can induce strong non-Markovian fea-
tures whenever coherent feedback is allowed to influence
the dynamics [26–33]. Giant emitters fall naturally into
this last category of non-Markovian systems [22] and they
have been a relevant topic in waveguide QED systems.

Another assumption that is being reconsidered, thanks
to experiments, is the fact that photons are weakly cou-
pled to matter, so their interaction can be described in
a perturbative way. Several experiments have reached
the so-called ultrastrong coupling regime (USC) between
light and single quantum emitters, both in cavity [34–
36] and waveguide QED [37–39]. In the USC regime
higher order processes, than the creation (annihilation)
of one photon by annihilating (creating) one matter ex-
citation play a role. Then, the rotating wave approxima-
tion (RWA) for the interaction breaks down, the atomic
bare parameters get renormalized, and the ground state
becomes nontrivial. This has interesting consequences.
Some of them are the possibility of transforming virtual
photons onto real photons by perturbing the ground state
[40–45], the localization-delocalization transition [46, 47],
or the possibility to perform non-linear optics at the sin-
gle and zero photon limit [48–53]. Reviews for light-
matter interactions in the USC regime can be found in
[54, 55].
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In this work, we discuss the low energy physics (both
at and out of equilibrium) of a giant atom coupled to
a continuum in the USC regime. To do so, the light-
matter coupling is treated within the spin-boson model.
In the USC this is a paradigmatic example of a non
analytically solvable model [56]. Different techniques
are available in the literature to deal with it, such as
matrix-product states [46, 48, 49], density matrix renor-
malization group [57], hierarchical equations of motion
or pseudomodes methods [58], and path integral [59–
61], polaron-like [47, 62–67] or Gaussian approaches [68].
During the completion of this work, it has been recently
reported [69] how to use matrix product states to de-
scribe the dynamics of giant atoms in a waveguide in the
USC regime.

In this paper we employ polaron-like techniques, com-
plementing and extending their work. We examine the
renormalization of atomic parameters and provide ex-
pressions for them. We prove the the existence of the
localization-delocalization transition in giant emitters, as
well as a profile of the virtual photons in the ground
state which we characterize for both phases. Regarding
the dynamics, we discuss the spontaneous emission, its
rate and the Lamb shift in the USC regime. Within the
non-Markovian regime we provide numerical results and
analytical expressions for the emission and the existence
of bound states, also oscillating ones.

The rest of the manuscript is organized as follows. In
Sec. II we introduce the theoretical model, including the
discrete model for the waveguide as well as the spin-boson
Hamiltonian and spectral density of the system. In Sec.
III we describe the polaron formalism and apply it to our
model to reach the effective Hamiltonian used through-
out the work. In Sec. IV we analyze the equilibrium
properties of the system, including its ground state and
renormalization of the transition energy leading to the
discussion of the quantum phase transition. In Sec. V
we compute the Lamb-Shift and effective decay rate for
the system. In Sec. VI we study different cases of the
non-Markovian dynamics of the system, using numerical
simulations and approximate analytical expressions with
a special focus on oscillating bound states. Finally, a
summary and conclusions of this work are given in Sec.
VII.

II. SPIN-BOSON MODEL FOR A GIANT
EMITTER

We start by introducing the Hamiltonian of the system,
described schematically in Fig.1(a),

H = Hq +HWG +Hint. (1)

Here Hq = (∆/2)σz is the Hamiltonian of the two-level
system with transition frequency ∆ between its ground
|g〉, and excited state |e〉. HWG is the Hamiltonian mod-
elling the waveguide and Hint accounts for the qubit-
waveguide interaction. The waveguide is modelled by

using the discrete transmission line shown in Fig. 1(b).
This covers several current realizations with supercon-
ducting qubits, as reported in Ref. [12, 13]. The waveg-
uide modes are found by diagonalizing the correspond-
ing microscopic circuit model via the standard procedure
based on [70] (see Appendix A for a detailed derivation).
The Hamiltonian of the waveguide is then given by

HWG =
∑
k

ωka
†
kak. (2)

In this procedure we choose a discretization length δx =
L/N , being L the length of the transmission line and N
the number of propagating modes. For a linear medium
in one dimension, discretization yields the LC-chain, with
set of momenta kn = 2πn/L, n ∈ {−N/2, ..., N/2} and
the following dispersion relation

ωk = ωc
√

2− 2 cos (knδx) , (3)

where ωc = vg/δx is the cutoff frequency, and vg the
group velocity of the propagating photons. The extended
nature of the giant atom is incorporated in the interac-
tion Hamiltonian. We assume that this interaction is es-
tablished via the simultaneous coupling of the two-level
system to a set of contact points in the waveguide, see
Fig. 1b). The interaction Hamiltonian reads

Hint = σx
Nc∑
j=1

∑
k

gk
Nc

(
ake

ikxj + h.c.
)
, (4)

Here, gk = g
√
ωk/2L are frequency-dependent couplings

with g =
√
πvgα, and α the dimensionless coupling pa-

rameter. Nc is the total number of contact points at
positions xj and 1/Nc is a normalization factor chosen to
ensure that in the zero distance limit the model reduces
to the standard small atom case with the appropriate
coupling strength. This facilitates the comparison for
different Nc having a well defined limit as Nc →∞. We
can now write down the complete Hamiltonian (1) in the
form of a spin-boson-like model [71],

H =
∆

2
σz +

∑
k

ωka
†
kak + σx

∑
k

(g̃kak + h.c.) , (5)

with effective coupling functions

g̃k =
gk
Nc

Nc∑
j=1

eikxj . (6)

Hamiltonian (5) is a general effective description for a
giant atom in interaction with a waveguide. For com-
pleteness, readers are referred to the Appendix A for its
derivation from the specific circuit represented in Fig.1b)
Spin-boson models are characterized by their spectral
function:

J(ω) ≡ 2π
∑
k

|g̃k|2δ(ω − ωk). (7)
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The spectral function encapsulates all the information on
the bath frequency modes and their coupling to the two-
level system [72]. The discretizationwe use guarantees
that in the continuum limit N → ∞ (δx → 0), ωk ≈
vg|k|, see Fig. 1(c), and

J(ω) = JOhm(ω)G(ω) . (8)

The Ohmic part, JOhm(ω) = παω, comes from the lo-
cal coupling to a one dimensional continuum, while the
modulation function

G(ω) =
1

N2
c

∑
j,l

eiω(xj−xl)/vg (9)

arises from interference caused by the multiple coupling
points. For equidistant contact points with distance x,
the modulation function simplifies to

G(ω) =
1

N2
c

1− cos(Ncωx/vg)

1− cos(ωx/vg)
. (10)

Fig.1(d) shows the spectral function of the waveguide and
its modification for different Nc, compared to the small
emitter limit Nc = 1, for both the discrete (open cir-
cles) and continuous descriptions of the waveguide (solid
lines). The inter distance x is fixed, so the main peaks
coincide for all Nc. On the other hand, as the contact
points increase, the peaks become narrower with a width
∝ N−1

c .

III. EFFECTIVE RWA MODELS IN THE USC:
POLARON THEORY FOR THE GIANT ATOM

The low-energy spectrum of a spin-boson model (5) can
be well approximated by an effective excitation-number-
conserving Hamiltonian derived from a polaron transfor-
mation [64–66]. The polaron transformation seeks to dis-
entangle the atom and waveguide, by choosing the a set
of variational parameters such that the ground state of
the transformed Hamiltonian is as close as possible to
|g〉 ⊗ |0〉, i.e., to the direct product of the ground state
of the uncoupled atom |g〉 and the ground state of the
waveguide |0〉. Furthermore, it has been shown to be ac-
curate for various realizations of the spin-boson model,
e.g. considering multiple emitters [30, 73] and for dif-
ferent functional forms of the spectral function [66]. In
this section we summarize the main aspects of the static
and dynamical polaron theory in order to proceed with
its application to the case at hand, a giant atom beyond
the rotating wave approximation. The polaron transfor-
mation is given by,

Up = exp

[
−σx

∑
k

(
fka
†
k − f∗kak

)]
, (11)

where fk is the set of variational parameters.
As mentioned, we choose these variational parameters

so that the ground state is approximately |g〉|0〉. For

(a)

(b)

(c) (d)
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FIG. 1. (a) Pictorial illustration of the giant emitter with
three connection points. (b) Schematic of a circuit-QED im-
plementation of a giant atom coupled to an Ohmic waveg-
uide with three connection points. (c) Dispersion relations for
the discrete and continuous models for the Ohmic waveguide.
The group velocity for the waveguide is vg = c = 1 through-
out this work. (d) Spectral function J(ω) for a continuous
dispersion relation ωk = vg|k| in solid lines, and the corre-
sponding results using the dispersion relation from Eq.(3) for
Nc = 1(squares), Nc = 2(triangles), Nc = 3(circles), and
Nc = 10(diamonds). The spacing between coupling points is
x = 5δx and the coupling strength α = 0.1. The cutoff fre-
quency is ωc = 3 and the number of modes is N = 300 for
both plots (c) and (d).

Eq.(5) this is equivalent to minimize the ground state
energy minfk{〈0|〈g|U†pHUp |g〉|0〉}. For a detailed appli-
cation of the polaron transformation on the spin-boson
Hamiltonian we point the reader to Appendix B. We find
that [Cf. Eq.(6)],

fk =
g̃k

ωk + ∆r
, (12)

with,

∆r = ∆ exp

(
−2
∑
k

|fk|2
)
. (13)

Both, ∆r and fk are related by a self-consistent equation
that can be solved numerically. Once such parameters
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are found, we can obtain all the properties of the model.
Within the scope of the present work, we can restrict our
treatment to the low-energy sector, where the polaron
model can be well approximated by the effective number-
preserving Hamiltonian,

Hp ≈ Heff

=
∆r

2
σz +

∑
k

ωka
†
kak + 2∆r

∑
k

fk
(
σ+ak + h.c.

)
+ Vlocal + EZP, (14)

where Vlocal = −2∆rσ
z
∑
k,k′ fkfk′a

†
kak′ , and

EZP = −∆r/2 +
∑
k

fk [ωkfk − g̃k − g̃∗k] . (15)

In this effective Hamiltonian we can recognize ∆r in
Eq.(13) as a renormalized atomic frequency. This is
a well known consequence in the USC regime [71, 74,
75]. This renormalization is the responsible for the
localization-delocalization transition that corresponds to
the ferromagnetic-antiferromagnetic phase transition in
the Kondo model [76]. In the delocalized phase (∆r →
0), the ground state is degenerated since the atom can be
in either the symmetric or antisymmetric superpositions.
In the next section we will tackle this renormalization of
the atom frequency and the existence of a quantum phase
transition.

A. Lab and polaron frames

Hamiltonian (14) is rather convenient for calculations,
because it commutes with the excitation operator Ne =

σ+σ− +
∑
k a
†
kak. This allows the use of the standard

methods for the study of waveguide-QED within the
RWA. In the polaron frame the ground state is trivial
and the dynamics split in subspaces of different number
of excitations. Expected values of observables in the po-
laron frame are of minor physical relevance but they are
convenient for calculations because the physical observ-
ables can be found in terms of them. Since measurements
are performed in the Lab frame, where Hamiltonian (5)
is expressed, it is mandatory to find the relation between
both pictures. In what follows, observables with super-
script p are observables computed in the polaron frame,
i.e.

Op := 〈ψp(t)|O|ψp(t)〉 = 〈ψ(t)U†p |O|Upψ(t)〉 , (16)

whereas actual observables are given by

O = 〈ψ(t)|O|ψ(t)〉 = 〈ψp(t)|UpOU†p |ψp(t)〉 . (17)

With this, the dynamics for the atomic excitation , i.e.
making O = σ+σ− can be written as,

Pe =
∆r

∆

[
P pe + 2<

{
c
∑
k

fkφ
∗
k

}
+ 2

∑
kk′

fkf
∗
k′φ
∗
kφk′

]
+ PGS

e , (18)

where c = 〈0| ⊗ 〈g|σ−|ψp〉 and φk = 〈0| ⊗ 〈g|ak|ψp〉 are
the amplitudes for the excited state and the k-mode field
of an arbitrary state in the polaron frame, respectively.
The first and last terms of Eq.(18) are the equilibrium,
at T = 0, atomic populations in the polaron frame and
in the ground state, respectively. In fact,

PGS
e =

1

2
(1 + 〈σz〉GS) =

1

2

(
1− ∆r

∆

)
. (19)

wich among other things, tell us that the ground state
atomic excitation is related to the frequency renormal-
ization ∆r. We also note that to return to the labora-
tory framework, both the atomic and field amplitudes are
needed. This is a consequence of the non-local character
of Up in Eq.(11), which mixes matter and light operators.
Last but not least, we will be interested in the tempo-
ral evolution of the occupation of mode nk. In terms of
quantities in the polaron frame we obtain the relation-
ship:

nk(t) = nGS
k + |φk(t)|2 − 2< [c(t)φk(t)fk] . (20)

The same comments as for Pe can be repeated here. Both
relations will be used through this work.

IV. EQUILIBRIUM PROPERTIES

For sufficiently weak atom-waveguide coupling, the
ground state is well approximated by the trivial vacuum
|g〉 ⊗ |0〉. This is consistent with performing the RWA
on (5). A first consequence of entering the USC regime
is that strong light-matter correlations are formed. This
is easily understood with the polaron ansatz, since the
actual ground state (GS) of Eq.(5) can be approximated
by

|ψGS〉 ∼= Up |g〉 ⊗ |0〉

=
1√
2

(
|+〉

∏
k

| − fk〉 − |−〉
∏
k

|fk〉
)
, (21)

where |fk〉 = D(fk)|0k〉 is a k-mode coherent state, be-

ing D(fk) = exp
(
fka
†
k − f∗kak

)
the bosonic displace-

ment operator. States, |±〉 = 1√
2
(|g〉± |e〉), are the atom

symmetric (antisymmetric) superpositions. The state in
Eq.(21) is a multiphoton Schrödinger cat state. Its pho-

ton number can be obtained via 〈ψGS|a†kak|ψGS〉 = |fk|2.
The photonic profile in position space can be recovered
via a discrete Fourier transform,

fx =
1

Nc

∑
j,k

fke
ik(x−xj), (22)

which indicates that the photonic amplitudes are super-
positions of small emitter contributions fk centered at
each coupling point to the waveguide.
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FIG. 2. (a) Renormalization of the two-level system energy
with the coupling strength α and the distance between cou-
pling points x for Nc = 3. (b) A set of specific values for
the distance x between connections showing the phase tran-
sition as α increases. For limiting cases we have analytical
expressions, for intermediate distances, the transition is more
abrupt.

The ground state, together with the atomic renormal-
ization frequency ∆r in Eq.(13), encapsulate the equilib-
rium properties at zero temperature. In particular, the
existence of virtual excitations, both in the atom and in
the photonic field, as well as the existence (or not) of a
quantum phase transition. It is known that the spin bo-
son model undergoes a localization-delocalization transi-
tion when ∆r → 0 [71]. Again, this transition can also
be understood within the polaron formalism. If we look
at (14), when ∆r = 0, the ground state is degenerate, so
the gap closes and a quantum phase transition can occur.

A. Atom excitations, renormalization and the
existence of a quantum phase transition

A consequence of light-matter entanglement in the
ground state is that the atom is dressed by the quan-
tum fluctuations of waveguide photons. This is reflected
in a renormalization of the dressed atomic frequency, see
∆r in Eqs.(13) and (14). Furthermore, using the po-
laron theory the qubit excitation probability is given by
Eq.(19). Thus, the discussion on ∆r directly applies to
the existence of excitations in the ground state because

of the coupling to the waveguide.
In Fig.2 (a) we plot ∆r as function of the contact points
distance x and the coupling strength α for a giant emit-
ter with Nc = 3. Fig.2 (b) focuses on particular cases
and limits of the renormalization of ∆r. We have veri-
fied that in the limit x → 0 the dipole approximation is
recovered, i.e. results must reduce to the case Nc = 1.
This is a consequence of the normalization used in Eq.(6).
For Nc = 1, we know that for an Ohmic waveguide
∆r ∼ ∆(∆/ωc)

α/(1−α) in the scaling limit ∆/ωc � 1
[65], which is shown as a dotted line in Fig. 2(b). On the
other hand, when x→∞, ∆r behaves as if the contacts
points were independent, thus approaching the dipole ap-
proximation but with a coupling per contact α → α/Nc
(shaded line), showing perfect agreement with the numer-
ical calculation. An interesting finding is the appearance
of a distance-dependent localization transition for a giant
emitter, which resembles the one observed for the two-
impurity spin boson model [30, 77]. This a consequence
of the presence of position-dependent couplings in the gi-
ant emitter and the competition between the bare qubit
energy and dissipation induced by the Ohmic bath.

The polaron calculations predict a more abrupt fall
down of ∆r, in contrast with the single emitter limit(s).
However, it is not clear that our polaron theory is valid in
these (intermediate) ranges of coupling, and the results
must be contrasted with other approaches. Thus, now
we resort to a field theoretical argument. In fact, the ex-
istence of a qunatum phase transition in the spin boson
model is well studied in the literature [71, 72]. A condi-
tion for a symmetry breaking point and thus 〈σx〉 6= 0
is that

∫
dωJ(ω)ω−2 diverges. This happens whenever

J(ω) ∼ ω1−β for 0 < β < 1. The Ohmic case (Nc = 1)
lies at the margin [76]. It is known that, in this case,
there is a continuum transition of the BerezinskiiKoster-
litzThouless transition type. This can be proven by map-
ping the spin-boson model (5) to a gas of charges. Con-
cretely, the partition function can be approximated by
[78]

Z ∼ exp

(
−4

∫ β

0

dτi

∫ β

0

dτjεiεj λ

(
τi − τj
τc

))
(23)

with εi = ±1, τc = ω−1
c (β−1 is the temperature) and the

effective interaction is given by

d2λ(τ)

dτ2
= ω2

c

∫
dωJ(ω) e−ωτ , (24)

which yields λ(τ) ∼ log(τ) in the dipole approximation
for the Ohmic case, thus a BerezinskiiKosterlitzThouless-
like transition. For a giant atom with arbitrary contact
points, the integral on the right side can be computed
using the general spectral function in Eq.(8), such that

d2λ(τ)

dτ2
∼

Nc∑
j,l

[τ + i (xl − xj) /vg]−2
. (25)
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FIG. 3. (a) Ground-state photons for a giant atom with five
connection points (Nc = 5) with coupling strength α/Nc =
1/5, in this case ∆r 6= 0. The inset plot focuses on the pro-
file of the photonic clouds around the right-most coupling
point. A fitting into a power-law decay x−a, plotted in a black
dashed line, leads to the exponent a ' 2.96. (b) Illustrates
the ground-state photons for α/Nc = 2/5, corresponding to
∆r = 0. The decay also fits into a power-law, in this case
with a ' 1.09. For both plots, the distance between the clos-
est couplings is x = 20δx, the cutoff frequency is ωc = 3,
∆ = 1 and the number of modes N = 15001.

As an example, for a giant emitter with Nc = 3 equidis-
tant points it yields,

λ(τ) ∼ −3 log(τ)−2 log
(
τ2 + x2

)
−log

(
τ2 + 4x2

)
, (26)

i.e., logarithmic interactions persist, one per each leg of
the giant emitter. Thus, confirming the existence of a
quantum phase transition in a giant emitter with arbi-
trary coupling points.

B. Virtual Photons in the Ground State

The existence of virtual photons around the contact
points at ultrastrong coupling has been hypothesized in
[22]. Photon localization of the ground state has been
successfully studied using polaron and matrix product
states simulations for a small emitter in [62, 73], corrob-
orating the usefulness of the variational polaron ansatzes.
In this section, we describe such photonic clustering for
a giant emitter and analyze its spatial profile.

For atoms coupled to cavity-array systems in the USC
regime, the photonic cloud generated around the emit-
ter has been found to have an exponentially decaying

profile [48, 62, 73]. Interestingly, the Ohmic model for
the waveguide predicts a power-law decay for the pho-
tonic cloud localized around each of the contact points
of the giant emitter. Furthermore, this power-law decay
changes when crossing the quantum phase transition.

Using Eq.(22) and at the scaling limit where ωk ≈
vg|k|, the virtual photons are given by the Fourier trans-

form of
√
|k|/(|k|+ ∆r/vg). We are interested in the de-

cay of the photonic cloud well away from the connection
points, so the corresponding contribution of the integral
is that of small-k values. Therefore, there are two lim-
its of the Fourier transform that interest us. Within the
delocalized phase ∆r 6= 0, so we can assume that the
contributing k are negligible in front of ∆r/vg, leading

to a power-law decay with the form fx ∼ (x − xj)−3/2.
Instead, after crossing the quantum phase transition to
the localized regime ∆r = 0 and the decay goes as
fx ∼ (x− xj)−1/2.

In Fig. 3 we plot an example of the ground state pho-
tons in real space 〈ψGS|a†xax|ψGS〉 = |fx|2 for both cases,
with Nc = 5 and x = 20δx. Figure 3 (a) illustrates
the case for ∆r 6= 0. We observe sharp peaks around
each of the coupling points, each of these peaks is sur-
rounded by abrupt dips and a slowly decaying profile.
The dips can be attributed to the overlap between the
sharp peaks and slow decays. For this case we predict
a power-law decay of the photonic profile away from the
emitter scaling as ∼ x−3. The inset of the figure zooms
into the rightmost coupling point and shows a power-law
fit in a black shaded line. From the fit we recover a decay
∼ x−2.96, which agrees with our prediction. The other
example shown in Fig. 3 (b) corresponds to ∆r = 0.
Here, the peaks become higher and sharper, the dips dis-
appear and the decay becomes slower. Again, fitting the
profile away from the rightmost coupling point we have
a power-law decay ∼ x−1.09, which perfectly agrees with
our analytical estimation.

V. RELAXATION RATE AND LAMB SHIFT

In the simplest approach, the spontaneous emission
of an emitter in a continuum is obtained by means of
the Fermi’s golden rule. Using second-order perturbation
theory (in the light-matter coupling) a two-level system
with level splitting ∆ decays with a rate γ = J(∆). Also,
the atom frequency is dressed by the Lamb shift δ.

Interestingly, for a giant emitter with multiple con-
tact points, interference effects start to play an impor-
tant role in the relaxation dynamics. The fact that the
emitter-waveguide interaction is no longer local intro-
duces a new time scale in the system-accounting for the
time-delay between different coupling points ζ = x/vg.
When this time-delay is much smaller than the excited
state lifetime of the system as if it had a single coupling
point. ζ � JOhm(∆)−1, memory effects can be neglected
[11, 22]. Consequently, an effective relaxation rate γr
and the frequency shift can be obtained in this regime by
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FIG. 4. (a) Normalize effective decay rate and (b) Lamb
shift for a giant emitter with three coupling points (Nc = 3)
and bare qubit frequency ∆ = 1 as a function of the spacing
between connections. Dashed lines indicate the behavior for
α = 0.01 (RWA), and solid lines α = 0.16 (beyond RWA).
(c) Full dependence of the effective decay rate of with the
coupling strength and the distance between coupling points.

using the Fermi golden rule, which now depends on the
distance between coupling points, and can be engineered
to suppress or enhance spontaneous emission.

In the USC regime, both the emission rates and Lamb
shift can be calculated in a similar way as in the pertur-
bative regime. The only difference is that the formulas
are now evaluated at the renormalized frequency ∆r in-
stead of the bare one ∆, Cf. Eq.(13) [65, 66]. Then,

γr = J(∆r) = JOhm(∆r)G(∆r), (27)

and

δ =
2∆2

r

π
P
∫ ∞

0

dω
J(ω)

(∆r − ω)(ω + ∆r)2
. (28)

In Fig. 4 (a) we show the normalized relaxation rate as
a function of the distance x/δx between contact points,
for two values of the coupling parameter: α = 0.01, where
we recover the weak coupling or RWA results [11, 22]; and
α = 0.16, where the RWA breaks down.

We observe that increasing the emitter-waveguide cou-
pling beyond RWA produces a shift in position for the
relaxation rate, displacing characteristic points of de-
structive and constructive interference. This shift is a
consequence of the renormalization of the giant emitter
frequency and it has to be taken into account in order
to observe interference effects in experiments with ultra-
strongly coupled giant emitters.

A more complete image of this behavior is given in Fig.
4 (b) where the shift is limited by the localization tran-
sition appearing at larger values of the coupling (deep
strong coupling). Therefore, the spontaneous decay in a
giant emitter is strongly affected by interference between
contact points. This behavior persists in the USC regime
but with values that become strongly modified as the
coupling α increases. Figure 4(c) plots the Lamb shift,
reflecting the same shift in position as the relaxation rate
in the USC regime.

VI. EMITTER AND FIELD DYNAMICS

The effective number-preserving Hamiltonian (14) per-
mits us to work in the single-excitation sector and apply
standard RWA methods. Using the dynamical polaron
ansatz, the time-dependent state vector in the polaron
frame can be described as [65],

|ψp(t)〉 = c(t)|e〉|0〉+
∑
k

φk(t)|g〉a†k|0〉. (29)

The amplitudes of the polaron state vector satisfy the set
of dynamical equations,

i ˙̃c = 2∆r

∑
k

fkφ̃ke
−i(ωk−∆r)t, (30a)

i
˙̃
φk = 2∆rfk

(
c̃ei(ωk−∆r)t +

∑
l

flφ̃l

)
, (30b)

where we have shifted to different rotating frames c̃ =
ei∆rt/2c, and φ̃k = ei(ωk−∆r/2)tφk, in order to simplify
the equations. Eqs.(30a) and (30b) can be integrated nu-
merically, obtaining any observable in the polaron frame.
Then, by using relations (18) or (20), the observables in
the Lab frame can be computed.

Before looking at the numerical results, it is convenient
to discuss some generalities about the expected dynami-
cal behavior. For this, we can neglect the contributions
of the Vlocal operator, which only produces a photon fre-
quency shift that does not significantly contribute to the
single-excitation dynamics. Besides, it makes further an-
alytical treatment difficult and it is not relevant for the
results discussed in this section. If this is done, the set
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of equations are formally equivalent to the one excitation
dynamics in RWA models and the Wigner-Weisskopf the-
ory can be directly applied. Integrating out the photonic
degrees of freedom a (non-local) differential equation for
c̃(t) is obtained,

˙̃c = −2∆2
r

π

∫ ∞
0

J(ω)dω

(ω + ∆r)2

∫ t

0

dτ c̃(t− τ)ei(ω−∆r)τ .

(31)

The dependence of the spectral function on the time de-
lays between coupling points ζ, gives rise to a multiple-
time-delay differential equation for the excited state am-
plitude,

˙̃c(t) = − γ

2N2
c

Nc−1∑
j=0

(Nc − j)ei∆rjζ c̃(t− jζ)Θ(t− jζ).

(32)

Here Θ(·) is the Heaviside step function. The time de-
lays jζ introduce new time scales in the system and non-
Markovian effects are expected.

An analogous time-delay equation was first presented
in [17] within the RWA regime for the same continuous
model studied here. These type of non-Markovian dy-
namical equations have also been found in the study of
the spontaneous emission in single-end optical fibers [28],
atoms in front of reflecting mirrors [26], and two distant
emitters in waveguide-QED, within RWA [29] and be-
yond RWA [30]. In particular, in addition to the relax-
ation rate previously discussed, oscillations in the emitter
dynamics will occur.
On top of that, already in the RWA regime the existence
of bound states for giant atoms has been discussed [17].
These can exist even in the absence of band gaps as an
interference effect, as seen in Fig. 5, due to the spatial
separation of coupling points. Bound states arising from
interference effects are also present in the USC regime,
as we will show later in numerical simulations.

Applying a Laplace transform in Eq.(32) gives us in-
sight on the nature of these bound states. By defining
the excited state amplitude in Laplace space as ĉ(s) =∫∞

0
dte−stc̃(t) we have

ĉ(s) =

s+
i∆r

2
+

γ

2N2
c

Nc−1∑
j=0

(Nc − j)e(−s+i∆r/2)j|ζ|

−1

,

(33)
where we have set c̃(0) = 1 in order to study the spon-
taneous emission. The above dynamical equation in the
Laplace space is exactly the same as the obtained for the
RWA limit in [17], with the difference that the bare qubit
frequency ∆ must be replaced by ∆r.

By definition, bound states do not radiate, thus (if
they exist) they are purely imaginary poles of Eq.(33).
Searching for purely imaginary poles with the form sn =
−i2nπ/(Ncζ) with n ∈ N we obtain

∆rζ =
2nπ

Nc
− JOhm(∆r)ζ

2Nc
cot

(
nπ

Nc

)
, (34)

0 30 60 90 120 150
∆t
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x = 20δx

x = 30δx

x = 100δx

FIG. 5. Evolution of the excited state probability of a giant
emitter with three coupling points Nc = 3, for three different
distances between contact points and fixed coupling strength
α = 0.8, ∆ = 1, ωc = 6, and N = 3000. The expected
equilibrium probabilities PGS

e are illustrated with horizontal
dotted lines.

where ζ = x/vg is the time delay between the two closest
coupling points. It is worth recalling that all these rela-
tions neglect the local Vlocal operator, Cf. Hamiltonian
(14). They are, however, a good estimation for under-
standing the emitter dynamics and locating the appear-
ance of bound states in the parameter space of the model.
In particular, that their existence requires a finite time
delay (ζ) and that the renormalized atom frequency and
spontaneous emission play a role.

Both the existence of bound states and non-Markovian
dynamics in the USC regime can be proven by monitor-
ing the spontaneous emission. In doing so we assume
the atom-waveguide at the GS, then the qubit is driven
within a π-pulse. After the pulse the wavefunction is
given by |ψ(0)〉 = σ+|GS〉. Since [σx, Up] = 0, we may
work in the single-excitation manifold in the polaron pic-
ture. Therefore, we can numerically integrate Eqs.(30a)
and (30b), including the Vlocal terms, and transform back
to the Lab frame using Eq.(18). In Fig.5 we plot the
spontaneous emission. We notice that Pe(t = 0) 6= 1,
since for our initial state Pe = 1/2(1 + ∆r/∆), Cf.
Eq.(18). Furthermore, each of the plotted decay pro-
cesses has a different equilibrium excited state occupancy,
as given by Eq.(19).

As shown in Fig.5 for x = 3δx, short time delays be-
tween coupling points lead to relaxations that can be
closely described by an exponential decay defined by the
effective spontaneous emission rate in Eq.(27). The evo-
lution of the excited state occupancy can be well approx-
imated by:

Pe ≈ PGS
e +

∆r

∆
e−γrt, (35)
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FIG. 6. (a) Time evolution of the excited state population Pe with increasing coupling α. Black horizontal lines point to the
two cases highlighted in the other plots of the figure. (b) Plot of the spontaneous emission into an oscillating bound state in
the RWA for α ' 0.118 (solid line) and for an increased coupling of α ' 0.557, within USC (dashed line). The field emitted
into the waveguide for these cases is plot in (d) and (c) respectively. These simulations are carried out for a giant atom with
three connections Nc = 3, with the parameters ζ = 186δx, ωc = 3, ∆ = 1 and number of modes N = 4001.

plotted in the dashed black line in Fig. 5. The lack of
major non-Markovian effects can be seen via Eq.(33), as
the limit ζ → 0 leads to a time evolution governed by the
decay rate γr.

For a sufficiently large distance between coupling
points, non-Markovianity takes a central role, as illus-
trated by the decay for x = 20δx in Fig.5. Initially, it has
an approximately exponential decay given by JOhm(∆r),
until the emitted light reaches a coupling point. Then,
an oscillatory behavior rises as the light emitted from
one connection point is partially reabsorbed and emit-
ted back to the waveguide by another contact point. At
longer times, these oscillations become damped as the
energy is gradually emitted outside the atom, until the
system reaches the equilibrium at the corresponding PGS

e .

We encounter a different behavior for x = 30δx in
Fig.5. Due to the interference of the field emitted from
each coupling point, the system relaxes to a bound state,
as signaled by the difference in occupancy from the
ground state once the evolution reaches the equilibrium.
This comes as a direct consequence of the initial excited
state having a non-zero overlap with bound states for
these parameters.

Furthermore, Fig.5 illustrates yet a another type of de-

cay. For x = 100δx we find long-lived oscillations around
an equilibrium value higher than PGS

e . This is reminis-
cent of the reported oscillating bound states in the RWA
[17]. In the next section we discuss how these oscillat-
ing bound states behave whenever the coupling cannot
be treated perturbatively.

A. Oscillating bound states

Some interest has been aroused in the existence of os-
cillating bound states [17, 69]. They originate from the
interplay of two coexisting bound states. Consequently,
part of the field emitted during the spontaneous emission
process is trapped while oscillating between the coupling
points of the emitter. In USC, approximate oscillating
bound states are found by searching two coexisting so-
lutions of Eq.(34). Due to the dependence of ∆r with α
and ζ, via the variational parameters fk, the existence of
two solutions for the same set of parameters cannot be
analytically proven. This numerically requires fine tun-
ing, which at most allows for the prediction of oscillating
bound states with large but finite lifetime in USC, as
illustrated in Fig. 5 for x = 100δx.
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Fig.6(a) illustrates the excited state population Pe of
a giant atom with increasing coupling strength α. The
rest of the parameters are set so that in the RWA regime
the excited state decays into an oscillating bound state.
It is clear that the oscillating bound state found for the
lower couplings is lost as α increases. Fig.6(b) focuses on
two specific values of the coupling strength showing the
long time behavior of the oscillating bound state and its
counterpart at higher coupling, for which the population
revivals slowly decrease in amplitude. The field evolu-
tions corresponding to both cases are plotted in Figs.6
(c) and (d), respectively.

Within the RWA, fixing the distance between cou-
pling points and increasing the coupling should even-
tually reach another pair of simultaneous solutions for
Eq.(34) and therefore an oscillating bound state [17]. In
contrast, our simulations indicate that entering the USC
regime leads to the loss of the oscillating bound state
due to the renormalization of ∆r and eventually to the
quantum phase transition. This same trend has also been
recently reported in [69] where matrix product states sim-
ulations showed this same breakdown of the periodicity
for the existence of oscillating bound states in parameter
space with the coupling strength.

VII. SUMMARY AND CONCLUSIONS

In this work we have developed a semianalytical ap-
proach for the low energy sector of giant emitters in the
ultrastrong regime based on polaron-like methods. In
particular, we have focused on a single giant atom cou-
pled via Nc connection points to an Ohmic waveguide.

We have characterized the ground state of the sys-
tem. In particular we have analyzed the virtual pho-
tons surrounding each of the coupling points. The lat-
ter decays spatially away from the connection points
to the waveguide as a power law, unlike what occurs
for point-like emitters in a cavity array [73]. We also
have studied the renormalization of the atomic frequency
∆r and shown that the system exhibits a localization-
delocalization quantum phase transition which is depen-
dent not only on the coupling strength α but also on the
distance between coupling points.

For the dynamics of the system we have focused on
the spontaneous emission. We have derived analytical
expressions for the Lamb-shift δ and effective decay rate
γr which characterize the early evolution of the system
whenever its lifetime is much larger than the time de-
lay, ζ = x/vg, between coupling points. Both of these
values were reported to have a periodic behavior with
the distance between coupling points in the RWA regime
[11]. We find that this periodicity is lost in USC due
to the renormalization of ∆r. These results suggest that
in real implementations of waveguide QED with giant
atoms that require going beyond the RWA, most of the
predicted non-Markovian effects might be blurred by the
renormalization of the bare atom. We were able to fully

characterize the dynamics within the polaron frame, pro-
viding an approximate analytical expression for the evo-
lution of the excited state amplitude. We find that some
of the non-Markovian dynamics found in the RWA, such
as the non-exponential decay [7] and bound states ris-
ing from the interference of the spontaneous emission
from different coupling points [17], still hold in the USC
regime. However, other behaviors such as the recurrence
of oscillating bound states as the coupling increases [17]
are lost when entering the USC regime. Instead, as the
localization-delocalization transition is approached by in-
creasing the coupling strength α, the oscillations in the
excited state occupancy have a sharp drop in amplitude,
becoming irregular in time and eventually disappear.
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Appendix A: Derivation of the Spin-Boson
Hamiltonian

In this appendix we find the Hamiltonian describing
the system represented in Fig.1b), which leads to the
spin-boson form given in Eq.(5). As mentioned in Sec-
tion II we model the waveguide as an one-dimensional
chain of N inductively coupled LC-resonators with equal
inductances L0 and capacitances C0. The Lagrangian for
such a system is

LWG =

N∑
n=1

(φn − φn+1)2

2L0
+
C0φ̇

2
n

2
. (A1)
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The waveguide Hamiltonian can be obtained via a Leg-
endre transform

HWG =

N∑
n=1

(φn − φn+1)2

2L0
+
Q2
n

2C0
, (A2)

where Qn = (∂LWG)/(∂φ̇n) are the charges of each LC-
resonator.

Assuming periodic boundary conditions Hamiltonian
(A2) can be diagonalized by means of a Fourier transform

φk = 1/
√
N
∑
k φne

ikxn ,

HWG =
∑
k

|Qk|2
2C0

+ [2− 2 cos(kδx)]
|φk|2
2L0

, (A3)

where k = 2πn/L and L = Nδx being δx the size of an
LC-resonator. From Eq.(A3) one obtains the dispersion
relation in Eq.(3).

After the quantizing of the field the waveguide is de-
scribed as

HWG =
∑
k

ωk

(
a†kak +

1

2

)
. (A4)

We model our qubit as a transmon [79]. Because of the
capacitive coupling of the Nc coupling points to the qubit
the Hamiltonian is given by

H =
1

2(Cg + CJ)

Qq +
∑
j

CgV (xj)

2

− EJ cos(2πφq/Φ0) +HWG. (A5)

At this point we assume that all terms of the order
(Cg/(Cg +CJ))2 are negligible as CJ � Cg, which leads
to the following Hamiltonian,

H =
Q2
q

2(Cg + CJ)
− EJ cos(2πφq/Φ0) (A6)

+
∑
j

CgQqV (xj) +HWG. (A7)

The voltage within the waveguide is given by

V (xj) = ∂tφj = i[HWG, φj ] = (A8)

=

Nc∑
j=1

CgQq
∑
k

√
ωk
2L

(
ake

ikxj + a†ke
−ikxj

)
.

By truncating the qubit subsystem to its first two levels
we arrive at,

H =
∆

2
σz +

∑
k

ωk

(
a†kak +

1

2

)
+

+ Cgσx

Nc∑
j

∑
k

√
ωk
2L

(
ake

ikxj + a†ke
−ikxj

)
. (A9)

yielding the spin-boson model in Eq.(5) of the main text.

Appendix B: Polaron transformation

In this appendix we detail the main aspects of the po-
laron transformation defined in Eq.(11). In particular we
show how to find its variational parameters, as given in
Eq.(12), and the atomic frequency renormalization given
by Eq.(13). We also derive the expressions in the labo-
ratory frame used in the main text, Eqs. (18), (19) and
(20).

The unitary transformation (11) contains the varia-
tional parameters fk that are found minimizing the en-
ergy functional. On top of that, the basic idea is that Up
disentangles the TLS from the waveguide. Thus, in the
Polaron picture, HP conserves the number of excitations
and becomes tractable with the same techniques as RWA
models; in particular we can compute the single excita-
tion eigenstates. It is interesting to note that the GS
obtained from the variational method is an eigenstate of
HP . This serves as a consistency test confirming that the
effective RWA model is accurate: If the GS is well rep-
resented, the lowest lying excitations are single particle
excitations over it.

It is convenient to see how different operators trans-
form under UP . For example:

U†PakUP = ak − fkσx (B1)

and

U†PσzUP = exp

(
2σx

∑
k

(fka
†
k − fkak)

)
σz

=e−2
∑

k|fk|
2

e2σx
∑

k fka
†
ke−2σx

∑
k fkakσz. (B2)

By expanding the operators in Eq.(B2) and retaining
terms up to second order in fk we arrive to

U†PσzUP ≈ e−2
∑

k|fk|
2
(

1 + 2σx
∑
k

fk(a†k − ak)

−4
∑
k,p

fkfpa
†
kap

)
σz.(B3)

Then, the transformed Hamiltonian HP can be written
as:

HP =
∆r

2
σz +

∑
k

ωka
†
kak +

∑
k

gk(ak + a†k)σx+

+ ∆r

∑
k

fk(a†k − ak)σxσz − 2∆r

∑
k,p

fkfpa
†
kapσz

−
∑
k

fkωk(a†k − ak)σx +
∑
k

ωk|fk|2 − 2
∑
k

gkfk.

(B4)

where ∆r is defined as in Eq.(13). The ground state
energy of this system is given by EZP in Eq.(15). By
minimizing this quantity in terms of the variational pa-
rameters ∂fkEZP = 0, one finds the optimal variational
parameters, Eq.(12).

Lastly, the effective Hamiltonian in Eq.(14) follows af-
ter introducing expression in Eq.(12) for the variational
parameters in Eq.(B4) and using σx ∓ σxσz = 2σ±.
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1. Expectation values in the polaron picture

Expectation values in the lab frame of qubit and
waveguide mode occupancies can be found using
Eqs.(B3) and (B1), respectively. For the excited state

probability we have,

Pe =
1

2
(1 + 〈σz〉) =

1

2
(1 + 〈ψ|σz|ψ〉) =

=
1

2
(1 + 〈ψp|UPσzU†P |ψp〉), (B5)

where |ψp〉 is the state vector of interest, in the one ex-
citation subspace given by Eq.(29) yielding Eq.(18).

Similarly, the expectation value nk in the lab frame is
given by

nk = 〈ψ|a†kak|ψ〉 = 〈ψp|UPa†kakU
†
P |ψp〉 =

〈ψp|a†kak − fk(a†k − ak)σx + |fk|2|ψp〉. (B6)

Again, using Eq.(29), we obtain Eq.(20), where nGS
k =

|fk|2.

[1] V. Weisskopf and E. Wigner, Berechnung der natürlichen
linienbreite auf grund der diracschen lichttheorie, Z.
Phys. 63, 54 (1930).

[2] D. Roy, C. M. Wilson, and O. Firstenberg, Colloquium:
Strongly interacting photons in one-dimensional contin-
uum, Rev. Mod. Phys. 89, 021001 (2017).

[3] A. S. Sheremet, M. I. Petrov, I. V. Iorsh, A. V. Poshakin-
skiy, and A. N. Poddubny, Waveguide quantum electro-
dynamics: collective radiance and photon-photon corre-
lations (2021), arXiv:2103.06824 [quant-ph].

[4] T. Li, A. Miranowicz, X. Hu, K. Xia, and F. Nori, Quan-
tum memory and gates using a Λ-type quantum emitter
coupled to a chiral waveguide, Phys. Rev. A 97, 062318
(2018).

[5] M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekstrm,
G. Johansson, and P. Delsing, Propagating phonons cou-
pled to an artificial atom, Science 346, 207 (2014).

[6] G. Andersson, B. Suri, L. Guo, T. Aref, and P. Delsing,
Non-exponential decay of a giant artificial atom, Nat.
Phys. 15, 1123 (2019).

[7] L. Guo, A. Grimsmo, A. F. Kockum, M. Pletyukhov, and
G. Johansson, Giant acoustic atom: A single quantum
system with a deterministic time delay, Phys. Rev. A 95,
053821 (2017).

[8] S. Longhi, Photonic simulation of giant atom decay, Opt.
Lett. 45, 3017 (2020).

[9] Q.-Y. Qiu, Y. Wu, and X.-Y. L, Collective radi-
ance of giant atoms in non-markovian regime (2022),
arXiv:2205.10982.

[10] X.-L. Yin, W.-B. Luo, and J.-Q. Liao, Non-markovian
disentanglement dynamics in double-giant-atom
waveguide-qed systems (2022), arXiv:2206.09435.

[11] A. F. Kockum, P. Delsing, and G. Johansson, Designing
frequency-dependent relaxation rates and Lamb shifts for
a giant artificial atom, Phys. Rev. A 90, 013837 (2014).

[12] A. F. Kockum, G. Johansson, and F. Nori, Decoherence-
free interaction between giant atoms in waveguide quan-
tum electrodynamics, Phys. Rev. Lett. 120, 140404
(2018).

[13] B. Kannan, M. J. Ruckriegel, D. L. Campbell, A. F.
Kockum, J. Braumüller, D. K. Kim, M. Kjaergaard,
P. Krantz, A. Melville, B. M. Niedzielski, A. Vepsäläinen,
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E. Solano, C. J. P. M. Harmans, and J. E. Mooij, Ob-
servation of the Bloch-Siegert shift in a qubit-oscillator
system in the ultrastrong coupling regime, Phys. Rev.
Lett. 105, 237001 (2010).

[36] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi,
S. Saito, and K. Semba, Superconducting qubitoscilla-
tor circuit beyond the ultrastrong-coupling regime, Nat.
Phys. 13, 44 (2017).
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