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Solid-state high-harmonic generation (HHG) continues to attract a lot of interest. From the theory
and simulation standpoint, two issues are still open; The first is the so-called transition-dipole phase
problem. It has been recognized that the dipoles must be treated as complex-valued quantities,
and that their corresponding Berry connections must be included to ensure phase-gauge invariance.
However, while this has been successfully implemented for lower-dimensional systems, fully vectorial
and three-dimensional simulations remain to be challenging. The second issue concerns the symme-
try of the high-harmonic response, when simulations sometimes fail to honor the symmetry of the
crystalline material. This work addresses both of these problems with the help of a HHG-simulation
approach which a) is manifestly free of the transition-dipole phase problem, b) does not require cal-
culation of dipole moments, c) can account for the contributions from the entire Brillouin zone, d)
faithfully preserves the symmetry of the simulated crystalline material. We use the method to show
that high-harmonic sources are distributed throughout the Brillouin zone with various phase-shifts
giving rise to significant cancellations. As a consequence, for the simulated response to correctly
capture the material symmetry, contributions from the entire Brillouin zone must be included. Our
results have important implications for a number of HHG applications, including all-optical band-
and dipole-reconstruction.

I. INTRODUCTION

High-harmonic generation in solid-state media has
been studied with keen interest ever since the first ob-
servations a decade ago [1] followed by experiments with
many different materials and structures [2, 3]. Medi-
ated by the light-matter interactions at high density, the
phenomenon opens a new window into the dynamics of
the solid-state medium at attosecond time-scales, includ-
ing all-optical reconstruction of the band structure [4–6],
mapping of the transition-dipole moments [7], characteri-
zation of higher-order nonlinearity [8], and measurements
of Berry curvatures [9].

Numerical simulations have played an important role
in this field [2, 10, 11]. The broad spectrum of
applied approaches ranges from the ab initio time-
domain Schrödinger equations [12], multiscale time-
domain density-functional theory [13], through many
variants of the semiconductor Bloch equations (SBE) and
density-matrix methods [11, 14–16], to the studies includ-
ing propagation effects [17] and coupling with Maxwell
equations [13, 18–20].

One of the issues that attracted attention over the last
few years is that of the transition-dipoles. It concerns
the phase-gauge degree of freedom in the description of
the electronic Bloch states; they can be modified by ar-
bitrary phase factors [2, 11, 21] which in turn change the
complex phase of the off-diagonal dipole-matrix elements.
Closely related to this is the Berry connection which, as-
suming that Bloch-states are differentiable, gives a gauge-
dependent measure of how the Bloch basis changes from
one point to the next over the Brillouin zone.

While semiconductor Bloch equations are phase-gauge
invariant [22], some early simulations broke this sym-
metry with the dipole moments treated as real-valued
quantities (see discussions in [23–25]). Moreover, Berry
connections [2, 11] are still often neglected, which also

breaks the gauge-invariance of SBEs. The proper treat-
ment requires the construction of a differentiable [26]
and Brillouin-zone periodic phase-gauge [27]. Impos-
ing such a phase-gauge have been demonstrated in
one-dimensional models, but doing the same in three-
dimensional reciprocal space have not been shown explic-
itly yet. At any rate, the fact that the Berry connections
and dipole-moment phases need careful attention makes
the simulation of the HHG from crystals even more dif-
ficult — this is what we refer to as the transition-dipole
phase (TDP) problem.

Another issue complicating the modeling is that in
principle all states from the Brillouin zone contribute to
HHG. Currently only a few approaches account for the
full three-dimensional Brillouin zone (e.g. [12, 13, 19, 28–
30]), and this requires extreme computational efforts. In
contrast, most of the modeling to date has been done with
lower-dimensional spaces such as straight paths across
the center of the Brillouin zone, raising a question if the
chosen subset really dominates the HHG process [31]. Ef-
ficient methods which include all Bloch states are there-
fore needed.

Intimately related to these two problems is the issue
of the symmetry. Clearly, at least for the low excita-
tion intensity the simulated medium response must have
the symmetry dictated by the space group of the crys-
tal. For example, the simulated second-order nonlinear
tensor must exhibit “hard zeros” where the symmetry
implies vanishing components. This sometimes proved
problematic (see e.g. Refs.[24, 25] for a discussion and
references therein), when earlier simulations failed to pro-
duce and/or to suppress even harmonics as required by
the symmetry of the problem.

One of the goals of this work is to put forward a HHG-
simulation approach which addresses these issues. It is
designed with the recognition that the phase-problem
is very much self-imposed, it is in fact not required by
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physics and can be by-passed [32]. By eliminating any
and all phase-gauge dependencies, the resulting method
i) is manifestly free of the TDP-problem because it does
not require dipole moments or the Berry connection in
the first place, ii) it can efficiently add-up the HHG-
contributions from the full Brillouin zone, and iii) it au-
tomatically produces the response with the correct sym-
metry. It should be emphasized that the algorithm, while
oblivious to Berry connections and to transition dipoles,
does not neglect them. Instead, it can work with ar-
bitrary phases implicitly assigned to the band-structure
states. In this respect, the approach is distinctly differ-
ent from other treatments of the TDP issue, including
the Wannier representation [32].

It is important that the algorithm we put forward does
not depend on the nature of the model to calculate the
band structure. All that is required is the ability to ob-
tain the energy eigenvalues and the corresponding eigen-
vectors for a vector from the Brillouin zone, together with
an assumption of the minimal coupling to the electromag-
netic field.

We utilize the SBE simulation tool to gain insight into
how the HHG is sourced across the Brillouin zone. We
show that significant destructive interferences can occur
between the HHG contributions originating from distant
parts of the Brillouin zone. Moreover, it is not always the
case that the regions with the strongest dipoles dominate
the generated radiation. These observations imply that
simplified models based on one-dimensional subsets of the
reciprocal space must be treated with extreme caution,
while the full-3D approach should be preferred whenever
computationally feasible.

While ours is not the first simulation which can ac-
count for the whole Brillouin zone, the speed and ac-
curacy of the method makes it much more practical
to study a number of open problems in the solid-state
HHG field (e.g. see review [33]), such as the carrier-
envelope phase and propagation effects, perturbative-
nonperturbative transitions [34], the role of distinct fea-
tures in the band-structure [30], higher-energy band-
gaps [29], and sample-orientation [35] and polarization
dependencies [36] in the HHG.

II. SEMICONDUCTOR BLOCH EQUATIONS

Semiconductor Bloch Equations [14–16] represent one
of the most frequently utilized approaches to the high-
harmonic generation in solid-state media [11]. For the
sake of completeness, we review the most important com-
ponents of the method in this section. We choose to fol-
low Ref.[37] by Wilhelm et al., and refer the reader to
this well-rounded exposition for details.

It is assumed for this work that the excitation by an
optical pulse is at mid-infrared or longer wavelength for
which the interaction with the material can be considered
off-resonance. Consequently, the Coulomb interactions
play a lesser role [38] and are neglected in what follows.

Note that this may not be justified for effectively two-
dimensional materials [39], but HHG from bulk crystals
is often treated this way.

Assuming that the band-structure of the material is
known throughout the Brillouin zone, let εn(k) with
n = 1, . . . , Nb describe the Nb energy bands with cor-
responding eigenvectors {|nk}〉. The quantum state of
the system is given by the density matrix ρmn(k; t) with
k running over the Brillouin zone. The initial condition
before the excitation pulse arrives is approximated by
the zero-temperature density matrix with all conduction
bands completely empty and valence bands full.

Evolution equations for the density matrix:
The SBE system constitutes a set of coupled differen-
tial equations, which can be represented in a number of
equivalent ways and gauges (described in a recent tuto-
rial by Yue and Gaarde [11]). Here it is written in the
time-dependent basis {|nkt〉}n as an evolution equation
for the density matrix ρnm(k; t),

(i∂t − εnm(kt))ρnm(k; t) = (1)

E(t)
∑
a

(ρna(k; t)dam(kt)− dna(kt)ρam(k; t))

where the dipole-moment matrix

dam(kt) = 〈akt|i∂kt |mkt〉 (2)

and the band-energy differences

εnm(kt) = εn(kt)−εm(kt) (3)

are calculated for the time-dependent k-vector

kt = k−A(t) (4)

reflecting the effect of the electromagnetic vector poten-
tial A(t) of the excitation pulse. For the moment, de-
phasing terms are omitted for the sake of simplicity —
they will be included later.

Equations (1) to (4) are in the velocity gauge. One ad-
vantage over their counterpart in the length gauge is that
the latter contains gradients which result in a coupling
between equations for different k. This version is there-
fore easier to parallelize with a near-perfect load balance.
Because we integrate the evolution for all relevant Bloch
states, the parallel efficiency is an important aspect to
consider.

Observables: Once the evolution system is integrated
for all k, the induced current density is calculated by
integrating the Brillouin zone and adding contributions
from all bands (formula (62) in Ref. [37]) like so

j(t) =
∑
mn

∫
dk

(2π)3
〈nkt|∂kth(kt)|mkt〉ρmn(k; t) . (5)

Here, h(k) is the instantaneous Hamiltonian with eigen-
states {|nk〉} corresponding to the given k-vector, and
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∂kh(k) is the Hamiltonian-matrix gradient in the recip-
rocal space. Note that the current density can be sepa-
rated into various components [37], including inter- and
intra-band contributions [40] for more physical insight,
but this is not pursued here.

With the current density coupled to Maxwell equa-
tions, “all one needs to do” to simulate high-harmonic
generation in a medium exposed to an electromagnetic
pulse is to integrate the Maxwell-SBE system. However,
the above equations were derived with certain assump-
tions which bring complications. One has to evaluate
the dipole moment operator (2) which obviously requires
|mk〉 to be differentiable with respect to k. This is where
the transition-dipole phase issue comes in.

III. TRANSITION-DIPOLE PHASE

There is an extensive literature dealing with the
so-called transition-dipole phase (TDP) problem (see
e.g. [27]). Not a long time ago, in the early simulations
of HHG from solids, the fact that the dipole-moment as
a function of the k-vector is a complex-valued quantity
was ignored and only the absolute values were utilized in
the calculations. The state of the art improved in the re-
cent years, and the community has a good understanding
of these issues [11]. Nowadays there is a consensus that
the “transition-dipole phase plays a role” in HHG (see
e.g. [23–25]), but we feel it is useful to emphasize that
the absolute phase of any dipole matrix element is not a
measurable quantity. This is why we want to include a
very brief review here.

Gauge invariance:
Let us start with the origin of the TDP-problem. In
quantum theory, the state of a system is represented
not by a vector, as it is often inaccurately described
in the physics literature, but by a ray which is a one-
dimensional subspace of the Hilbert space (e.g. [41, 42]).
In other words, after multiplication by an arbitrary non-
zero complex number, the vector still stands for the ex-
actly same physical state. This means that as k runs
over the Brillouin zone, bases {|nk〉} can be replaced by
ones which differ by arbitrary phase factors on each of
their elements, {eiφn(k)|nk〉}, where the phase φn(k) can
be anything, including non-differentiable, non-continuous
or even completely random.

Any change in the chosen phase of the basis vectors by
φn(k) modifies the transition dipole (2)

dam(k)→ e−iφa(k)〈ak|i∂k|mk〉e+iφm(k) (6)

which makes it evident that the SBE system in fact as-
sumes that the phases of the basis vectors throughout
the Brillouin zone were chosen such that the resulting
dipole moments are differentiable. This has been called
differentiable gauge, and one usually adds a requirement
that the dipoles are also made Brillouin-zone periodic.

Of course, changing the gauge also modifies the off-
diagonal elements of the density matrix. However, once

the physical observables are calculated as e.g. in (5) the
choice of the phases gets completely “erased.” This is
a manifestation of the phase-invariance of the SBE sys-
tem which has been shown via explicit calculations for
various SBE-representations [22]. The same conclusion
can be obtained already from the basic principles of the
quantum mechanics. Indeed, since the phase-modified
basis vectors represent the same physical states, observ-
able quantities are always completely independent of how
φn(k) may be set. Thus, there is no measurement which
could reveal the absolute phase of a vector or of a matrix
element, including that of the dipole moment (2). This
does not mean that the dipole moment phase can be set
arbitrarily because one only has Nb − 1 free parameters
to adjust phases of Nb(Nb−1)/2 off-diagonal elements of
dam(k).

Numerical issues:
Before running a HHG simulation based on the SBE, one
must obtain the dipole moments. Density functional the-
ory software are most often used to calculate the band
structure of a material and they can also provide the
dipole matrices. No matter what kind of a solver is
used to diagonalize the model Hamiltonian, the result-
ing eigenstates calculated for two nearby k-vectors may
or may not end up close to each other. In particular,
the phases of the bases obtained at different location in-
side Brillouin zone may appear “random” (although in
practice they are not truly random). For this reason,
algorithms to generate a “smooth periodic phase” have
been developed [27]. It is relatively straightforward to
obtain a smooth phase along a one-dimensional subspace
of the Brillouin zone, and it can also be arranged to have
a desired periodicity. However, to the best of our knowl-
edge the methods were not yet explicitly demonstrated
for the three-dimensional reciprocal space.

Another consideration relevant for the numerical treat-
ment is the calculation of the off-diagonal dipole moments
and of the Berry connection which is the diagonal part of
dam(k). The off-diagonal part can be obtained without
numerical differentiation [37], but this depends on expres-
sions which become numerically inaccurate when close to
degeneracy. Nevertheless, since it is possible to avoid nu-
merical differentiation for the off-diagonal dipoles, one
may wonder if the SBE representation (1), which does
not feature any gradients, needs to care about the dipole
phase at all; is it perhaps possible to execute the sim-
ulation with whatever phases were given to the dipoles
by the eigensolver? The answer would be affirmative if
not for two serious issues: i) extremely poor accuracy
around sharp “phase jumps” (which are guaranteed to
occur) and, more importantly, ii) the diagonal part, i.e.
Berry connection which is a gauge-dependent quantity.

The inclusion of the Berry connection is crucial for
maintaining the phase invariance of the system [22]. One
reason it was possible to ignore it in many simulations
is that leaving out Berry connection may still produce a
reasonably looking high harmonic spectrum. Neverthe-
less, such results are incorrect because they depend on
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the nonphysical (as in un-observable) phase choice for
the Hamiltonian bases. Numerical evaluation of Berry
connections involves “comparison” of Hamiltonian bases
at nearby k-vectors. This calculation is essentially sim-
ilar to numerical differentiation and it may require an
extremely fine grid in the k-vector space.

To summarize this section, once we have committed to
simulate the SBE-system (1) or its gauge-related coun-
terparts (see [37]) in the precise form as written, we must
address the problem of the smooth, Brillouin-zone peri-
odic phases assigned to the states of the material band-
structure. Moreover, we need to evaluate the transition
dipole matrix elements and the Berry connection which
brings a set of further numerical challenges. This begs
the question if all of this is really necessary, because the
requirement of the differentiable TDP is “self-inflicted”
by the choice of assumptions underlying (1). Quantum
theory says that for any observable quantity all phase
choices are equivalent, so one could design the SBE-solver
to be “phase-choice oblivious.” This is demonstrated
next.

IV. SBE SOLVER ALGORITHM

In order to lay out the idea of the algorithm, it should
be useful to appreciate the roles played by the different
terms in the SBE-system (1). Detailed derivations, as
shown e.g. in Refs. [11, 37], make it evident that the part
proportional to the electric field originates from the time-
dependent basis. Even a constant solution appears to
depend on time when a time-dependent basis is used, and
it is this what the term accomplishes upon integration.
Namely, it smoothly transforms the density matrix from
the Hamiltonian basis at time t1 to a different basis at
time t2. So if it is sufficient to know the solution only
at these discrete points in time, we can transform the
density matrix with a unitary matrix in a single step,
and thus skip all the work needed to solve the system of
ordinary differential equations, and avoid accumulation
of numerical errors at the same time.

To demonstrate that we get the correct solution, con-
sider the right-hand-side of (1) between times ti and ti+1,
and construct the following unitary matrix

Uab(t) = 〈akt|bki〉, (7)

with

kt = k−A(t) and ki = k−A(ti) . (8)

Next, calculate

ρ(t) = U(t)ρ(ti)(U(t))† (9)

for ti < t < ti+1, and differentiate it with respect to t to
obtain,

iρ̇(t) = iU̇(t)ρ(ti)(U(t))† + iU(t)ρ(ti)(U̇(t))† . (10)

Inserting I = UU† = U†U between the constant ρ(ti)
and the dotted (time-differentiated) operators and sub-
sequently using (9) we get

iρ̇(t) = iU̇(t)(U(t))†ρ(t) + iρ(t)U(t)(U̇(t))† . (11)

Using U̇U† = −UU̇† one obtains the right-hand-side in
the form of a commutator,

iρ̇(t) = iU̇(t)(U(t))†ρ(t)− iρ(t)U̇(t)(U(t))† , (12)

which is to be compared to that in (1), so we want to

expand U̇U†. The time derivative of the transformation
matrix is

U̇ab(t) = ∂t〈akt|bki〉 = E(t).〈∂kt
akt|bki〉 , (13)

and U̇U† reveals the dipole moment and the electric field,

iU̇ab(U
†)bc = iE(t).〈∂ktakt|bki〉〈bki|ckt〉 = (14)

−E(t).〈akt|i∂ktckt〉 = −E(t).dac(kt) .

Using this in (12) gives

iρ̇nm = E(t)
∑
a

(ρnadam(kt)− dna(kt)ρam) (15)

which is precisely the E-field term in (1). Thus, the basis-
transformation (7) would give an exact solution if not
for the diagonal part of the SBE system. Because the
exact solution can be also obtained for the diagonal part,
Eqn. (1) is a natural candidate for the operator-splitting
approach.

Let us assume that the evolution of the system is sam-
pled on a discrete grid of times, ti, and let ki stands
for kt calculated for t = ti. Further, let {|mki〉}Nb

m=1

be the Hamiltonian eigen-basis at time ti, and we use
it with whatever phases an eigen-system solver assigned
to the eigenvectors. The basis transformation between
ti → ti+1 is given by the unitary matrix

U
(i)
ab = 〈aki+1|bki〉, (16)

and this is used as in (9) to evolve the density matrix
from ti to ti+1.

The other split-operator is diagonal; it represents the
adiabatic evolution in the time-dependent basis. Join-
ing the two split-operator actions together, the density-
matrix evolution over the time-step interval ∆t = ti+1−ti
can be approximated by

ρ(ti+1) = P (i)ρ(ti)(P
(i))† , (17)

where the evolution operator is

P
(i)
ab = e−iεa(ki)∆t/2U

(i)
ab e
−iεa(ki)∆t/2 . (18)

This operator-splitting formula is locally second-order ac-
curate [43], but that alone tells us little about how long
∆t can be. At any rate, the permissible integration step
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depends on the electric field intensity and it must be es-
tablished in a case-by-case convergence study. For the
simulation results presented in this work the time step
was ∆t = 0.07 fs.

In order to complete one integration step, the phe-
nomenological damping can be included between the
split-steps by appropriate modification of the off-diagonal
parts of the density matrix [11]. We used a dephasing
time of five femtoseconds for our examples in Section VI.

Since we have not assumed anything about the phase-
relations between the bases at ti and ti+1, the Hamilto-
nian eigenstates can be used as calculated by the eigen-
system solver, and this algorithm is manifestly free of the
transition-dipole phase problem. As a sanity check, we
have inserted in the numerical evolution scheme a pro-
cedure which generates and assigns truly random phases
to all Hamiltonian eigenvectors after each and every call
to the eigensystem solver — with no significant change
in observables.

The fact that we can work with any eigenvector phases
including random ones is a crucial advantage over the
approaches which rely on the numerical integration of
SBE using ODE-solvers. An additional important ben-
efit is that this algorithm does not require calculation
of the dipole-moment matrix elements. Given that accu-
rate dipole calculations are challenging, this feature alone
eliminates the most significant source of numerical noise,
and makes it possible to calculate HHG spectra with the
dynamic range well beyond what is typical for the tradi-
tional approach.

V. HHG IN ZINC-BLENDE MATERIALS

To illustrate the capabilities of the SBE-solver algo-
rithm described in the previous sections, we present simu-
lations of high-harmonic generation in zinc-blende struc-
tures, choosing GaAs and ZnSe for our examples.

Material model
As for the choice of the material model, most of the HHG
simulations utilize DFT calculations to obtain the mate-
rial band-structure and related quantities such as dipole
moments. While the method described above is in prin-
ciple applicable with any material description capable of
producing Hamiltonian eigenstates for any k throughout
the Brillouin zone, for this work we prefer to use tight-
binding models. One could argue that such a description
is less accurate in terms of the band-structure, and it
is a valid point. On the other hand, SBE-based sim-
ulations using DFT-based material model over a three-
dimensional Brillouin zone has yet to be demonstrated.
Moreover, the results from DFT calculations suffer from
numerical issues, for example it may be difficult to tell
apart Bloch states which are energetically close from
truly degenerate states. Because we concentrate on qual-
itative properties of the HHG, for this work we choose the
tight-binding description which is free of such numeri-
cal issues. Given that the theory-experiment compar-

isons are still qualitative rather than quantitative in the
field of of solid-state high-harmonic generation, we be-
lieve that these models will be useful in their own right
for a number of computer-aided studies.

We have used the empirical tight-binding models to
obtain the quantities required by the solver, i.e. the k-
dependent Hamiltonian h(k) built on the frequently used
sp3s∗ model [44, 45]. For simplicity, we neglect the spin-
orbit coupling, and include ten bands. The explicit form
of the Hamiltonian matrix and its parameterization can
be found in Ref. [46]. Exact diagonalization procedure is
executed “on the fly” as needed for any given k, produc-
ing the set of eigenvectors |mk〉 and band energies ε(k).
For the calculation of the current-density (5), the vector
matrix ∂kh(k) is also calculated exactly from the model.
Thus, there is no interpolation or any finite-difference
approximations needed.

Needless to say, repeated diagonalization on the fly
would be impractical should one want to use first-
principle calculations, such as DFT, to obtain the mate-
rial properties. However, localized Wannier functions [47]
can be used to transform ab initio calculation into an ef-
fective tight-binding Hamiltonian [32, 48], and this then
can be used in our algorithm in the same way as we do
in our illustrations.

It should also be emphasized that the on-demand diag-
onalization is not a requirement in our method. For the
readers who may want to use the algorithm with other
than tight-binding material descriptions, and especially
with methods relying on ab initio calculations, we pro-
vide Appendix A which outlines an implementation using
pre-calculated material data.

Pulsed excitation
The examples given next assume excitation by a lin-
early polarized pulse with the central wavelength of
λ = 3.6µm, envelope duration of 100 fs (cos2 shape),
and the field intensity of 8.7× 108V/m. We explore dif-
ferent crystal orientations in order to demonstrate that
the nonlinear response exhibits the expected orientation
and polarization properties. As propagation effects [17]
are not studied in this work, the observable of interest is
the vector of the current-density calculated for the given
excitation pulse.

HHG-spectra from the whole Brillouin zone
For the first example we consider a crystal sample ori-
ented such that the linearly polarized pulse oscillates
along direction (1,1,0), i.e. perpendicular to the crystal
z-axis. In this geometry, the material symmetry dictates
that the second-harmonic response only appears in the

z-direction. This is because the second-order tensor χ
(2)
abc

of the zinc-blende structure vanishes unless all a, b, c are
different. In contrast, the third harmonic excited by the
Kerr effect is expected to show up along the x=y direc-
tion.

Figure 1 depicts the simulated HHG spectra for GaAs
and ZnSe samples, and shows that the polarization prop-
erties are indeed as one expects, with even and odd har-
monics are separated between the parallel and perpen-
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FIG. 1. High-harmonic generation in crystals excited by a
linearly polarized pulse oscillating along the x=y (crystal)
direction.

dicular polarizations.

We have intentionally used a relatively long-duration
pulse so that the well-separated harmonics showcase that
the calculated spectra are free of the noise-floor so typical
of many HHG simulations — here the noisy background
occurs about ten orders of magnitude below the lower
edge of these plots. This indicates excellent numerical
fidelity of the algorithm.

The question of convergence is obviously important.
Making sure that the time-step is short enough and does
not affect the convergence, we compare the spectra sim-
ulated with different number of sampling points in the
Brillouin zone. Figure 2 shows an example where conver-
gence is achieved over a dynamic range of fifteen orders
of magnitude.

To show a case when both even and odd harmonics
appear simultaneously in the parallel and perpendicular
polarizations, we include Fig. 3. Although we do not
actually propagate the excitation pulse, we assume that
the sample orientation is 110, and then rotate the sample
about the beam axis as it is often done in experiments.
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FIG. 2. Convergence of the numerical HHG-spectra for two
different numbers of sampling points in the 3D Brillouin zone.

In this figure the sample is rotated by 45 degrees, and
we look at the current density polarized parallel (p) and
perpendicular (s) to the polarization direction of the exci-
tation pulse. In this particular case, the even harmonics,
while clean and well defined, are weaker than the odd har-
monics and this is especially the case for the p-polarized
component.

The relative strength between the odd and even har-
monics depends on the angle of the sample rotation. This
is illustrated in Fig. 4 for the second-harmonic frequency
band. The radiation pattern (left) is essentially the same
as expected from the classical χ(2) tensor of the zinc-
blende structure (right), and this corroborates that the
simulated response has the correct symmetry. It should
be interesting to study the deviations from the classi-
cal (equilibrium) predictions based on a fixed χ(2) as a
function of the excitation pulse intensity, but we will not
pursue this here.

For a more difficult-to-pass test of the symmetry prop-
erties of the simulated high-harmonics, Fig. 5 shows the
results for the excitation with a pulse polarized along one
of the crystal axes (x). In this case the response compo-
nents z and y are supposed to vanish and they indeed do.
The z-component shows up in these plots as a noisy back-
ground (gray area below the black curve) about fifteen
orders of magnitude below the level of the x-polarized
signal. One could say that this is nothing but a simple
sanity check because our SBE-based simulation automat-
ically inherits the correct symmetry properties from the
material model. Nevertheless, it is important to note that
the “numerical zero” demonstrated for the current com-
ponents which are forbidden by symmetry does not occur
point by point (in the reciprocal space). Instead, all re-
gions throughout the Brillouin zone contribute non-zero
signals, and the symmetry appears only after significant
(or complete in the case here) cancellations. Because
of their important implications, we discuss these issues
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FIG. 3. High-harmonic generation in 110-oriented GaAs crys-
tal. Linearly polarized excitation pulse oscillates at 45 de-
grees w.r.t. the crystal axis. In this geometry, both even and
odd harmonics should appear in the p- as well as in the s-
polarization.
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FIG. 4. Orientation-dependent high-harmonic generation in a
110-oriented GaAs crystal. Left: Simulated second harmonic
filtered from the current density in the parallel (p) and per-
pendicular (s) polarizations shown as functions of the sample
rotation angle. Right: The second harmonic radiation pat-
tern for the zinc-blende nonlinear tensor.

next.

Mapping the Brillouin zone for the HHG-source

One often utilized simplification in the solid-state HHG
simulations is that instead of the entire Brillouin zone
only a one dimensional line is used to represent the re-
ciprocal space. We now present a few examples which
demonstrate that a great deal of caution is in order when
trying to interpret HHG-simulation results based on a
low-dimensional subset of the reciprocal space because:
a) the source of the high-harmonics is distributed
throughout the entirety of the Brillouin zone
b) different portions of the zone give rise to radiation
with various phase shift and significant cancellation oc-
cur between them.
The illustrations also elucidate how it happens that the
second-harmonic signals are absent in Fig. 5

Let us consider a lineout of the Brillouin zone, for ex-

0 5 10 15 20 25
frequency (harmonic order)

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

s
p

e
c
tr

a
l 
p

o
w

e
r 

(a
rb

.u
n

it
s
) polarization x

polarization z

GaAs, excitation x at 3.6µm

band-gap 
a)

0 5 10 15 20 25
frequency (harmonic order)

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

s
p

e
c
tr

a
l 
p

o
w

e
r 

(a
rb

.u
n

it
s
)

polarization x

polarization z

ZnSe, excitation x at 3.6µm

band-gap 

b)

FIG. 5. High-harmonic generation in crystals excited by a
linearly polarized pulse oscillating along the (crystal) x direc-
tion. In this geometry, the current density in the perpendicu-
lar direction (y, z) must vanish due to the material symmetry.

ample a line of k-vectors connecting two W points at the
opposite sides of the Brillouin zone, or the X-Γ-X path
going through the center of the zone, as depicted in Fig.6.
Black arrows indicate the polarization direction of the
electric field, and of the parallel (Jx) and perpendicular
(Jz) component of the induced current.

We calculate ρ(k; t) for each point of such a lineout and
evaluate the corresponding current density as the trace
with ∂kh(k) as required by (5). The result is a contri-
bution to the current which originates in the electronic
states starting their evolution at a point of the lineout.
We aim to compare the “strength of the response” be-
tween different regions of the reciprocal space.

Instead of the HHG-spectrum, we visualize the induced
current-density because in this way one can appreciate
different phase shifts and see how various contributions
can interfere. In order to make figures easier to read
we assume a shorter pulse, 50 fs duration, and we filter
out the second-harmonic contribution from the current-
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FIG. 6. Lineouts through the first Brillouin zone are shown
in dashed red lines. The XΓX path is often used to simulate
HHG from materials such as GaAs. We wish to visualize the
contribution of different points along the lineout, and see how
they change when moving away from the center of the zone
to, say, the WW-lineout. The arrows indicate the direction of
the excitation (E) and induced current components (Jx, Jz)
corresponding to the components shown in Fig.5.

FIG. 7. The vector component of the time-dependent current
density perpendicular to the driving electric field. Shown here
is the filtered second-harmonics in arbitrary units as a func-
tion of the initial k-vector localized along the indicated lineout
(dashed red line in Fig.6) of the Brillouin zone. The lineout
axis is in relative units.

density. Then we plot a two-dimensional map of the cur-

FIG. 8. Time-dependent current density as in Fig.7, but for
the current-density vector component parallel with the elec-
tric field.

rent versus time and the initial k-location along the se-
lected lineout.

To elucidate the mechanism behind the vanishing sec-
ond harmonics in Fig. 5. we first consider the z-
polarization output shown in Fig. 7 for the lineouts XΓX
(top) and WW (bottom). What the top plot shows is
merely numerical noise, so we can see that the points
along XΓX do not generate the s-polarized SH contribu-
tions at all. However, moving away from the axis of the
Brillouin zone to the line WW (bottom panel), one can
see that every point gives a strong individual contribu-
tion, and it is because the middle and outer portions of
the lineout are out of phase that the total second har-
monic vanishes in the end.

The mechanism that extinguishes the second harmonic
for the polarization along the electric field direction (cf.
absent second-harmonic peak in the red (top) lines in
Fig. 5) is similar and is illustrated in Fig. 8. This time
we see strong contribution along both lineouts, but dif-
ferent regions in the reciprocal space exhibit out-of-phase
contribution that interfere destructively.

These results are merely examples which of course can
not provide a complete “map” of how different parts of
the Brillouin zone contribute to the observed HHG. Nev-
ertheless, they make it quite evident that all parts of the
Brillouin zone contribute to the HHG output on a qual-
itatively equal footing, and only when they are added
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together the correct picture emerges. It is obvious that
for a sample rotated with respect to that in the above
example, the resulting strength of the harmonics of dif-
ferent polarization will sensitively reflect the interference
between different parts of the Brillouin zone.

Our results also suggest that it is not given that the
observed response is dominated by the initial k-states
with the strongest transition dipoles. Indeed, the k-
dependence of the signal-amplitudes in Figs. 7 and 8 does
not follow the magnitude of the dipole moments which
tend to be strongest in the vicinity of the Γ-point. To
emphasize this even more, Fig. 9 shows an example for
a crystal sample with 110 orientation rotated about the
beam by 90 (top panel) and 45 (bottom panel) degrees.
While in this case the response from different k location
appears to be in phase, the bottom panel shows that the
strongest response depends on the polarization; when in
the upper panel it is correlated with the strongest dipoles
in the center, and the lower panel exhibits an asymme-
try which is “out of sync” with the magnitude of the
local transition dipoles. Moreover, it becomes evident
that this particular BZ-lineout should not be considered
in isolation from its counterparts related by the crystal
symmetry.

We therefore contend that the integration over the en-
tirety of the Brillouin zone should be the default ap-
proach preferred over the numerically less intensive in-
vestigations restricted to low-dimensional subsets in the
reciprocal space.

VI. CONCLUSIONS

We have presented an approach to the high-harmonic
generation from crystalline solid-state media which is
completely free of any considerations related to the com-
plex phases of the elements of the transition-dipole mo-
ment. In fact, the method does not require calculations
of the transition dipole matrices which is a distinct ad-
vantage by itself. The simulation algorithm is informed
by the fact that the absolute phases of these quantities
are not physical observables, and the method is “phase-
blind” by design in the sense that it can work with ar-
bitrary phases assigned to the Hamiltonian eigen-states.
In particular, there is no requirement of differentiability
or even continuity between the Hamiltonian bases used
at “mutually close” points of the Brillouin zone. As such,
our approach offers the best possible solution to the so-
called transition-dipole phase problem by eliminating the
issue entirely.

The method is computationally efficient and admits a
perfectly load-balanced parallelization. The speed is suf-
ficient for future integration with the pulse-propagation
simulators such as our gUPPE [49], making the spatially
resolved studies of propagation effects in solid-state HHG
feasible with the account of the whole Brillouin zone.

It is actually relatively easy to integrate all in-
duced current-density contributions over the whole three-

FIG. 9. Time-dependent current density (in arbitrary units)
for the WW lineout (red dashed line in Fig.6) and 110-
oriented crystal sample. The top panel shows the p-polarized
response for the sample rotated by 90 degrees, while the lower
panel is for the s-polarized response and sample rotated by 45
degrees. It is obvious that the induced current amplitude is
not always correlated with the local magnitude of the transi-
tion dipoles which are strongest in the middle of the lineout.

dimensional Brillouin zone. This is shown crucial for the
preservation of the material symmetry. Once the ini-
tial model utilized to calculate the band-structure of the
crystalline medium properly reflects the space-group of
the material, the simulated HHG signals and in partic-
ular their sample-orientation and pulse-polarization de-
pendencies are guaranteed to be correct.

We have shown that in general the entire Brillouin zone
contributes to the high-harmonic signal. This is per-
haps not so surprising, but our simulation examples also
demonstrate that there are considerable cancellations, or
destructive interference between the contributions origi-
nating from the quantum states in different sectors of the
Brillouin zone. It is therefore unrealistic to expect that,
for a general sample orientation and excitation-pulse po-
larization, one could use a low-dimensional subset of the
Brillouin zone to capture the high-harmonic generation
very accurately. We have also seen that the strength of
the transition-dipoles is not a reliable predictor of which
part of the Brillouin zone may dominate the HHG signal.

These observation may have important impact on some
applications of solid-state HHG, such as Berry curva-
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ture measurement [9]. For example, all-optical band-
reconstruction [4, 5] and dipole-reconstruction [7] meth-
ods tend to utilize a one-dimensional picture of the recip-
rocal space by selecting a presumably dominant contri-
bution to the process [6]. In contrast, here we have seen
how the HHG-source can “light up” the Brillouin zone in
rather non-intuitive patterns. We therefore believe that
the full-Brillouin zone simulations similar to those pre-
sented in our work can be a useful tool to identify the
dominant channels in the high-harmonic generation from
crystalline materials.

Sampling the entire Brillouin zone with high reso-
lution, and being able to do it many times for vari-
ous parameter scans, opens a door for a number of ex-
citing investigations. Of particular interest is looking
at the role of distinct features in the material band-
structure, for example band-gaps between adjacent con-
duction bands [29], or spectral caustics associated with
critical points in the energy bands [30]. These and
other features can be studied in detail by mapping the
HHG source around them (together with their symmetry-
related partners) and comparing the signal to that from
the complement in the Brillouin zone. This way one can
determine the relative strength of the feature and probe
for possible interference effects.

It is now feasible to simulate complex driving wave-
forms and study the polarization properties [35, 50] of
the harmonic signal [36]. Driving HHG with complex-
polarization and multi-color pulses has been very fruitful
in gases, and it will surely be even richer in solid-state.
We believe that simulations and specifically those that
can guarantee correct symmetry properties will be vital.

The high numerical fidelity of the proposed method
invites a detailed investigation into the still unresolved
issue of dephasing. It is a well-known fact among practi-
tioners that numerically simulated HHG spectra require
unphysically short dephasing times, otherwise they would
not compare well with experiments. While propagation
effects [13, 18] and spatial filtering [51] were proposed
as a partial explanation, alternative dephasing mecha-
nisms [52] were also considered, and one could argue that
many-body effects should be included in the models. We
suspect that the quality of the numerical data can also
play a role, and it will be important to rule out possible
artifacts.

Last but not least, we are approaching the stage when
it will be possible to determine the absolute scale of the
simulated HHG, and thus push the experiment-theory
comparison much more in the quantitative direction [33].
The beauty of an HHG simulation with the full Bril-
louin zone is that it encompasses the response in the
low-harmonic region where it can be quantitatively com-
pared with measurements. For example nonlinear coef-
ficients and multi-photon absorption cross-sections can
be extracted from the HHG models and serve as bench-
marks for accuracy. In turn, such quantitatively “an-
chored” simulations will motivate better, calibrated ex-
periments.
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VII. APPENDIX: PRE-CALCULATING
MATERIAL-MODEL DATA

This Appendix is intended for the readers who may
want to use DFT-generated material data, but for what-
ever reason do not wish to post-process the ab ini-
tio calculations into an effective tight-binding model
(e.g. via maximally localized Wannier functions ap-
proach [32, 47]). Is it possible to pre-calculate all that
is necessary to avoid repeated, on-the-fly exact diagonal-
ization? The purpose of this Appendix is to sketch in
broad strokes how this could be done.

Let us assume that the material band-structure was
solved for each point on a suitably chosen grid which sam-
ples the Brillouin zone. This means that eigen-energies
and the eigen-vectors are available at the grid-points, but
not for locations in-between. For simplicity of the follow-
ing discussion, we consider a linearly polarized electric
field, and a k-grid in which one dimension aligns with
the field direction.

For the initial density matrix ρ(k, t = 0) for a fixed k,
at time t1 the algorithm has just calculated the state of
the system for the k-vector k1 = k−A(t1), so the Hamil-
tonian basis is now known at this point even if it does
not belong to the pre-sampled grid. Let kg be the nearest
grid-point in the direction of the driving field. The basis
at kg was pre-calculated and stored before the simulation
so it can be retrieved, and we can readily construct the
unitary transformation matrix U1→g as in Eq. (7).

Now let us say that during the next integration step,
the vector potential takes us from k1 to k2 = k − A(t2),
and this is where we need to calculate the Hamiltonian
eigen-basis. More precisely, what we require is the uni-
tary transformation matrix U1→2 which takes the basis
at k1 and produces the basis at k2. However, we wish to
avoid running an exact-diagonalization routine anew, be-
cause it is expensive. Instead we will interpolate between
the two unitary matrices, U1→1 (which is an identity) and
U1→g to obtain U1→2. For this purpose, let us consider
the “fractional distance” f = (k2 − k1)/(kg − k1) rep-
resenting how far k2 is from k1 when moving toward kg.
The interpolated transformation matrix corresponding to
this fractional distance can be constructed as

U1→2 = MatExp
[
f MatLog[U1→g]

]
, (19)

which is called geodesic interpolation of unitary matri-
ces [53]. Viewed as an f -parameterized family of ma-
trices, this formula constructs the shortest path (in the
sense of the Frobenius norm) between an identity matrix
U1→1 and the unitary matrix U1→g. We just need to se-
lect the value of f which brings us to the “location” k2.
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Important for our application is that the interpolation
matrix is guaranteed to be unitary.

Formula (19) may not look friendly, but it is in fact
easy to use. There is a number of good algorithms to ob-
tain logarithms of unitary matrices in general [54], and
in this particular case even the series-expansion method
with only a few terms will suffice. Moreover, because
the norm of MatLog[U1→g] will be small (here we as-
sume a fine-resolution grid, of course), the evaluation of
the matrix exponential is also easy, for example with the
scaling-and-squaring method [55].

We have tested the unitary-matrix interpolation (19)
with the tight-binding models for the zinc-blende struc-
ture, both with and without spin-orbit coupling included.
We have found that the procedure can be implemented
so that it is fast and accurate even on coarsely sampled
grids (e.g. with mere 16 points in each dimension). This
approach is therefore a good candidate for using pre-
calculated material data, such as from DFT, with the
algorithm put forward in this work. Pre-calculation with
subsequent interpolation on the fly may be suitable also
for tight-binding models with larger dimensions, say be-
yond twenty.
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