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In the standard Landau-Zener-Stückelberg-Majorana (LZSM) problem, the bias sweep rate and
gap are both time independent and fully characterize the LZSM problem. We consider the nonlin-
ear LZSM problem, in which at least one of the two characteristic parameters varies as the system
traverses the avoided crossing region. This situation results in what could be thought of as a more
accurate description of any realistic situation as compared to the idealized linear LZSM problem. We
consider both the case of perturbative nonlinearities, where the nonlinearity adds small corrections
to the linear problem, and the case of essential nonlinearities, where the sweep and/or minimum-gap
functions are qualitatively different from those of the linear LZSM problem. In the case of perturba-
tive nonlinearities, we derive analytic expressions for the LZSM transition probability based on the
Dykhne-Davis-Pechukas (DDP) formula, taking into account the leading corrections to the standard
LZSM formula. We compare the derived approximate expressions with numerical simulation results
and comment on the validity of the approximations. In particular, if the nonlinear term is small
in comparison to the linear term throughout the finite duration of the avoided crossing traversal,
the perturbative approximation is valid. Our results also provide information about the validity of
the DDP formula. In addition to reviewing cases of essential nonlinearity treated previously in the
literature, we analyze the case of an essentially nonlinear sweep function that describes an almost
square pulse.

I. INTRODUCTION

The Landau-Zener-Stückelberg-Majorana (LZSM)
problem [1–4] (see also the review [5]) deals with the
quantum dynamics of two quantum states when some
system parameter is varied such that the two corre-
sponding energy levels approach each other, experience
an avoided crossing and move apart as the variable
parameter continues its variation. Despite its simplicity,
the LZSM problem applies to a remarkably broad set
of physical phenomena ranging from atomic collisions
and chemical reactions to the operation of quantum
computing machines. The dynamics of LZSM transitions
can also be used for the control of quantum systems
[6–8]. Parameter variations can also lead to other effects
in two-level systems, such as motional narrowing and
averaging [9].

The probability to make a transition between the two
quantum states in the LZSM problem was derived inde-
pendently by Landau, Zener, Stückelberg and Majorana
[1–4] (see also [10]). In its basic formulation, a system
parameter is varied linearly from an infinitely large neg-
ative time to an infinitely large positive time. This ide-
alized assumption renders the problem exactly solvable,
resulting in the well-known LZSM formula.

If the problem deviates from the idealized scenario of
a linear sweep function and fixed gap, the problem is in
general not exactly solvable. There have been several
studies over the years on variants of the LZSM prob-
lems. In particular, a number of special cases with spe-
cific sweep functions have been shown to allow exact solu-
tions. These exactly solvable special cases, however, were

generally obtained by identifying functions that satisfy
certain mathematical conditions and hence allow analyt-
ical treatment. As a result, they do not necessarily repre-
sent better approximations for realistic physical systems
in comparison with the original, linear LZSM problem.

In this work we calculate what can be considered the
leading corrections to the LZSM formula arising from a
weak nonlinearity in the sweep function or a weak time
dependence of the gap. Quantum technologies have made
remarkable advances in recent years. Higher-order cor-
rections to the idealized LZSM transition probability,
which might have been of mostly academic interest in
the past, could now be measured and possibly utilized
in future practical applications. This situation makes it
imperative to have more accurate approximations for the
LZSM probability in a nonlinear setting. In addition to
our analysis of the weak nonlinearity case, we consider
the power and error functions as sweep functions in the
limiting case when they are almost square pulses.

The paper is organized as follows: In Sec. II, we in-
troduce the idealized LZSM problem and how a nonlin-
earity is added to the problem. In Sec. III, we describe
the Dykhne-Davis-Pechukas (DDP) formula, which can
be applied to a general LZSM problem. In Sec. IV,
we review previous work in the literature on the non-
linear LZSM problem. In Sec. V, we treat the case of
a weak nonlinearity: we derive analytic expressions for
the corrections to the LZSM formula when we include
the leading-order nonlinear correction term to the sweep
function, and we test the limits of the perturbative for-
mulae with numerical calculations. In Sec. VI, we con-
sider a few additional interesting cases of the nonlinear
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LZSM problem. Section VII gives results for an essen-
tially nonlinear sweep function that describes an almost
square pulse. In Sec. VIII, we consider the case of a time-
dependent gap and show that a general problem with a
varying gap can be transformed to one with a fixed gap
but modified sweep function. Section IX contains con-
cluding remarks. In Appendix A, we give a detailed cal-
culation of the LZSM probability by the DDP method
for a sweep function with a weak quadratic nonlinearity.
Appendix B is devoted to the calculation of the LZSM
probability for a sinh function. Appendix C contains the
detailed calculation for eliminating the time dependence
of the gap, in addition to a perturbative formula for the
case of a time-dependent gap.

II. LINEAR AND NONLINEAR LZSM
PROBLEMS

The linear LZSM problem pertains to the dynamical
evolution of a two-level quantum system under a specific
type of temporal variation in the Hamiltonian. The dy-
namics of the two-amplitude state vector |ψ〉 is governed
by the Schrödinger equation

i
d |ψ〉
dt

= H |ψ〉 (1)

(h̄ = 1), where the Hamiltonian is given by

H =
1

2

(
ε(t) ∆
∆ −ε(t)

)
, (2)

and the sweep function

ε(t) = vt, (3)

with v and ∆ being the characteristic parameters of the
LZSM problem. Physically v is the sweep rate of the two
diabatic state energies relative to each other, and ∆ is
the gap (i.e. minimum separation) between the energies
of the adiabatic states. Both parameters can be taken
positive without any loss of generality. We shall refer
to the t value at which the adiabatic energy levels are
closest to each other as the crossing point.

It should be noted that any linear Hamiltonian,
i.e. H(t) = A×t+B with Hermitian 2×2 matrices A and
B, can be transformed into the form given in Eq. (2), pro-
vided that A is not proportional to the identity matrix.
Working in a basis that diagonalizes A makes the off-
diagonal matrix elements time independent. Any imag-
inary part in the off-diagonal matrix elements can then
be eliminated by multiplying the basis states with ap-
propriate phase factors. The crossing point between the
diagonal matrix elements can be set to t = 0 via a shift in
the time variable. Any non-antisymmetric component in
the diagonal matrix elements can then be ignored, since
an overall energy shift does not affect the LZSM dynam-
ics.

The main quantity that is evaluated in the LZSM prob-
lem is the transition probability between the two quan-
tum states as a result of traversing the avoided crossing
region (i.e. the region around t = 0). It is therefore usu-
ally assumed that at the initial time t → −∞ the quan-
tum state is given by (ψ↑, ψ↓) = (1, 0), or alternatively
(0,1), and the goal is to determine the probabilities |ψ↑|2
and |ψ↓|2 at the final time t → ∞, although some stud-
ies have considered the case of a quantum superposition
initial state [11]. These quantities represent the proba-
bilities that the quantum system will stay in its initial
state or make a so-called nonadiabatic LZSM transition.
The probability PLZSM to remain in the same diabatic
state, i.e. (ψ↑, ψ↓) = (1, 0), is given by the well-known
formula (see e.g. Ref. [5]):

PLZSM = |ψ↑(t→∞)|2 = e−2πδ, (4)

where

δ =
∆2

4v
(5)

is the adiabaticity parameter.
The LZSM problem described above can, in some

sense, be considered the simplest model for a quantum
system undergoing nonadiabatic transitions by travers-
ing an avoided crossing region. In particular, the LZSM
problem has the appearance of an idealized linear model
in which the parameters v and ∆ remain constant from
t→ −∞ to t→∞. In reality one would expect these pa-
rameters to vary over time for any actual physical setup,
with v being defined as the instantaneous time derivative
of ε, i.e.

v(t) = ε̇(t). (6)

Note that throughout the manuscript a time-dependent
v will be defined by Eq. (6), and not by Eq. (3). On the
other hand, approximating v and ∆ by constants for an
infinite amount of time is not as bad as it might seem at
first sight, because the LZSM transition dynamics takes
place only during the traversal of the avoided crossing,
as can be seen from a plot of the state probabilities as
functions of time (see e.g. Fig. 3 in Ref. [5]). The corre-
sponding duration of the crossing process can, as a rough
estimate, be defined as

τLZSM =
1√
v

max

(
1,

∆

2
√
v

)
. (7)

The values of v and ∆ long before and long after the
crossing point are almost irrelevant. For this reason, us-
ing only the values that v and ∆ take at the avoided
crossing point gives a good approximation for the LZSM
transition probability in realistic problems. Nevertheless,
it is natural to expect that v and ∆ will generally vary
in time even during the traversal period, and any such
temporal variations of v and/or ∆ can be expected to
affect the LZSM probability.
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FIG. 1. Schematic diagrams of the energy levels and sweep
functions of nonlinear LZSM problems. Panel (a) shows the
energy levels as functions of the bias ε, which is generally a
function of time. As in the linear LZSM problem, the instan-
taneous energy levels (solid cyan lines) exhibit an avoided
crossing. The dashed black lines show the energies of the
diabatic states, which asymptotically approach the instanta-
neous energy eigenstates at ε→ ±∞. In Panel (b), the solid
red line corresponds to a nonlinear sweep function that con-
tains both a linear term and a quadratic term: specifically,
ε(t) = vt × [1 + 0.5 tanh(vt/10∆)]. Panel (c) shows two ex-
amples of time-antisymmetric sweep functions: the solid blue
line corresponds to the superlinear function ε(t) = vt × [1 +

0.2(vt/∆)2]1/2, while the dashed magenta line corresponds to

the sublinear function ε(t) = vt × [1 + 0.4(vt/∆)2]−1/4. For
comparison, the dotted green lines in Panels (b) and (c) show
the linear sweep function ε(t) = vt. The gap ∆ is used as an
energy unit for all the axes in this figure.

A simple picture of how the nonlinearity enters the
problem is given by the case where an external parame-
ter, e.g. an externally applied field E, is varied linearly
in time (E = vt) but the bias function ε is a nonlinear
function f(E) of the field. The bias function can then be

expressed as

ε(t) = f(vt) = vt+
χ2

2!∆
(vt)

2
+

χ3

3!∆2
(vt)

3
+ · · · . (8)

Here χ2 and χ3 are the quadratic and cubic nonlinearity
parameters, respectively. The factors of ∆ in the denomi-
nators are used to make the coefficients χn dimensionless.
Corrections from nonlinear terms in physical problems
typically decrease in importance as we go to increasingly
high orders. In other words, one would intuitively ex-
pect that, for a problem with a weak nonlinearity, the
quadratic term will produce the main correction to the
transition probability, followed by the cubic term and so
on. We shall show below that the quadratic nonlinearity
leads to an especially small correction, which can make
the cubic nonlinearity important even in the presence of
a quadratic nonlinearity.

Figure 1 shows schematic diagrams of the energy
level structure and various nonlinear sweep functions.
The nonlinear function plotted in Fig. 1(b) contains a
quadratic term, which is the leading-order correction to
the linear approximation:

ε(t) = vt×
(

1 + α tanh
vt

α̃∆

)
≈ vt+

α

α̃

(vt)2

∆
. (9)

Figure 1(c) shows examples of sweep functions that do
not contain a quadratic term: a superlinear function,

ε(t) = vt
(
1 + λt2

)1/2
(10)

≈ vt
(

1 +
λt2

2

)
,

and a sublinear function,

ε(t) = vt
(
1 + 2λt2

)−1/4
(11)

≈ vt
(

1− λt2

2

)
,

with λ > 0 in both cases. The superlinear case has
ε(3)(0) × ε̇(0) > 0, while the sublinear case has ε(3)(0) ×
ε̇(0) < 0. Throughout this manuscript, we denote the
first and second time derivatives using dots, while we de-
note the third time derivative with the superscript “(3)”.
The functions plotted in Fig. 1(c) have the additional
property of being antisymmetric about the point t = 0
and therefore contain only odd powers of t.

III. DYKHNE-DAVIS-PECHUKAS FORMULA

The DDP formula [12, 13] (see also Ref. [14]) is a pow-
erful tool to investigate LZSM-type problems with gen-
eral functional forms of the parameters v(t) and ∆(t).
It was derived with rigorous foundation in the adiabatic
limit, but it has proved to be a good approach to ob-
tain rather accurate results even away from the adiabatic
limit.
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A calculation utilizing the DDP formula typically pro-
ceeds as follows: for the time evolution from t → −∞
to t→∞ with general functions ε(t) and ∆(t), one first
finds the zeros of the function

E(t) =
√
ε2(t) + ∆2(t) (12)

in the complex plane. In other words, one finds the values
of t that satisfy the condition

E(t) = 0, (13)

treating t as a complex variable. For the DDP approach
to be justified, the following assumptions are made:

(1) the function E(t) is analytic at least in a region
that contains the real axis and relevant zeros,

(2) there are no zeros on the real t axis, i.e. the func-
tions ε(t) and ∆(t) do not vanish simultaneously at any
point during the parameter variation, and

(3) no two zeros are extremely close or coincide with
each other.

One then identifies all the zeros of E(t) that have pos-
itive imaginary parts. In general, there will be multiple
such zeros tkc , where the superscript k is a label for the
different zeros (k = 1, 2, ..., n). In this case, the general-
ized DDP formula can be used to calculate the transition
probability [15]

P ≈
∣∣∣∣∣
n∑
k=1

Γke
iD(tkc )

∣∣∣∣∣
2

, (14)

where

Γk = 4i lim
t→tkc

(t− tkc )
ε̇(t)∆(t)− ε(t)∆̇(t)

2E2(t)
, (15)

and

D(t) =

∫ t

0

E(s)ds. (16)

Note that |Γk| = 1 for functions that satisfy the required
conditions for the DDP approach. If there is only one
zero of E(t) with a positive imaginary part, i.e. n = 1,
Eq. (14) is considerably simplified. Even if there are mul-
tiple zeros, one can obtain a simple approximation for
Eq. (14) by keeping only the contribution from the zero
that has the smallest positive imaginary part, i.e. the
zero that is closest to the real axis in the upper half of
the complex plane. This approximation can be justified
by the reasonable argument that as we move farther away
from the real axis we can intuitively expect that the inte-
grals D(tkc ), including their positive imaginary parts, will
grow, which means that the contributions of far-away ze-
ros to Eq. (14) will be exponentially small and can be
neglected. One then obtains the standard DDP formula
for the transition probability,

P = e−2ImD(tc). (17)

We note here that the generalized DDP formula was put
on rigorous foundations in Refs. [16–18], although it was
mentioned in Ref. [13] as a possible generalization for the
single-zero formula of Eq. (17).

In the simple case ε(t) = vt and ∆(t) = ∆, i.e. the
original LZSM problem, we easily find that there is only
one relevant zero, namely tc = i∆/v, which then gives
the simple elliptical integral

D(tc) = i

∫ ∆/v

0

√
∆2 − (vs)2ds

=
i∆2

v

∫ 1

0

√
1− x2dx =

iπ∆2

4v
, (18)

leading to the LZSM formula [Eq. (4)].

IV. PREVIOUS WORK ON THE NONLINEAR
LZSM PROBLEM

We now briefly review previous studies of the nonlinear
LZSM problem in the literature.

A. Perturbative nonlinearities

Here, the nonlinearities appear as perturbative cor-
rections, and the transition probability P deviates little
from the LZSM formula. These corrections are in fact
of principal interest for our present study. With such
perturbations, appreciable deviations from the LZSM
formula appear only for sufficiently large values of the
nonlinearity parameter. By reducing the nonlinearity to
zero, one can approach and recover the LZSM formula.

Based on the DDP formalism, the superlinear (10)
and sublinear (11) sweep functions were considered in
Ref. [15]. In the superlinear and sublinear cases, the non-
linearity, respectively, decreases and increases the tran-
sition probability P with respect to the LZSM formula
[15].

In Ref. [19], the authors studied situations where
the Hamiltonian of a gapless physical system, such as
graphene and 1- and 2-dimensional p-wave superconduc-
tors, cannot be linearized even in the vicinity of the cross-
ing point and quadratic corrections are crucial. Similarly,
linearizing the spectrum in the vicinity of the crossing
point is insufficient to describe the probability of the
topological transition in a 2-dimensional electron gas sub-
ject to an in-plane magnetic field and in the presence of
spin-orbit coupling [20]. In this context it is worth men-
tioning the related problem in which a physical system
(for example, single electrons tunneling between semicon-
ductor quantum dots) possesses more than two states and
experiences nonadiabatic transitions among these states,
which is referred to as the multistate LZSM problem [21].
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B. Essential nonlinearities

In this case, the problem parameters do not simply
have a small correction term added to the linear LZSM
problem, e.g. having a bias term ε = vt + δε(t) where
δε(t) is a small term that leads to small corrections in
various physical quantities. Instead, the problem param-
eters deviate essentially from the linear case. Essential
nonlinearities in the bias term of power-law form

ε(t) = βN+1tN , (19)

(with β having frequency units) were studied in detail
in Refs. [15] and [22] for odd and even N , respectively,
both analytically with the generalized DDP formula and
by numerically solving the Schrödinger equation.

The case with a general value of N , not necessarily an
integer, was treated in Ref. [23]. Note that by treating
N as a real number and taking the limit N → 1 the
nonlinearity becomes perturbative.

The special case of N = 2 is called the parabolic
model [22]. In general, this model is characterized by
the sweep function

ε(t) = ε0 + αt2. (20)

For ε0×α < 0, we obtain a double passage of the avoided
crossing. Since the two passages do not occur at t = 0,
each passage can be approximated as a linear one with
the parameters taken from their values at the points of
the energy quasi-crossing [24]. Hence, this situation is,
in general, not a case of an essential nonlinearity. It
becomes an essentially non-linear model at ε0 = 0.

Essential nonlinearities also include non-analytical
models, e.g. models with sweep functions that are non-
analytical at t = 0 [23, 25].

C. Exactly solvable problems with nonlinearities

Several models assume analytic solutions, typically be-
cause the functional forms of ε(t) and ∆(t) allow an ana-
lytic integration of the Schrödinger equation. Such mod-
els can be used as test-beds for different computational
and analytic approaches.

One such case is the so-called Allen-Eberly-Hioe model
[26, 27], which is a special case of the Demkov-Kunike
model [28] (see also Ref. [17]):

ε(t) = 2B tanh(t/T ), ∆(t) =
2A

cosh(t/T )
. (21)

This choice of functions results in the transition proba-
bility, i.e. the probability to remain in the same diabatic
state,

P =
cosh2

(
π
√
B2 −A2T

)
cosh2 (πBT )

(22)

(see Ref. [17]). This probability is equal to unity (P = 1)
at A = 0 and decreases with increasing A for A < B.
When A > B, the probability is an oscillatory function
of
√
A2 −B2T . Another member of this class, with the

very same result, i.e. Eq. (22), is the case of sweeping
through an avoided crossing with the tangent function

ε(t) = 2B tan(t/T ), ∆(t) = 2A, −πT
2
≤ t ≤ πT

2
.

(23)
As can be expected, in the limit B/A → ∞, the nonlin-
earity is weak, leading as a result to a small correction to
the LZSM formula. This correction can also be obtained
via the DDP formula [15].

The Rosen-Zener model,

ε(t) = 2a, ∆(t) =
2b

cosh(t/T )
, (24)

was introduced in Ref. [29] (see also Refs. [17, 30]). Be-
cause there is no avoided-level crossing in this problem,
there is no LZSM limit. The probability to remain in the
same diabatic state is given by [17]

P = 1− sin2(πbT )

cosh2(πaT )
, (25)

which oscillates as a function of b and is equal to unity
at integer values of bT .

D. Nonlinear LZSM problem in Bose-Einstein
condensates

A special case of the nonlinear LZSM problem relates
to a two-level system where the level energies depend on
the occupation probabilities of the two levels. This situa-
tion can arise in the mean-field treatment of a many body
system where the particles predominantly occupy two
quantum states and the inter-particle interaction energy
depends on the states of the particles [31–34]. Such sys-
tems can be described by the Gross-Pitaevskii equation,
which plays a similar role as the Schrödinger equation but
can be nonlinear in the probability amplitudes [35, 36].
Even if the external system parameters vary linearly, the
problem can be equivalent to a nonlinear one because of
the nonlinearity that appears implicitly through the in-
teraction term, keeping in mind that the form of the non-
linearity is determined only when the problem is solved.
Such a system could be experimentally realized in sev-
eral ways within the context of Bose-Einstein condensate
[37].

E. Reverse engineering and transitionless driving

The idea of reverse engineering can be formulated as

finding a Hamiltonian H̃(t) that generates a given dy-
namics, e.g. a certain evolution in the basis of the instan-
taneous eigenstates of a given Hamiltonian H(t) [38] (see
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also the review [39]). One example is the inverse LZSM
problem, formulated as finding the bias ε(t) that results
in any required time dependence of the level populations.
This problem was solved in Ref. [40] (see also Ref. [41]).
Another problem related to the reverse engineering ap-
proach is the problem of transitionless quantum driving,
which is analogous to reflectionless potentials. This prob-
lem was studied both theoretically [38, 42] and experi-
mentally [43, 44]. Importantly, in our context, the linear

driving requires a nonlinear correction in H̃(t) so that
the resulting dynamics becomes transitionless [38].

V. PERTURBATIVE NONLINEARITY

In this section, we derive analytical perturbative for-
mulae for the corrections to the transition probability
caused by small quadratic and cubic nonlinearities. We
also present results of numerical calculations and com-
pare them with the perturbative formulae. Finally, we
comment on the application of the DDP approach to
the double-passage problem with a linear-plus-quadratic
sweep function.

A. Linear-plus-quadratic sweep function

−30 −20 −10 0 10 20
v0t/∆

−15

−10

−5

0
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10

15

20
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t)
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FIG. 2. Two possible nonlinear sweep functions that con-
tain quadratic terms: the solid red line is the function ε(t) =
v0t[1 + 0.5 tanh(v0t/10∆)], while the dotted green line is the
function ε(t) = v0t+ (0.05v20/∆)t2. These two functions have
the same first and second derivatives at t = 0. However, when
we consider the behavior from t → −∞ to t → ∞, the two
functions describe qualitatively different LZSM problems: the
former describes a single-passage problem, while the latter de-
scribes a double-passage problem.

We start by taking the linear LZSM problem and
adding the lowest-order correction to the sweep function

ε(t):

ε(t) = ε̇(0)t+
1

2
ε̈(0)t2 = v0t+

χ2

2∆
(v0t)

2, (26)

where we have introduced the parameter v0 to denote the
sweep rate at the crossing point, i.e. v0 = ε̇(0). To sim-
plify the notation, we will sometimes find it convenient to
express the sweep function in Eq. (26) as ε(t) = v0t+v1t

2,
hence defining v1 = χ2v

2
0/(2∆). At first sight, this

sweep function seems to be the natural one containing
the lowest-order nonlinearity, namely the quadratic term.
However, this function is obviously not a good choice for
our purposes, because ε(t) approaches the same value (ei-
ther +∞ or −∞) when t → −∞ and when t → ∞, as
shown in Fig. 2. As a result, we would not simply obtain
perturbative corrections to the LZSM formula. Instead,
we would encounter two crossings. One consequence of
this situation is that in both the adiabatic and the fast
limits the system is expected to return to its initial state
at the final time. However, we are interested in the ef-
fect of the nonlinearity on the single-passage problem.
We therefore look for a function v(t) that varies almost
linearly in the vicinity of t = 0 but becomes constant
away from t = 0. In our numerical simulations of the
dynamics, we shall use the tanh function, which exhibits
the above-described dependence on t. Specifically, we use
the sweep function

ε(t) = v0t×
(

1 + α tanh
t

T

)
, (27)

where α quantifies the total variation in the sweep rate
over time, and T is the duration over which the tem-
poral variation of v(t) continues. If T is much larger
than the crossing duration [Eq. (7)], one can expect that
the tanh function has the intended effect of providing a
quadratic term in ε(t) throughout the most consequential
time for the LZSM transition dynamics without creating
a double-passage situation. To avoid the problem of a
double crossing, it is obviously important that the value
of v(t) does not change sign, which requires us to take
|α| < 1.

As explained in the previous paragraph, using Eq. (26)
results in a qualitatively different problem from the one
that we would like to study. However, the drastic devia-
tion from the linear case, namely the turnaround in ε(t),
occurs for large negative values of the time variable t. For
small values of |t|, the quadratic term in ε(t) does indeed
appear to be the small perturbation that we would like
to include. We therefore perform a perturbative calcu-
lation where we follow the steps for evaluating the DDP
formula to determine the transition probability in the
presence of this term, being careful to include only the
small corrections that vanish in the linear, single-passage
problem.

As explained in more detail in Appendix A, the zero
in the DDP calculation that used to be at tc = i∆/v is
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shifted because of the nonlinear term to

t′c ≈
∆

v0

{
χ2

2
+ i

(
1− χ2

2

2

)}
, (28)

this approximation being valid when χ2 is small:

χ2 � 1. (29)

After the substitution x = (t′c − s)/t′c, the integral

D(t′c) =
∫ t′c

0
E(s)ds takes the form

D(t′c) = −iv0(t′c)
2

∫ 1

0

Q(x)dx, (30)

where

Q(x) =
√
p2(x)

√
1 + 2γ

p3(x)

p2(x)
+ γ2

p4(x)

p2(x)
, (31)

γ = χ2v0t
′
c/(2∆), |γ| ∼ χ2 � 1, p2(x) = 2x−x2, p3(x) =

3x − 3x2 + x3, p4(x) = 4x − 6x2 + 4x3 − x4. Using the
Taylor expansion of the square root and holding terms
up to γ2 we obtain

D(t′c) ≈
1

3

∆2

v0
χ2 + i

π

4

∆2

v0

(
1− 3χ2

2

8

)
. (32)

It is worth noting that two things go wrong if the condi-
tion (29) is not satisfied: the approximate expression for
t′c and the Taylor expansion in the integral of D(t′c) both
break down outside the small χ2 regime.

Using the value of D(t′c) given in Eq. (32), the tran-
sition probability including the lowest-order correction
reads

P ≈ exp

{
−2πδ

(
1− 3χ2

2

8

)}
, (33)

with the adiabaticity parameter δ defined in Eq. (5) with
v = ε̇(0) = v0. The first term inside the exponential is
the one that gives the standard LZSM formula (4), while
the second term represents the correction arising from
the nonlinearity in the problem. Since our perturbative
DDP calculation is valid when χ2 � 1, we can also write
the alternative approximate expression

P ≈ PLZSM

(
1 +

3

4
πδχ2

2

)
. (34)

Interestingly, this approximation remains well behaved
and a good approximation even if we take the adiabatic
limit with χ2

>∼ 1, as we shall see below. If we vary v0

while keeping the ratio v1/(v0∆) fixed, the function on
the right-hand side of Eq. (34) has a peak whose highest
value of (27e−3/π)× v2

1/v
3
0 is located at v0/∆

2 = π/6.
It is interesting that the correction in Eq. (33) skips

one power, i.e. there is no term that is linear in χ2. Since
these extra terms inside the exponential describe the cor-
rection to the LZSM formula, skipping the lowest possible

power means that the correction will be quite small, as
we shall see more clearly when we present the numerical
results in Sec. V C. It is also interesting that P depends
on the magnitude but not the sign of χ2, i.e. it is indepen-
dent of whether the nonlinearity corresponds to a sweep
that is speeding up or slowing down during the crossing.

It is useful at this point to consider the physical mean-
ing of the condition χ2 � 1 needed for the validity
of our derivations above. In the slow-passage regime
(v0 � ∆2), considering that the crossing duration is
given by τLZSM ∼ ∆/(2v0) [see Eq. (7)], the condition
χ2 � 1 can be understood as the condition that the
quadratic term in ε(t) remains much smaller than the
linear term throughout the duration of the crossing pro-
cess. This condition makes sense. In the fast-passage
regime (v0 � ∆2), τLZSM ∼ 1/

√
v0, and the condition

χ2 � 1 does not guarantee that the quadratic term in
ε(t) is small compared to the linear term up to times
t ∼ ±τLZSM. Indeed, our numerical simulations show
that the DDP approach is valid only under a stricter
weak-nonlinearity condition in the fast-passage regime,
as we shall see in Sec. V C.

B. Linear-plus-cubic sweep function

Now we consider the case where the sweep function
does not contain a quadratic term, and the leading-order
nonlinearity (at the crossing point) is cubic:

ε(t) = ε̇(0)t+
1

3!
ε(3)(0)t3 = v0t+

χ3

3!∆2
(v0t)

3. (35)

This function describes a perturbative nonlinearity if the
second term is small compared to the first one throughout
the crossing duration. Assuming that χ3 is small, we can
follow steps similar to those of Sec. V A and obtain

t′c = i
∆

v0

(
1 +

χ3

6

)
(36)

and

ImD(t′c) =
π

4

∆2

v0

(
1 +

χ3

8

)
. (37)

Then we obtain for the transition probability

P ≈ exp
{
−2πδ

(
1 +

χ3

8

)}
≈ PLZSM

(
1− πδχ3

4

)
, (38)

δ being the adiabaticity parameter defined in Eq. (5) with
v = v0.

Importantly, in contrast to the case of a quadratic non-
linearity, the correction from the cubic nonlinearity is
linear in χ3. Note that Eq. (33) for the quadratic cor-
rection and the first row of Eq. (38) can be expressed
in the form P ≈ exp{−2πδ(1 + µ)}, with µ = −3χ2

2/8
and χ3/8, respectively. Furthermore, we can combine the
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perturbative corrections in Eqs. (33) and (38) and obtain
the unified formula

P ≈ exp

{
−2πδ

(
1− 3χ2

2

8
+
χ3

8

)}
. (39)

In Sec. VIII and Appendix C we discuss a case where this
formula is crucial and proves to be a good approximation.

C. Numerical results

To demonstrate the validity and limitations of the ap-
proximate formulae derived in the previous subsections,
we performed essentially exact numerical simulations of
the dynamics by solving the time-dependent Schrödinger
equation and compared the results to those predicted by
our approximate formulae.

In our calculations for the case of a quadratic non-
linearity we use the tanh-function-based sweep function
[Eq. (27)]. For the case of a cubic nonlinearity, we simply
use Eq. (8) with χ2 = 0, since the cubic term does not
lead to the same complications as the quadratic term.
For both cases, as well as in other similar situations that
we consider below, we vary the sweep rate at the crossing
point [i.e. ε̇(0) or v0] and use it for the x axis when we
plot the calculation results.

To confirm that our simulations using Eq. (27) cor-
rectly represent the desired nonlinearity, we perform mul-
tiple calculations with different settings that are expected
to produce the same results, for example varying α and
T in Eq. (27) while keeping the ratio α/(T∆) fixed. Any
deviation between the results of these alternative calcu-
lations would be an indication that our parameters are
not suitable to produce the sought physical results. Sim-
ilarly, in our numerical calculations, we run multiple cal-
culations where we vary the initial and final times, which
will necessarily be finite in a numerical simulation, to
make sure that we are obtaining the correct asymptotic
values for the transition probability.

Since here we consider small deviations from the linear
LZSM problem, the transition probability as a function
of the sweep rate for all our data sets look generally like
the curves in Fig. 3. To investigate the corrections to
the LZSM probability, we plot the difference between the
transition probability P for a given set of parameters and
the LZSM probability in the linear case:

δP = P − PLZSM. (40)

Figures 4 – 10 show the probability P or the deviation
δP , depending on which one is more informative, for a
few different cases of LZSM problems with perturbative
nonlinearities.

First we fix the quadratic nonlinearity coefficient χ2

and vary v0/∆
2. In other words, we use Eq. (27) with

α/T = χ2v0/(2∆). The results are shown in Fig. 4.
The perturbative DDP formula [Eq. (33)] agrees with
the exact solution in the slow-passage regime but be-
comes invalid in the fast-passage regime. As explained in

10−2 10−1 100 101 102

v0/∆
2

0.0

0.2

0.4

0.6

0.8

1.0

P

FIG. 3. Probability that the system makes a transition be-
tween the ground and excited states as a result of traversing
the avoided crossing. The parameter v0 is the sweep rate at
the crossing point, where ε(t) = 0. All our simulations of the
LZSM problem with weak nonlinearities produce probability
functions that look generally similar to the two shown here.
The solid red line is the transition probability PLZSM for the
linear LZSM problem. The dashed green line corresponds to
the sweep function in Eq. (27) with α = 0.8 and T = 3/∆,
which will be analyzed further in Fig. 6 below.

Sec. V A, this breakdown can be attributed to the fact
that a fixed χ2 and an increasingly large v0/∆

2 lead to a
situation where the nonlinear term is not small through-
out the crossing duration. We note here that the ex-
act simulation exhibits a sign reversal in δP , whereas
Eq. (33) always gives a positive value of δP . To inves-
tigate the situation where the nonlinear term is small in
the fast-passage limit, we perform additional simulations
in which we keep the ratio v1/(v0∆), i.e. χ2v0/(2∆2),
fixed and small instead of keeping χ2 fixed. As can
be seen in Fig. 5, the perturbative DDP formula now
agrees well with our numerical simulation results for a
small nonlinearity and all values of the sweep rate with
v0/∆

2 > 0.1, including the fast-passage regime. One
issue that arises when we fix v1/(v0∆) is that the condi-
tion χ2 � 1 will necessarily be violated in the adiabatic
limit. Therefore the perturbative calculation does not
apply in that limit. More specifically, since we fix the
ratio v1/(v0∆) for each data set, the validity condition
becomes v0/∆

2 � v1/(v0∆). For both v1/(v0∆) = 0.05
and v1/(v0∆) = 0.02, the theoretical formula clearly
breaks down when v0/∆

2 <∼ v1/(v0∆). Taken together,
Figs. 4 and 5 show that if the quadratic term is small
compared to the linear term throughout the crossing du-
ration, the perturbative DDP formula provides a good
approximation for the transition probability.

In addition to plotting the perturbative formula de-
rived in Sec. V A for the lowest-order correction, we per-
formed a numerical calculation of the DDP formula using
the same sweep function that we used in the Schrödinger
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10−2 10−1 100 101 102

v0/∆
2

−0.003

−0.002

−0.001

0.000

0.001

0.002
δP

FIG. 4. Deviation of the transition probability in the non-
linear case from the linear-case probability PLZSM. The data
plotted using the various symbols are obtained by numerically
solving the Schrödinger equation and can be considered exact,
while the data plotted as lines are obtained using the DDP
approach. For the red + symbols and green circles, we use
the sweep function described by Eq. (27) with T = 10∆/v0.
The red + symbols correspond to α = 0.5 (χ2 = 0.1). The
green circles correspond to α = 0.2 (χ2 = 0.04). The solid
magenta line and dotted green line show the deviation δP
calculated based on Eq. (33) with χ2 = 0.1 and 0.04, respec-
tively. The DDP formula accurately reproduces δP at small
values of v0/∆

2, but clear disagreement is observed at large
values of v0/∆

2. As explained in the text, in this regime the
quadratic term is not a small perturbation throughout the
crossing duration.

equation, i.e. Eq. (27). In other words, solving the equa-
tion E(t) = 0 and evaluating the integral D(tc) were per-
formed numerically using Eq. (27). The results of this
calculation agree even better with the results of the nu-
merical simulation of the dynamics (compare the dashed
brown line with the red + symbols in Fig. 5). In partic-
ular, we no longer obtain the incorrect increase in δP at
small values of v0/∆

2.

It is worth pausing at this point to consider the fol-
lowing note on the results in the perturbative regime:
the analytic formula and numerical simulations were ob-
tained using two different functions that are drastically
different away from the crossing point. The fact that
the results of the two approaches agree with each other
means that the behavior away from the crossing point
does not affect the final results even though one might
expect the difference between the two functions to affect
the zeros, defined by Eq. (13), in the complex plane. Af-
ter all, the zeros in the complex plane are obtained via
analytic continuation, which depends on the function on
the entire real line. It turns out, however, that the zeros
and integrals in the DDP formula are most sensitive to
ε(t) around t = 0, and the two sweep functions are almost
equal for small values of |t|.

In Fig. 6 we plot simulation results for stronger non-

10−2 10−1 100 101 102

v0/∆
2

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

δP

FIG. 5. Same as in Fig. 4, but keeping ratio v1/(v0∆) fixed
instead of keeping χ2 fixed. For all the data shown by sym-
bols in this figure, we set T = 10/∆. The red + symbols
correspond to α = 0.5. The blue × symbols correspond to
α = −0.5. The green circles correspond to α = 0.2. The
orange squares correspond to a time-independent v and time-
dependent ∆ given by ∆0 (1 + 0.5 tanh(∆0t/10)). The solid
magenta line and dotted green line show the deviation δP
calculated based on Eq. (33) with v1/(v0∆) = 0.05 and 0.02,
respectively. The magenta line also corresponds to Eq. (67)
with ∆′ = 0.05. The approximate theoretical formula breaks
down at small values of v0 because the condition χ2 � 1 is
no longer satisfied in that regime. Importantly, the theoreti-
cal formula fits the simulation results very well in the region
of largest nonlinearity-induced correction. The dashed brown
line shows the results of a DDP calculation with all the steps
performed numerically for the case of the parameters that
gave the + symbols. This calculation gives good agreement
with the + symbols everywhere. Comparing the + and ×
symbols, we see that the cases α = 0.5 and α = −0.5 give
identical results, as expected.

linearity. The perturbative DDP formula [Eq. (33)] is a
good approximation for large values of v0/∆

2, but it fails
away from that regime. It is interesting that Eq. (34),
which was derived as a simple approximation to Eq. (33),
exhibits better agreement with the simulation results for
the values of v0/∆

2 that correspond to the largest devi-
ations from PLZSM.

In Fig. 7 we plot simulation results for an extremely
strong nonlinearity along with results from a numerical
calculations following the DDP approach. Remarkably
the DDP formula still works but only after we include a
sufficient number of zeros in the calculation. In particu-
lar, keeping only one zero of E(t) gives accurate results
in the fast-passage limit but fails as we move towards the
adiabatic limit. This feature can be understood by not-
ing that a second zero becomes increasingly important
as we approach the adiabatic limit. Keeping two zeros
gives accurate results in the adiabatic limit. In fact, all
the zeros of E(t) form pairs with asymptotically vanishing
intra-pair distance in the adiabatic limit, which leads to
the result that keeping an even number of zeros leads to
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10−2 10−1 100 101

v0/∆
2

0.00
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0.04

0.06

0.08

0.10
δP

FIG. 6. Same as in Fig. 5, but for stronger nonlinearity. Now
we take α = 0.8 and T = 3/∆. The red + symbols corre-
spond to the solution of the Schrödinger equation. The solid
magenta line and dashed green line are, respectively, given by
Eqs. (33) and (34) with v1/(v0∆) = 4/15. The perturbative
formula [Eq. (33)] clearly fails for small values of v0/∆

2, while
Eq. (34), which we obtained as an approximation for Eq. (33)
in the small v1∆/v20 limit, turns out to be a reasonably good
approximation for all values of v0/∆

2.

better approximations in this limit. Apart from the odd-
even difference, the approximations generally improve as
we increase the number of zeros that we keep in the DDP
calculation. If we keep five zeros in the calculation, we
obtain good agreement with the Schrödinger equation so-
lution everywhere. A point worth noting about Fig. 7 is
that when we keep two zeros we obtain P > 1 in the
fast-passage regime. This result is clearly unphysical.
However, this seemingly serious problem is specific to
the choice of an inappropriate number of zeros that we
keep in the DDP calculation and does not imply that the
DDP approach as a whole is invalid in this case. No sim-
ilar behavior (i.e. P > 1) occurs for any other number of
zeros.

Figure 8 shows plots for the case of cubic nonlinearity.
As with the case of a quadratic nonlinearity, when we
fix the nonlinearity coefficient χ3, we obtain good agree-
ment between the perturbative DDP formula and the ex-
act results in the adiabatic regime, but the approximate
formula breaks down in the fast-passage regime. When
we use parameters such that χ3 decreases with increasing
v0/∆

2, we obtain good agreement between the approxi-
mate DDP formula and the exact results.

D. Double-passage problem

We now go back to the step of locating the zeros of
E(t) in the case of a quadratic nonlinearity. In Sec. V A
we proceeded by determining the new, shifted location
of the zero that exists in the linear case. However, if we

10−2 10−1 100 101 102

v0/∆
2

0.0

0.2

0.4

0.6

0.8

1.0

P

FIG. 7. Transition probability P as a function of v0/∆
2 for

the case of very strong nonlinearity: α = 0.8 and T = 0.3/∆.
The dotted green line is PLZSM and serves as a reference. The
solid red line is obtained by numerical integration of the time-
dependent Schrödinger equation. The other data points are
obtained by numerical evaluation of the transition probability
following the DDP approach. The blue + symbols, orange ×
symbols, magenta triangles, cyan squares and black circles
correspond, respectively, to keeping 1, 2, 3, 4 and 5 zeros of
E(t) in the DDP calculation.

inspect E(t) with the quadratic sweep function

ε(t) = v0t+ v1t
2 = − v2

0

4v1
+ v1

(
t+

v0

2v1

)2

(41)

more closely, we find that in addition to t′c there are three
other zeros: t′c

∗
, (−v0/v1− t′c) and (−v0/v1− t′c)∗. (The

asterisk denotes complex conjugation.) The last one of
these has a positive imaginary part. We can then use
the generalized DDP formula and include contributions
from the zeros at t′c and −v0/v1 − t′c

∗
. We have already

derived an approximate expression for D(t′c) in Sec. V A.
By examining the integration path that goes from s = 0
to s = −v0/v1 and then to s = −v0/v1 − t′c

∗
, we find

that

D

(
−v0

v1
− t′c

∗
)

= −D(t′c)
∗ +

∫ −v0/v1
0

E(s)ds. (42)

The last integral can be recognized as the dynamical
phase that accumulates between the two crossings in
the double-passage problem. The imaginary parts of
D
(
−v0/v1 − t′c

∗)
and D(t′c) are equal because the sweep

function is symmetric: both the sweep rate and non-
linearity are equal at the two crossing points. The
minus sign and complex conjugation in the first term
on the right-hand side of Eq. (42) mean that (exclud-
ing the dynamical-phase term) the real part of the
D
(
−v0/v1 − t′c

∗)
has the opposite sign to the real part

of D(t′c). The difference between the real parts of D(t′c)
and D

(
−v0/v1 − t′c

∗)
can then be interpreted as a geo-

metric phase accumulated between the two crossings. So
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0.0100
δP

FIG. 8. Probability difference δP as a function of v0/∆
2 for

the sweep function ε(t) = v0t + χ3(v0t)
3/(6∆2). The red +

symbols, green circles and blue triangles correspond, respec-
tively, to χ3 = 0.1, 0.1∆2/v0 and 0.1∆4/v20 . The solid ma-
genta, dotted green and dashed cyan lines are obtained using
Eq. (38) with χ3 values that correspond, respectively, to the
red + symbols, green circles and blue triangles. Keeping χ3

fixed leads to large deviations between the perturbative DDP
formula and exact results in the fast-passage regime, while
having a value of χ3 that decreases with increasing v0/∆

2

leads to better agreement between the approximate formula
and exact transition probability.

far, these results seem to be consistent with our knowl-
edge about the double-passage LZSM problem. However,
when we substitute the relevant expressions in Eq. (14),
we obtain the net transition probability

P ≈ PLZSM

(
1 +

3

4
πδχ2

2

)
×
∣∣1− eiφ∣∣2 , (43)

where

φ =
2

3

∆2

v0
χ2 −

∫ −v0/v1
0

E(s)ds. (44)

This result is clearly problematic. Excluding the fac-
tor |1−eiφ|2, Eq. (43) describes a function that increases
from zero in the adiabatic limit to one in the fast-passage
limit. The factor |1− eiφ| lies between 0 and 2, depend-
ing on the phase φ. Therefore, if we consider a double-
passage problem with both passages being in the fast
limit and a phase φ that is an odd-integer-multiple of
π, we would obtain a probability that is approximately
equal to 4, a clearly unphysical result. Meanwhile, in a
symmetric double-passage problem, the transition prob-
ability should approach zero in both the adiabatic and
fast-passage limits. It should be noted that the sweep
function in Eq. (41) does not violate any of the condi-
tions that we mentioned above for the validity of the
DDP approach. It should also be noted that the solution
to this paradoxical situation cannot be in including more
zeros in the generalized DDP formula, because there are
no additional zeros apart from the two that are included

in Eq. (43). We do not have a definitive explanation
for why the DDP approach fails in this case. We just
note that numerical calculations suggest that the DDP
approach gives good results in the regime δ >∼ 1, which
is the regime where the DDP calculation has rigorous
justification.

It is also interesting that by keeping one zero we ob-
tained correct results for a single passage with nonlin-
earity, although this approximation was not rigorously
founded, while keeping both zeros did not produce good
results for the double-passage problem, even though this
procedure seems to be more consistent with the conven-
tional wisdom in applying the DDP approach.

VI. OTHER RELATED PROBLEMS

A. Some examples of perturbatively nonlinear
sweep functions

We now consider a few special cases involving func-
tions that allow us to make some progress with analyt-
ical derivations. First we treat the case of a sinusoidal
function

ε1(t) = A sin(t/T ) (45)

together with a constant ∆. If the time variable extends
over a sufficiently long duration, the sine function is an
oscillating function, which means that we will be dealing
with a periodic driving problem [5, 45, 46]. The dynamics
therefore exhibits oscillations that continue indefinitely,
unlike the single-passage problem where the diabatic ba-
sis state probabilities approach constant asymptotic val-
ues at t → ∞. As a result, this case does not fit the
picture of a single-passage LZSM problem discussed in
this manuscript. Nevertheless, as we shall see below, it
is interesting to apply the DDP formula to this case and
see what results this calculation gives.

At the crossing points, e.g. taking t = 0 for defi-
niteness, the first three derivatives of ε1(t) are given by

ε̇1(0) = A/T , ε̈1(0) = 0 and ε
(3)
1 (0) = −A/T 3. Consider-

ing that sin(x+ iy) = sinx cosh y+ i cosx sinh y, we find
that the solutions of the equation

A2 sin2 t

T
+ ∆2 = 0 (46)

are given by

t(n,±)
c = nπT ± iν, (47)

where n is any integer,

ν = T arcsinh ξ = T ln(ξ +
√
ξ2 + 1), (48)

and the parameter

ξ = ∆/A (49)
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quantifies the nonlinearity. Note that the parameter ξ
for the sweep function (45) is related to the parameter
χ3 for the sweep function (35) by the formula χ3 = −ξ2.
As a first step, we make the arbitrary choice n = 0, i.e.

we choose t′c = t
(0,+)
c = iν. The integral

D(t′c) =

∫ iν

0

√
∆2 +A2 sin2(s/T ) ds, (50)

after the substitution s = iTz, reads

D(t′c) = iT∆

∫ ν/T

0

√
1− ξ−2 sinh2 z dz. (51)

Note that the integrand in Eq. (51) decreases from 1 to
0 and is real throughout the integration interval. As a
result, D(t′c) is purely imaginary. The substitution w =
sinh z gives

D(t′c) = iT∆

∫ sinh(ν/T )

0

√
1− ξ−2w2

1 + w2
dw. (52)

Taking into account that sinh(ν/T ) = ξ and making the
substitution u = w/ξ, we obtain

D(t′c) = iT∆ ξ

∫ 1

0

√
1− u2

1 + (ξu)2
du (53)

= iT∆

√
1 + ξ2

ξ

×
[
K

(
ξ√

1 + ξ2

)
− E

(
ξ√

1 + ξ2

)]
,

where K(k) and E(k) are the full elliptic integrals of
the first and second kind, respectively. For ξ � 1, the
integral in Eq. (53) can be approximated by expanding

1/
√

1 + (ξu)2:

D(t′c) = iT∆ ξ

{∫ 1

0

√
1− u2 du− 1

2
ξ2

∫ 1

0

u2
√

1− u2 du

}
.

(54)
As∫ 1

0

√
1− u2 du =

π

4
,

∫ 1

0

u2
√

1− u2 du =
π

16
, (55)

the transition probability is given by Eq. (38). In other
words, keeping only the linear and cubic terms in the
sweep function gives the same lowest-order effect of the
nonlinearity as working with the sine function without
truncating its Taylor series expansion.

Analogous calculations can be performed for

ε2(t) = A sinh(t/T ) (56)

(see Appendix B) and

ε3(t) = A tanh(t/T ). (57)
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FIG. 9. Probability difference δP as a function of v0/∆
2

for the sweep function ε(t) = A sinh(t/T ). For this sweep
function, the sweep rate at the crossing point is given by v0 =
A/T . The red + symbols, green circles and blue triangles
correspond, respectively, to A/∆ = 1, 2 and 5. The parameter
T is set at T = A/v0 and is therefore not fixed for any of the
data sets in the figure. The solid magenta, dotted green, and
dashed cyan lines are obtained using Eq. (38) for A/∆ = 1, 2
and 5, respectively. Similar to the quadratic and cubic cases,
the approximate formula agrees well with the exact results
in the adiabatic regime, but the exact results exhibit peaks
in the fast-passage regime that are not reproduced by the
perturbative DDP formula.

We again find that in the perturbative regime (ξ � 1)
the correction is given by the formula in Eq. (38). In
accordance with the results of Ref. [15], P < PLZSM for
the superlinear driving function ε2(t) and P > PLZSM for
the sublinear driving functions ε1(t) and ε3(t). Moreover,
our result for ε2(t) coincides with Eq. (19) of Ref. [15]
obtained for the superlinear function in Eq. (10), and also
our results for ε1(t) and ε3(t) coincide with Eq. (29a) of
Ref. [15] obtained for the sublinear function in Eq. (11).

In Figs. 9 and 10, we plot δP for the case of ε2(t) =
A sinh(t/T ). In Fig. 9, we keep the nonlinearity coef-
ficient χ3 fixed for each data set. In other words, for
each value of A, the parameter T is given by T = A/v0.
As with the case of a linear-plus-cubic sweep function,
we obtain peaks in δP for the exact results in the fast-
passage regime, signaling a breakdown of the perturba-
tive DDP calculation. If we avoid this breakdown by set-
ting A∆/v0 to a fixed value for each data set, i.e. setting
A to be proportional to v0/∆

2 (and keeping the rela-
tion T = A/v0), we obtain good agreement between the
approximate formula and exact results everywhere for a
sufficiently weak nonlinearity [Fig. 10]. For stronger non-
linearity, the agreement remains rather poor, especially
in the adiabatic regime, where now A/∆ becomes small
and violates the condition of weak nonlinearity.
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FIG. 10. Same as in Fig. 9, but now we use a variable A.
The red + symbols, green circles and blue triangles corre-
spond, respectively, to A∆/v0 = 1, 2 and 5. The solid ma-
genta, dotted green, and dashed cyan lines are obtained using
Eq. (38) for A∆/v0 = 1, 2 and 5. The weakest nonlinear-
ity case (A∆/v0 = 5; shown also in the inset) exhibits good
agreement between the perturbative DDP formula and the
exact results.

B. Uniformly rotating field

10−2 10−1 100 101 102

v0/∆
2 , ω/Ω

0.0

0.2

0.4

0.6

0.8

1.0

P

FIG. 11. Transition probability P for a uniformly rotating
field of fixed magnitude. The dashed green line shows the
function in Eq. (61). The solid red line shows PLZSM for ref-
erence. To compare these two cases we make the correspon-
dence ∆↔ Ω and v0 ↔ ωΩ, which give v0/∆

2 ↔ ω/Ω.

We now consider the problem of a two-level system in
an external field that has a fixed magnitude and rotates
at constant speed:

ε(t) = Ω cosωt,

∆(t) = Ω sinωt, (58)

from the initial time t = 0 until a final time t = T .

The problem can be transformed into one with a fixed
external field by making a reference frame transformation
to a frame that rotates about the y axis with frequency
ω, such that the external field always points along the
z axis. This transformation is similar to the standard
one used in the study of Rabi oscillations. The dynamics
is then governed by the Schrödinger equation with the
effective Hamiltonian:

H̃ =
1

2

(
Ω iω
−iω −Ω

)
. (59)

Straightforward algebra then shows that for an initial
state that is an eigenstate of the initial Hamiltonian,
e.g. the ground state, the probability for the system to
make a transition and end up in the other adiabatic state
at a later time t, i.e. the excited state of the Hamiltonian
H(t), is given by:

P =
1

2

x2

1 + x2

[
1− cos

(√
Ω2 + ω2t

)]
, (60)

where the parameter x = ω/Ω quantifies the adiabatic-
ity of the Hamiltonian variation. As one would intu-
itively expect, the adiabatic limit x → 0 gives P = 0.
The fast-rotation limit x → ∞ (i.e. ω � Ω) gives
P = [1 − cos(ωt)]/2, which oscillates between 0 and 1
at the same frequency as the rotating field. This result
can be understood as the quantum system being unable
to react to the fast-oscillating field and hence remaining
frozen in the initial state in the lab frame, which also
agrees with the intuitive expectation. If we take the spe-
cial case in which the field makes a single 180° rotation
from the beginning to the end of the field variation, the
transition probability is given by Eq. (60) with t = π/ω:

P =
1

2

x2

1 + x2

[
1− cos

(√
1 + x−2π

)]
, (61)

which exhibits small oscillations at intermediate values
of x but is well behaved in the limit x→∞ and asymp-
totically approaches 1 (see Fig. 11).

If we try to apply the DDP formula to this problem,
we obtain the equation

E(t) = Ω
√

cos2 ωt+ sin2 ωt = 0, (62)

which clearly does not have any solutions. Hence, the
DDP formula cannot be used, even though this problem
is closely related to LZSM problems. It is not entirely
surprising that the DDP formula does not work here. If
we consider the time variable extending from −∞ to ∞,
with ε and ∆ being fixed before t = 0 and after t = π/ω,
then the functions ε(t) and ∆(t) are non-analytic, since
they start and stop oscillating abruptly.

VII. ESSENTIAL NONLINEARITY

The sweep function

ε(t) = A sgn(t)

∣∣∣∣ tT
∣∣∣∣a , a > 0 (63)
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is essentially nonlinear for a 6= 1: ε̇(0) = 0 for a > 1 and
ε̇(0) = ∞ for 0 < a < 1. For non-integer a, the func-
tion (63) is nonanalytical, and the generalized DDP for-
mula cannot be used. We therefore calculate the LZSM
probability numerically by solving the Schrödinger equa-
tion. In the present study, we are especially interested
in a � 1, when Eq. (63) describes an almost square
pulse. Periodic square pulses are studied in literature,
both theoretically and experimentally (see, for example,
Refs. [9, 47]). In Fig. 12, we show the sweep functions
for several values of a and the dependence of the prob-
ability P , calculated numerically, on A/∆. For a → 0,
the numerically calculated occupation probability P as a
function of the amplitude A [see Fig. 12(b)] tends to the
limiting function

Plim(A) =
A2

∆2 +A2
. (64)

Interestingly, the error function

ε(t) = A erf

(
t√

2σT

)
= A

∫ t/
√

2σT

0

e−τ
2

dτ, (65)

which has a finite derivative ε̇(0) = A/
√

2σT , also de-
scribes a square pulse for σ � 1, and, for σ → 0, Perf(σ)
tends to the same limiting function (64). We compare
the occupation probability P for a = 10−3, 0.5, 1 and
Perf for σ = 10−3 in one plot in Fig. 12(b).

VIII. TIME-DEPENDENT GAP

A. Eliminating the time dependence of ∆(t)

We now consider the qubit Hamiltonian

H =
1

2

(
ε(t) ∆(t)
∆(t) −ε(t)

)
, (66)

with a general sweep function ε(t) and a time-dependent
gap ∆(t).

With an appropriate transformation of the time vari-
able, the time-dependent Schrödinger equation can be
transformed to a form that has a time-independent gap
and a modified sweep function. The details of the deriva-
tion are shown in Appendix C.

Once the problem is transformed to a time-
independent-gap LZSM problem, the formulae that we
derived in previous sections can be applied. In particular,
if we consider the case of a linear sweep function ε(t) = vt
and a weakly time-dependent gap [∆(t) = ∆0+∆′t in the
vicinity of the crossing point], we obtain the perturbative
formula

P ≈ exp

{
−2πδ

(
1− 3(∆′)2

2v2

)}
. (67)

The line in Fig. 5 that corresponds to a linear sweep func-
tion and time-dependent ∆ is fitted well by this formula.

−2 −1 0 1 2
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ε(
t)
/∆

(a)
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A/∆
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P

(b)

FIG. 12. (a) The sweep function ε(t), Eq. (63), as a func-
tion of time t for A/∆ = 1 and a = 10−3 (solid red line),
0.5 (dashed green line), 1 (dotted blue line). (b) The numer-
ically calculated transition probability as a function of the
amplitude A (measured relative to ∆). The dotted blue and
dashed green lines correspond, respectively, to a = 1 and 0.5
in Eq. (63). The solid red line shows three virtually coincid-
ing (indistinguishable) curves — for a = 10−3 in Eq. (63), for
σ = 10−3 in Eq. (65), and for the limiting function (64).

B. Asymptotically vanishing gap

In this section, we consider a different variation on the
LZSM problem that can arise naturally in realistic sys-
tems, namely the situation where ∆ has a maximum at
the avoided crossing point and decreases to much smaller
values when ε → ±∞. For example, if one thinks of a
problem described in terms of a single particle trapped
in a time-dependent potential well, the trapping poten-
tial can be deformed in time such that two things oc-
cur simultaneously: (1) the energies of local minima in
two local wells move up and down relative to each other
such that the locations of the ground and first-excited
states switch, and (2) the distance and/or energy barrier
between the two wells increase away from the crossing
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point, such that the energy scale coupling the states in
the two wells decreases away from the crossing point.
This situation can occur, for example, in the context of
superconducting qubits, where the effective potential for
the phase variables varies in complex ways if any of the
bias parameters is varied.

For definiteness, we consider a Gaussian function when
describing the suppression of ∆ away from the crossing
point, i.e.

ε(t) = vt,

∆(t) = ∆0e
−(t/T )2 . (68)

The results of numerical simulations are shown in Fig. 13.
We also performed calculations using a Lorentzian func-
tion, and these calculations produced qualitatively simi-
lar results.

10−3 10−2 10−1 100 101 102

v/∆2
0

0.0

0.2

0.4

0.6

0.8

1.0

P

FIG. 13. Transition probability in the case of an asymptot-
ically vanishing gap, described by Eq. (68). The solid red
line corresponds to T = 0.1/∆0. The dashed green line cor-
responds to T = 0.5/∆0. The dotted blue line corresponds
to the original LZSM problem, which also corresponds to the
limit T → ∞. The red line in this figure does not go all the
way down to zero in each oscillation because of the limited
number of points in our data set.

When ∆(t) decreases quickly away from the cross-
ing point, the transition probability increases in general.
This effect resembles the effect of having a smaller value
of ∆. This result is logical, since having ∆ active for a
shorter duration can be expected to result in a smaller
effective value of ∆. The transition probability also ex-
hibits more oscillatory behavior with decreasing width T .
This result is also to be expected, since the presence of
oscillations is natural for pulsed manipulation of quan-
tum systems, while the absence of oscillations in the lin-
ear LZSM problem is a rather particular feature of that
problem.

IX. CONCLUSIONS

Realizations of the energy-level avoided crossings are
ubiquitous in quantum physics, and the driving of quan-
tum systems through such energy level structures is usu-
ally described by the linearized model, where a gener-
ally nonlinear function ε(t) is replaced by a linear one,
ε(t) = vt. But what is the effect of this approximation,
and what is neglected by the linearization procedure?
We have addressed this question, which is becoming in-
creasingly important in recent years, given the precision
of modern quantum technologies. One of the important
results that we have demonstrated in this manuscript is
that the corrections to the LZSM formula under the in-
fluence of a perturbatively nonlinear parameter variation
are smaller than what one might intuitively expect. Be-
sides demonstrating analytically and numerically the ro-
bustness of the LZSM formula, our corrections may be-
come important for realistic systems. Our results demon-
strate that the choice of a nonlinear driving function and
tuning its parameters can be used for alternative quan-
tum control protocols.

The main results can be summarized as follows:
(1) We have obtained analytically, using the DDP for-

mula, the first correction to the LZSM probability for
several perturbatively nonlinear sweep functions: linear-
plus-quadratic, linear-plus-qubic, sine, sinh and tanh
functions in the single-passage regime. We have shown
that the correction for the odd sine, sinh and tanh func-
tions is given by the same formula, Eq. (38), as for the
linear-plus-qubic function based on the Taylor expansion.

(2) We have compared the perturbative analytical cal-
culations with results obtained by numerical solving of
the Schrödinger equation. The agreement is very good
for weak nonlinearity, i.e. for parameters for which the
nonlinear term in the sweep function is small compared
to the linear term in the crossing region. The crossing
region here corresponds to the time interval during which
the state probabilities experience significant changes, as
established in previous studies on LZSM dynamics. The
approximate expressions become invalid if this condition
of small nonlinearity is violated.

(3) We have analyzed the double-passage problem for
the linear-plus-quadratic sweep function and found that
the DDP approach is not applicable in this case.

(4) We have considered the case of the sweep function
ε(t) = v0t(1+α tanh t/T ) to study a case of strong nonlin-
earity. The numerical evaluation of the transition prob-
ability following the DDP approach gives good agree-
ment with the results obtained by numerically solving
the Schrödinger equation when a sufficiently large num-
ber of zeros, Eq. (13), in the complex plane are taken
into account.

(5) We have obtained an analytical formula for the
transition probability for the case of a uniformly rotating
field when the sweep function and the gap are given by
Eq. (58).

(6) We have calculated numerically the transition prob-
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ability for two essentially nonlinear sweep functions in the
limit when they describe an almost square pulse — the
power function (63) for a→ 0 and the error-function (65)
for σ → 0. We have also given the limiting function for
the probability in these cases.

(7) We have proven that the time dependence of the
gap in the qubit Hamiltonian can be eliminated with a
transformation of the time variable, such that the LZSM
problem is reduced to one with a time-independent gap.

(8) We have studied numerically the LZSM problem
with asymptotically vanishing gap (68) and found os-
cillations in the transition probability. The number of
peaks and their maximum values grow with decreasing
gap pulse width.
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Appendix A: Calculating D(t′c) for the case of a weak
quadratic nonlinearity

To illustrate one technique that we use for evaluating
D(t′c), we first revisit the calculation in the linear case.

The calculation of D(tc) in Eq. (18) can alternatively be
performed as follows

D(tc) = i

∫ τc

0

√
∆2 − (vs)2ds

= i

∫ τc

0

√
∆2 − (v(τc − s′))2ds′

= i

∫ τc

0

√
v2 (2τcs′ − s′2)ds′

= ivτ2
c

∫ 1

0

√
2x− x2dx = ivτ2

c ×
π

4
, (A1)

where we have defined τc = ∆/v. Reversing the roles
of the lower and upper limits of the integral simplifies
the treatment of the perturbation term that we shall add
shortly. In particular, with this change we avoid compli-
cations that can arise with the Taylor expansion of the
square root at the point where the square root vanishes.

The weak quadratic nonlinearity term modifies E(t),

E(t) =

√
(v0t+ v1t2)

2
+ ∆2, (A2)

and shifts the zero of the DDP calculation from tc =
i∆/v0 to v0t

′
c + v1(t′c)

2 = i∆, which gives

t′c =
−v0 +

√
v2

0 + 4iv1∆

2v1

≈ i∆

v0
+

∆2v1

v3
0

− i2∆3v2
1

v5
0

. (A3)

We shall refer to −it′c as τ ′c below.
The integral D(t′c) now becomes

D(t′c) =

∫ t′c

0

√
∆2 + (v0s+ v1s2)2ds

=

∫ t′c

0

√
∆2 + (v0(t′c − s′) + v1(t′c − s′)2)2ds′

=

∫ t′c

0

√
−v2

0(2t′cs
′ − s′2)− 2v0v1(3(t′c)

2s′ − 3t′cs
′2 + s′3)− v2

1(4(t′c)
3s′ − 6(t′c)

2s′2 + 4t′cs
′3 − s′4)ds′

= i

∫ τ ′
c

0

√
v2

0(2τ ′cs
′ − s′2) + 2iv0v1(3(τ ′c)

2s′ − 3τ ′cs
′2 + s′3)− v2

1(4(τ ′c)
3s′ − 6(τ ′c)

2s′2 + 4τ ′cs
′3 − s′4)ds′

≈ i
∫ τ ′

c

0

√
v2

0(2τ ′cs
′ − s′2)ds′ + i

∫ τ ′
c

0

2iv0v1(3(τ ′c)
2s′ − 3τ ′cs

′2 + s′3)− v2
1(4(τ ′c)

3s′ − 6(τ ′c)
2s′2 + 4τ ′cs

′3 − s′4)

2v0

√
2τ ′cs

′ − s′2
ds′

−i
∫ τ ′

c

0

−4v2
0v

2
1(3(τ ′c)

2s′ − 3τ ′cs
′2 + s′3)2

8v3
0(2τ ′cs

′ − s′2)3/2
ds′

= iv0(τ ′c)
2

∫ 1

0

√
2x− x2dx− v1(τ ′c)

3

∫ 1

0

3x− 3x2 + x3

√
2x− x2

dx− i v
2
1

2v0
(τ ′c)

4

∫ 1

0

4x− 6x2 + 4x3 − x4

√
2x− x2

dx

+i
v2

1

2v0
(τ ′c)

4

∫ 1

0

(3x− 3x2 + x3)2

(2x− x2)3/2
dx

≈ iπv0

4

(
∆2

v2
0

− 2i
∆3v1

v4
0

− 4
∆4v2

1

v6
0

− ∆4v2
1

v6
0

)
− 3π − 4

6
v1

(
∆3

v3
0

− 3i
∆4v1

v5
0

)
− 5π

32
i
∆4v2

1

v5
0

+

(
2− 15π

32

)
i
∆4v2

1

v5
0
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≈ i
(
π∆2

4v0
− 3π

8

∆4v2
1

v5
0

)
+

2∆3v1

3v3
0

. (A4)

Note that the step where we approximated the square-
root using the Taylor expansion is valid when the first
term inside the square root is much larger than the sec-
ond and third terms combined, which implies the relation
v1 � v2

0/∆ or in other words v1∆/v2
0 � 1.

Appendix B: Calculation of the LZSM probability
for the sinh function

We consider the sweep function

ε2(t) = A sinh

(
t

T

)
. (B1)

Considering the Taylor expansion of the sinh function,
the sweep function ε2(t) gives

χ3 =
∆2

A2
. (B2)

We now proceed with the DDP calculation for this case.
Considering that sinh(x+iy) = sinhx cos y+i coshx sin y,
we find that we need to specify the value of ξ = ∆/A to
proceed with finding the solutions of the equation

A2 sinh2 t

T
+ ∆2 = 0. (B3)

If ξ < 1, all the solutions of Eq. (B3) are purely imaginary
and can be described by the formula

t(n,±)
c = ±iT arcsin ξ + iπTn, (B4)

with n being any integer. If ξ > 1, the solutions are given
by

t(n,±)
c = ±ν + iT

π

2
(2n+ 1), (B5)

with

ν = T arccosh ξ = T ln(ξ +
√
ξ2 − 1). (B6)

For ξ = 1, the roots of Eq. (B3) have multiplicity 2 and
are located at

t(n)
c = iT

π

2
(2n+ 1). (B7)

If ξ approaches 1 from below, each pair of zeros close to
iTπ(n + 1/2) approach each other and converge to the
same point. If ξ increases above 1, each zero splits back
into two zeros that move away from each other in the
horizontal direction.

For ξ < 1, the solution of Eq. (B3) that is closest to
the real axis and has a positive imaginary part reads

t′c = iT arcsin ξ. (B8)

Straightforward calculations [as in Section VI for the sine
function (45)] lead to the formula [analogous to Eq. (52)]

D(t′c) = iT∆

∫ ξ

0

√
1− ξ−2w2

1− w2
dw, (B9)

and finally, in the limiting case ξ � 1, we get Eq. (38) for
the transition probability. Note that if we take the limit
A/∆→∞ and use the relation T = A/v0 we obtain the
probability PLZSM, as expected.

For ξ > 1, there are two solutions of Eq. (B3) with a
positive imaginary part that are the nearest ones to the
real axis

t±c = ±T ln(ξ +
√
ξ2 − 1) + i

π

2
T. (B10)

Using the generalized DDP formula (14) we obtain for
the probability

P = 2 exp
[
−2 ImD(t+c )

]{
1 + cos

[
2 ReD(t+c )

] }
, (B11)

where

ReD(t+c ) = AT
{∫ ln(ξ+

√
ξ2−1)

0

√
ξ2 + sinh2 xdx

−
∫ π/2

0

r(y, ξ)dy
}
, (B12)

ImD(t+c ) = AT

∫ π/2

0

j(y, ξ)dy, (B13)

j(y, ξ) =

√
u1(y, ξ) +

√
u2

1(y, ξ) + u2
2(y, ξ)

2
, (B14)

r(y, ξ) =
u2(y, ξ)

2j(y, ξ)
, (B15)

and

u1(y, ξ) =
1

2

[
(2ξ2 − 1) cos(2y)− 1

]
, (B16)

u2(y, ξ) = ξ
√
ξ2 − 1 sin(2y). (B17)

The integrals in Eqs. (B12), (B13) can be evaluated nu-
merically.

As mentioned above, the roots of Eq. (B3) have mul-
tiplicity 2 at ξ = 1, which violates one of the conditions
required for the DDP formula. This point is interest-
ing, because it suggests that there might be something
pathological about the case ξ = 1. However, in reality no
unusual behavior occurs at this point, as confirmed by
numerical simulations based on solving the Schrödinger
equation. This point therefore illustrates one of the lim-
itations of the DDP approach.
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Appendix C: Time-dependent gap ∆(t)

In this Appendix, we show the details for eliminating
the time dependence of the gap ∆(t) and derive the per-
turbative formula in this case.

1. Transformation for eliminating the time
dependence of ∆(t)

Let us take the time-dependent Hamiltonian (66). We
seek a transformation that eliminates the time depen-
dence in ∆(t), i.e. a mapping between the present prob-
lem and one with a time-independent ∆. Below we
present two equivalent methods that use slightly different
languages.

a. Method 1

Let us make a substitution

t = G(t̃) (C1)

in the Schrödinger equation (1) with the Hamilto-
nian (66) such that

dt

dt̃
∆(t) = ∆̃ = const. (C2)

Equation (C2) can alternatively be expressed as

G′(t̃)∆(G(t̃)) = ∆̃. (C3)

After multiplying Eq. (1) by dt/dt̃ = G′(t̃) we obtain

i
d|ψ(G(t̃))〉

dt̃
= H̃(t̃)|ψ(G(t̃))〉, (C4)

where the new Hamiltonian reads

H̃(t̃) =
∆̃

2
σx +

ε̃(t̃)

2
σz, (C5)

with

ε̃(t̃) = ε(G(t̃))G′(t̃). (C6)

We look for a function G(t̃) that satisfies Eq. (C3), which
for G(0) = 0, is equivalent to∫ G(t̃)

0

∆(t)dt = ∆̃t̃. (C7)

Assuming that ∆(t) > 0 and
∫∞

0
∆(t)dt = ∞, we con-

clude that there exists a unique solution G(t̃) of Eq. (C3).
Therefore, the problem is reduced to one with a time-
independent gap ∆̃ and a modified sweep function ε̃(t̃),
Eq. (C6).

b. Method 2

We define a new time-like variable t̃. The time-
dependent Schrödinger equation can then be expressed
as

i
d |ψ〉
dt̃

=
dt

dt̃
H |ψ〉 . (C8)

If we choose the relationship between t and t̃ such that
Eq. (C2) is satisfied, Eq. (C8) reduces to

i
d |ψ〉
dt̃

= H̃ |ψ〉 , (C9)

with

H̃ =
1

2

(
ε̃(t̃) ∆̃

∆̃ −ε̃(t̃)

)
, (C10)

and

ε̃(t̃) =
dt

dt̃
ε
[
t(t̃)
]
, (C11)

where we treat t as being a function of t̃. As a result, the
effect of having a time-dependent gap ∆(t) is the same as

the effect of having a fixed gap ∆̃ but a modified sweep
function ε̃(t̃). Consequently the lowest-order effect of a
temporal variation in ∆ can be inferred from our results
concerning the lowest-order effect of having a nonlinear
sweep function ε(t).

2. Illustrative examples

As an example, we consider the following time depen-
dence of the gap:

∆(t) = d0

∣∣∣∣ tT
∣∣∣∣a , a > 0. (C12)

For t̃ > 0, the solution of Eq. (C7) gives the relation
between t and t̃ as follows

t = G(t̃) =

[
∆̃

d0
(a+ 1)T at̃

]1/(a+1)

. (C13)

Therefore, the function ε̃(t̃) in the resulting Hamilto-
nian (C5) is obtained explicitly.

As another example, let us take ∆(t) =
∆0 (1 + α tanh t/T ) and a linear sweep function
ε(t) = vt. We can set

dt̃

dt
=

(
1 + α tanh

t

T

)
, (C14)

or in other words

t̃ = t+ Tα ln cosh
t

T
, (C15)
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to get ∆̃ = ∆0. Note that we have set the integration
constant in Eq. (C15) to zero, which sets the relation
that t̃ = 0 when t = 0. The modified function ε̃(t̃) is
then given by

ε̃(t̃) =
vt(t̃)

1 + α tanh t(t̃)
T

. (C16)

The function t̃(t) in Eq. (C15) cannot be inverted easily
to obtain t(t̃) as a simple function. As a result, we cannot
write ε̃(t̃) explicitly.

3. Perturbative formula

Even if we cannot find an explicit expression for ε̃(t̃),
we can derive relations between the derivatives of ε̃(t̃)
with respect to t̃ and the derivatives of ε(t) and ∆(t)

with respect to t, especially at the crossing point. The
derivatives of ε̃ with respect to t̃ allow us to calculate the
adiabaticity and nonlinearity parameters in the trans-
formed problem. As a result, the relations between the
derivatives will allow us to infer the effect of a slowly
time-dependent ∆(t) from our perturbative results for a
weakly nonlinear ε(t).

For general time-dependent functions ε(t) and ∆(t),
with the assumption that both ∆(t) and dε/dt are always
positive, we can set

dt̃

dt
=

∆(t)

∆̃
, (C17)

where ∆̃ is a constant. We then obtain

ε̃(t̃) =
∆̃ ε(t)

∆(t)
. (C18)

We can then evaluate the derivatives

dε̃

dt̃

∣∣∣∣∣
ε=0

=

(
dε̃

dt
× dt

dt̃

) ∣∣∣∣∣
ε=0

=

([
∆̃ dε/dt

∆(t)
− ∆̃ ε(t)d∆/dt

∆2(t)

]
×
[

∆̃

∆(t)

]) ∣∣∣∣∣
ε=0

= ∆̃2

(
dε/dt

∆2(t)
− ε(t)d∆/dt

∆3(t)

) ∣∣∣∣∣
ε=0

=
∆̃2 dε/dt

∆2(t)

∣∣∣∣∣
ε=0

; (C19)

d2ε̃

dt̃2

∣∣∣∣∣
ε=0

=

(
d

dt

(
dε̃

dt̃

)
× dt

dt̃

) ∣∣∣∣∣
ε=0

= ∆̃3

(
d2ε/dt2

∆3(t)
− 2(dε/dt)× (d∆/dt)

∆4(t)
− (dε/dt)× (d∆/dt)

∆4(t)
− ε(t)d2∆/dt2

∆4(t)
+

3ε(t)(d∆/dt)2

∆5(t)

)∣∣∣∣∣
ε=0

= ∆̃3

(
d2ε/dt2

∆3(t)
− 3(dε/dt)× (d∆/dt)

∆4(t)

) ∣∣∣∣∣
ε=0

; (C20)

d3ε̃

dt̃3

∣∣∣∣∣
ε=0

=

(
d

dt

(
d2ε̃

dt̃2

)
× dt

dt̃

) ∣∣∣∣∣
ε=0

= ∆̃4

(
d3ε/dt3

∆4(t)
− 3(d2ε/dt2)× (d∆/dt)

∆5(t)
− 3(d2ε/dt2)× (d∆/dt)

∆5(t)
− 3(dε/dt)× (d2∆/dt2)

∆5(t)

+
12(dε/dt)× (d∆/dt)2

∆6(t)
− (dε/dt)× (d2∆/dt2)

∆5(t)
− ε(t)d3∆/dt3

∆5(t)

+
4ε(t)(d2∆/dt2)(d∆/dt)

∆6(t)
+

3(dε/dt)(d∆/dt)2

∆6(t)
+

6ε(t)(d∆/dt)(d∆2/dt2)

∆6(t)
− 18ε(t)(d∆/dt)3

∆7(t)

)∣∣∣∣∣
ε=0

= ∆̃4

(
d3ε/dt3

∆4(t)
− 6(d2ε/dt2)× (d∆/dt)

∆5(t)
− 4(dε/dt)× (d2∆/dt2)

∆5(t)
+

15(dε/dt)× (d∆/dt)2

∆6(t)

)∣∣∣∣∣
ε=0

. (C21)

These expressions can be used to evaluate the param-
eters χi (i = 2, 3, ...) and subsequently evaluate the tran-

sition probability. For example, if we take the case where
ε(t) = vt and only the first derivative of ∆(t) is nonneg-
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ligible (∆′ = d∆/dt|ε=0), we set ∆̃ = ∆(t)|ε=0 = ∆0 and
obtain the rates

dε̃

dt̃

∣∣∣∣∣
ε=0

= v,

d2ε̃

dt̃2

∣∣∣∣∣
ε=0

= −3v∆′

∆0
,

d3ε̃

dt̃3

∣∣∣∣∣
ε=0

=
15v × (∆′)2

∆2
0

, (C22)

which in turn give the nonlinearity parameters

χ2 = −3∆′

v
,

χ3 =
15(∆′)2

v2
. (C23)

Substituting these expressions for χ2 and χ3 in Eq. (39),
we obtain Eq. (67).
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