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We introduce a hierarchy of linear systems for showing that a given subspace of pure quantum states is

entangled (i.e., contains no product states). This hierarchy outperforms known methods already at the first

level, and it is complete in the sense that every entangled subspace is shown to be so at some finite level of the

hierarchy. It generalizes straightforwardly to the case of higher Schmidt rank, as well as the multipartite cases

of completely and genuinely entangled subspaces. These hierarchies work extremely well in practice even in

very large quantum systems, as they can be implemented via elementary linear algebra techniques rather than

the semidefinite programming techniques that are required by previously-known hierarchies.
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INTRODUCTION

Quantum entanglement is one of the central features of

modern physics, and the problem of determining when en-

tanglement is present in a quantum system is one of its most

active research areas [1, 2]. Of particular interest in this area

is the problem of determining whether or not a given subspace

is entangled. That is, the problem of determining whether or

not every pure state in the subspace is entangled (i.e., not a

product state) [3, 4].

In the bipartite setting of two quantum systems, one of the

standard uses of certifying entanglement in subspaces is that

any mixed quantum state supported on an entangled subspace

is necessarily entangled [5, 6], but numerous other applica-

tions have appeared in recent years. For example, entangled

subspaces can be used to construct entanglement witnesses

[7, 8] and to perform quantum error correction [9, 10]. Further

applications of this problem and its robust variants include

determining the performance of QMA(2) protocols, comput-

ing the geometric measure of entanglement, and determining

the ground-state energy of mean-field Hamiltonians as exam-

ples [11]. (For yet more applications, the reference [11] con-

tains a compendium of 21 equivalent or closely related prob-

lems in quantum information and computer science!)

In the multipartite setting of three or more quantum sys-

tems, there are different notions of entanglement of a sub-

space. A completely entangled subspace in one containing

no product states [6], while a genuinely entangled subspace is

one containing no states that are product across any bipartition

(genuine entanglement is a stricter requirement than complete

entanglement) [12, 13]. Completely entangled subspaces are

useful for locally discriminating pure quantum states [14, 15],

while genuinely entangled subspaces have been shown to have

applications in quantum cryptography [16].

Determining whether or not a subspace is entangled is a

difficult problem (see [17] or [11, Corollary 14], for exam-

ple). To certify that a subspace is not entangled, it suffices

to present a product vector in that subspace, but it is hard to

actually find such a product vector in the first place. In the

other direction, it is not known how to efficiently show that

a given subspace is entangled, even with the help of a certifi-

cate. To date, the only practical methods known for solving

this problem work in very limited situations, such as when

the subspace’s dimension is smaller than the local dimensions

[18–20], or when the dimensions are small enough that sep-

arability hierarchies based on semidefinite programming can

be employed [21–23].

We solve this problem by presenting a hierarchy of linear

systems that can be used to certify that a given subspace is en-

tangled. Our hierarchy is distinct from other hierarchies com-

monly used in quantum information theory; known semidefi-

nite programming hierarchies are based on symmetric exten-

sions and/or the sum of squares hierarchies [21], while our hi-

erarchy is based on Hilbert’s projective Nullstellensatz from

algebraic geometry [24]. As a result, our hierarchy terminates

(i.e., detects every entangled subspace) at a finite level that de-

pends only on the local dimensions; something that is known

not to be possible for separability-based hierarchies like sym-

metric extensions [25].

Our hierarchy works extremely well in practice, with even

its first level being able to certify entanglement in subspaces

that are much larger (quadratic in the local dimensions) than

can be handled by other known techniques. The hierarchy also

generalizes straightforwardly to r-entangled subspaces (i.e.,

subspaces in which every pure state has large Schmidt rank

[26]), as well as to multipartite completely entangled sub-

spaces and genuinely entangled subspaces. It also provides, as

an immediate corollary, a new separability criterion that works

well at detecting entanglement in low-rank mixed quantum

states; even ones whose entanglement cannot be detected by
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the partial transpose [27] (i.e., bound entangled states [28]).

We provide MATLAB code that implements all of our meth-

ods [29].

THE FIRST LEVEL OF THE HIERARCHY

We use HA and HB to denote finite-dimensional complex

Hilbert spaces (which can be thought of as CdA and CdB ) of

dimension dA and dB, respectively. A pure state |x〉 ∈ HA⊗HB

(i.e., a unit column vector) is said to be a product state if it can

be written in the form |x〉 = |v〉 ⊗ |w〉 for some |v〉 ∈ HA and

|w〉 ∈ HB, and it is said to have Schmidt rank r (denoted by

SR(|x〉) = r) if it can be written as a linear combination (i.e.,

superposition) of r product states but not fewer. A subspace

of HA ⊗ HB is called r-entangled (or just entangled if r = 1)

if every pure state in it has Schmidt rank r + 1 or larger.

The starting point of our hierarchy for certifying that a

given subspace is r-entangled is the observation that, for

|x〉 ∈ HA ⊗HB, we have SR(|x〉) ≤ r if and only if

(
P∧A,r+1 ⊗ P∧B,r+1

)(|x〉⊗(r+1)) = 0, (1)

where P∧
A,r+1

is the projection onto the antisymmetric sub-

space of H⊗(r+1)

A
(and similarly for the “B” subscripts). This

is a classical result in algebraic geometry (see e.g., [30]), and

it has been used in a variety of contexts. For example, it ap-

peared in a tensor decomposition algorithm in [31], and a sim-

ilar observation was made in [32], where antisymmetric pro-

jections were used to create a semidefinite programming hier-

archy for computing the Schmidt number of a mixed state.

For brevity, we define

Φ1
r

def

= P∧A,r+1 ⊗ P∧B,r+1, (2)

and for completeness, we formally state and prove the obser-

vation that we just made about Φ1
r :

Proposition 1. Suppose |x〉 ∈ HA ⊗ HB and let Φ1
r be the

linear map from Equation (2). Then SR(|x〉) ≤ r if and only if

Φ1
r

(|x〉⊗(r+1)
)
= 0.

Proof. Write |x〉 in its Schmidt decomposition |x〉 =∑s
j=1 λ j|v j〉 ⊗ |w j〉 with s = SR(|x〉). Then

Φ1
r

(|x〉⊗(r+1)) = (
P∧A,r+1 ⊗ P∧B,r+1

)(|x〉⊗(r+1))

=

s∑

j1,..., jr+1=1

λ j1 · · · λ jr+1
P∧A,r+1

(
|v j1 〉 ⊗ · · · ⊗ |v jr+1

〉
)
⊗ P∧B,r+1

(
|w j1 〉 ⊗ · · · ⊗ |w jr+1

〉
)
.

If s ≤ r then {|v j1 〉, . . . , |v jr+1
〉} is a set containing r or fewer

members, so P∧
A,t

(|v j1 〉⊗ · · ·⊗ |v jr+1
〉) = 0, so Φ1

r

(|x〉⊗(r+1)
)
= 0.

On the other hand, if s > r then for any 1 ≤ j̃1 < · · · <
j̃r+1 ≤ s we have

(〈v j̃1
| ⊗ · · · ⊗ 〈v j̃r+1

|)P∧A,r+1

(|v j1 〉 ⊗ · · · ⊗ |v jr+1
〉)

=
(〈w j̃1

| ⊗ · · · ⊗ 〈w j̃r+1
|)P∧B,r+1

(|w j1 〉 ⊗ · · · ⊗ |w jr+1
〉),

and this quantity is non-zero if and only if
{
j̃1, . . . , j̃r+1

}
=

{ j1, . . . , jr+1}. It follows that

(
〈v j̃1
| ⊗ · · · ⊗ 〈v j̃r+1

| ⊗ 〈w j̃1
| ⊗ · · · ⊗ 〈w j̃r+1

|
)
Φ1

r

(|x〉⊗(r+1))

is non-zero (in fact, strictly positive). In particular, this means

that Φ1
r

(|x〉⊗(r+1)
)
, 0, completing the proof. �

The superscript “1” in the notationΦ1
r refers to the fact that

this map gives us the first level of our hierarchy for certifying

that a subspace ofHA ⊗HB is r-entangled:

Theorem 2. Let S ⊆ HA ⊗ HB be a subspace with basis

{|x1〉, . . . , |xdS
〉}. If the set

{
Φ1

r

(|x j1 〉 ⊗ · · · ⊗ |x jr+1
〉) : 1 ≤ j1 ≤ · · · ≤ jr+1 ≤ dS

}
(3)

is linearly independent then S is r-entangled.

We provide a brief proof of this theorem here, even though

it is a special case of the upcoming Theorem 4. The reason for

this is that Theorem 2 is rather straightforward to prove, and

it is instructive to see where this base of the hierarchy comes

from, whereas the proof of the more general Theorem 4 is

quite long and technical (and thus left to the appendix).

Proof of Theorem 2. By Proposition 1, the subspace S is r-

entangled if and only if

Φ1
r


( dS∑

i=1

ci|xi〉
)⊗(r+1)

 , 0 (4)

for all non-zero c1, . . . , cdS
∈ C.

By linearity and symmetry of Φ1
r , it holds that

Φ1
r


( dS∑

i=1

ci|xi〉
)⊗(r+1)



=

dS∑

i1,...,ir+1=1

ci1 · · · cir+1
Φ1

r

(|xi1 〉 ⊗ · · · ⊗ |xir+1
〉)

=
∑

i1≤···≤ir+1

µ
ℓ,r+1
i1,...,ir+1

ci1 · · · cir+1
Φ1

r

(|xi1 〉 ⊗ · · · ⊗ |xir+1
〉),

(5)
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where µ
ℓ,r+1
i1,...,ir+1

is some multinomial coefficient that counts how

many times the term ci1 · · · cir+1
Φ1

r

(|xi1 〉 ⊗ · · · ⊗ |xir+1
〉) appears

in the second line of Equation (5).

If Equation (4) does not hold then it follows from Equa-

tion (5) that there is some linear combination of the vectors of

the formΦ1
r

(|xi1 〉⊗ · · ·⊗ |xir+1
〉) that equals 0 (i.e., the set (4) is

linearly dependent). The theorem is simply the contrapositive

of this statement. �

Since the set (3) consists of
(

dS+r

r+1

)
vectors, each living in-

side the
(

dA

r+1

)(
dB

r+1

)
-dimensional range of Φ1

r , Theorem 2 can be

implemented by determining whether or not a homogeneous(
dA

r+1

)(
dB

r+1

)
×

(
dS +r

r+1

)
linear system has a non-zero solution. De-

spite just being the first level of the hierarchy, this linear sys-

tem can already certify r-entanglement of subspaces that are

significantly larger than the local dimensions dA and dB; a fact

that we now illustrate with several examples and an additional

proposition.

We say that a property holds for a generic dS -dimensional

subspace of HA ⊗ HB if it holds with probability one for

a Haar-random dS -dimensional subspace of HA ⊗ HB (see

e.g., [14, Definition 2.2] for the definition of a Haar-random

subspace) [33]. It is known that the maximum dimension of

an r-entangled subspace is (dA − r)(dB − r) [26]. For r = 1,

the following proposition shows that the first level of the hier-

archy already certifies entanglement of a generic subspace of

dimension up to a constant multiple of this maximum. This

is surprising, given that the best-known algorithm in the worst

case for determining whether a subspace is entangled or not

runs in time exponential in
√

dA when dA = dB [34].

Proposition 3. In the notation of Theorem 2, if r = 1 then

the set (3) is linearly independent for a generic subspace of

dimension dS < (dA − 1)(dB − 1)/4.

We defer the proof of this proposition to the appendix.

Proposition 3 gives a sufficient condition for a generic sub-

space of dimension dS to be certified by the first level of our

hierarchy. In the opposite direction, by just considering the

size of the linear system that Theorem 2 describes, we know

that

(
dS + r

r + 1

)
≤

(
dA

r + 1

)(
dB

r + 1

)
(6)

is necessary.

The following pair of examples show that this bound is in

fact tight in many cases, i.e., the first level of our hierarchy

certifies entanglement of any subspace S for which dS satis-

fies Inequality (6).

Example 1. When dA = dB = 4 and r = 1, Inequality (6)

holds exactly when dS ≤ 8, so the largest subspace that we

can hope to certify is entangled via Theorem 2 has dimension

8. It indeed works all the way up to dimension 8, getting quite

close to the maximum dimension of entangled subspaces of

(dA − r)(dB − r) = 9 in this case.

For example, following the construction of large entangled

subspaces from [26], consider the subspace

S = span
{|x1〉, . . . , |x8〉

} ⊂ HA ⊗ HB,

where (here we omit normalization factors for brevity, and we

use | j〉 to denote the j-th standard basis vector ofHA andHB)

|x1〉 = |0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 + |2〉 ⊗ |2〉 + |3〉 ⊗ |3〉,
|x2〉 = |0〉 ⊗ |0〉 − |1〉 ⊗ |1〉 + |2〉 ⊗ |2〉 − |3〉 ⊗ |3〉,
|x3〉 = |0〉 ⊗ |1〉 + |1〉 ⊗ |2〉 + |2〉 ⊗ |3〉,
|x4〉 = |1〉 ⊗ |0〉 + |2〉 ⊗ |1〉 + |3〉 ⊗ |2〉,
|x5〉 = |0〉 ⊗ |1〉 + 2|1〉 ⊗ |2〉 + 3|2〉 ⊗ |3〉,
|x6〉 = |1〉 ⊗ |0〉 + 2|2〉 ⊗ |1〉 + 3|3〉 ⊗ |2〉,
|x7〉 = |0〉 ⊗ |2〉 + |1〉 ⊗ |3〉, and

|x8〉 = |2〉 ⊗ |0〉 + |3〉 ⊗ |1〉.

To show that S is entangled, it suffices to solve the
(

dA

r+1

)(
dB

r+1

)
×(

dS +r

r+1

)
= 36×36 linear system described by Theorem 2. Doing

so reveals that the set (3) is indeed linearly independent, so S
is entangled.

Similarly, we generated 105 Haar-random 8-dimensional

subspaces of HA ⊗ HB, and Theorem 2 detected their entan-

glement every single time (we will show in the upcoming The-

orem 4 that this behavior is expected).

Example 2. When dA = dB = 4 and r = 2, Inequality (6)

holds exactly when dS ≤ 3, so the largest subspace that we

can hope to certify is 2-entangled via Theorem 2 has dimen-

sion 3. Many subspaces of this dimension are indeed certified,

such as the span of the states |x1〉, |x3〉, and |x4〉 from Exam-

ple 1. Performing this certification simply requires us to solve

a
(

dA

r+1

)(
dB

r+1

)
×

(
dS +r

r+1

)
= 16 × 10 linear system.

Similarly, we generated 105 Haar-random 3-dimensional

subspaces of HA ⊗ HB, and Theorem 2 detected their 2-

entanglement every single time.

Table I provides some numerics that show the maximum

dimension of an r-entangled subspace that can be certified

by Theorem 2 (which, in all cases displayed, is equal to the

largest value of dS for which Inequality (6) holds) in various

local dimensions, as well as the amount of time that it takes

our code to certify such a subspace on a standard desktop com-

puter. The subspaces that we checked to obtain these timings

have a form that is similar to that of the subspace from Exam-

ple 1. We note that the r = 2 timings are significantly higher

than the r = 1 timings since the dimensions of the linear sys-

tem that must be solved (
(

dA

r+1

)(
dB

r+1

)
×
(
dS +r

r+1

)
) grows quickly with

r.

THE REST OF THE HIERARCHY

For an integer k ≥ 1, the k-th level of our hierarchy is based

on the following linear map acting on (HA ⊗HB)⊗(r+k):

Φk
r

def

=
(
P∧A,r+1 ⊗ P∧B,r+1 ⊗ IAB,k−1

)
P∨AB,r+k, (7)
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r = 1 r = 2

dA = dB max. dS time max. dS time

3 3 0.01 s 1 0.03 s

4 8 0.03 s 3 0.19 s

5 13 0.08 s 7 0.65 s

6 20 0.20 s 12 2.38 s

7 29 0.49 s 18 8.17 s

8 39 1.06 s 25 27.46 s

9 50 2.24 s 33 1.78 min

10 63 5.56 s 43 14.62 min

Table I. The maximum dimension dS of a subspace ofHA ⊗HB that

can be certified to be r-entangled by the first level of the hierarchy

(i.e., Theorem 2), as well as the time required to do the certification,

for small values of dA = dB and r. In all cases shown here, the

maximum dimension is the largest dS for which Inequality (6) holds.

where IAB,k−1 is the identity on (HA ⊗ HB)⊗(k−1) and P∨
AB,r+k

is the projection onto the
(
dAdB+r+k−1

r+k

)
-dimensional symmetric

subspace of (HA ⊗ HB)⊗(r+k) (i.e., the symmetrization is per-

formed between the r+ k copies ofHA ⊗HB, but not between

HA andHB).

In the k = 1 case, Φk
r is exactly the same as the linear

map Φ1
r from Equation (2), which can be seen by noting that

range(P∧
A,r+1
⊗P∧

B,r+1
) ⊆ range(P∨

AB,r+1
). Theorem 2 still works

ifΦ1
r is replaced byΦk

r , but we now furthermore get a converse

that completely characterizes all r-entangled subspaces:

Theorem 4. Let S ⊆ HA ⊗ HB be a subspace with basis

{|x1〉, . . . , |xdS
〉}. Then S is r-entangled if and only if there

exists an integer 1 ≤ k ≤ (max{r, 2} + 1)dAdB − r such that the

set

{
Φk

r

(|x j1 〉 ⊗ · · · ⊗ |x jr+k
〉) : 1 ≤ j1 ≤ · · · ≤ jr+k ≤ dS

}
(8)

is linearly independent. Furthermore, if a subspace S is

certified to be r-entangled at the k-th level of the hierarchy

(i.e., if the set (8) is linearly independent), then a generic dS -

dimensional subspace will be certified at the k-th level.

The proof of Theorem 4 is rather long and technical, so

we defer it to the appendix, but the rough idea behind it is

as follows. The set of pure states in HA ⊗ HB with Schmidt

rank at most r is an algebraic variety (i.e., can be defined via

polynomial equations), since SR(|x〉) ≤ r if and only if every

(r + 1) × (r + 1) submatrix of the matricization of |x〉 has de-

terminant zero. Numerous tools from algebraic geometry are

thus at our disposal for this problem, and in particular we use

Hilbert’s nullstellensatz to establish the hierarchy.

Theorem 4 really does establish a hierarchy for detecting

r-entanglement in a subspace: if the set (8) is linearly inde-

pendent for a particular value of k, then it is linearly indepen-

dent for all larger values of k as well. While this hierarchy

is only guaranteed to detect all r-entangled subspaces at its

very high k = (max{r, 2} + 1)dAdB − r level, it is remarkable

that a bound that does not depend on S exists at all (after all,

no analogous bound can exist for semidefinite programming

hierarchies for the separability problem [25]). Furthermore,

the last sentence of the theorem allows us to show in practice

that a much lower level (i.e., smaller value of k) suffices to

detect most r-entangled subspaces, simply by finding a single

r-entangled subspace of the maximal dimension (dA−r)(dB−r)

that is detected at that low level.

We have found such examples already at the k = 2 level

of the hierarchy in many low-dimensional cases. Example 3

illustrates how such a certification at the 2nd level of the hi-

erarchy works, and Table II provides some numerics to show

how long it takes this 2nd level of the hierarchy to certify r-

entanglement of a maximum-dimensional subspace for some

small values of the local dimensions and r.

Example 3. Suppose dA = dB = 4, r = 1, and |x1〉, . . . , |x8〉
are as in Example 1. If

|x9〉 =
1

2

(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 − |2〉 ⊗ |2〉 − |3〉 ⊗ |3〉)

then S := span
{|x1〉, . . . , |x9〉

}
cannot possibly be shown to be

entangled by the first level of the hierarchy, since its dimen-

sion is too large. However, solving the
(

dA

r+1

)(
dB

r+1

)
(dAdB)k−1 ×(

dS +r+k−1
r+k

)
= 576 × 165 linear system described by the second

level of the hierarchy (i.e., Theorem 4 when k = 2) verifies

that it is indeed entangled.

As a bit of a side note, we observe that the number of rows

in this linear system could be taken to be slightly less than(
dA

r+1

)(
dB

r+1

)
(dAdB)k−1, since rank(Φk

r) is actually smaller than

rank(P∧
A,r+1

⊗ P∧
B,r+1

⊗ IAB,k−1) =
(

dA

r+1

)(
dB

r+1

)
(dAdB)k−1. How-

ever, indexing the range of Φk
r so as to take advantage of this

(or even computing its rank exactly) is quite difficult.

r = 1, k = 2 r = 2, k = 2

dA = dB max. dS time max. dS time

3 4 0.11 s 1 0.58 s

4 9 0.47 s 4 7.39 s

5 16 1.38 s 9 22.01 s

6 25 8.04 s 16 2.59 min

7 36 48.42 s 25 33.18 min

Table II. A summary of how long it takes the 2nd level of the hi-

erarchy (i.e., Theorem 4 with k = 2) to certify r-entanglement of a

subspace of HA ⊗ HB with dimension (dA − r)2 (i.e., the maximum

dimension), for small values of dA = dB and r.

The size of the linear system described by Theorem 4 in-

creases exponentially with k. However, it is also very sparse,

so it can typically be solved even if it has hundreds of thou-

sands of rows and columns.
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CERTIFYING SCHMIDT NUMBER OF LOW-RANK MIXED

STATES

The Schmidt number [35] of a mixed quantum state ρ acting

onHA ⊗HB, denoted by SN(ρ), is the least integer r such that

ρ is a convex combination of projectors onto Schmidt-rank-r

pure states fromHA ⊗HB:

ρ =
∑

j

p j|v j〉〈v j |, (9)

where {p j} is a probability distribution and each |v j〉 has

Schmidt rank at most r. If SN(ρ) = 1 then ρ is called sep-

arable, and it is called entangled otherwise [36].

Determining whether a given mixed state is separable or

entangled (or more generally, determining a state’s Schmidt

number) is a hard problem [37, 38], so in practice numerous

one-sided tests are used. One such test is the range criterion

[5], which says that if range(ρ) is not spanned by members of

HA ⊗ HB with Schmidt rank at most r, then SN(ρ) ≥ r + 1 (a

fact that follows immediately from the decomposition (9) of

ρ).

While the range criterion is simple to state and prove, ac-

tually making use of it is difficult, since it is difficult to show

that a given subspace ofHA⊗HB is not spanned by pure states

with small Schmidt rank. Theorem 4 helps solve this problem,

and immediately gives us the following result:

Corollary 1. Let ρ be a mixed state acting onHA ⊗ HB with

d = rank(ρ), and let {|x1〉, . . . , |xd〉} ⊆ HA ⊗ HB be a basis of

range(ρ). If there exists an integer k ≥ 1 such that

{
Φk

r

(|x j1 〉 ⊗ · · · ⊗ |x jr+k
〉) : 1 ≤ j1 ≤ · · · ≤ jr+k ≤ d

}
(10)

is linearly independent, then SN(ρ) ≥ r + 1.

This corollary works best when applied to low-rank mixed

states, and in particular we expect the first (i.e., k = 1) level

of the hierarchy to detect most states’ Schmidt number when

dS = rank(ρ) satisfies Inequality (6). Higher levels of the

hierarchy allow for the certification of Schmidt number of

higher-rank states, even ones whose entanglement cannot be

detected by the celebrated positive partial transpose (PPT) cri-

terion [27].

Example 4. Recall that if U ⊆ HA ⊗ HB is an unextendible

product basis [6], then the density matrix

ρU :=
1

dAdB − |U |

I −
∑

|v〉∈U
|v〉〈v |



is a PPT entangled state. For example, let dA = dB = 3 and

consider the 5-state “Tiles” UPB [39] (here we omit normal-

ization factors for brevity):

Utiles :=
{|0〉 ⊗ (|0〉 − |1〉), |2〉 ⊗ (|1〉 − |2〉)
(|0〉 − |1〉) ⊗ |2〉, (|1〉 − |2〉) ⊗ |0〉,
(|0〉 + |1〉 + |2〉) ⊗ (|0〉 + |1〉 + |2〉)} ⊂ HA ⊗HB.

The associated PPT entangled state ρUtiles
has d =

rank(ρUtiles
) = 4, which is too high-rank for the k = 1 level

of Corollary 1 to be able to detect entanglement in.

However, we can apply the second level of that hierar-

chy by picking a basis of range(ρ) and then solving the(
dA

r+1

)(
dB

r+1

)
(dAdB)k−1 ×

(
d+r+k−1

r+k

)
= 81 × 20 linear system de-

scribed by Corollary 1. Doing so certifies (in about 0.1 sec-

onds) that ρUtiles
is entangled.

The above example is not a fluke: the mapΦk
1

detects entan-

glement in most low-rank states. For example, repeating the

above example with the “Tiles” UPB replaced by any of the

“Pyramid” [6], “QuadRes”, or “GenTiles2” UPBs [39] yields

the exact same conclusions: Φ2
1

detects the entanglement in

the associated PPT entangled state.

The following example shows how the same method can be

used to show that a low-rank mixed state isn’t just entangled,

but has Schmidt number strictly larger than 2:

Example 5. Let dA = dB = 4 and consider the mixed state

ρ =
1

3

3∑

j=1

|x j〉〈x j | ∈ HA ⊗HB,

where (we again omit normalization factors for brevity)

|x1〉 = |0〉 ⊗ |0〉 + |1〉 ⊗ |1〉 + |2〉 ⊗ |2〉 + |3〉 ⊗ |3〉,
|x2〉 = |0〉 ⊗ |1〉 + |1〉 ⊗ |2〉 + |2〉 ⊗ |3〉 + |3〉 ⊗ |0〉,
|x3〉 = |0〉 ⊗ |2〉 + |1〉 ⊗ |3〉 + |2〉 ⊗ |0〉 − |3〉 ⊗ |1〉.

The PPT criterion readily shows that ρ is entangled (i.e.,

SN(ρ) ≥ 2), but we can say more by making use of Φ1
2
. In

particular, ρ has rank d = 3, and solving the
(

dA

r+1

)(
dB

r+1

)
×
(
d+r

r+1

)
=

16 × 4 system of linear equations described by Corollary 1

shows that SN(ρ) ≥ 3.

MULTIPARTITE COMPLETELY ENTANGLED SUBSPACES

Our hierarchy generalizes straightforwardly to the multipar-

tite scenario (i.e., the tensor product of three or more Hilbert

spaces). For example, a completely entangled subspace (CES)

S ofHA ⊗HB ⊗HC is one containing no product vector (i.e.,

no vector of the form |u〉 ⊗ |v〉 ⊗ |w〉) [3, 4]. We define PCES
ABC

to be the orthogonal projection onto

∧2HA ⊗ ∧2(HB ⊗HC) + ∧2(HA ⊗HB) ⊗ ∧2HC , (11)

where ∧2H denotes the antisymmetric (i.e., wedge) tensor

product of two copies of H . We emphasize that the sub-

space (11) is a sum of subspaces of (HA ⊗HB ⊗HC)⊗2, but it

is not a direct sum of subspaces.

Since |x〉 ∈ HA ⊗ HB ⊗ HC is a product vector if and only

if it is product across each of theHA ⊗ (HB ⊗HC) and (HA ⊗
HB) ⊗ HC bipartitions, we have |x〉 being a product vector if

and only if PCES
ABC

(|x〉⊗2) = 0. If we define the linear map

Φk
CES

def

=
(
PCES

ABC ⊗ IABC,k−1

)
P∨ABC,k+1, (12)
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then we have the following theorem that is directly analogous

to the bipartite hierarchy provided by Theorem 4:

Theorem 5. Let S ⊆ HA⊗HB⊗HC be a subspace with basis

{|x1〉, . . . , |xdS
〉}. Then S is completely entangled if and only if

there exists an integer 1 ≤ k ≤ 3dAdBdC − r such that the set
{
Φk

CES

(|x j1 〉 ⊗ · · · ⊗ |x jk+1
〉) : 1 ≤ j1 ≤ · · · ≤ jk+1 ≤ dS

}
(13)

is linearly independent. Furthermore, if a subspace S is de-

tected to be completely entangled at the k-th level of the hi-

erarchy (i.e., if (13) is linearly independent), then a generic

dS -dimensional subspace will be detected at the k-th level.

The above theorem follows from Theorem 6 via analogous

arguments to those used in the proof of Theorem 4, in the

appendix.

Example 6. The largest possible dimension of a completely

entangled subspace ofHA ⊗HB ⊗HC is dAdBdC − dA − dB −
dC + 2, and one particular example of such a subspace is [4]

S := span
{
|iA〉 ⊗ |iB〉 ⊗ |iC 〉 − | jA 〉 ⊗ | jB〉 ⊗ | jC 〉 :

iA + iB + iC = jA + jB + jC

0 ≤ iA, jA < dA, 0 ≤ iB, jB < dB, 0 ≤ iC , jC < dC

}
.

Our method is able to certify this maximal-dimension CES for

several small values of dA, dB, and dC , as summarized in Ta-

ble III.

(dA, dB, dC) max. dS level k time

(2, 2, 2) 4 2 0.12 s

(2, 2, 3) 7 2 0.30 s

(2, 2, 4) 10 2 0.67 s

(2, 2, 5) 13 2 1.21 s

(2, 2, 6) 16 2 3.47 s

(2, 2, 7) 19 2 6.05 s

(2, 2, 8) 22 2 18.90 s

(2, 2, 9) 25 2 38.40 s

(2, 3, 3) 12 3 19.58 s

(2, 3, 4) 17 3 8.24 min

(2, 3, 5) 22 3 2.50 h

(3, 3, 3) 20 4 14.68 h

Table III. A summary of which level k of the hierarchy from Theo-

rem 5 can be used to detect entanglement in the maximum-dimension

completely entangled subspace of HA ⊗ HB ⊗ HC from Example 6,

for small values of dA, dB, and dC , as well as the computational time

taken to do the certification.

Theorem 5 generalizes straightforwardly to the case of p >

3 parties using the fact that a multipartite vector |x〉 is prod-

uct if and only if it is product across p − 1 of its single-party

bipartitions, and redefining PCES
ABC

accordingly. For example,

if p = 4 then we would define PCES
ABCD

to be the orthogonal

projection onto the (non-direct) sum

∧2HA ⊗ ∧2(HB ⊗HC ⊗HD) + ∧2HB ⊗ ∧2(HA ⊗HC ⊗HD)

+ ∧2HC ⊗ ∧2(HA ⊗HB ⊗HD)

and then define Φk
CES
=

(
PCES

ABCD
⊗ IABCD,k−1

)
P∨

ABCD,k+1
. This

map, if substituted into Theorem 5, provides a complete hier-

archy for detecting completely entangled subspaces in 4-party

systems.

MULTIPARTITE GENUINELY ENTANGLED SUBSPACES

Another notion of multipartite entanglement of a subspace

is that of a genuinely entangled subspace, which is a subspace

in which no pure state is a product state across any biparti-

tion [12, 13]. Genuine entanglement is a stricter requirement

than complete entanglement, since pure states can be separa-

ble across one or more bipartitions without being a product

vector.

Our hierarchy can be applied directly to the case of gen-

uinely entangled subspaces simply by applying Theorem 4

across every bipartition. For example, when trying to certify

genuine entanglement of a subspace of HA ⊗ HB ⊗ HC , we

consider the map Φk
1

from Equation (7) with respect to a par-

ticular bipartition ofHA ⊗HB ⊗HC . That is, we define

Φk
AB,C

def

=
(
P∧AB,2 ⊗ P∧C,2 ⊗ IABC,k−1

)
P∨ABC,k+1,

and similarly for Φk
AC,B

and Φk
BC,A

. Theorem 4 then immedi-

ately implies the following corollary:

Corollary 2. Let S ⊆ HA⊗HB⊗HC be a subspace with basis

{|x1〉, . . . , |xdS
〉}. Then S is genuinely entangled if and only if

there exists an integer 1 ≤ k ≤ 3dAdBdC − 1 such that the sets

{
Φk

AB,C

(|x j1 〉 ⊗ · · · ⊗ |x j1+k
〉) : 1 ≤ j1 ≤ · · · ≤ j1+k ≤ dS

}
,

{
Φk

AC,B

(|x j1 〉 ⊗ · · · ⊗ |x j1+k
〉) : 1 ≤ j1 ≤ · · · ≤ j1+k ≤ dS

}
,

{
Φk

BC,A

(|x j1 〉 ⊗ · · · ⊗ |x j1+k
〉) : 1 ≤ j1 ≤ · · · ≤ j1+k ≤ dS

}

are all linearly independent.

Example 7. Let dA = dB = dC = 3 and consider the 5-

dimensional genuinely entangled subspace ofHA ⊗HB ⊗HC

that was introduced in [13] (see Proposition 2 of that paper,

and the discussion afterwards). To certify that this subspace

is genuinely entangled, we can apply the k = 1 case of Corol-

lary 2, which requires us to solve three 108 × 15 linear sys-

tems. Doing so verifies (in about 0.4 seconds) that it is indeed

genuinely entangled.

The above corollary generalizes straightforwardly to any

number of parties by similarly applying the map Φk
1

from

Equation (7) to all 2p−1 − 1 bipartitions of the p parties.

CONCLUSIONS

We have introduced a hierarchy of systems of linear equa-

tions for certifying that a given subspace is entangled. This

hierarchy is complete in the sense that every entangled sub-

space is certified to be so at a finite level that is independent
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of the subspace being checked. Since the hierarchy only de-

pends on solving a linear system, it can be implemented much

more easily, and it runs much quicker, than methods based on

semidefinite programming. The hierarchy works extremely

well in practice, with many entangled subspaces of interest

being detected already at the first or second level, and it gen-

eralizes straightforwardly to higher Schmidt rank and the mul-

tipartite setting.
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APPENDIX: PROOF OF THEOREM 4 AND PROPOSITION 3

We now prove our main result—Theorem 4, which Theo-

rem 2 occurs as a special case of. We require the following

result, which essentially amounts to a translation of Hilbert’s

projective Nullstellensatz.

Theorem 6. Let r be a positive integer and letΨ1
r : H⊗(r+1)

X
→

HY be a linear map that is invariant under all permutations of

the r+1 copies ofHX , i.e.,Ψ1
r P∨

X,r+1
= Ψ1

r . Then the following

statements are equivalent:

1. Ψ1
r (|x〉⊗(r+1)) , 0 for all pure states |x〉 ∈ HX .

2. There exists a positive integer 1 ≤ k ≤ (max{r, 2} +
1)dX − r for which range(P∨

X,r+k
) ∩ ker(Ψk

r) = {0}, where

Ψk
r := (Ψ1

r ⊗ IX,k−1)P∨
X,r+k

.

Proof. For 2 ⇒ 1, if range(P∨
X,r+k

) ∩ ker(Ψk
r ) = {0}, then for

all pure states |x〉 ∈ HX it holds that

0 , Ψk
r (|x〉⊗(r+k)) = Ψ1

r (|x〉⊗(r+1)) ⊗ |x〉⊗(k−1),

so Ψ1
r (|x〉⊗(r+1)) , 0. The converse 1 ⇒ 2 is more difficult,

and is obtained by translating Statement 1 to a statement about

zeroes of homogeneous polynomials, invoking Hilbert’s pro-

jective Nullstellensatz, and then translating back.

In more details, first observe that the coordinates of

Ψ1
r (|x〉⊗(r+1)) as |x〉 ranges over the unit vectors in HX can be

written as homogeneous dX-variate polynomials p1, . . . , pdY

in |x〉 of degree r + 1, so Statement 1 is equivalent to there

being no unit vector |x〉 (or equivalently, by scaling, no non-

zero vector |x〉) for which p1(|x〉) = · · · = pdY
(|x〉) = 0. By

Hilbert’s projective Nullstellensatz and a degree bound due to

Kollár, this is equivalent to the existence of a positive integer

1 ≤ k ≤ (max{r, 2}+1)dX−r for which every degree r+k mono-

mial x j1 · · · x jr+k
can be written as a linear combination of the

polynomials qi1,...,ik−1, j
def

= xi1 · · · xik−1
pℓ, where i1, . . . , ik−1 range

from 1 to dX , and ℓ ranges from 1 to dY [24, 40].

As with Ψ1
r (|x〉⊗(r+1)), the coordinates of Ψk

r (|x〉⊗(r+k)) as

|x〉 ranges over the unit vectors in HX can be written as

homogeneous dX-variate polynomials of degree r + k. Di-

rect calculation shows that these polynomials are precisely

qi1,...,ik−1 , j (the identity map IX,k−1 that appears in the defini-

tion of Ψk
r produces the monomials xi1 · · · xik−1

). Since every

monomial x j1 · · · x jr+k
can be written as a linear combination

of the polynomials qi1,...,ik−1, j, there exists a linear map Ξ :

HY⊗H⊗(k−1)

X
→ H⊗(r+k)

X
for which Ξ◦Ψk

r (|x〉⊗(r+k)) = |x〉⊗(r+k)

for all |x〉 ∈ HX . It follows that

ker(Ψk
r ) ∩ span

{|x〉⊗(r+k) : |x〉 ∈ HX

}
= {0}.

This completes the proof, since span{|x〉⊗(r+k) : |x〉 ∈ HX} =
range(P∨

X,r+k
). �

In the following proof of Theorem 4, we make use of

Theorem 6 in the special case where HX = HA ⊗ HB and

HY = (HA ⊗ HB)⊗(r+1) ⊕ (HA ⊗ HB)⊗(r+1).

Proof of Theorem 4. Let P⊥S be the projection onto the orthog-

onal complement of S. Then S is r-entangled if and only if

there does not exist |x〉 ∈ HA⊗HB for whichΨ1
r (|x〉⊗(r+1)) = 0,

where we define

Ψ1
r : (HA ⊗HB)⊗(r+1) → (HA ⊗HB)⊗(r+1) ⊕ (HA ⊗HB)⊗(r+1)

by

Ψ1
r

def

=

[
Φ1

r

(P⊥S ⊗ IAB,r)P
∨
AB,r+1

]
.

Indeed, by Proposition 1, S is r-entangled if and only if for

every |x〉 ∈ HA ⊗ HB for which P⊥S |x〉 = 0, it holds that

Φ1
r (|x〉⊗(r+1)) , 0, which is easily seen to be equivalent to the

above statement about Ψ1
r .

By Theorem 6, this is in turn equivalent to the existence of

a positive integer 1 ≤ k ≤ (max{r, 2} + 1)dAdB − r for which

range(P∨
AB,r+k

) ∩ ker(Ψk
r ) = {0}, where

Ψk
r

def

= (Ψ1
r ⊗ IAB,k−1)P∨AB,r+k =

[
Φk

r

(P⊥S ⊗ IAB,r+k−1)P∨
AB,r+k

]
.

Now, range(P∨
AB,r+k

) ∩ ker(Ψk
r ) = {0} if and only if

range(P∨
AB,r+k

) ∩ range(PS ⊗ IAB,r+k−1) ∩ ker(Φk
r) = {0}, where

PS denotes the projection onto S. Observe that
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range
(
P∨AB,r+k

) ∩ range
(
PS ⊗ IAB,r+k−1

)
= range

(
P∨AB,r+k

) ∩ range
(
P
⊗(r+k)

S
)

= range
(
P∨AB,r+kP

⊗(r+k)

S
)

= span
{
P∨AB,r+k(|x j1 〉 ⊗ · · · ⊗ |x jr+k

〉) : 1 ≤ j1, . . . , jr+k ≤ dS

}

= span
{
P∨AB,r+k(|x j1 〉 ⊗ · · · ⊗ |x jr+k

〉) : 1 ≤ j1 ≤ · · · ≤ jr+k ≤ dS

}
,

where the first line follows from permutation invariance, the

second follows from the fact that the projections P∨
AB,r+k

and

P
⊗(r+k)

S commute, the third is clear, and the fourth follows from

the fact that

P∨AB,r+k(|x j1 〉 ⊗ · · · ⊗ |x jr+k
〉) = P∨AB,r+k(|x jσ(1)

〉 ⊗ · · · ⊗ |x jσ(r+k)
〉)

for every permutation σ of {1, 2, . . . , r + k} (i.e., permutation

invariance again). By permutation invariance of Φk
r , S is r-

entangled if and only if

span
{|x j1 〉 ⊗ · · · ⊗ |x jr+k

〉 : 1 ≤ j1 ≤ · · · ≤ jr+k ≤ dS

} ∩ ker(Φk
r)

= {0},

i.e., the set in Equation (8) is linearly independent.

For the statement beginning with “Furthermore...," observe

that linear independence of the set in Equation (8) is equiv-

alent to the non-vanishing of some
(
dS +r+k−1

dS−1

)
×

(
dS+r+k−1

dS −1

)
-

minor of the matrix formed by taking the vectors in the set as

columns. Since this determinant is a polynomial in the entries

of |x1〉, . . . , |xdS
〉, and any polynomial that is not identically

zero vanishes on a set of Haar measure zero, this completes

the proof. �

Proof of Proposition 3. A generic subspace S ⊂ HA ⊗ HB of

dimension dS can be chosen by picking dS generic vectors

|x1〉, . . . , |xdS
〉 ∈ HA ⊗ HB for the basis that spans S. Let

G = {P∨
AB,2

(|x j1 〉 ⊗ |x j2 〉) : 1 ≤ j1 ≤ j2 ≤ dS }. We need to

show that with probability 1,

ker(Φ1
1) ∩ span(G) = {0}. (14)

We remark that the above condition is invariant under scaling

of the vectors |x1〉, . . . , |xdS
〉. Hence, we will ignore the unit

vector requirement for |x1〉, . . . , |xdS
〉 (and all the vectors) for

the purposes of this proof.

We now prove (14). In the set G, the indices j1, j2 could

be equal. We will partition the
(
dS +1

2

)
vectors in G into subsets

Geq = {P∨AB,2
(|x j〉 ⊗ |x j〉) : 1 ≤ j ≤ dS } and Gneq = G \Geq has

the terms with unequal indices. To establish (14), it suffices to

prove the following claim.

Claim. With probability 1 over the choice of |x1〉, . . . , |xdS
〉,

we have for all 1 ≤ j1 < j2 ≤ dS , and all 1 ≤ j ≤ dS ,

P∨AB,2(|x j1 〉 ⊗ |x j2 〉) <

span
(

ker(Φ1
1) ∪Gneq \ {P∨AB,2(|x j1 〉 ⊗ |x j2 〉)}

)
,

(15)

and

|x j〉⊗2
< span

(
ker(Φ1

1) ∪Gneq ∪Geq \ {|x j〉⊗2}
)
. (16)

To prove the claim, we first define the following subspaces.

For each i ∈ [dS ], let

Ui ≔ span
{
P∨AB,2(|xi〉 ⊗ |z〉) : |z〉 ∈ HA ⊗HB

}
.

Note that dim(Ui) ≤ dAdB and dim(ker(Φ1
1
)) = (dAdB)2 −(

dA

2

)(
dB

2

)
.

Consider P∨
AB,2

(|x j1 〉⊗|x j2 〉) for some 1 ≤ j1 ≤ j2 ≤ dS , and

let J∗ = { j1} ∪ { j2} representing the distinct indices involved.

We observe that ifU−J∗ ≔
⋃

i∈[dS ]\J∗Ui, then

If j1 < j2, Gneq \ {P∨AB,2(|x j1 〉 ⊗ |x j2 〉)} ⊆ U−J∗ , (17)

else if j1 = j2, Gneq ∪Geq \ {|x j1 〉⊗2} ⊆ U−J∗ . (18)

This is because when j1 < j2, every other vector in Gneq in-

volves at least one vector |x j〉 with j ∈ [dS ]\ J∗. Hence (17) is

true. Similarly when j1 = j2, we have (18) since every other

vector in both Geq and Gneq involves at least one vector |x j〉
with j ∈ [dS ] \ J∗.

The rest of the argument is the same for both (15) and (16).

LetV−J∗ := im(P∨
AB,2

) ∩ ker(Φ1
1
) +U−J∗ . Then

dim(V−J∗) ≤
(
dAdB + 1

2

)
−

(
dA

2

)
·
(
dB

2

)
+ dS (dAdB)

<

(
dAdB + 1

2

)
,

since dS ·(dAdB) <
(
dA

2

)(
dB

2

)
by our assumption on dS . It follows

that V−J∗ ( im(P∨
AB,2

). Hence P∨
AB,2

(|x j1 〉 ⊗ |x j2 〉) < V−J∗

for a generic choice of |x j1 〉, |x j2 〉 (note that V−J∗ does not

depend on |x j1 〉, |x j2 〉). This establishes both (15) and (16),

and completes the proof of Proposition 3. �


