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Surface codes are generally studied based on the assumption that each of the qubits that make up
the surface code lattice suffers noise that is independent and identically distributed (i.i.d.). However,
real benchmarks of the individual relaxation (𝑇1) and dephasing (𝑇2) times of the constituent qubits
of state-of-the-art quantum processors have recently shown that the decoherence effects suffered
by each particular qubit actually vary in intensity. In consequence, in this article we introduce the
independent non-identically distributed (i.ni.d.) noise model, a decoherence model that accounts for
the non-uniform behaviour of the docoherence parameters of qubits. Additionally, we use the i.ni.d
model to study how it affects the performance of a specific family of Quantum Error Correction
(QEC) codes known as planar codes. For this purpose we employ data from four state-of-the-art
superconducting processors: ibmq brooklyn, ibm washington, Zuchongzhi and Rigetti Aspen-M-1.
Our results show that the i.i.d. noise assumption overestimates the performance of surface codes,
which can suffer up to 95% performance decrements in terms of the code pseudo-threshold when
they are subjected to the i.ni.d. noise model. Furthermore, we consider and describe two methods
which enhance the performance of planar codes under i.ni.d. noise. The first method involves
a so-called re-weighting process of the conventional minimum weight perfect matching (MWPM)
decoder, while the second one exploits the relationship that exists between code performance and
qubit arrangement in the surface code lattice. The optimum qubit configuration derived through
the combination of the previous two methods can yield planar code pseudo-threshold values that
are up to 650% higher than for the traditional MWPM decoder under i.ni.d. noise.

I. INTRODUCTION

Quantum computing heralds the arrival of a new era
in computer science where problems that are not within
reach for classical computers will become tractable. The
principal tenet of quantum computing is to design in-
genious algorithms that are capable of exploiting the su-
perposition property of quantum states, which ultimately
allows them to consider large portions of problem solu-
tion spaces concurrently. Generally, quantum computers
are understood as ensembles of qubits, two-level coherent
quantum systems that can be employed to leverage the
quantum mechanical property of superposition. It must
be mentioned, however, that quantum processors can also
be constructed using more complex and higher discrete-
level coherent quantum systems, known as qudits [1, 2],
or even continuous intervals [3, 4]. At the time of writ-
ing, significant efforts and resources are being destined
towards the construction of a large-scale universal fault-
tolerant quantum computer. Nonetheless, even though
substantial progress has been made in the field in recent
years, machines with the capacity to fulfil the complete
promise of quantum computing remain, as of yet, nonex-
istent.

The main cause for this is that currently existing quan-
tum computers are too noisy to run sophisticated quan-
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tum algorithms reliably. The noise of a qubit is generally
defined by its decoherence parameters (relaxation time,
𝑇1, and dephasing time, 𝑇2), which are measures of how
long the qubit can maintain its coherence and, thus, be
employed reliably to perform calculations [5–7]. Unfortu-
nately, present-day qubits lack sufficiently long coherence
times to enable reliable quantum computing. This occurs
because the coherence time of modern qubits is too short
relative to the amount of time that is required to interact
with them. Qubits are manipulated through the action of
quantum gates, whose application consumes much of the
coherence time of qubits, and makes it difficult to per-
form complex and reliable quantum calculations. While
the coherence time of qubits varies depending on how
they are built (qubits constructed with ion traps present
decoherence times in the order of seconds while these
times are in the order of hundreds of microseconds for su-
perconducting qubits), so do their gate operation times
(superconducting quantum gates are much faster than
ion trap quantum gates). For this reason, regardless of
which technology is used to implement them, currently
existing qubits will suffer from similar noise processes.
Quantum states experience coherence losses as a re-

sult of the unwanted interactions that qubits have with
their environment. These interactions arise through myr-
iads of physical mechanisms, many of them unavoidable,
and they are all grouped under the same term: deco-
herence. In fact, other sources of errors in quantum
computers, such as faulty gates or inaccurate measure-
ments, can also fall under the umbrella of decoherence.
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Thus, within the abstraction that decoherence provides
to represent quantum noise, the technological odyssey
of building a reliable quantum computer can be sim-
ply summarized as the search for strategies to effectively
fight the effects of decoherence. It is in answer to this
challenge that the discipline of QEC arose, to study the
phenomenon of decoherence and to design strategies to
protect qubits from quantum noise. Similar to what is
done in the classical computing framework, QEC strate-
gies, known as QEC codes (QECCs), employ additional
qubits to protect quantum information from the impact
of decoherence-related effects. In fact, thanks to certain
similarities between the classical and quantum comput-
ing paradigms, QECCs can be built from existing clas-
sical codes. This is achieved by casting existing groups
of classical codes into the QEC framework by means of
the well-known stabilizer formalism [9]. In consequence,
many classical-inspired QEC code families like Quantum
Low Density Parity Check (QLDPC) codes [10–13] or
Quantum Turbo Codes (QTC) [14–17], among many oth-
ers, are already being studied.

However, because many of these code families re-
quire large numbers of fully connected qubits to success-
fully battle quantum noise, practical QEC solutions for
present day quantum computers are generally based on
surface codes, a different type of stabilizer code that is
not based on previously existing classical codes [18, 19].
Surface codes are constructed by encoding logical quan-
tum states (those qubits that contain the information
that will be processed) into two-dimensional lattices of
physical qubits. Particular qubits in the lattice act as
measurement qubits that can be used to extract quantum
syndromes, binary vectors that enable error diagnosis of
qubits while avoiding direct measurement of quantum
states, effectively allowing us to perform the appropriate
recovery operations without destroying the superposition
state of the logical qubits.

Research within the field of QEC, including the surface
code niche, typically assumes that the qubits that make
up error correction codes will suffer decoherence-related
errors that can all be described by the same probabil-
ity distribution, i.e, that in each error correction round
every qubit experiences noise defined by an independent
identically distributed process (i.i.d.) [10–19]. However,
recent results have shown that the relaxation and de-
phasing times of qubits in real quantum hardware are
actually significantly different [20–24], with drastic vari-
ation in the decoherence parameter values of particular
qubits. Given that the decoherence-induced noise experi-
enced by superconducting qubits is characterized by their
corresponding 𝑇1 and 𝑇2 times [6, 7], the data from real
quantum processors suggests that studying surface codes
under the i.i.d. qubit noise assumption does not provide
the most accurate portrayal of their performance. For
this reason, in this article we introduce the independent
non-identically distributed (i.ni.d) qubit-noise model as
a way to capture and reflect the differences in the de-
coherence parameters of real qubits. Additionally, we

use the aforementioned model to study how the perfor-
mance of surface codes changes over the proposed i.ni.d
model. The primary difference between the i.ni.d do-
coherence model and the conventional i.i.d. assumption
is that the former model considers that each particular
qubit of the surface code lattice has its own decoherence
defining parameters (𝑇1 and 𝑇2) and will experience dif-
ferent noise levels, whereas the latter model (the i.i.d.
model) assumes that all qubits are defined by the same
decoherence parameters and hence every physical qubit
is subjected to the same noise level.
Recently, several works have discussed the experimen-

tal performance of surface codes and the way that real-
istic noise can be modelled. For example, in [25] the
performance of belief-matching [26] for an experimen-
tally implemented rotated planar code has been stud-
ied. In such work, the authors consider a hardware spe-
cific noise model and decode the planar code by standard
belief-matching and tensor network decoders. Moreover,
a noise model considering non-uniform gate errors is dis-
cussed for the heavy hexagon code and the decoder is
adapted for such scenario in [27]. These, however, do not
explicitly consider the i.ni.d. model proposed in this pa-
per. Note that even if [25] considers individual 𝑇1 and 𝑇2
for the noise model, the decoding does not directly tackle
this issue and observing the fact that their values are
pretty uniform, the performance will not be considerably
compromised. To provide a realistic view of the impact
that the more accurate i.ni.d. model can have on the
performance of surface codes, we have used the values of
the relaxation and dephasing times of modern quantum
processors (ibm washington [21], ibmq brooklyn [22], Zu-
chongzhi [23] and Aspen-M-1 [24]) in order to simulate
noise in a planar surface code. Our results show that
the i.i.d. qubit-noise assumption provides an overly opti-
mistic portrayal of the performance of surface codes when
they operate on real hardware. Fortunately, we also show
that methods that remarkably enhance performance (at
some points surpassing that which would be expected
based on i.i.d results) exist.

II. PRELIMINARIES

A. Planar Codes

Surface codes are a family of quantum error correction
codes quantum error-correcting codes whose constituent
qubits are laid out on a two-dimensional lattice. The
qubits within the code interact locally, i.e., only with
their nearest neighbours. Depending on the geometry of
the lattice, different types of surface codes can be con-
structed. For our work we consider planar codes arranged
over the fundamental lattice in surface code research, the
square lattice. In this particular configuration, the pla-
nar code qubits are arranged on the center, edges and
vertices of a square lattice. Depending on the geometry
of the lattice, different types of surface codes can be con-
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structed. For our work we consider surface codes where
qubits are arranged over a square lattice [19, 28]. Sur-
face codes whose fundamental lattice is the square are
named planar codes. Specifically, we will consider the
square planar codes, in which qubits are arranged on the
center, edges and vertices of the square lattice and has
the same amount of edges and vertices, thus, forming an
square shaped qubit distribution. With an slight abuse
of notation we will refer to those planar codes through
the text1.

There are two different types of qubits within the
square lattice that defines a planar code: the data qubits,
which are located on the edges of the lattice and en-
code the quantum state of the code, and the measure-
ment qubits, which are continuously initialized and mea-
sured in order to obtain information regarding errors that
may have arisen. Measurement qubits interact locally
with their nearest data qubit neighbours and will act
differently depending on where they are located. Based
on how they act on their neighbouring data qubits, we
can also classify measurement qubits into two separate
groups. On one hand we have vertex qubits or “measure-
X” qubits, which force their surrounding data qubits into
an eigenstate of the operator product X1X2X3X4, where
X𝑖 is the Pauli X operator for a specific qubit 𝑖 and 1,
2, 3 and 4 are the nearest neighbour data qubits of the
considered measurement qubit. On the other hand, we
also have plaquette qubits or “measure-Z” qubits, which
force the surrounding data qubits into an eigenstate of
the operator product Z1Z2Z3Z4, where Z is the Pauli Z
operator. These concepts are reflected in FIG. 1, which
portrays a graphical representation of a 7×7 planar code.
Notice that the boundaries are not equal, i.e, the top
and bottom lattice boundaries apply vertex measurement
qubits while the right and left lattice boundaries apply
plaquette measurement qubits.

The code is initialized by collapsing all measurement
qubits so that the data qubits are forced into an eigen-
state of all their operator products. The resulting state
is known as the quiescent state [28]. Once the quies-
cent state has been obtained, subsequent measurements
of measurement qubit states will remain unchanged since
the data qubits are in an eigenstate of their operator
products [28]. For this reason, any change in the mea-
surement of any measure-X or measure-Z qubit will im-
ply that the code is no longer in the quiescent state it
was initialized in. Moreover, since the qubits interact lo-
cally with their nearest neighbours, this means that one
or three of its adjacent data qubits have experienced a
Pauli error. Measure-X qubits will be susceptible to Z
and Y errors, while measure-Z qubits will be susceptible
to X and Y errors, as shown in eq. 1:

1 Note that codes with rectangular qubit distributions are also
planar codes, which are mostly used for correcting biased noise
[28]. Those codes are not considered in this work.
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FIG. 1: Graphical representation of a 7 × 7 planar
code. The data qubits, the measure-X qubits and the
measure-Z qubits are depicted by white, yellow, and
green dots, respectively. Data qubits that suffer X, Z
and XZ operators are portrayed by light green, light
yellow and lighter green dots. The action of various

stabilizer elements is highlighted using different colour
patterns: a action of a measure-Z qubit. b action of a

measure-X qubit. c combination of two adjacent
plaquette-plaquette stabilizers. d combination of two

adjacent vertex-vertex stabilizers. e combination of two
adjacent vertex-plaquette stabilizers. f Z𝐿 operator. g

X𝐿 operator.

X𝑎X𝑏X𝑐X𝑑Z𝑎 |𝜓〉 = −Z𝑎X𝑎X𝑏X𝑐X𝑑 |𝜓〉 ,
Z𝑎Z𝑏Z𝑐Z𝑑X𝑎 |𝜓〉 = −X𝑎Z𝑎Z𝑏Z𝑐Z𝑑 |𝜓〉 ,

X𝑎X𝑏X𝑐X𝑑Y𝑎 |𝜓〉 = X𝑎X𝑏X𝑐X𝑑𝑖X𝑎Z𝑎 |𝜓〉
= −𝑖X𝑎Z𝑎X𝑎X𝑏X𝑐X𝑑 |𝜓〉
= −Y𝑎X𝑎X𝑏X𝑐X𝑑 |𝜓〉 ,

(1)

where 𝑎, 𝑏, 𝑐, 𝑑 refer to the four surrounding measure-
ment qubits, and X,Y,Z are the non-identity Pauli ma-
trices.The fact that measure-𝑋 qubits detect 𝑍 errors and
measure-𝑍 qubits detect 𝑋 errors is the reason why they
are often referred to as 𝑍-cheks and 𝑋-checks, respec-
tively. As a result, collapsing the measurement qubits
serves to extract the syndrome associated to the error
that has taken place at any given instance.
Planar codes like the one depicted in FIG. 1 encode

one logical qubit. Logical operators modify the logical
state of the surface code in a non-trivial manner while
remaining within the codespace (the resulting state com-
mutes with all the stabilizers). We label the Pauli logical
operators of the code as X𝐿, Y𝐿 and Z𝐿. The logical op-
erators X𝐿 and Z𝐿 can be applied by manipulating the
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degrees of freedom of the surface code. This is shown
in FIG. 1. Consider the set of Z operators that traverse
the entire planar code lattice horizontally (green line in
the figure). These operators commute with all the stabi-
lizer generators of the code, hence they end up forming
a Z𝐿 operator. Similarly, a series of adjacent X opera-
tors that cross the surface code lattice vertically end up
forming a X𝐿 operator. We refer to adjacent Z operators
that traverse the edges of the lattice as chains while adja-
cent X operators within the centre of lattice squares are
known as co-chains. When the combination of logical op-
erators X𝐿Y𝐿 is applied, X and Z operators coincide on
the same qubit. We construct Y𝐿 operators as the prod-
uct of the aforementioned X𝐿 and Z𝐿 logical operators:
Y𝐿 = Z𝐿X𝐿. Also, X2

𝐿
= Y2

𝐿
= Z2

𝐿
= I, since the square

of any of these logical operators can be written in terms
of the stabilizer generators and so they will not modify
the state of the code. Whenever the noise introduced
by an 𝑛-qubit Pauli channel results in the formation of
chains or co-chains and the creation of a logical oper-
ator, a logical error will take place. This modifies the
state of the logical qubit in a non-trivial manner but re-
sults in a trivial quantum syndrome when collapsing the
measurement qubits (recall that logical operators pre-
serve the codespace). More specifically, the combination
of the operator induced by the quantum noise and the
recovery operator can form logical bit-flip errors (X𝐿),
logical phase-flip errors (Z𝐿) and logical bit-and-phase-
flip errors (Y𝐿). Decoding failures in which wrong error
estimates that still result in a non-trivial syndrome are
also considered to be logical errors. All in all, logical er-
rors act harmfully on our encoded quantum states and
make it difficult to maintain the logical qubit in the de-
sired original quantum state. Avoiding and minimizing
the likelihood of chain and co-chain formation is critical
for the planar code to successfully correct errors.

B. Probability pseudo-threshold

The quantum code probability threshold indicates the
maximum physical error probability at which increas-
ing the distance (the distance of a planar code scales in
terms of the square root of the number of qubits 𝑛, i.e,
𝑑 (𝑂 (

√
𝑛))) of the code lowers the logical error probability

[5]. Thus, if the physical error probability is below this
threshold, 𝑝 < 𝑝𝑡ℎ, adding qubits to the error correction
code will result in better code performance. Determining
the code threshold is one of the primary ways to bench-
mark the performance of surface codes in the literature
when i.i.d. noise is considered [28]. However, as can be
seen in FIG.2, when the differences in the 𝑇1 and 𝑇2 val-
ues of physical qubits that make up quantum systems
are accounted for, there is no longer a threshold physi-
cal probability value at which the performance of surface
codes with different distances crosses. While in the top
subfigure of FIG.2 all the distance curves converge onto
the same point, we can see in the bottom subfigure that

this convergence region has spread out 2.
To circumvent this issue and maintain our ability

to benchmark the quality of planar codes over the
i.ni.d channel, we apply the so-called probability pseudo-
threshold [30, 31]. The code pseudo-threshold is the
physical error probability at which the logical error rate
meets the physical error probability, 𝑃𝐿 (𝑝𝑝𝑡ℎ) = 𝑝𝑝𝑡ℎ.
More specifically, it is the physical error rate at which
a code of distance 𝑑 performs as well (or as poorly) as
an uncoded system. This physical error probability value
can be thought of as the point beyond which building the
error correction code will defy its own purpose, as the
code will fail more frequently than the system it seeks to
correct. The 𝑝𝑝𝑡ℎ of FIG.2 can be seen in the intersec-
tions of each distance curve with the green line.

C. MWPM Decoder

In surface codes, decoding a syndrome is equivalent
to finding paths between the stabilizer generators whose
syndrome elements have been triggered. We employ the
Minimum Weight Perfect Matching (MWPM) decoder to
estimate the errors that have taken place based on the
measured syndrome [28, 38, 39]. Multiple paths are as-
sociated to a given syndrome and the task of the decoder
is to produce an estimate of the path that associated to
the error that has the highest probability of taking place.
The MWPM decoder finds a solution to this problem by
searching for the minimum-weight path within the lat-
tice. In graph theory, the MWPM problem is described
as that of finding a matching (a set of edges without
common vertices) whose weight sum (the sum of edge
weights) is minimized. The term perfect refers to the
fact that the matching matches all vertices of the graph
[38]. The lattice of a surface code that has suffered an
error can be converted to a complete graph, where the
generators with non-trivial syndrome components are the
nodes [39]. The edges between the vertices have a weight
equal to the minimum number of qubits between them.
In this manner, by deriving a graph associated to the
code lattice, solving the MWPM problem by finding the
path of minimum weight over this graph serves to pro-
duce an estimate of the most likely error that the code
has suffered [38].
The MWPM algorithm is an effective method for low

physical error probabilities, but numerical methods have
shown that at a given threshold of around 𝑝∗ = 10.3% its
performance drops severely. This occurs because at such
noise levels, the error operator with the highest proba-
bility (the decoder estimate) does not usually belong to
the error equivalence class with the highest probability
[37]. This is conventionally known as the degeneracy of
quantum error correction codes quantum error-correcting
codes [40].

2 Notice that different distance curves cross at different 𝑝 values.
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represents the performance of the uncoded system, i.e.
𝑃𝐿 (𝑝𝑝𝑡ℎ) = 𝑝𝑝𝑡ℎ. Note that the x-axis represents the
probability that a Pauli error occurs 𝑝 = 𝑝X + 𝑝Y + 𝑝Z
and represents the value of 𝑝 obtained for the mean
values of 𝑇1 and 𝑇2 (for the i.ni.d. channel, since each
value of 𝑝 is different for each qubit, we use the overall

mean for the plot).

III. THE INDEPENDENT NON-IDENTICALLY
DISTRIBUTED DECOHERENCE MODEL

The decoherence induced errors in superconducting
qubits arise mainly from the combination of energy relax-
ation and pure dephasing processes. The so-called com-
bined amplitude and phase damping channel, NAPD, pro-
vides a fairly complete mathematical abstraction of the
aforementioned processes that corrupt quantum informa-
tion [6, 7]. Simulating the combined amplitude and phase
damping channel requires an exponential amount of re-
sources, and so it is impractical to track the effects of this
channel through classical means. However, by invoking
the well-known twirling technique, we can obtain a more
symmetric version of the amplitude and phase damping
channel that preserves the noise dynamics of the origi-
nal quantum channel and that can also be simulated on
a classical machine [6]. Additionally, it has been shown
that correctable codes constructed for this twirled ver-

sion of the channel will also be correctable codes for the
original channel (up to unitary correction) [29]. Thus,
it is a common convention in the field of QEC for quan-
tum coding theorists to work with the twirled approxi-
mated channels in order to design and simulate QECCs.
In particular, in this work we consider the Pauli twirled
approximation (PTA) of the NAPD channel, denoted by
NAPDPTA, as our primary decoherence model. This
twirled approximation is obtained by averaging the orig-
inal channel over the set of unitaries defined by the Pauli
group, which results in a Pauli channel, NAPDPTA(𝜌) =
(1 − 𝑝X − 𝑝Y − 𝑝Z)𝜌 + 𝑝XX𝜌X + 𝑝YY𝜌Y + 𝑝ZZ𝜌Z, with
the following probabilities [6]

𝑝I = 1 − 𝑝X − 𝑝Y − 𝑝Z,

𝑝X = 𝑝Y =
1

4
(1 − e−

𝑡
𝑇1 ) and

𝑝Z =
1

4
(1 + e−

𝑡
𝑇1 − 2e−

𝑡
𝑇2 ),

(2)

where I,X,Y,Z are the identity, bit-flip, bit-and-phase-
flip and phase-flip Pauli matrices, respectively. Notice
how the probabilities that the Pauli operators have of
taking place are directly related to the relaxation time,
𝑇1, and the dephasing time, 𝑇2.

The literature on quantum error correction usually
considers that each of the qubits of the system is sub-
jected to a noise operation which is independent and
identically distributed [10–19]. This implies that each
particular qubit will have the same probability of suf-
fering a particular Pauli operator within a given error
correction block. We refer to this model as i.i.d. noise.
Against this backdrop, assuming that we have an 𝑛-qubit
system, the i.i.d. channel that arises can be described as

N (𝑛)
APDPTA(𝜌) = N ⊗𝑛

APDPTA(𝜌, `𝑇1 , `𝑇2 )

=
∑︁

A∈{I,X,Y,Z}⊗𝑛
𝑝A (`𝑇1 , `𝑇2 )A𝜌A, (3)

where A = A1 ⊗ · · · ⊗ A𝑛−1 ⊗ A𝑛 with A 𝑗 ∈ {I,X,Y,Z}
denotes each of the possible 𝑛-fold Pauli error operators,
with probability distribution 𝑝A (`𝑇1 , `𝑇2 )

𝑝A (`𝑇1 , `𝑇2 ) =
𝑛∏
𝑗=1

𝑝A 𝑗
(`𝑇1 , `𝑇2 ), (4)

with 𝑝A 𝑗
(`𝑇1 , `𝑇2 ) described by equation (2), and where

`𝑇1 and `𝑇2 represent the mean values of the relaxation
and dephasing times averaged across 𝑛 qubits.
However, real 𝑇1 and 𝑇2 measurements for various mod-

ern superconducting processors disprove the assumption
that all the qubits of a superconducting processor are
subjected to the same level of noise [20–24]. The actual
values of these parameters vary substantially from qubit
to qubit (these differences can sometimes reach an order
of magnitude), which, naturally, cannot be reflected by
the noise model of (3) (See Supplementary Note 1 for
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more details). For this reason, we must come up with a
noise model that can account for such qubit behavioural
differences. Therefore, we will consider that the errors
experienced by each of the qubits of quantum systems
are governed by probability distributions that are inde-
pendent, and non-identically (i.ni.d.) distributed. This
means that the values of 𝑝X, 𝑝Y, 𝑝Z for each of the qubits
within the system will be different. Thus, we will refer to
this model as i.ni.d noise. Following this rationale, these
i.ni.d. 𝑛-qubit channels will have the following structure

N (𝑛)
APDPTA(𝜌) =

𝑛⊗
𝑖=1

NAPDPTA(𝜌, `𝑇 𝑗
1
, `

𝑇
𝑗

2
)

=
∑︁

A∈{I,X,Y,Z}⊗𝑛
𝑝A ({𝑇 𝑗

1 }
𝑛
𝑗=1, {𝑇

𝑗

2 }
𝑛
𝑗=1)A𝜌A,

(5)

where A = A1 ⊗ · · · ⊗ A𝑛−1 ⊗ A𝑛 with A 𝑗 ∈ {I,X,Y,Z}
denotes each of the possible 𝑛-fold Pauli error operators

with probability distribution 𝑝A ({𝑇 𝑗

1 }𝑛𝑖=1, {𝑇
𝑗

2 }𝑛𝑗=1)

𝑝A ({𝑇 𝑗

1 }
𝑛
𝑗=1, {𝑇

𝑗

2 }
𝑛
𝑗=1) =

𝑛∏
𝑗=1

𝑝A 𝑗
(𝑇 𝑗

1 , 𝑇
𝑗

2 ), (6)

with 𝑝A 𝑗
(𝑇 𝑗

1 , 𝑇
𝑗

2 ) described by equation (2).
Finally, it is important to state that there are other

sources of errors that do not stem from environmental
qubit interactions that may also be taken into account
to study surface codes. These errors are caused by faulty
implementations of gates (gate errors) and measurements
that are inaccurate (measurement errors) [28]. Consider-
ing these additional sources of corruption is important to
construct surface codes that are effective, but it is out-
side the scope of this work. Herein, we limit our analysis
to studying the impact that including the differences in
qubit 𝑇1 and 𝑇2 values can have on the performance of
error correction codes.

IV. THE REWEIGHTED MWPM

Conventional Minimum Weight Perfect Matching de-
coding suffers harsh performance degradation when it is
applied to decode a surface code exposed to i.ni.d. noise
(this is shown further on in the Results section). Pri-
marily, this loss stems from the fact that the qubits of
the code are no longer identical, which means that some
will perform better than others. The standard MWPM
decoder considers that the minimum weight set of chains
matching the measurement qubits with 1-syndrome con-
tribution are the most probable, where all the edges are
of the same weight. Unfortunately, this no longer holds
when the physical qubits of the code exhibit different
error parameters. Nonetheless, it is possible to substan-
tially minimize the degradation suffered by MWPM de-
coders over the i.ni.d channel by applying a set of modi-
fications to the decoding algorithm.

Once a surface code experiences an error, a syndrome
can be extracted by measuring the measurement qubits.
Since the planar code is a CSS code, the syndrome re-
sult is mapped onto two subgraphs, a Check-X subgraph,
susceptible to physical X and Y errors, and a Check-Z
subgraph, susceptible to Z and Y errors. In both sub-
graphs, the respective measurement qubits act as nodes
while their adjacent data qubits act as the edges that
connect each measurement qubit to its four nearby mea-
surement qubits. The MWPM decoder applied for i.i.d
channels resolves the graph problem by considering all
the weights of the subsequent graph to be equal, which
results in “close” measurement qubits (syndromes) being
connected via lower weight paths. However, the equal
weight assumption is inappropriate when facing i.ni.d
noise. Over this more restrictive channel, because each
qubit suffers different levels of noise, the weights of the
edges must be re-weighted according to the error param-
eters of the particular data qubits they represent. We
refer to this modified decoding approach as re-weighted
MWPM decoding. The weights we use in re-weighted
MWPM (rMWPM) decoding are different for each sub-
graph, as each subgraph relates to a different error re-
covery:

𝑤𝑖,𝑋 = − log(1 − 𝑒−𝑡/𝑇1,𝑖 ) ∝ − log(𝑝𝑥,𝑖 + 𝑝𝑦,𝑖),
𝑤𝑖,𝑍 = − log(1 − 𝑒−𝑡/𝑇2,𝑖 ) ∝ − log(𝑝𝑧,𝑖 + 𝑝𝑦,𝑖),

(7)

where 𝑇1,𝑖 and 𝑇2,𝑖 are the relaxation and dephasing
parameters specific to the data qubit of the edge 𝑖, 𝑡

indicates the time that has passed since the code was
initialized, and 𝑝𝑖 indicates the probability of a qubit
to experience an error of type 𝑖. This weight consider-
ation significantly increases the complexity of the graph
problem, since the distance between two syndromes can
no longer be determined through the taxicab metric [37].
Instead, we use Dijkstra’s algorithm [41] to determine
the weight of the minimum-weight paths between syn-
drome 1-measurement qubits. Dijkstra’s algorithm finds
the shortest path between nodes in a graph and has a
maximum complexity of 𝑂 (𝑁 log(𝑁) + 𝑀), where 𝑁 is
the number of nodes within the graph and 𝑀 represents
the number of edges. Based on our weight convention,
the weight of a chain or co-chain between two syndromes
𝑖 and 𝑗 in a subgraph 𝑘 will be given by:

𝑗∑︁
𝑘=𝑖

− log(𝑝𝑘,𝑙) = − log(
𝑗∏

𝑘=𝑖

𝑝𝑘,𝑙), (8)

where 𝑝𝑘,𝑙 is the probability of errors susceptible to
the syndromes of the 𝑘 subgraph for a qubit 𝑙. Higher
failing probabilities 𝑝𝑘 will imply a lower weight and
thus, longer chains and co chains with worse performing
qubits will weigh less than shorter ones with better data
qubits. This redistribution of weights alters the Mini-
mum Weight Perfect Matching result and enhances the



7

performance of the code. In FIG. 3 we can see an ex-
ample of how the rMWPM decoding process unfolds of
the corresponding graphs. Subfigure 1 shows the error
experienced by a 5× 5 planar code along with the result-
ing 1-measurement qubits (indicated with exclamation
marks). Subfigures 2 and 3 represent the check-X and
check-Z measurement qubit subgraphs, respectively. No-
tice that the data qubits lay over the edges of the graph.
Data qubits with high probability of failing in each sub-
graph are depicted as pink circles, while those qubits with
longer relaxation times are depicted in blue. Subfigure
4 portrays the overall graph comprised by the two inde-
pendent check-X and check-Z subgraphs. Using different
weight conventions results in different decoding outputs.
This can be seen by comparing subfigures 5 and 6, which
represents the result of applying a conventional MWPM
decoder and that of using the rMWPM decoder, respec-
tively. Consequently, the recovery operators proposed
by each of these decoders will also different (pictures 7
and 8). The MWPM decoder has prioritized the lowest
Hamming weight error while the rMWPM has accounted
for the individual noise parameters of each data qubit in
order to select the best-possible recovery operator.

Later on in the Results section we will see how the
rMWPM decoding rule significantly improves the perfor-
mance of generic MWPM decoding when facing i.ni.d. er-
rors. Nonetheless, it must be mentioned that it does so at
the expense of a higher decoding complexity. Reweighted
MWPM decoding has a complexity of 𝑂 (𝑛3 log(𝑛)) while
the conventional MWPM decoder has a complexity of
𝑂 (𝑛2 log(𝑛)) [37], where 𝑛 represents the number of data
qubits within the square planar code. The source of this
increase in complexity comes from the introduction of
Dijkstra’s algorithm, which has 𝑂 (𝑛 log(𝑛)) complexity
(conventional MWPM decoding uses the taxicab distance
which has complexity 𝑂 (1)).

V. THE ARCHITECTURE OPTIMIZATION
METHOD

In this subsection we describe the guidelines that make
up another strategy that can be employed to improve the
performance of planar codes when they are subjected to
i.ni.d. noise. It involves re-arranging the planar code
lattice qubits according to the noise they suffer. To start,
consider the fact that some qubits of the lattice are less
likely to experience errors than others. Naturally, this
occurs because some qubits have longer relaxation and
dephasing times than others. Against this backdrop, we
can place the qubits on the lattice in a way in which
better qubits (less likely to fail) are positioned in the most
important sites, effectively minimizing the probability of
harmful events (chains and co-chains).
The overall planar code lattice that encodes a logical

qubit can be be split into two separate sublattices. Both
of these sublattices are shown in FIG. 4. The sublattice
composed by qubits placed along the horizontal edges
of the overall lattice does not have measurement qubits
on their edges. Consequently, a horizontal 𝑍𝑖 chain and
a vertical 𝑋𝑖 co-chain will commute with all the stabi-
lizer generators and, thus, will be in the code. On the
other hand, the vertical edge sublattice has 4 adjacent
measurement qubits for all data qubits, hence, any chain
or co-chain will be detected by the measurement qubits
located at its endpoints.
In order to accurately re-order the qubits that make

up a planar code in a way that improves performance,
it is important that we come up with a way to differen-
tiate good qubits from bad qubits. However, accurately
classifying qubits according to their “quality” is not a
simple task. Since the physical error probability that
each qubit experiences varies as a function of its relax-

ation and dephasing times {𝑇 𝑗

1 }𝑛𝑗=1, {𝑇
𝑗

2 }𝑛𝑗=1, defining a

metric that determines how good a specific qubit is with
regard to the rest of the ensemble is relatively nuanced.
For this reason, in our algorithm we employ the lowest
relaxation time as our noise “quality” indicator, i.e, a
larger relaxation time implies a better performing qubit.
Note that dephasing is intricately related to relaxation:
1/𝑇2 = 1/2𝑇1 +1/𝑇𝜙, where 𝑇𝜙 is the pure dephasing time
[7].
The minimum weight of a logical operator in an 𝑁 ×𝑁

planar code is 𝑁. For the example in FIG. 4, logical oper-
ators will have a minimum weight of 5. For a logical error
caused by a chain to take place, a minimum of 𝑁 hori-
zontal edge qubits must experience an error. If we place
the best qubits in the horizontal edge sublattice (blue in
FIG. 4), we will make logical error chains and co-chains
more unlikely, which should ultimately lead to better
code performance. Moreover, placing the worst qubits
within the vertical edge sublattice (orange in FIG. 4)
guarantees that, at least, half of the nearest data qubits
will be good ones. Based on these ideas, the algorithm
we have designed to optimize the architecture of planar
codes operates based on the following two principles:
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FIG. 3: Example of a MWPM and rMWPM performance towards an error in a 5x5 planar code. In 1, the proposed
error composed by data qubits (white circles), data qubits experiencing non-trivial error operators (red circles),

measure-z qubits and measure-x qubits (green and yellow circles). 1-syndrome measurement qubits are labeled with
an exclamation mark. 2 and 3 represent the two CSS subgraphs, where pink and blue denote the qubits with lower
and higher relaxation parameters respectively. 4 shows the overall graph. 5 and 6 show the minimum weight perfect

matching of the graphs considering taxicab distance and reweighted distance and 7 and 8 show the recovery
operators proposed by the MWPM and rMWPM decoders.

• Surround good qubits with bad qubits and
vice versa. This is done to prevent the propaga-
tion of errors through the code and the formation
of chains and co-chains.

• Separate differently performing qubits in
both sublattices. While the best qubits are in
the 𝑑2 (blue in FIG. 4) sublattice, the worst ones
will be in the (𝑑 − 1)2 (orange in FIG. 4) lattice.
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FIG. 4: 5x5 planar code codifying the information of a
logical qubit. The data qubits of both sublattices are
highlighted with identifiable blue and orange qubits. A
Z-chain of weight 4 in the orange lattice is detected by
two measuring qubits highlighted in yellow with an
exclamation mark. Moreover, a Z chain in the blue
sublattice commutes with all the measuring qubits.

We do this to make it unlikely for shortest weight
(weight 𝑑) logical errors to occur. As shown in FIG.
4, a chain or co-chain in the orange sublattice does
not commute with the stabilizer set and, thus, plac-
ing the worst qubits within it ensures that they will
not contribute towards decoding failures.

As will be shown in the next section, applying these
two guidelines to re-design planar codes ends up improv-
ing their performance. In particular, we have concen-
trated the worst and best performing qubits in the bulk
(the centre) of the code, while the most average ones have
been spread out along the outer walls of the lattice. Ad-
ditionally, the (𝑑 − 1)2 worst qubits have been placed in
the orange sublattice, preventing them from contribut-
ing to the formation of minimum weight logical errors.
In this manner, our method minimizes the probability of
chain and co-chain formation and makes it likelier for the
MWPM algorithm to be successful. Furthermore, we will
also see in the Results section that the performance of the
rMWPM decoder is also improved when optimizing the
architecture of the code.

VI. RESULTS

A. Planar code numerical simulation

To estimate the performance of the various 𝑑 × 𝑑 pla-
nar codes with 𝑑 ∈ {3, 5, 7} [28] that we have considered
in this paper we have carried out Monte Carlo numerical

simulations. We have constructed the planar codes using
a customized version of the QECSIM tool [18] that we
have modified so that it can work with the i.ni.d. de-
coherence model. Each round of a numerical simulation
is performed by generating an 𝑁-qubit Pauli operator,
calculating its associated syndrome, and finally running
the 1-cycle decoding algorithm using this syndrome as
its input. Once the decoder produces an estimation of
the channel error, the syndrome is extracted again. For
the sake of simplicity and restrict our view to the ef-
fects of i.ni.d. noise, we will not consider measurement
errors. Following this second syndrome extraction, we
check that the code state commutes with the X and Z
logical operators. If the second syndrome is non trivial
or if the quantum state of the code no longer commutes
with the logical operator, we will consider the code to
have undergone a logical error. The logical error proba-
bility is obtained by computing many realizations of the
aforementioned procedure. The specific properties of the
constituent data qubits can be found in chapters 1 and 2
of the Supplementary material.
To estimate the logical error rate, 𝑃𝐿, of the planar

codes, we choose 𝑁blocks = 104 Pauli error realizations for
each considered value of the physical error probability 𝑝.
In this way, we can guarantee that the estimated values
of the logical error probability are accurate because we
fulfill the Monte Carlo rule of thumb [42]

𝑁blocks =
100

P𝐿

. (9)

This rule tells us that, under the assumption that the
observed error events are independent, the estimated
value, P̂𝐿, lies in the 95% confidence interval of about
(0.8P̂𝐿 , 1.25P̂𝐿).
Finally, we estimate the average performance of the

planar codes for the particular relaxation and dephasing
rates of each system by performing Monte Carlo simula-
tions in the order of 103 randomized qubit arrangements
defined over the particular planar code lattices.

B. Independent non identical distribution model
performance

Our simulation results are depicted in FIG. 5. The
consideration of i.ni.d. noise harshly decreases the prob-
ability pseudo threshold of all the codes; a detriment that
ranges from 40% to 95% of the original i.i.d. noise sce-
nario. Such a significant loss in performance is a direct
consequence of assuming that drastically different qubits
behave equally. This degradation may also have been
exacerbated because we have considered the qubits with
the highest and lowest relaxation parameters. Thus, the
codes of lower distance have higher coefficients of varia-
tion. The average 𝑇2 is much smaller and its coefficients
of variation much higher than 𝑇1, thus, the codes perfor-
mance is restricted by the dephasing times of its qubits.
Codes with relaxation parameters with low coefficients
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FIG. 5: Code pseudo-thresholds obtained for the qubit data of four quantum processors in different
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Rigetti. The blue dots represent the results under i.i.d., the yellow reflect the performance of the code under i.ni.d.
using the conventional MWPM decoder. The green dots represent the performance of the code under the rMWPM

decoder and the red dots represent the performance of the conventional MWPM decoder but with the code
undergoing the architecture optimizing method. Lastly, the purple lines indicate the performance of the code under
both architecture optimizing and the rMWPM decoder. The bars correspond to the standard deviation of all the

considered configurations of the specific code.

of variation will suffer less from i.ni.d. noise, since the
individual relaxation times of the qubits will tend to be
closer to the average.

C. Performance of the rMWPM

FIG. 5 shows how the rMWPM decoder outperforms
the conventional MWPM decoder when i.ni.d. noise is
considered. For distance 3 planar codes, its standard
deviation overlaps with the MWPM stabdard deviation
in all of the scenarios we have tested. This is a result
of the high probability that “bad” qubits have of being
placed in pivotal positions at such low distances, which
contributes to the formation of distance-3 chains and
co-chains operating non-trivially over the encoded state.
Regardless, for distance 3 codes, the average performance
of the rMWPM decoder exceeds that of the MWPM de-
coder by up to 104%. At distances 5 and on, the standard
deviations of the rMWPM and MWPM decoder perfor-
mance curves no longer overlap, but the improvement
is not so significant (it ranges from 27% to 79%). This
can be understood more so as a scenario change rather
than a decrease in the boost provided by the rWMPM
decoder. As more qubits are used to build codes with
larger distances, there will be a lower coefficient of varia-
tion between qubits (more average qubits are introduced
into the lattice). Consequently, the i.ni.d. effect is not as
significant as in the distance 3 scenario.

D. Performance of the architecture optimization
method

Similar to the rMWPM decoder in the previous sub-
section, the architecture optimization method also sur-
passes the performance of random data qubit layouts in
all of our simulations (improvements of 22% to 247%).
In FIG. 5 we can see how at distance 3, under high coef-
ficients of variance in 𝑇2, the specific allocation of qubits
within the planar code allows us to isolate the worst per-
forming qubits. Unfortunately, because the worst qubits
under perform at high rates, 1-element syndromes can
end up being separated by large distances, which tricks
the MWPM decoder into choosing a wrong recovery op-
erator. As higher distances are considered and the worst
qubits can be further isolated within the bulk of the sur-
face code, the improvement in performance provided by
the architecture optimization method increases (it comes
close to the i.i.d. scenario in particular situations).

When compared to the rMWPM decoder we observe
that for low distance planar codes, the architecture opti-
mization method yields better results because it success-
fully isolates the worst behaving qubits. As longer dis-
tance codes are tested, the rMWPM decoder gets closer
and even ends up surpasses the architecture optimizer
method. The exact arrangement of the qubits under the
architecture optimization method for each processor can
be found in the second chapter of the supplementary ma-
terial section.
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E. Performance of the combined rMWPM and
optimization method

The true potential of the rMWPM decoder and the
architecture optimization strategy comes to light when
they are applied together. While the architecture opti-
mizing method ensures that the worst qubits of the pla-
nar code are surrounded by better qubits and these bad
qubits in the vertical edge bipartite lattice, the rMWPM
decoder accounts for the weight asymmetry in the non
trivial syndrome element graph. As a result, the combi-
nation of both of these methods produces performance
increases that are 163% to 650% better than applying a
conventional MWPM decoder over the i.ni.d. model. In
some cases, the amalgamation of both of these methods
surpasses the performance of the MWPM decoder under
i.i.d. considerations.

The performance of planar codes under both conven-
tional MWPM decoding as well as the methods we in-
troduce in this paper is highly correlated with the coeffi-
cient of variation of the restricting relaxation parameter,
𝐶𝑣 (𝑇2). As can be seen in FIG. 6, a larger 𝐶𝑣 (𝑇2) im-
plies a harsher drop in performance, but it also increases
the yield that our methods provide. Surpassing of the
i.i.d. threshold is only achieved when 𝐶𝑣 (𝑇2) is lower
than 60%, where 𝐶𝑣 (𝑇2) = 𝜎(𝑇2)/`(𝑇2), and 𝜎(𝑇2) and
`(𝑇2) are the standard deviation and average of the set
of 𝑇2 values.

VII. CONCLUSION

In this paper we have proposed the i.ni.d. noise model
as an appropriate way to include the observed variance in
the decoherence parameters of the qubits that make up
superconducting quantum processors. Our results show
how the performance of planar codes when this noise
model is considered is far worse than what would be ex-
pected based on previous results obtained for the i.i.d.
qubit noise model. This occurs because when the noise
of the qubits of a surface code is considered to behave
according to an i.ni.d noise channel, the qubits that are
most likely to suffer errors (those with shorter 𝑇1 and 𝑇2)
may form errors chains and co-chains that are too large
for the decoder to successfully estimate, which ultimately
results in the manifestation of logical errors.

We have also discussed how the manner in which qubits
are arranged on the planar code lattice plays an impor-
tant role in the performance of the codes. We saw how
the “typical” performance of planar codes over the i.ni.d.
channel is generally bad; an outcome that arises from
increased likelihood that these codes have of suffering
additional logical errors over the i.ni.d. paradigm (“bad”
qubits end up being located in lattice positions that cause
harmful events to occur frequently). We address this is-
sue in our work by devising two methods that tackle the
inconvenience of “low quality” qubits. The first method
consists in reweighting the graph on which the minimum
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FIG. 6: Change in ppth when considering the
optimized architecture and the rMWPM

compared to two different scenarios with respect
to the variance coefficient of 𝑇2. In top, the change
in ppth is compared with the i.ni.d. case under the
conventional MWPM decoder. In the bottom, it is

compared with the i.i.d. case.

weight perfect matching algorithm is applied. This new
weight convention is directly related to the relaxation pa-
rameters and the relaxation time. In this manner, worse
qubits are prioritized (over those that have larger 𝑇1 and
𝑇2 values) as the potential error sources.

The second technique comes down to placing qubits on
the surface code lattice in a manner that guarantees that
long chains and co-chains are far less probable (making
use of the better qubits available). We refer to this strat-
egy the architecture optimizing algorithm. This method
enables us to prevent the placement of the worst qubits
in lattice sites that are pivotal to the performance of the
code. The primary working principle of the algorithm is
ranking the surface code qubits according to their noise
level (𝑇1 and 𝑇2). Once this best-to-worst classification
is defined, the “worst” qubits are surrounded by better
qubits in order to prevent the creation of chains and co-
chains, which ultimately leads to higher probabilities of
successful decoding.
Both the rMWPM decoder and the architecture opt-

mizing method improve the performance of the code sig-
nificantly, an effect that is further exacerbated when the
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methods are combined. In fact, when they are applied
jointly, performance can exceed results obtained for the
i.i.d. scenario. Unfortunately, these improvements come
at a price. On the one hand, rMWPM decoding can re-
sult in longer decoding times for large surface codes due
to its increased complexity. For decoding to be practical,
it must be performed in real time so that the noise that
takes place actually corresponds to the measured syn-
drome. Methods to reduce the complexity of the MWPM
have been proposed [37, 43], but they also decrease its ac-
curacy. Furthermore, recent results show that 𝑇1 and 𝑇2
fluctuate both intercooldown and intracooldown [7, 32–
36], thus any method which is based on the knowledge
of the 𝑇 parameters would need to be significantly faster
than the life time of said changes. Additionally, the archi-
tecture optimization method has the particular drawback
that, at this moment in time, it is likely that rearranging
the position of the superconducting qubits that form real
quantum processors once they are manufactured is not
possible. It also seems unreasonable to attempt to use
SWAP gates to reorder the physical qubits of the code
(Note that SWAPs are constructed using CNOT gates
that are really noisy at this moment in time). In any
case, the results provided herein prove that the fact that
each physical qubit has its own noise dynamics is crit-
ical for code performance and should not be neglected
when studying quantum error correction codes quantum
error-correcting codes.

Moreover, even though the results in this work have
been restricted to the planar code scenario, they could be
extended to other surface codes of relevance such as the
toric code or the rotated planar code [45]. The decoding
of different surface codes through the MWPM differs in
the graph the non-trivial syndrome elements are mapped
into. For the case of the toric code, the graph would be
the same as the planar codes considered in this article,
but with periodic conditions on the boundaries. However,
due to the periodicity of the lattice, logical operators are
more prone to occur and, thus, a worse performance is
expected for i.ni.d. noise. On the other hand, the rotated
planar code requires a decrease of the number of data
qubits and stabilizers for the same distance. Therefore,
adapting the reweighted MWPM decoder would still be
a recommended step in order to mitigate the effects of
i.ni.d. quantum noise. Nevertheless, in both the toric and
the planar code the argument of the sublattice which does
not contain minimum distance error does no longer hold.
Thus, other methods should be taken into account when
considering surrounding good qubits with bad qubits.

Another takeaway from our work is the fact that in or-
der for real planar codes (and other QEC codes for that
matter) to perform at the rates promised in the liter-
ature, quantum hardware must be comprised of qubits
with uniform relaxation and dephasing times. Tradition-
ally, the literature on implementation of superconducting
qubits has based its elemental hardware quality claims
on best-case or mean scenarios. However, it is the actual
distribution of these parameters, not just the best-case

or the mean values, that is most relevant to predict how
good the surface codes that will operate on such hardware
can be. Another possible approach is to consider that
quantum systems are limited by their worst qubit and
to assume that all the constituent qubits of the system
behave like their “weakest link”. However, this would be
a somewhat reductionist view that would miss out on the
code performance improvements that can be obtained by
considering qubit differences (as is done by our archi-
tecture optimization method). Thus, by designing codes
for performance over the i.ni.d. channel, one may achieve
lower qubit overhead for similar code performances. This
is an important outcome, since qubits are an expensive
resource.
Another important issue that plays a role in the per-

formance of real surface codes is that of gate and mea-
surement errors in quantum hardware. We have excluded
the presence of these phenomena from this work, but they
are an important source of errors that should be studied.
While the literature on surface codes has already consid-
ered these error sources [28], in a similar manner to what
happens for decoherence parameters, real superconduct-
ing quantum hardware will suffer different gate and mea-
surement errors for each of their constituent qubits. This
is an important problem and optimizing surface codes
for such non-uniform scenarios is germane to the field of
QEC.
We also believe that it is important to consider the

i.ni.d. noise model for other quantum computing tasks,
not just for the purpose of QEC. For example, quantum
error mitigation, which is an important approach to deal
with noisy quantum algorithms running on real quantum
hardware, should also operate under the framework of the
i.ni.d. noise model. As of today, qubit number and con-
nectivity is not yet adequate to implement strong error
correction strategies, and so quantum error mitigation
techiques3 are an important component of the modern
quantum computing paradigm. It is possible that ac-
counting for the non-uniformity of the noise levels that
current qubits experience will lead to further improve-
ments in mitigation techniques. Lastly, it may also be
possible to improve the reliability of current quantum
computers by compiling quantum algorithms specifically
for the hardware that they will be executed on (account-
ing for the 𝑇1 and 𝑇2 values of individual qubits plus the
individual gate and measurement error rates).
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The data that supports the findings of this study is
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3 Quantum error mitigation achieves error suppresion by sam-
pling available Noisy Intermediate-Scale Quantum (NISQ) de-
vices many times and classically post-processing these measure-
ment outcomes.
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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY NOTE 1: RELAXATION
AND DEPHASING TIMES OF REALISTIC

QUANTUM HARDWARE

In the primary text we make the claim that most of the
currently-existing state-of-the-art superconducting quan-
tum processors are made up of qubits whose relaxation
and dephasing times are not the same. In what follows
we present the data that justifies this claim, and we dis-
cuss how these results inspired the proposal of the i.ni.d.
decoherence model that we present in the main text.
Figure 7 shows the specific values of 𝑇1 and 𝑇2 that

we have employed to simulate the performance of planar
codes over the i.ni.d. channel. Recall that this chan-
nel model can account for differences in the values of 𝑇1
an 𝑇2 of invidividual qubits (see The independent non-
identically distributed decoherence model in the main
text) [20–24]. The measurements shown in Figure 7 re-
veal how the particular relaxation and dephasing times
of each individual qubit within the quantum system can
vary drastically. For example, the qubits that make up
the ibm washington quantum processor exhibit a mini-
mum relaxation time of 16.54 `𝑠 and a maximum relax-
ation time of 123.11 `𝑠, i.e, there are qubits hwose relax-
ation time differs by an order of magnitude. This phe-
nomenon is further exacerbated for the ibm washington
qubit dephasing times. The minimum dephasing time
value is 8.58 `𝑠 and the maximum value is 228.56 `𝑠.
This behaviour can be observed over all of the super-
conducting machines considered in this paper. We sum-
marize the minimum and maximum 𝑇1 and 𝑇2, as well
as their mean values, in Table I. The main takeaway
here is that, within the real quantum systems, the de-
coherence parameters of each constituent qubit will vary
significantly. Because this type of behaviour must be
considered when building accurate decoherence models,
the i.ni.d. noise model we propose in the main text is a
relevant contribution to the field of QEC, as it can ac-
curately re-enact the real quantum noise processes that
multi-qubit systems can suffer.
Some details regarding the data shown in Figure 7

merit further discussion. To start off, notice how the 𝑇1
and 𝑇2 values we have considered are all timestamped
(refer to Figure 7). This is related to the fact that
these values can vary between calibration rounds (inter-
calibration) and even during the calibration process itself
(intra-calibration) [32–36]. The data that quantum com-
puting companies make available is generally updated
inter-calibration (from calibration to calibration), so it
is important that we state that the data we have em-
ployed in our analysis strictly relates to different calibra-
tion cycles of various quantum machines. Because intra-
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(a) ibmq brooklyn, 65 qubits.
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(b) ibm washington, 127 qubits.
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(c) Zuchongzhi, 66 qubits.
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(d) Rigetti Aspen-M-1, 79 qubits.

FIG. 7: Considered relaxation and dephasing times for the i.ni.d. decoherence model. The 𝑇1 and 𝑇2
values associated to the individual qubits of each of the systems are presented using histograms. a Data for the

ibmq brooklyn machine with 65 qubits. Timestamp: 16/11/2021 10:41 (CET) [22]. b Data for the ibm washington
machine with 127 qubits. Timestamp: 16/11/2021 12:21 (CET) [21]. c Data for the Zuchongzhi machine with 66

qubits. Data from [23]. d Data for the Rigetti Aspen-M-1 machine with 38 qubits. Data obtained using the
Strangeworks platform [24]. Timestamp: 30/05/2022 11:37 (CET). Note that the Aspen-M-1 quantum computer is
made up of 40 qubits, but when we requested the corresponding data, we were only able to obtain measurements

related to of its qubits.

calibration fluctuations are not usually reported, even if
they are important [7, 33–36], it is not something that
we have been able to consider in the present study.

Additionally, we must also disclose that part of the
available data does not make physical sense. For exam-
ple, the data reported for qubit 3 of the ibm washington
quantum processor tells us that 𝑇1 = 41.09 `𝑠 and that
𝑇2 = 150.47 `𝑠. It is physically impossible for these values
to be correct, since they do not comply with the Ramsey

limit 𝑇2 ≤ 2𝑇1. We believe that these “erroneous” read-
ings stem from the fact that 𝑇1 and 𝑇2 measurements
are not performed during the same time instant. Be-
cause intracalibration decoherence parameter fluctuation
can take place [7, 33–36], it is likely that by the time
the second measurement is run, the decoherence param-
eters have already changed. In light of this, whenever
we encounter such data readings in our work, we have
considered that that the qubit in question actually satu-
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Processor min𝑇1 [`𝑠] max𝑇1 [`𝑠] `𝑇1 [`𝑠] min𝑇2 [`𝑠] max𝑇2 [`𝑠] `𝑇2 [`𝑠]
ibmq brooklyn 15.37 127.82 75.3554 5.06 122.19 70.4778
ibm washington 16.54 123.11 74.2827 8.58 228.56 101.4081

Zuchongzhi 15.6 46.6 30.6045 1.8 16 5.3348
Rigetti Aspen-M-1 3.95 124.35 35.77 1.22 117.08 26.5

TABLE I: Minimum, maximum and mean 𝑇1 and 𝑇2 for the systems considered in our work. The values
are obtained from the data provided in Figure 7.
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FIG. 8: Graphical representation of the data qubits of 3, 5 and 7 planar codes. Each data qubit is represented by a
gray-shaded dot and a number representing its index.

rates the Ramsey limit (𝑇2 = 2𝑇1) so that our simulations
can be run. This also speaks towards the importance of
measuring the decoherence parameters of the qubits si-
multaneously, as this would produce more accurate data.
Additionally, this also sheds light on the importance of
understanding and characterizing intracalibration deco-
herence parameter fluctuation, as this phenomenon may
also impact the performance of real quantum error cor-
rection codes quantum error-correcting codes [7].

SUPPLEMENTARY NOTE 2: CONSIDERED
PLANAR ARCHITECTURES

In this section, we present the qubit arrangements that
have been considered for the planar codes in the main
text. This reveals the way in which this new architecture

distributes qubits according to their 𝑇1 and 𝑇2 values.
The location of a given qubit within the lattice is given
by a combination of indices, as is done by convention in
the QECSIM library [18]. These indices are computed
based on the equation:

index𝑟 ,𝑐 =(𝑟\2) ∗ (𝑐𝑜𝑙𝑠 − 𝑐%2)+
(𝑐\2) + (𝑟%2 ∗ 𝑟𝑜𝑤𝑠 ∗ 𝑐𝑜𝑙𝑠), (10)

where cols and rows indicate the size of the given pla-
nar code, and 𝑟 and 𝑐 are the specific row and column
of the given qubit. Additionally, the % sign denotes
the modulo-2 operation and \ represents the integer or
floor division operation. This index-based labeling sys-
tem allows us to easily distinguish between qubits that
are placed on the different sublattices discussed in the
main text (the horizontal edge qubits are labeled first
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followed by the vertical edge qubits). An example of this
labeling system is shown in FIG. 8, where the qubit in-
dices for each of the planar code lattices that have been
considered in this article is shown.

Following such indexing, the results of FIG. 1b in the
main text are based on arranging the qubits using the
same indexing of the qubits of the ibm washington pro-
cessor. The specific arrangements of the qubits obtained
by the optimization algorithm are displayed in Tables II-
IX. The data shown in this tables corresponds to the
data presented in FIG. 7 of Supplementary Note 1.

Additionally to the provided 𝑇1 and 𝑇2, there are many
additional values of relevance for experimental study of
real quantum processors. This have not been discussed
in the core of the work because they are not considered

in our noise model, nevertheless, they are of importance
and thus we will include them in this last section. Since
the quantum processors of IBM [20, 21] and Aspen [24]
are in continuous reparation and improvement, the values
often change, thus we provide a series of tables with the
most relevant values at the time of our study in Table
XI.
As can be seen in Table XI, the value of frequency

for the qubits of the Rigetti Aspen-M-1 are empty, this
is because the information is not available to the pub-
lic. Nevertheless, as mentioned in [44], superconducting
qubits tend to have a frequency of the order of 𝐺𝐻𝑧, thus
we consider the frequency of the Aspen-M-1 qubits will
be of that order. The Zuchongzhi relevant data can be
found in [23].
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Qubit index 𝑇1(` s) 𝑇2 (` s)

0 84.1 16.0
1 92.9 104.3
2 93.3 106.9
3 99.0 113.5
4 101.3 122.2
5 101.6 99.1
6 93.6 102.4
7 93.0 101.9
8 92.8 17.6
9 63.0 13.9
10 21.1 5.1
11 72.2 13.8
12 15.4 23.3

TABLE II: Optimized architecture for the 3 × 3 planar code considering the ibmq brooklyn quantum processor.

Qubit index 𝑇1(` s) 𝑇2 (` s)

0 70.5 43.8
1 78.8 47.8
2 78.4 81.6
3 92.3 79.6
4 89.2 83.0
5 84.6 103.8
6 98.7 86.2
7 91.6 91.5
8 98.2 92.4
9 92.9 104.3
10 93.3 106.9
11 99.0 113.5
12 101.3 122.2
13 101.6 99.1

Qubit index 𝑇1(` s) 𝑇2 (` s)

14 93.6 102.4
15 93.0 101.9
16 92.7 116.1
17 91.6 119.9
18 89.9 87.2
19 85.4 85.5
20 85.1 83.2
21 82.9 94.0
22 82.4 79.3
23 57.8 48.2
24 61.3 44.7
25 35.8 43.3
26 85.0 35.3
27 31.6 70.3

Qubit index 𝑇1(` s) 𝑇2 (` s)

28 28.1 28.8
29 71.4 20.6
30 84.1 16.0
31 63.0 13.9
32 21.1 5.1
33 72.2 13.8
34 15.4 23.3
35 92.8 17.6
36 20.7 32.8
37 92.2 28.5
38 59.6 32.2
39 35.6 56.6
40 88.5 42.1

TABLE III: Optimized architecture for the 5 × 5 planar code considering the ibmq brooklyn quantum processor.

Qubit index 𝑇1(` s) 𝑇2 (` s)

0 43.6 12.2
1 100.7 159.0
2 103.3 182.8
3 110.9 228.6
4 123.1 114.0
5 111.0 215.8
6 107.6 133.7
7 101.8 158.8
8 16.5 100.0
9 77.6 11.6
10 61.1 8.6
11 71.1 11.2
12 66.9 11.9

TABLE IV: Optimized architecture for the 3 × 3 planar code considering the ibm washington quantum processor.
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Qubit index 𝑇1(` s) 𝑇2 (` s)

0 65.5 33.0
1 34.7 69.4
2 89.8 111.6
3 96.7 90.7
4 91.1 130.0
5 94.9 91.7
6 92.0 187.7
7 95.3 155.8
8 98.3 110.1
9 100.7 159.0
10 103.3 182.8
11 110.9 228.6
12 123.1 114.0
13 111.0 215.8

Qubit index 𝑇1(` s) 𝑇2 (` s)

14 107.6 133.7
15 101.8 158.8
16 98.4 161.7
17 97.2 151.2
18 93.0 116.5
19 91.7 131.4
20 91.6 179.1
21 90.7 151.2
22 90.5 122.4
23 89.7 37.2
24 33.6 101.9
25 72.3 25.6
26 52.7 21.6
27 86.9 20.2

Qubit index 𝑇1(` s) 𝑇2 (` s)

28 83.5 17.9
29 68.9 17.0
30 43.6 12.2
31 77.6 11.6
32 61.1 8.6
33 71.1 11.2
34 66.9 11.9
35 16.5 100.0
36 72.8 17.6
37 83.5 19.2
38 78.0 21.0
39 57.8 25.1
40 29.9 47.0

TABLE V: Optimized architecture for the 5 × 5 planar code considering the ibm washington quantum processor.

Qubit index 𝑇1(` s) 𝑇2 (` s)

0 50.8 86.1
1 53.3 64.1
2 54.4 117.4
3 78.5 159.1
4 79.0 80.8
5 81.3 140.5
6 82.6 117.8
7 83.1 98.4
8 83.8 199.4
9 84.4 161.0
10 84.8 84.5
11 86.8 120.0
12 88.5 144.8
13 89.3 147.7
14 89.8 111.6
15 96.7 90.7
16 91.1 130.0
17 94.9 91.7
18 92.0 187.7
19 95.3 155.8
20 98.3 110.1
21 100.7 159.0
22 103.3 182.8
23 110.9 228.6
24 123.1 114.0
25 111.0 215.8
26 107.6 133.7
27 101.8 158.8
28 98.4 161.7
29 97.2 163.5

Qubit index 𝑇1(` s) 𝑇2 (` s)

30 93.0 116.5
31 91.7 131.4
32 91.6 179.1
33 90.7 151.2
34 90.5 122.4
35 89.6 154.0
36 88.7 155.3
37 88.4 131.1
38 85.8 140.0
39 84.4 115.5
40 84.1 168.6
41 118.4 83.2
42 82.9 172.6
43 82.0 140.0
44 81.3 104.0
45 78.9 95.2
46 55.6 119.9
47 53.7 113.4
48 52.9 127.3
49 71.7 48.4
50 54.5 46.1
51 70.4 44.7
52 74.4 44.5
53 54.1 42.0
54 41.1 150.5
55 71.8 38.8
56 38.1 95.0
57 34.7 39.4
58 65.5 33.0
59 72.3 25.6

Qubit index 𝑇1(` s) 𝑇2 (` s)

60 52.7 21.6
61 86.9 20.2
62 83.5 17.9
63 68.9 17.0
64 43.6 12.2
65 77.6 11.6
66 61.1 8.6
67 71.1 11.2
68 66.9 11.9
69 16.5 100.0
70 72.8 17.6
71 83.5 19.2
72 78.0 21.0
73 57.8 25.1
74 29.9 47.0
75 33.6 101.9
76 89.7 37.2
77 38.1 53.0
78 39.6 80.0
79 73.3 41.9
80 44.3 80.4
81 44.7 81.7
82 111.7 44.8
83 74.0 47.4
84 70.1 50.7

TABLE VI: Optimized architecture for the 7 × 7 planar code considering the ibm washington quantum processor.
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Qubit index 𝑇1(` s) 𝑇2 (` s)

0 21.1 2.2
1 29.8 9.2
2 27.5 9.4
3 33.4 10.8
4 36.2 16.0
5 38.5 13.2
6 33.5 9.9
7 16.7 9.4
8 33.7 2.5
9 34.8 2.0
10 29.7 1.8
11 38.0 2.0
12 18.8 2.1

TABLE VII: Optimized architecture for the 3 × 3 planar code considering the Zuchongzhi quantum processor.

Qubit index 𝑇1(` s) 𝑇2 (` s)

0 24.2 3.3
1 26.8 3.4
2 15.6 5.9
3 26.1 6.2
4 25.3 6.2
5 37.1 6.4
6 35.8 7.2
7 25.2 7.7
8 24.4 8.5
9 29.8 9.2
10 27.5 9.4
11 33.4 10.8
12 36.2 16.0
13 38.5 13.2

Qubit index 𝑇1(` s) 𝑇2 (` s)

14 33.5 9.9
15 16.7 9.4
16 28.8 8.8
17 42.9 8.3
18 20.9 7.4
19 38.3 6.7
20 46.6 6.3
21 39.2 6.2
22 34.5 6.1
23 30.1 3.5
24 37.0 3.3
25 34.0 3.2
26 44.9 3.0
27 29.4 2.7

Qubit index 𝑇1(` s) 𝑇2 (` s)

28 34.7 2.7
29 39.9 2.5
30 21.1 2.2
31 34.8 2.0
32 29.7 1.8
33 38.0 2.0
34 18.8 2.1
35 33.7 2.5
36 30.0 2.7
37 22.9 2.7
38 33.3 2.9
39 32.1 3.1
40 17.5 3.3

TABLE VIII: Optimized architecture for the 5 × 5 planar code considering the Zuchongzhi quantum processor.

Qubit index 𝑇1(` s) 𝑇2 (` s)

0 12.5 3.2
1 78.8 45.4
2 50.7 60.6
3 52.9 66.3
4 62.3 117.1
5 58.2 76.1
6 51.2 60.0
7 69.6 47.0
8 4.0 7.6
9 16.9 2.7
10 23.2 1.2
11 3.9 2.5
12 5.37 2.7

TABLE IX: Optimized architecture for the 3 × 3 planar code considering the Rigetti Aspen-M-1 quantum processor.
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Qubit index 𝑇1(` s) 𝑇2 (` s)

0 10.0 20.1
1 12.1 10.2
2 85.1 28.7
3 30.5 48.0
4 48.6 31.2
5 34.0 32.1
6 36.1 72.1
7 42.35 40.1
8 50.2 43.6
9 78.9 45.4
10 50.8 60.6
11 52.9 66.3
12 62.3 117.1
13 58.24 76.1

Qubit index 𝑇1(` s) 𝑇2 (` s)

14 21.2 59.9
15 69.7 46.9
16 69.7 44.5
17 41.4 45.8
18 37.6 42.9
19 32.3 36.1
20 31.7 42.6
21 31.2 34.9
22 36.0 30.2
23 10.3 18.6
24 15.1 10.1
25 16.3 9.2
26 34.4 8.9
27 9.0 8.2

Qubit index 𝑇1(` s) 𝑇2 (` s)

28 8.2 10.4
29 20.8 4.6
30 12.6 3.2
31 17.0 2.7
32 23.2 1.2
33 4.0 2.6
34 5.4 2.7
35 4.0 7.6
36 34.6 7.5
37 41.0 8.2
38 75.5 8.8
39 31.9 9.0
40 15.8 9.2

TABLE X: Optimized architecture for the 5 × 5 planar code considering the Rigetti Aspen-M-1 quantum processor.

Processor 𝑓𝑄 [𝐺𝐻𝑧] 𝜖𝑀 (%) 𝜖𝐶𝑁𝑂𝑇 (%)
ibmq brooklyn 5.065 0.088 0.022
ibm washington 4.730 0.023 0.010

Rigetti Aspen-M-1 2.7 10.6

TABLE XI: Average qubit frequency ( 𝑓𝑄), average readout error (𝜖𝑀 ) and average CNOT error
(𝜖𝐶𝑁𝑂𝑇 ) of the three quantum processors.


