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Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach

Mohammad Ali Javidian∗ and Vaneet Aggarwal and Zubin Jacob†
Purdue University, West Lafayette, IN, 47907

Quantum causality is an emerging field of study which has the potential to greatly advance our
understanding of quantum systems. In this paper, we put forth a new theoretical framework for
merging quantum information science and causal inference by exploiting entropic principles. For
this purpose, we leverage the tradeoff between the entropy of hidden cause and conditional mutual
information of observed variables to develop a scalable algorithmic approach for inferring causality
in the presence of latent confounders (common causes) in quantum systems. As an application, we
consider a system of three entangled qubits and transmit the second and third qubits over separate
noisy quantum channels. In this model, we validate that the first qubit is a latent confounder
and the common cause of the second and third qubits. In contrast, when two entangled qubits
are prepared and one of them is sent over a noisy channel, there is no common confounder. We
also demonstrate that the proposed approach outperforms the results of classical causal inference
for Tubingen database when the variables are classical by exploiting quantum dependence between
variables through density matrices rather than joint probability distributions. Thus, the proposed
approach unifies classical and quantum causal inference in a principled way.
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I. INTRODUCTION

a. Motivation Causal inference lies at the heart
of science [1, 2]: the conclusions drawn from scien-
tific studies almost always involve extracting causation
(cause and effect relationships) from association, even
if researchers often refrain from explicitly acknowledg-
ing the causal goal of research projects [3, 4]. However,
causal inference from observational data is an ambitious
and difficult task. Identifying cause and effect relation-
ships from observational data is even more challenging
in the presence of hidden common causes (latent con-
founders) [5]. The broad impact of this phenomena
has been studied in multiple domains of science such as
epidemiologic studies [6], biology and medicine [7, 8],
experiential education [9, 10], economics and marketing
[11, 12], among others.

A similar concept is increasingly appreciated among
quantum physicists, namely the inference of quantum
common causes [13–19]. It has been used to provide
a satisfactory causal explanation (i.e., non-fine-tuned)
of Bell inequality violations [14, 19]. This also has led
to a formalization of quantum causal models [20–23].
As shown in [16–18], in some cases, (hidden) common
causes can be distinguished from direct causation us-
ing information theoretical generalization of Bell’s in-
equalities and causal directed acyclic graphs (DAGs).
Also, as shown in [15, 24], observed quantum correla-
tions alone are sometimes enough to imply causation.
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However, the proposed approach in [15, 24] depends on
the precise knowledge of the physical system and the
measurement apparatuses [25]. In this paper, we pro-
pose the first tractable algorithmic approach to distin-
guish between a hidden common cause and direct causal
influences among two observed quantum systems with-
out any interventional data.

To show the difficulty of causal structure discovery
task even in the simplest classical case, where our obser-
vation consists of only two jointly-distributed random
variables X and Y that are statically correlated, we re-
call Reichenbach’s common cause principle [26]: If two
random variables X and Y are statistically dependent,
then there exists a third variable Z that causally affects
both. As a special case, Z may coincide with either X
or Y . Furthermore, this variable Z makes X and Y
conditionally independent, i.e., X ⊥⊥ Y |Z. So, possible
candidates for representing causal relationships between
X and Y are: X → Y , X ← Y , and X ← Z → Y , and
there is no easy way to determine which one is the right
structure based on the observational data alone. The
variable Z in the case X ← Z → Y is called unmea-
sured (latent) confounder or unmeasured (latent) com-
mon cause. So, one of the fundamental questions in
causality is to determine how cause-effect relationships
can be inferred from statistical information, encoded as
a joint probability distribution, obtained under normal,
intervention-free experiments.
b. Co-existence of Quantum Systems To discover

the true cause-effect relationships, scientists normally
perform randomized experiments where a sample of
units drawn from the population of interest is subjected
to the specified manipulation directly. In many cases,
however, such a direct approach is not possible due to

mailto:javidianma@appstate.edu
mailto:\{vaneet, zjacob\}@purdue.edu


2

expense or ethical considerations. Instead, investigators
have to rely on observational studies to infer causality.
This task is even more challenging in quantum context
due to quantum superpositions and entanglement rela-
tions. In this work, we are interested in quantum gener-
alizations of causal structures in the presence of latent
common causes. These structures can be shown as a di-
rected acyclic graph (DAG), where nodes are quantum
systems, and edges are quantum operations1. However,
the key theoretical distinction between an entirely clas-
sical causal structure and a quantum casual structure is
the concept of coexisting. Because of the impossibility
of cloning, the outcomes and the quantum systems that
led to them do not exist simultaneously. If a system X
is measured to produce Y , then ρXY is not defined and
hence neither is the entropy S(ρXY ) [28]. For a given
causal structure, a coexisting set of systems is one for
which a joint state can be defined [18, 28, 29].

If we pick a coexisting set of nodes (e.g., a classi-
cal system, or a set of nodes that are created at the
same instance of time, i.e., they do enjoy a joint den-
sity operator), then we can investigate the identification
of quantum causal structures in the presence of latent
confounders.
c. Contributions In this paper, we consider causal-

ity between two coexisting quantum subsystems. As a
part of the evaluation framework, we provide a model
of such a coexisting system, where two entangled qubits
are used, and one of the qubit is transmitted over a
quantum channel. Similarly, three entangled qubits are
used, and two of them are transmitted over two separate
quantum channels. The models can be further gener-
alized, while note that the subsystems which are being
considered for quantum causality relationships have to
coexist, unlike in the classical case where it is not nec-
essary for the sub-systems to coexist. To address this
problem, we introduce a theoretical framework to merge
quantum information science with causal inference us-
ing entropic principles. Classically, it has been pro-
posed and tested that minimization of the trade-off be-
tween the entropy of the (hidden) common cause Z (i.e.,
H(Z)) and the conditional mutual information of ob-
served variables X and Y given Z (i.e., I(X;Y |Z)) can
be used to distinguish the latent graph X ← Z → Y (Z
is an unmeasured confounder) from the directed graphs
X → Y and X ← Y based on observational data alone
under certain assumptions [30] (a brief review is given
in Section II). We will provide the first generalization
of this approach to the quantum domain.

Even though the paper considers an approach for
quantum causal inference, we also apply the proposed

1 In the context of quantum computation [27], a quantum oper-
ation is called a quantum channel.

approach to a classical setup, where two bits are trans-
mitted over a binary symmetric channel (to illustrate
the case of no confounder), or two bits are transmitted
over two separate channels (to illustrate the case of la-
tent confounder). We note that finding the optima over
a quantum density matrix rather than over the prob-
ability distribution function provides larger degrees of
freedom thus resulting in improved results. This exam-
ple is used to select the hyperparameters for our frame-
work, and these hyperparameters are used in the rest
of the paper. This demonstrates that the proposed ap-
proach can also be used for classical causal inference
with improved results. Our main contributions are as
follows:
• Inferring causality in the presence of latent con-
founders from observational data alone is one of the
most important and challenging problems in statisti-
cal inference. We propose an iterative algorithm, called
QInferGraph, for identifying latent confounders in Sec-
tion III. Our method leverages the concept of quantum
conditional matrices to unify the solution for classical
and quantum (latent) common cause problem in a prin-
cipled way.
•We evaluate the proposed approach for classical causal
inference. By leveraging optimization over density ma-
trices, the proposed approach is shown to outperform
the results of classical causal inference in [30] for Tub-
ingen database [31] in section IV.
•We put forth an experimental scheme that can be used
to confront our theoretical framework. We consider a
minimalistic model of an unknown message (possibly
encrypted) with unknown origin in a two-node quan-
tum network with the possibility of the presence of a
latent common cause, where nodes are a coexisting set
of quantum systems for which a joint density matrix can
be defined. Entangled quantum subsystems are used,
where subsystems are communicated over noisy chan-
nels (e.g., optical fiber) to create such coexisting set of
quantum systems. We show that only using the joint
density matrix of the observed two quantum systems,
we can identify the originator of the message (i.e., the
sub-system that did not encounter the noisy channel).
To verify the validation of the proposed method, called
QInferGraph, we use realistic quantum noisy links such
as quantum symmetric channel and depolarizing chan-
nel (valid for quantum networking and quantum com-
munications) (Section V).

The rest of the paper is organized as follows. In
Section II, we review the classical causal inference ap-
proach proposed in [30] for the identification of causal
structures in the presence of hidden common causes. In
Section III, we generalize the classical approach to the
quantum domain. In Section IV and V, we put forward
an experimental scheme that can be used to validate
our proposed approach using a minimalistic model of an
unknown message (possibly encrypted) with unknown
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origin in a two-node/three-node classical/quantum net-
work, respectively. In Section VI, we explain and show
why should we not map quantum to classical directly.
Also, we evaluate the performance of QInferGraph on
the real dataset (section IVB) with cause-effect pairs
[31], and show that QInferGraph outperforms in iden-
tification of latent confounders as compared to the clas-
sical approach. In Section VI, we explain and show why
should we not map quantum to classical directly.

II. REVIEW OF CLASSICAL CAUSAL
INFERENCE FRAMEWORK IN [30]

In this section, we briefly review the proposed ap-
proach in [30] for confounder discovery via solving an
optimization problem that its aim is to discover the
trade-off between the entropy of the latent variable and
the conditional mutual information of the observed vari-
ables. Consider that the joint distribution P (X,Y ) be-
tween two observed variables is given. The goal is to
find a random variable Z that makes X and Y condi-
tionally independent given Z. Possible cases that can
represent this situation is shown in Figure 1.

Y

Z

X

(a)

Y

Z

X

(b)

XY

YX

(c)

or

Figure 1: (a) Latent Graph, (b) Triangle Graph, and
(c) Direct Graph.

In the classical causal inference, [30] distinguished be-
tween latent graph in Figure 1(a) from others in Figure
1 based on unmeasured confounder having low Shan-
non entropy under certain assumptions. Formally, the
following was assumed:

Assumption 1. Consider any causal model with ob-
served variables X and Y . Let Z represents the
variable that captures all latent confounders between
X and Y . Then H(Z) < θ, 2 where H(Z) =
−
∑n
i=1 P (xi) log(P (xi)).

Note that I(X;Y |Z) = 0 means that Z makes the
variables X and Y conditionally independent, i.e., X ⊥⊥

2 θ is the entropy threshold. The true H(Z) is not available
in practice. As discussed in [30] H(Z) is lower-bounded by
the entropies of X and Y , up to a scaling by a constant. For
example, as suggested in [30], θ is set to 0.8min{H(X), H(Y )}
in experiments.

Algorithm 1: LatentSearch [30]
Input: Supports of X,Y , and Z, respectively; Joint

probability distribution p(x, y); Number of
iterations N ; β in the loss function
L = I(X;Y |Z) + βH(Z), Initialization of
q1(z|x, y).

Output: Joint distribution q(x, y, z).
1 for i = 1 : N do

/* Form the joint distribution: */
2 qi(x, y, z)← qi(z|x, y)p(x, y),∀x, y, z;
3 Calculate:

qi(z|x)←
∑
y∈Y qi(x, y, z)∑

y∈Y,z∈Z qi(x, y, z)
,

qi(z|y)←
∑
x∈X qi(x, y, z)∑

x∈X,z∈Z qi(x, y, z)
,

qi(z)←
∑

x∈X,y∈Y
qi(x, y, z)

4 Update:

qi+1(z|x, y)←
1

F (x, y)

qi(z|x)qi(z|y)
qi(z)1−β

, where

F (x, y) =
∑
z∈Z

qi(z|x)qi(z|y)
qi(z)1−β

5 end
6 return q(x, y, z) := qN+1(z|x, y)p(x, y).

Y |Z.3 To identify latent graphs, [30] proposed an iter-
ative algorithm (Algorithm 1) that discovers the trade-
off between the entropy of the unmeasured confounder
and the conditional mutual information of the observed
variables. This trade-off is formally defined as follows:

L = I(X;Y |Z) + βH(Z) (1)

In fact, LatentSearch (Algorithm 1) sets q(x, y, z) =
q(z|x, y)p(x, y) and searches over q(z|x, y) to find the
stationary point of the loss function L in Equation (1).
For this purpose, LatentSearch returns a joint prob-
ability distribution q(X,Y, Z) from which the Shan-
non entropy of the latent variable W , i.e., H(W ) can
be computed. To verify whether the causal graph
G = (V = {X,Y }, E) is a latent graph or not, Infer-
Graph (Algorithm 2) [30] runs LatentSearch multiple
times and selects the smallest H(W ) discovered by the
algorithm among those that ensure the conditional in-
dependence of X and Y given W , i.e., I(X;Y |W ) ≤ T
for a practical threshold ( as suggested in [30], T =
0.001). We refer readers to [30] for more experimen-
tal settings. [30] conjecture that, under Assumption

3 Note that this is different from the notion of causal indepen-
dence, which refers to the situation where multiple causes con-
tribute independently to a common effect [32].
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14, and in practice, the Shannon entropy of observed
variables X and Y for directed graphs and triangle
graphs is lower-bounded by Shannon entropy of X and
Y , up to a scaling by a constant (as suggested in [30],
θ = 0.8min{H(X), H(Y )}). For more detailed discus-
sion see [30].

Algorithm 2: InferGraph: Identifying the
Latent Graph [30]

Input: Joint probability distribution p(x, y); Number of
iterations N ; I(X;Y |Z) threshold T ; H(Z)
threshold that is determined by
θ = αmin(H(X), H(Y )); {βi}Ni=1; Support size of
X,Y , and Z, i.e., r,m, and n, respectively.

Output: "Latent Graph" if Z is an unmeasured
confounder for X and Y , otherwise, returns
"Triangle or Direct Graph".

1 for i = 1 : N do
2 qi(x, y, z)← LatentSearch(p(x, y), α, βi, r,m, n);
3 Calculate Ii(X;Y |Z) and Hi(Z) from qi(x, y, z);
4 end
5 S = {i : Ii(X;Y |Z) ≤ T};
6 if min(Hi(Z) : i ∈ S) > θ or S = Ø then
7 return Triangle or Direct Graph;
8 else
9 return Latent Graph;

10 end

III. PROPOSED ENTROPIC APPROACH FOR
CONFOUNDER DISCOVERY IN QUANTUM

SYSTEMS

In this section, we provide an approach for identi-
fying latent graphs in quantum systems, where we as-
sume the Assumption 1, with the entropy replaced by
the von-Neumann entropy, S(X) = −tr(ρX log ρX). We
first briefly review the formalism of quantum density
matrices, which provides a solid framework for adapt-
ing classical iterative algorithms (Algorithm 1 and 2) to
the quantum domain. Then, the proposed algorithm to
identify latent graphs is described.

A. Overview of Quantum Computing

Quantum theory can be understood as a non-
commutative generalization of classical probability the-

4 Note that in [30] to distinguish the latent graph in Figure 1(a)
from mediator graphs (i.e., X → M → Y , where M is a la-
tent variable), the following is also assumed: Consider a causal
model where X causes Y . If X causes Y only through a la-
tent mediator Z, i.e., X → Z → Y , then H(Z) ≥ θ. In this
work, we only focus on distinguishing between latent graphs
and direct/triangle graphs.

ory wherein probability measures are replaced by den-
sity operators [33]. The density matrix describes the
quantum state of a physical system, and allows for the
calculation of the probabilities of the outcomes of any
measurement performed upon this system. The den-
sity matrix is a positive semi-definite, Hermitian ma-
trix of trace one. The density matrix can be written
as
∑
j pj |ψj〉〈ψj | for some states |ψj〉 and coefficients

pj that are non-negative and add up to one. As a gen-
eralization of classical probabilities, the density matrix
corresponding to a probability distribution can be ob-
tained where pj corresponds to the probability that the
random variable is j and the state |ψj〉 is given as a col-
umn vector with 1 at jth element and zero otherwise5.
Analogies between the classical theory of Bayesian infer-
ence and the conditional states formalism for quantum
theory are listed in Table I.

Quantum conditional densities are a generalization of
classical conditional probability distributions. However,
to generalize conditional probabilities to the quantum
case, several approaches have been proposed in the liter-
ature. The three following generalizations are the best
known in the literature of quantum information: (1)
quantum conditional expectation [35], (2) quantum con-
ditional amplitude operator [36, 37], and (3) quantum
conditional states [33, 38]. Arguably, quantum condi-
tional states are the most useful generalization of con-
ditional probability from the point of view of practical
applications. For example, quantum conditional states
have been used in [33] to build a quantum theory of
Bayesian inference. Since quantum conditional states
provides a closer analogy between quantum theory and
classical probability theory, we choose this formalism to
define quantum conditional density matrices. We will
see that this formalism plays a significant role in the
design and success of our entropic quantum causal in-
ference algorithm.

Following [33, 38], the conditional density matrix of
X given Y is defined as follows:

ρX|Y = (ρ
−1/2
Y ⊗ IX)ρXY (ρ

−1/2
Y ⊗ IX).

Also, note that this relates the conditional density
matrix and the joint density matrix, and thus the joint
density matrix can also be written as

ρXY = (ρ
1/2
Y ⊗IX)ρX|Y (ρ

1/2
Y ⊗IX) = (ρ

1/2
X ⊗IY )ρY |X(ρ

1/2
X ⊗IY ).

5 Note that this is not a unique method of relating the classical
probabilities to quantum density matrix [34].
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Table I: Analogies between classical and quantum formalism

Classical Probability Quantum Theory

probability distribution p(X) density operator (matrix) ρX
joint distribution p(X,Y ) joint density ρXY
marginal distribution p(X) =

∑
Y p(X,Y ) partial trace ρX = TrY (ρXY )

conditional probability conditional density matrix
p(Y |X) = p(X,Y )/p(X) ρY |X = (ρ

−1/2
X ⊗ IY )ρXY (ρ

−1/2
X ⊗ IY )

B. QLatentSearch: An Algorithm for Computing
Exact Quantum Common Entropy

In this section, we propose an iterative algorithm (Al-
gorithm 3) that discovers the trade-off between the en-
tropy of the unmeasured confounder and the quantum
conditional mutual information of two observed quan-
tum systems given the unmeasured confounder. This is
fundamental for designing an algorithm for the identifi-
cation of latent confounders in quantum systems, as we
show in the next subsection. This trade-off is formally
defined as follows:

L = IQ(X;Y |Z) + βS(Z) (2)

Note that IQ(X;Y |Z) = 0 implies that the quantum
conditional independence of X and Y given Z [14, The-
orem 3]. Having low von Neumann entropy of hidden
common cause Z, i.e., S(Z) under the quantum version
of Assumption 1 enable us to identify latent graphs from
direct/mediator graphs in practice, as we show in sec-
tion IV. For this purpose, rather than searching over
ρXY Z and enforcing the constraint ρXY = TrZ(ρXY Z),
we can search over ρ(Z|X,Y ) and set

ρXY Z = (ρ
1/2
XY ⊗ IZ)ρ(Z|X,Y )(ρ

1/2
XY ⊗ IZ)

because:

L = IQ(X;Y |Z) + βS(Z)

= S(XZ) + S(Y Z)− S(Z)− S(XY Z) + βS(Z)

= S(XZ) + S(Y Z)− S(XY Z) + (β − 1)S(Z)

= S(X) + S(Z|X) + S(Y ) + S(Z|Y )− S(XY )

− S(Z|X,Y ) + (β − 1)S(Z)

= S(Z|X) + S(Z|Y )− S(Z|X,Y )

+ (β − 1)S(Z) + IQ(X;Y )

Note that ρ(Z|Y ) = TrX((ρ1/2(X|Y ) ⊗
IZ)ρ(Z|X,Y )(ρ1/2(X|Y ) ⊗ IZ)), ρ(Z|X) =
TrY ((ρ

1/2(Y |X) ⊗ IZ)ρ(Z|X,Y )(ρ1/2(Y |X) ⊗ IZ)),

and ρZ = TrX,Y ((ρ
1/2
XY ⊗IZ)ρ(Z|X,Y )(ρ

1/2
XY ⊗IZ)). So,

we have L = L(ρ(Z|X,Y )), which is the counterpart
of the classical loss function in Equation 1 with the
following differences: (i) rather than using (conditional)

probability distributions, we use (conditional) density
matrices, and (ii) rather than using Rényi entropy, we
use the von Neumann entropy.

We aim to optimize the objective L over ρ(Z|X,Y ).
Although first order methods (e.g., gradient descent) or
genetic algorithm (GA)6 can be used to find a stationary
point of the optimization problem in (2), as we empiri-
cally observed the convergence is unattainable/slow and
the performance is very sensitive to the tuning parame-
ters such as step size and the mutation probability. This
optimization problem is difficult to perform numerically
because the boundary of the space of positive semidef-
inite matrices is hard to compute. In order to provide
a scalable algorithm for this optimization, we extend
the iterative algorithm that was proposed for classical
version of the problem in [30].

The proposed iterative algorithm for the optimiza-
tion of L is described in Algorithm 3, and is called
QLatentSearch. This algorithm starts from a random
initialization ρ1(Z|X,Y ), and then at each iteration i
does the following two phases to update ρi+1(Z|X,Y )
from ρi(Z|X,Y ) to finally minimize the loss function L
in (2):

• Calculate Phase: In this phase we use partial
trace to get ρi(Z|X) (line 3-5), ρi(Z|Y ) (line 6-8),
and ρiZ (line 9) from ρiXY Z .

• Update Phase: In this phase we update
ρi+1(Z|X,Y ) to get ρi+1

XY Z (line 10) for the next
iteration.

Formally, to prove the correctness of QLatentSearch,
the following theorem shows that QLatentSearch con-
verges to a stationary point of the loss function L in
Equation 2. The proof is available at Appendix A.

Theorem 1 (Correctness of QLatentSearch). The sta-
tionary points of the algorithm QLatentSearch are also
stationary points of the loss function L in Equation 2
for 0 < β < 1.

6 Genetic algorithm (GA) is a metaheuristic method inspired by
the process of natural selection.
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Algorithm 3: QLatentSearch, An Iterative
Algorithm for Computing Exact Quantum

Common Entropy
Input: Joint density matrix ρXY ; Number of iterations

N ; β parameter in the loss function
L = IQ(X;Y |Z) + βS(Z), Initialization of
ρ1(Z|X,Y ).

Output: Joint density matrix ρXY Z .
1 for i = 1 : N do

/* Form the joint density matrix: */

2 ρiXY Z = (ρ
1/2
XY ⊗ IZ)ρi(Z|X,Y )(ρ

1/2
XY ⊗ IZ);

/* Calculate Phase: */
/* (i) Calculate ρi(Z|X): */

3 ρiXZ = TrY (ρiXY Z) // Then, compute ρiXIY Z
by

reordering the entries of ρiXZ
4 ρiX = TrZ(ρ

i
XZ);

5 ρi(Z|X)← ((ρiX)−1/2⊗IY Z)ρiXIY Z((ρ
i
X)−1/2⊗IY Z);

/* (ii) Calculate ρi(Z|Y ): */
6 ρiY Z = TrX(ρiXY Z) // Then, compute

ρiIXY Z
= IX ⊗ ρiY Z

7 ρiY = TrZ(ρ
i
Y Z);

8 ρi(Z|Y )←
(IX ⊗ (ρiY )−1/2 ⊗ IZ)ρiIXY Z(IX ⊗ (ρiY )−1/2 ⊗ IZ);

/* (iii) Calculate ρiZ: */
9 ρiZ = TrXY (ρiXY Z);

/* Update Phase: */
10 ρi+1(Z|X,Y )←

exp
(
log(ρi(Z|X)) + log(ρi(Z|Y )) + (β − 1) log

(
ρiZ
))
;

11 end
12 return ρXY Z := (ρ

1/2
XY ⊗ IZ)ρN+1(Z|X,Y )(ρ

1/2
XY ⊗ IZ).

C. QInferGraph: An Algorithm for the
Identification of Latent Confounders

In this section, we propose a quantum entropic ap-
proach to causal inference that can discern the dif-
ference between causation and correlation. Specifi-
cally, under Assumption 1, extended to quantum, Algo-
rithm 3 can be used to distinguish causation from spu-
rious correlation between two observed quantum sys-
tems. This enables us to distinguish latent graph in
Figure 1(a) from the triangle or direct graphs in Fig-
ure 1(b)-(c). Our main assumption is that the latent
confounders, if they exist, have small von Neumann en-
tropy. Formally, we have:

Assumption 2. Consider any causal model with ob-
served quantum subsystems X and Y . Let Z repre-
sents the quantum system that captures all latent con-
founders between X and Y . Then S(Z) < θ, where
S(Z) = −tr(ρ log ρ).

In other words, in Figure 1(a), S(Z) ≤ θ for
some θ. Similar to the classical version of this prob-
lem, we conjecture that θ = αmin{S(X), S(Y )} for
some α < 1. Considering Assumption 2 along with

QLatentSearch (Algorithm 3), we propose an algo-
rithm, called QInferGraph (Algorithm 4), to identify
latent graphs.

Algorithm 4: QInferGraph: Identifying the
Latent Graph

Input: Joint density matrix ρXY ; Number of iterations
N ; IQ(X;Y |Z) threshold T ; S(Z) threshold that
is determined by θ = αmin(S(X), S(Y )); {βi}Ni=1;
The number of rows (or equivalently, columns) of
X,Y , and Z, i.e., r,m, and n, respectively.

Output: "Latent Graph" if Z is an unmeasured
confounder for X and Y , otherwise, returns
"Triangle or Direct Graph".

1 for i = 1 : N do
2 ρiXY Z ← QLatentSearch(ρXY , α, βi, r,m, n);
3 Calculate IiQ(X;Y |Z) and Si(Z) from ρiXY Z ;
4 end
5 S = {i : IiQ(X;Y |Z) ≤ T};
6 if min(Si(Z) : i ∈ S) > θ or S = Ø then
7 return Triangle or Direct Graph;
8 else
9 return Latent Graph;

10 end

In short, QInferGraph calls QLatentSearch N times
to figure out if there exist aW , for which IQ(X;Y |W ) <
T , i.e., W makes X and Y conditionally independent.
Also, the von Neumann entropy of W is enough small
such that S(W ) < αmin{S(X), S(Y )} for some α in
practice. If there exist such a W , the algorithm de-
clares W is a latent confounder. In other words, la-
tent graph represents correlation without causation re-
lationship between observed quantum systems X and
Y . Otherwise, very likely such a W that minimizes the
loss function L does not exist, and QInferGraph de-
clares that a triangle graph or a direct graph represents
the connection between X and Y better than a latent
graph in this case. In the next section we conduct ex-
periments to verify this procedure in practice.

IV. EVALUATION ON CAUSAL SYNTHETIC
AND REAL DATA

To verify the validity of our proposed algorithm, we
put forward an experimental scheme that can be used to
confront our theoretical framework. To show the effec-
tiveness of the proposed approach in section III, we first
use noisy links (section IVA), where it is validated that
the input before noise, as a latent confounder (hidden
source), is the cause of the noisy outputs. We will ob-
serve that the proposed approach helps achieve better
tradeoff between IQ(X;Y |Z) and S(Z), thus helping re-
duce thresholds as compared to the classical approach.
Using the parameter choices based on this study, we
evaluate the performance of QInferGraph on the real
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dataset (section IVB) with cause-effect pairs [31], and
show that QInferGraph outperforms in distinguishing
latent graphs from direct or triangle graphs (see Figure
1) as compared to the classical approach.

A. Identification of Latent Graphs in Noisy
Channels

We first apply the proposed approach to a classical
setup, where two bits are transmitted over a binary
symmetric channel (to illustrate the case of no con-
founder), or two bits are transmitted over two separate
channels (to illustrate the case of latent confounder).
We show that the proposed approach outperforms the
classical causal inference in [30] due to the use of quan-
tum density matrix. Finding the optima over a quan-
tum density matrix rather than over a probability distri-
bution provides larger degrees of freedom thus resulting
in improved results. Our results indicate that the pro-
posed approach helps achieve better tradeoff between
IQ(X;Y |Z) and S(Z) as compared to the classical ap-
proach.

Model 1 (Classical Symmetric Channel: Latent and
Direct Graph). Part I: Latent Graph. Assume a 2-
bit input Z ∈ {00, 01, 10, 11}. Let each bit of Z be in
the state 1 with probability q and 1− q otherwise, and
independent of each other. So, p(Z = 00) = (1 − q)2,
p(Z = 01) = p(Z = 10) = q(1−q), and p(Z = 11) = q2.
Z is transmitted over a binary symmetric channel with
independent bit error probability of p1, and is denoted
X. A cloned version of Z is transmitted over a bi-
nary symmetric channel with independent bit error
probability of p2, and is denoted Y . The joint prob-
ability distribution of X,Y , and Z, where Z is the
cause of X and Y , i.e., X ← Z → Y can be com-
puted as p(X,Y, Z) = p(Z)p(X|Z)p(y|Z). For exam-
ple, p(01, 10, 00) = (1 − q)q ∗ p1p2 ∗ (1 − p1)p2. Then
we marginalize out Z to obtain the joint probability
distribution for the latent graph X ↔ Y . Note that
the corresponding joint density matrix ρXY is a diago-
nal matrix that its diagonal entries come from the joint
probability distribution p(X,Y ). The key reason of con-
structing ρXY as the diagonal matrix from p(X,Y ) is to
have the mixed states, so that the von-Neuman entropy
of ρXY is the same as the Shannon entropy of p(X,Y ).

Now, we apply QInferGraph (Algorithm 4) on ρXY to
verify that X and Y are confounded by Z. For this pur-
pose, we use QLatentSearch (Algorithm 3) on 1000 dif-
ferent values of β, uniformly spaced in the interval (0, 1).
We run QLatentSearch for 500 iterations each time.
We use the conditional mutual information threshold of
T = 0.05, 0.01, and 0.005. In other words, of the algo-
rithm outputs for the 1000 β values used, we pick the

00 00

01

10

11

01

10

11

Figure 2: 2-bit non-Binary symmetric channel.

smallest entropy W discovered by the algorithm among
those that ensure I(X;Y |W ) ≤ T . Figure 3 summarizes
the results for different S(W ) threshold that is deter-
mined by θ = αmin{S(X), S(Y )} for T = 0.05. The
results for T = 0.01 and T = 0.05 are summarized in
Figure 4. For different values of α = 0.2, 0.3, · · · , 1, the
results are given in Figures 3 and 4. We let q = 0.4. In
each table, T means that QInferGraph (Algorithm 4)
identifies the latent graph correctly. But, F means that
the algorithm fails to identify the latent graph. For very
small or very large pi’s, identification of latent graphs
is difficult, while the proposed algorithm works well in
most other cases.

Now, if we apply InferGraph (Algorithm 2) on
p(X,Y ) with α = 0.8, as suggested in [30], and three
more α parameters α = 0.7, 0.9, 1 and β ∈ (0, 1), we
obtain the results summarized in Figure 5.
Some highlights for results in Part I: (1) Note that
when the probability of errors i.e., p1 and p2 are very
small, the latent confounder Z is hardly distinguishable
from X (or Y ) and QInferGraph fails to discover the
latent graph. (2) Note that QLatentSearch tries to find
the stationary point(s) of the loss function L in Equa-
tion (2), and there is no guarantee to find the global op-
timum. However, the performance of QInferGraph in
the worst case (α = 0.2, 0.3, 0.4) is acceptable: true pos-
itive rate (recall) = 0.74, false positive rate (fall-out) =
0, false negative rate (miss rate) = 0.36, accuracy =
0.74. (3) The hyperparameter α does not affect sig-
nificantly on the quality of results in our experimental
settings that indicates QInferGraph is not very sensi-
tive to hyperparameters. (4) It seems that the classi-
cal causal inference algorithm, i.e., InferGraph (Algo-
rithm 2) is much more sensitive to the choice of hyper-
parameter α, while QInferGraph is more robust to the
choice of this parameter. (5) The performance of In-
ferGraph (Algorithm 2) for identifying latent graphs
in Model 1 (Part I) with α = 0.8 (the best α param-
eter, as suggested in [30]), is the same as the perfor-
mance of QInferGraph with α = 0.2, 0.3, 0.4. The rea-
son is that QInferGraph constantly returns a local op-
tima with lower entropy in comparison with the clas-
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(a) α = 0.2, 0.3, 0.4
p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F F T T T T T T T F F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F F T T T T T T T F F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(b) α = 0.5

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F F T T T T T T T F F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F F T T T T T T T F F
0.99 F F T T T T T T T F F

(c) α = 0.7, 0.8

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F T T T T T T T T T F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F T T T T T T T T T F
0.99 F F T T T T T T T F F

(d) α = 0.9

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F T T T T T T T T T F
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 F T T T T T T T T T F

(e) α = 1

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

Figure 3: Validation of Latent Graph in Model 1 (Part
I) for T = 0.05, and β ∈ (0, 1) via QInferGraph.

sical InferGraph algorithm, because finding the op-
tima over a quantum density matrix rather than over
the probability distribution function provides larger de-
grees of freedom thus resulting in improved results.
For example, consider the case that p1 = 0.1 and
p2 = 0.2. Figure 6 shows for different points where
IQ(X;Y |Z) < T , the values of entropy of Z in a sorted
order. We see that the algorithms choose lowest en-
tropy among these points, where QInferGraph returns
2.9 times lower local optima than InferGraph with en-
tropy of 0.471543756. Figure 7 shows the trade-off curve
between IQ(X;Y |Z) and S(Z) (respectively, between
I(X;Y |Z) and H(Z)) returned by QLatentSearch and
the classical LatentSearch for this case that supports
over observation in Figure 6 that the proposed approach
helps achieve significantly better tradeoff. In this exam-
ple, H(X) = S(X) = 1.979175042 and H(Y ) = S(Y ) =
1.96290779.
Part II: Direct Graph. Assume that there is a 2-bit
symmetric noisy channel, where there is no latent com-

(a) α = 0.2, 0.3, 0.4
p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F F T T T T T T T F F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F F T T T T T T T F F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(b) α = 0.5

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F F T T T T T T T F F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F F T T T T T T T F F
0.99 F F T T T T T T T F F

(c) α = 0.7, 0.8

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F T T T T T T T T T F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F T T T T T T T T T F
0.99 F F T T T T T T T F F

(d) α = 0.9

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F T T T T T T T T T F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F T T T T T T T T T F
0.99 F F T T T T T T T F F

(e) α = 1

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

Figure 4: Validation of Latent Graph in Model 1 (Part
I) for T = 0.01, 0.005, and β ∈ (0, 1) via QInferGraph.

mon cause, i.e., there is an input X and an output Y ,
as shown in Figure 2 with error probability p on each
bit, and the same properties explained in Part I. Now,
we apply QInferGraph (Algorithm 4) on ρXY and In-
ferGraph on p(X,Y ) to verify that the graph that ex-
plains the correlation betweenX and Y is a direct graph
(i.e., X → Y ) rather than a latent graph (i.e., there ex-
ist a latent confounder Z such that X ← Z → Y ). The
results of applying QInferGraph and InferGraph on
ρXY and p(X,Y ) are summarized in Figures 8 and 9,
respectively. T means that QInferGraph (Algorithm 4)
identifies the direct graph correctly. But, F means that
the algorithm fails to identify the direct graph.
Some highlights for results in Part II: (1) The
performance of InferGraph (Algorithm 2) for identi-
fying latent graphs in Model 1 (Part I) with α = 0.8
(the best α parameter, as suggested in [30]), is the
same as the performance of QInferGraph with α =
0.2, 0.3, 0.4. This confirms our observation in Part I of
this model. For example, consider the case that p = 0.2.
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(a) α = 0.7

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F F F T T T F F F F
0.1 F F F F T T T F F F F
0.2 F F F T T T T T F F F
0.3 F F T T T T T T T F F
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 F F T T T T T T T F F
0.8 F F F T T T T T F F F
0.9 F F F F T T T F F F F
0.99 F F F F T T T F F F F

(b) α = 0.8

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F F T T T T T F F F
0.1 F F F T T T T T F F F
0.2 F F T T T T T T T F F
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 F F T T T T T T T F F
0.9 F F F T T T T T F F F
0.99 F F F T T T T T F F F

(c) α = 0.9

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 F F T T T T T T T F F
0.1 F F T T T T T T T F F
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 F F T T T T T T T F F
0.99 F F T T T T T T T F F

(d) α = 1

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

Figure 5: Validation of Latent Graph in Model 1 (Part
I) via classical causal inference (Algorithm 2),

T = 0.001, and β ∈ (0, 1).
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Figure 6: Entropy of possible latent confounder Z:
QInferGraph vs the classical InferGraph algorithm
for Model 1 (Part I) with p1 = 0.1, p2 = 0.2, and

mutual conditional independence threshold T = 0.05.

Figure 10 shows that for this case QInferGraph re-
turns a better local optima than InferGraph with
entropy of 0.864236474. Figure 11 shows the trade-
off curve returned by the classical LatentSearch and
QLatentSearch for this case that supports over obser-
vation in Figure 6. In this example, H(X) = S(X) =
1.979175042 and H(Y ) = S(Y ) = 1.941901189. (2)
Although the performance of the classical algorithm
(Algorithm 2), where α = 0.5, 0.7, is better than
QInferGraph for Model 1 (Part II), its performance for
Model 1 (Part I), where there is a latent confounder, is
not satisfactory.

In conclusion, results from Part I and II, indicate that
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Conditional independence of X and Y given Z
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Figure 7: Trade-off curve discovered by the classical
LatentSearch and QLatentSearch for the pair in
Model 1 (Part I) with p1 = 0.1 and p2 = 0.2. Each

point is the output of algorithms for a different value
of β ∈ (0, 1).

(a) T = 0.05

p

0.01 0.1 0.2 0.3 0.4 0.5
0.2 T T T F F T
0.3 T T T F F T
0.4 T T T F F T
0.5 T T F F F T
0.7 T T F F F T

α 0.8 T T F F F T
0.9 T F F F F T
1 F F F F F T

(b) T = 0.01, 0.005

p

0.01 0.1 0.2 0.3 0.4 0.5
0.2 T T T F F T
0.3 T T T F F T
0.4 T T T F F T
0.5 T T F-T F F T
0.7 T T F F F T

α 0.8 T T F F F T
0.9 T T F F F T
1 F F F F F T

Figure 8: Validation of Direct Graph in Model 1 (Part
II) via QInferGraph, and β ∈ (0, 1).

QInferGraph is a more consistent and less sensitive to
the change of parameters than its counterpart in the
classical causal inference, even for the classical data.
The proposed approach helps achieve better tradeoff
curves between the two metrics. In addition, for the

p

0.01 0.1 0.2 0.3 0.4 0.5
0.7 T T T T F T

α 0.8 T T T F F T
0.9 T T T F F T
1 F F F F F T

Figure 9: Validation of Latent Graph in Model 1 (Part
II) via classical causal inference (Algorithm 2), and

β ∈ (0, 1).
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Figure 10: Entropy of possible latent confounder Z:
QInferGraph vs the classical InferGraph algorithm

for Model 1 (Part II) with p = 0.2, and mutual
conditional independence threshold T = 0.05.
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Figure 11: Trade-off curve discovered by the classical
LatentSearch and QLatentSearch for the pair in
Model 1 (Part II) with p = 0.2. Each point is the

output of algorithms for a different value of β ∈ (0, 1).

classical InferGraph algorithm, as suggested in [30],
the best hyperparameters are α = 0.8 and T = 0.001;
while for QInferGraph the best hyperparameters in this
setting are α = 0.2 and T = 0.005. As we mentioned
earlier in this model, since QInferGraph consistently
returns a local optima with lower entropy than Infer-
Graph, we need to use a smaller α parameter (α = 0.2)
in QInferGraph. Thus, in the remainder of the paper,
we will use these parameter values.

B. Distinguishing Cause from Effect Using
Observational Data: Tuebingen dataset

Inferring causal relationships from observational data
alone is a challenging task even in the most elemen-
tary form of such a causal discovery problem, i.e., de-
termining whether X causes Y or, alternatively, Y
causes X, given only joint measurements of both vari-
ables. Tuebingen dataset is a benchmark database

that includes more than 100 different cause-effect pairs
selected from various domains (e.g., meteorology, bi-
ology, medicine, engineering, economy, etc.) [31].
Here, we only consider the first 41 pairs of cause-effect
datasets, available at : https://webdav.tuebingen.
mpg.de/cause-effect/, to evaluate the performance
of QInferGraph on real data. According to the website
of Tubingen database, each datafile contains two vari-
ables, where one of them is the cause and the other one
is the effect with the possibility of the existence of a
latent confounder. So, all cause-effect pairs have a form
of a direct/triangle graph, as shown in Figure 12.

Y

Z

X

(a)

Y

Z

X

(b)

Figure 12: Tubingen: Database with cause-effect pairs
of the form (a) or (b).

For example, the first cause-effect pair from Tubingen
database consists of of two variables: altitude and tem-
perature, where the ground truth says altitude causes
temperature. Figure 13 shows a scatter plot for this
case. Note that data was taken at 349 different sta-
tions.

Here, the goal is to decide whether the correlation
between altitude and temperature is only due to a com-
mon cause (latent graph) or one of them causes the
other one (direct/triangle graph). Assume that X is
altitude and Y is temperature. QInferGraph with mu-
tual conditional independence threshold T = 0.05 and
β ∈ (0, 1) returns a Z with entropy 0.644801839 which
is greater than 0.2min{H(X), H(Y )} = 0.1582, where
H(X) = 0.791249247 and H(Y ) = 0.989477143. This
confirms that this is not a case of correlation without
causation, and very likely X and Y are causally related.
Since there is a big gap between the threshold of 0.1582

te
m

pe
ra

tu
re

altitude
Figure 13: First cause-effect pair of data from

Tubingen database: altitude causes temperature.

https://webdav.tuebingen.mpg.de/cause-effect/
https://webdav.tuebingen.mpg.de/cause-effect/
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and the returned entropy of 0.644801839, the decision is
easier. Note that to deal with continuous variables, we
discretized continuous variables with 5 levels for both X
and Y . Also, Figure 14 confirms our observation in sec-
tion IVA regarding finding the optima over a quantum
density matrix rather than over a probability distribu-
tion where we note that the classical approach does not
give any feasible point and thus does not generate any
points in the figure. In fact, searching for (local) optima
over a quantum density matrix provides larger degrees
of freedom thus resulting in improved results. Now, we
confirm this observation for the first 41 pairs of Tubin-
gen data.
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Figure 14: Entropy of possible latent confounder Z:
QInferGraph vs the classical InferGraph algorithm
for the first cause-effect pair of Tubingen database
with mutual conditional independence threshold

T = 0.005 for QInferGraph. Note that for the classical
InferGraph algorithm the minimum obtained mutual
conditional independence I(X;Y |Z) is 0.174265303
and there exist no Z such that I(X;Y |Z) < 0.001.

Also, note that H(X) = 0.791249247 and
H(Y ) = 0.989477143, where X is altitude and Y is

temperature.

a. Results over the first 41 pairs of Tubingen
database. As we discussed in section IVA, for the clas-
sical InferGraph algorithm, as suggested in [30], the
best hyperparameters are α = 0.8 and T = 0.001;
while for QInferGraph the best hyperparameters are
α = 0.2 and T = 0.005. Table II summarizes the re-
sults for QInferGraph and the classical InferGraph al-
gorithm with the above mentioned parameters on Tub-
ingen database. Thus, we see that the proposed ap-
proach helps achieve significantly better accuracy (0.83)
as compared to lower than 50% in the baseline ap-
proach. In addition, the false negative rate of 0.17 in the
proposed approach is significantly lower than the base-
lines which have this rate above 0.5. Thus, we see that
the proposed approach outperforms classical approach
on Tubingen database.

V. EVALUATION ON QUANTUM CAUSAL
SYNTHETIC DATA

Since there is no quantum cause-effect repository to
verify the validity of our proposed algorithm, we put
forward an experimental scheme that can be used to
confront our theoretical framework. To show the effec-
tiveness of the proposed approach in section III, we use
quantum noisy links, where it is validated that the input
before noise, as a latent confounder (hidden source), is
the cause of the noisy outputs.

We first apply our proposed approach on a quantum
(non-classical) model, where mixed entangled quantum
subsystems are used for which subsystems are commu-
nicated over noisy channels (e.g., optical fiber) to create
a coexisting set of quantum systems.

Model 2 (Depolarizing Quantum Channel: Latent
Graph and Direct Graph).
Part I: Latent Graph. Assume that there are real
numbers γ1, γ2, λ1, and λ2 such that γ21 + λ21 = 1 and
γ22 + λ22 = 1. We consider a joint entangled system
(of three qubits) as the mixture of the following pure
density matrices:
{

[(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)][(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)(γ1|0〉+ λ1|1〉)]† q

[(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)][(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)]† 1− q

In other words, the system considered has den-
sity matrix q[(γ1|0〉 + λ1|1〉)(γ1|0〉 + λ1|1〉)(γ1|0〉 +
λ1|1〉)][(γ1|0〉+λ1|1〉)(γ1|0〉+λ1|1〉)(γ1|0〉+λ1|1〉)]†+(1−
q)[(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)(γ2|0〉+ λ2|1〉)][(γ2|0〉+
λ2|1〉)(γ2|0〉 + λ2|1〉)(γ2|0〉 + λ2|1〉)]†. The system is
a mixture of two pure density matrices. This quan-
tum system has entanglement among the three quan-
tum bits. Let the second quantum bit is transmitted
over a quantum depolarizing channel with error prob-
ability p1, and the third quantum bit is transmitted
over a quantum depolarizing channel with error proba-
bility p2. Note that the depolarizing channel with error
probability p has no error with probability 1 − p, and
each of the phase-flip, bit-flip, or the combination of
phase-flip and bit-flip errors with probability p/3 [39].
With this setup, the joint density matrix is given as
ρZXY = qργ1,λ1

ZXY +(1− q)ργ2,λ2

ZXY , where ρ
γ,λ
ZXY is given as

the mixture of the following pure density matrices:


[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)]† (1− p1)(1− p2)
[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)]† (1− p1)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)]† (1− p1)(p2/3)
[(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)]† (1− p1)(p2/3)
[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)]† (p1/3)(1− p2)
[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)]† (p1/3)(p2/3)

[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)]† (p1/3)(p2/3)

[(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(−λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)]† (p1/3)(p2/3)

[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉+ λ|1〉)]† (p1/3)(1− p2)
[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(λ|0〉+ γ|1〉)]† (p1/3)(p2/3)

[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(−λ|0〉+ γ|1〉)]† (p1/3)(p2/3)

[(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(λ|0〉+ γ|1〉)(γ|0〉 − λ|1〉)]† (p1/3)(p2/3)

[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉+ λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉+ λ|1〉)]† (p1/3)(1− p2)
[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(λ|0〉+ γ|1〉)]† (p1/3)(p2/3)

[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(−λ|0〉+ γ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(−λ|0〉+ γ|1〉)]† (p1/3)(p2/3)

[(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉 − λ|1〉)][(γ|0〉+ λ|1〉)(γ|0〉 − λ|1〉)(γ|0〉 − λ|1〉)]† (p1/3)(p2/3)



12

Table II: Performance of QInferGraph vs classical InferGraph on Tubingen database.

Algorithm True Positive False Positive False Negative Accuracy
QInferGraph (α = 0.2, T = 0.005) 0.83 0 0.17 0.83

Classical InferGraph (α = 0.8, T = 0.001) 0.32 0 0.68 0.32
Classical InferGraph (α = 0.7, T = 0.001) 0.49 0 0.51 0.49

p2

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.01 T T T T T T T T T T T
0.1 T T T T T T T T T T T
0.2 T T T T T T T T T T T
0.3 T T T T T T T T T T T
0.4 T T T T T T T T T T T

p1 0.5 T T T T T T T T T T T
0.6 T T T T T T T T T T T
0.7 T T T T T T T T T T T
0.8 T T T T T T T T T T T
0.9 T T T T T T T T T T T
0.99 T T T T T T T T T T T

Figure 15: Validation of Latent Graph in Model 2
(Part I) for α = 0.2, and β ∈ (0, 1) via QInferGraph,

and with the density matrix obtained from
0.6ρ

1/
√
2,1/
√
2

ZXY + 0.4ρ0.6,0.8ZXY via tracing out Z.

We note that X and Y coexist, thus we can find
joint density matrix of X and Y by tracing out Z in
ρZXY . Then, we apply QInferGraph (Algorithm 4) on
ρXY to verify that X and Y are confounded by a la-
tent confounder. For this purpose, we use the same
parameters specification as explained in Model 1 with
α = 0.2, β ∈ (0, 1), T = 0.005, and q = 0.4. Figure
15 summarizes the results , where α = 0.2. T means
that QInferGraph (Algorithm 4) identifies the latent
graph correctly. But, F means that the algorithm fails
to identify the latent graph. The results confirm our
observations that we made in Model 1 (Part I). How-
ever, in this case QInferGraph has a higher performance
quality. For example, for α = 0.2 we have: true positive
rate (recall) = 1, false positive rate (fall-out) = 0, false
negative rate (miss rate) = 0, accuracy = 1.

Part II: Direct Graph. Assume that there are real
numbers γ1, γ2, λ1, and λ2 such that γ21 + λ21 = 1 and
γ22 + λ22 = 1. We consider a joint entangled system (of
two qubits) as the mixture of the following pure density
matrices:

p

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
α 0.2 T T T T T T T T T T T

Figure 16: Validation of Direct Graph in Model 2
(Part II) with joint density matrix
ρXY = 0.4 ∗ ρ0.6,0.8XY + 0.6 ∗ ρ1,0XY .

{
(γ21 |00〉+ γ1λ1|01〉+ γ1λ1|10〉+ λ21|11〉)(γ21 |00〉+ γ1λ1|01〉+ γ1λ1|10〉+ λ21|11〉)† q

(γ22 |00〉+ γ2λ2|01〉+ γ2λ2|10〉+ λ22|11〉)(γ22 |00〉+ γ2λ2|01〉+ γ2λ2|10〉+ λ22|11〉)† 1− q

The system is a mixture of two pure density matri-
ces. This quantum system has entanglement among the
two quantum bits. Let the second quantum bit is trans-
mitted over a quantum depolarizing channel with error
probability p. With this setup, the joint density matrix
is given as ρXY = qργ1,λ1

XY + (1 − q)ργ2,λ2

XY , where ργ,λXY
is given as the mixture of the following pure density
matrices:


(γ2|00〉+ γλ|01〉+ γλ|10〉+ λ2|11〉)(γ2|00〉+ γλ|01〉+ γλ|10〉+ λ2|11〉)† 1− p
(γ2|00〉 − γλ|01〉+ γλ|10〉 − λ2|11〉)(γ2|00〉 − γλ|01〉+ γλ|10〉 − λ2|11〉)† p/3

(γλ|00〉+ γ2|01〉+ λ2|10〉+ γλ|11〉)(γλ|00〉+ γ2|01〉+ λ2|10〉+ γλ|11〉)† p/3

(−γλ|00〉+ γ2|01〉 − λ2|10〉+ γλ|11〉)(−γλ|00〉+ γ2|01〉 − λ2|10〉+ γλ|11〉)† p/3

We note that X and Y coexist in the quantum sys-
tem, and thus the joint density matrix has been ob-
tained. We already know that X is the cause of Y in
this scenario, i.e., X → Y is the corresponding directed
graph. To verify this, we use Algorithm 3 and 4 as we
explained earlier in this model. The results are sum-
marized in Figure 16. T means that QInferGraph (Al-
gorithm 4) identifies the direct graph correctly. But,
F means that the algorithm fails to identify the direct
graph. In all cases the probability of X be in state X1

is q = 0.4.

From a combination of Part I and Part II, we note
that for this setup, there are no false positive or false
negatives. This shows that the choice of hyperparam-
eters is well suited for the problem, and that the pro-
posed framework is efficient in determining if there is a
latent confounder.
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VI. WHY SHOULD WE NOT MAP QUANTUM
TO CLASSICAL DIRECTLY?

Here, we show why classical common entropy ap-
proach do not directly apply to the quantum case. We
emphasize that although a joint density operator (ma-
trix) can be converted to a joint probability distribution
(as explained in Example 1), we lose some quantum in-
formation due to the loss of entanglement. We give an
example that shows converting a joint density matrix
ρXY directly to a joint probability distribution p(X,Y ),
and then applying classical common entropy approach
on p(X,Y ) will not lead to the correct results.

Algorithm 5: Rotational procedure for
computing the joint probability distribution of a

joint density matrix
Input: Joint density matrix of quantum systems X and

Y i.e., ρXY .
Output: Joint probability distribution p(X,Y )

corresponding to the joint density matrix ρXY .
/* Compute eigenvalues and eigenvectors of ρX . */

1 [V1, D1] = eig(ρX);
/* Compute eigenvalues and eigenvectors of ρY . */

2 [V2, D2] = eig(ρY );
/* Rotational procedure */

3 U = V1 ⊗ V2;
4 ρ′XY = U†ρXY U ;
5 return p(X,Y ) as the entries on the main diagonal of

ρ′XY .

Example 1 (Counter Example). Assume the depolar-
izing channel as described in Model 2, Part II. We al-
ready know that X causes Y in this model. To convert
the joint density matrix ρXY , we use a rotational pro-
cedure explained as follows: Assume that ρXY is ro-
tated using a unitary matrix U . Let us say ρXY =
Uρ′XY U

†. So, the joint density matrix ρ′XY is computed
as ρ′XY = U†ρXY U . To compute the unitary matrix U
for a given ρXY we use the eigenspaces of ρX and ρY ,
where ρX = TrY (ρXY ) and ρY = TrX(ρXY ) are com-
puted by tracing out Y and X, respectively. This simple
observation enables us to design a procedure that con-
verts a joint density matrix ρXY to a joint probability
distribution p(X,Y ) in a way that it takes into account
the rotation. This procedure is formally described in Al-

gorithm 5. By converting the joint density matrix ρXY
directly to a joint probability distribution p(X,Y ), us-
ing Algorithm 5, and then applying classical entropic
causal inference, i.e., Algorithm 2 on p(X,Y ) we ob-
tain the results represented in Figure 17 which are op-
posite to the expected results in all cases. This confirms
that classical statistics are not adequate for identifica-
tion of cause–effect relations in quantum systems due to
accessibility of a richer spectrum of causal relations in
quantum scenarios.

p

0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
0.7 F F F F F F F F F F F
0.8 F F F F F F F F F F F

α 0.9 F F F F F F F F F F F
1 F F F F F F F F F F F

Figure 17: Classical Approach to Identify Direct
Graph for Model 2 does not work.

VII. CONCLUSION

This paper provides a new approach for quantum en-
tropic causal inference in the presence of hidden com-
mon causes. As a part of the approach, an iterative
algorithmic solution is provided for the optimization
problem that deals with the trade-off between the en-
tropy of the latent quantum system and the quantum
conditional mutual information of the observed quan-
tum systems. We show that the use of quantum den-
sity matrix helps achieve significantly better tradeoff
even for the classical data. The approach is validated
on quantum noisy links, where the approach detects the
expected causal relation or correlation without causa-
tion. Our experiments on the synthetic and real classi-
cal data confirms that our quantum entropic approach
takes advantage of quantum dependency between ran-
dom variables through density matrices, and as a result
it outperforms its classical counterpart approach.
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Appendix A: Proof of Theorem 1

To prove the theorem, we first write the objective function (L = IQ(X;Y |Z) + βS(Z)) in Equation (2) more
explicitly in terms of the optimization variables ρZ|X,Y as follows:

L = IQ(X;Y |Z) + βS(Z)

= S(XZ) + S(Y Z)− S(Z)− S(XY Z) + βS(Z)

= S(XZ) + S(Y Z)− S(XY Z) + (β − 1)S(Z)

= S(X) + S(Z|X) + S(Y ) + S(Z|Y )− S(XY )− S(Z|X,Y ) + (β − 1)S(Z)

= S(Z|X) + S(Z|Y )− S(Z|X,Y ) + (β − 1)S(Z) + IQ(X;Y )

(A1)

To find the stationary points of the loss function L, we take its first matrix derivative w.r.t. ρZ|X,Y and set it to
zero. Let’s start with the first term of the new loss function L in Equation A1, i.e., S(Z|X) = S(ρZ|X). We have:

∂S(ρZ|X)

∂ρZ|X,Y
=
∂S(ρZ|X)

∂ρZ|X

∂ρZ|X

∂ρZ|X,Y

= (I + log
(
ρZ|X

)
)
∂(TrY ((ρ

1/2
Y |X ⊗ IZ)ρZ|X,Y (ρ

1/2
Y |X ⊗ IZ)))

∂ρZ|X,Y

= (I + log
(
ρZ|X

)
)(I)

= I + log
(
ρZ|X

)
(A2)

Note that in Equation A2, we used matrix calculus as follows: ∂tr(AXB)
∂X = BA, where A and B are not a

function of X. Also, for a joint probability distribution p(X,Y ) we have:
∑
y∈Y p(y|x) = 1. Similarly, we have the

following identity for matrix version of this equation, i.e., TrY (ρY |X) = I. Following similar matrix calculations
for other terms in Equation A1, we obtain:

∂L

∂ρZ|X,Y
= [I + log

(
ρZ|X

)
] + [I + log

(
ρZ|Y

)
]− [I + log

(
ρZ|X,Y

)
] + (β − 1)[I + log(ρZ)] (A3)

By solving ∂L
∂ρZ|X,Y

= 0 from Equation A3, assuming that all density matrices are positive definite7, we obtain:

ρZ|X,Y = exp
(
log
(
ρZ|X

)
+ log

(
ρZ|Y

)
+ (β − 1) log(ρZ)

)
This means a point is a stationary point of the loss function L if and only if it is a stationary point of
QLatentSearch (Algorithm 3).

7 Even though the assumption of positive definiteness may not
always be valid, we can replace ρ with (1−ε)ρ+εI for very small

ε to alleviate the issue in the approach and the algorithm. This
will allow for the existence of the logarithm of the matrices.
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