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Highly entangled multipartite states such as k-uniform (k-UNI) and absolutely maximally entan-
gled (AME) states serve as critical resources in quantum networking and other quantum information
applications. However, there does not yet exist a complete classification of such states, and much
remains unknown about their entanglement structure. Here, we substantially broaden the class of
known k-UNI and AME states by introducing a method for explicitly constructing such states that
combines classical error correcting codes and qudit graph states. This method in fact constitutes
a general recipe for obtaining multipartitite entangled states from classical codes. Furthermore, we
show that at least for a large subset of this new class of k-UNI states, the states are inequivalent
under stochastic local operations and classical communication. This subset is defined by an iterative
procedure for constructing a hierarchy of k-UNI graph states.

I. INTRODUCTION

Multipartite entanglement is at the very heart of quan-
tum information theory. In recent years, significant ef-
fort has been devoted to characterizing the entanglement
properties of multipartite quantum states and construct-
ing new examples of highly entangled states [1–8]. Much
of this effort has focused on special classes of states such
as graph states [9, 10], k-uniform (k-UNI) and absolutely
maximally entangled (AME) states [6, 7, 11, 12], which
are critical resources for measurement-based quantum
computing [13], quantum networking [12, 14, 15], and
quantum error correction [6, 10, 16–19].

Graph states are multipartite stabilizer states in which
each vertex of a given graph represents a qudit, and the
graph adjacency matrix defines the stabilizer generators
[9, 10]. k-UNI states are highly entangled pure states
that have the property that all of their k-qudit reduced
density matrices are maximally mixed [19–23]. That is,
the state |ψ〉 is a k-UNI state if

ρS = TrSc |ψ〉〈ψ| ∝ 1 ∀S ⊂ {1, . . . , n}, |S| ≤ k ,

where Sc denotes the complementary set of S. AME
states correspond to the special case where k = bn/2c,
so that completely mixed states are obtained for any bi-
partition of the n qudits.

In light of the importance of graph and k-UNI states,
it is interesting to consider what states lie at the inter-
section of these two classes. In addition to enabling in-
teresting applications, k-UNI states that admit a graph-
ical description can provide a powerful framework for in-
vestigating the entanglement structure of k-UNI states
more generally. Moreover, the application of graph state
techniques can facilitate finding new examples of k-UNI
states, an endeavor that is generally not straightforward.
So far, the only known systematic method of construct-
ing k-UNI graph states is to start from a k-UNI state
defined in terms of classical error correcting codes and

to Fourier transform this into a graph state. This ap-
proach only yields a limited class of states corresponding
to complete bipartite graphs [6, 11, 12]. Whether or not
a broader class of k-UNI graph states exists and how to
find it has remained unclear (in this regards also see [7]).

In this work, we uncover a large class of entangled
states that are both graph states and k-UNI or AME
states. We do this by finding a general set of constraints
on the graph adjacency matrix that guarantee the re-
sulting state is k-UNI. These constraints allow us to go
well beyond the special case of complete bipartite graphs.
We show that explicit examples of such states can be ob-
tained by constructing the adjacency matrix from classi-
cal error correcting codes. We then focus on a particular
subset of these states that can be generated by applying
an iterative procedure to produce a hierarchy of k-UNI
and AME graph states. We show that at each level of this
iterative process, the resulting state remains k-UNI, but
the states from different levels cannot be converted into
each other using stochastic local operations and classical
communication (SLOCC).

The paper is organized as follows. In Sec. II, we first re-
view the method of constructing k-UNI and AME states
from classical linear codes, then in Sec. III we present
our general method of finding k-UNI graph states. In
Sec. IV, we present the hierarchical graph state proce-
dure. In Sec. V, we show that the generalized method of
constructing k-UNI states from codes is the first level of
this hierarchical procedure. Finally, in Sec. VI we show
the states constructed at different levels of the hierarchy
belong to different SLOCC classes.

II. CONSTRUCTING k-UNI STATES FROM
CLASSICAL CODES

The connection between classical codes and k-UNI
states has been shown to provide a systematic method
of constructing a large set of k-UNI states [5–7]. In this
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method, starting from a suitable classical code, a k-UNI
state of n qudits with local dimension q (q level quan-
tum systems also called qudits), is obtained by forming
an equal superposition of the computational basis states
corresponding to all of the codewords |~ci〉 of the code:

|φn,0〉 =
∑

i=1,...,qk

|~ci〉 =
∑

i=1,...,qk

|c(i)1 , . . . , c(i)n 〉 , (1)

where we use that in the language of coding theory, a
classical linear code encodes messages into a subset of

codewords denoted by the vector ~ci = (c
(i)
1 , . . . , c

(i)
n ) [24,

Chapter 1] (see Appendix A for the explicit definition
and more details). In the corresponding classical codes,
we only consider k ≤ n/2 as we focus on k-UNI states.
The first index in |φn,0〉 indicates the number of qudits
n; the purpose of the second index (here equal to 0) will
become clear later when we extend each of the states in
Eq. (1) to a new family of k-UNI states. Here are some
explicit examples of AME states constructed using the
approach shown in Eq. (1):

|φ2,0〉 =
∑

α=1,...,q

|α, α〉, |φ3,0〉 =
∑

α=1,...,q

|α, α, α〉,

(2)

which are Bell and GHZ states, respectively.
How can we check if a given pure state is k-UNI? For

this, we discuss two equivalent approaches. The first is to
check if all the reduced density matrices for up to k qudits
are maximally mixed. In this case, further information
regarding the code parameters can be used to prove that
the state in Eq. (1) is a k-UNI state (for more details see
[6, 7]). Another approach is based on the structure of the
stabilizer formalism (see Appendix B for an overview of
the stabilizer formalism): It is known that a pure stabi-
lizer state of n qudits is a k-UNI state if and only if, in all
its stabilizer generators and arbitrary products of them,
identity operators appear on at most n−k−1 different qu-
dits (except for the trivial stabilizer operator given by the
tensor product of n identity operators). In this method,
one needs to check all possible products of the stabilizer
generators. In the following, we will make heavy use of
this second method to prove that a given graph state is
k-UNI. Although at first glance this method would seem
to require checking exponentially many stabilizer oper-
ators, in practice it suffices to only check the stabilizer
generators. This is because multiplying stabilizer opera-
tors does not increase the number of identity operators
for the states we consider (more details can be found in
Appendix C 1).

III. GRAPH STATES

Graph states are pure quantum states that are defined
based on a graph. A graph G = (V,Γ) is composed of a
set V of n vertices (each qudit is represented by a vertex),

and a set of weighted edges specified by the adjacency
matrix Γ [9, 10, 25, 26]. Γ is an n× n symmetric matrix
such that Γi,j = 0 if vertices i and j are not connected
and Γi,j > 0 otherwise. The graph state associated with
a given graph G is the +1 eigenstate of the following set
of stabilizer generators [9, 10, 25, 26]:

Si = Xi

∏
j

(Zj)
Γi,j , 1 ≤ i ≤ n ,

where the operators X and Z are generalized Pauli oper-
ators acting on qudits with q levels. X and Z are unitary,
traceless, and they satisfy the conditions Xq = Zq = 1

and ZX = ωXZ, where ω = ei 2π/q is a q-th root of unity
(see Appendix B).

We first briefly describe how we can convert the k-UNI
state |φn,0〉 in Eq. (1) into a graph state. It has been
shown in [7] that by performing local Fourier transforms
Fi =

∑
j ω

ij |j〉〈i| on all the last n−k qudits of the k-UNI

state |φn,0〉 =
∑
i |~ci〉, the resulting state is a graph state

corresponding to a complete bipartite graph. An example
of such a graph is depicted in part (a) of Table I. In this
case, the adjacency matrix is

Γ(n,0) =

[
0 −A
−AT 0

]
. (3)

The matrix A is directly related to the codewords in
Eq. (1). In particular, these codewords are obtained
from ~ci = (~xiGk×n) = (~xi, ~xiA), where ~xi is a vec-
tor of size k, Gk×n = [1k|A], and A is a matrix of
size k × (n − k) that generates codewords. Note that,
for a given classical code, several techniques are known
for finding a suitable A matrix [24, Chapter 11] [6, 7]
(also see Appendix A). As an example, we can consider
the 2-UNI state |φ6,0〉 (an explicit expression is given
in Eq. (11) below). In this state the codewords are
~ci = (α, β, α+β, α+2β, α+3β, α+4β), where ~xi = (α, β)
and

A =

[
1 1 1 1
1 2 3 4

]
.

Instead of starting from the k-UNI state in Eq. (1)
and converting it into a graph state, we could alterna-
tively start from a graph state with an adjacency matrix
as in Eq. (3) and ask what properties must A satisfy
in order for this graph state to be k-UNI? The answer
is that every submatrix of A must be nonsingular (see
Appendix D for details). It is generally challenging to
find A matrices that satisfy this property. However, in
the theory of classical error correcting codes, there is a
systematic method that allows us to find them for some
bounds (see Appendix A for more details), and so we can
use these matrices to create k-UNI graph states.

This alternative perspective in which we start from a
graph and ask what properties must the adjacency ma-
trix satisfy in order to obtain a k-UNI state allows us to
uncover a larger class of k-UNI states. This larger class
is summarized by the following theorem:
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Theorem 1. A graph state of n qudits with local dimen-
sion q defined by the adjacency matrix

Γn =

[
0 −A
−AT B

]
, (4)

where B is an arbitrary matrix and all submatrices of A
are nonsingular, is a k-UNI state.

This theorem says that for every k-UNI graph state
defined by the adjacency matrix Γ(n,0) from Eq. (3), there
is an infinite family of additional k-UNI states that can
be obtained by replacing the lower-right block of zeros
by an arbitrary matrix B in the adjacency matrix. In
Appendix D, we prove Theorem 1 by showing that any
product of the stabilizer generators defined by Γn has
identity operators on at most n− k− 1 qudits regardless
of what B is, so long as all the submatrices of A are
nonsingular. Although Theorem 1 establishes sufficient
conditions for a state to be k-UNI, we strongly suspect
that the requirement that A contains only nonsingular
submatrices is also necessary for k-uniformity. We leave
a rigorous proof of this to future work.

Given this new class of k-UNI states, a natural question
to ask is whether all these states are locally equivalent or
not. While this question is hard to answer for all possi-
ble choices of B, we can obtain a definite answer at least
for a large set of B’s that exhibit a certain hierarchical
structure. In what follows, we first describe this class of
“hierarchical graph states” and show how these states can
be obtained from the k-UNI states of Eq. (1) by apply-
ing certain operators. We then demonstrate that these
hierarchical graph states are inequivalent under SLOCC.

IV. HIERARCHICAL GRAPH STATES

Now we are ready to define hierarchical graph states in
which we consider particular forms of B in the adjacency
matrix Γn, Eq. (4). Here, we will show that by following
a recursive pattern, we can iteratively construct a series
of different graph states that are all k-UNI states of n
qudits. With each iteration, a new complete bipartite
subgraph is included in the graph, and the number of
edges increases. Starting from a given k-UNI state |φn,0〉,
we denote the new graph states obtained in each iteration
as follows:

|φn,n?〉, |φn,n?,n??〉, |φn,n?,n??,n???〉, . . . (5)

where the total number of qudits n remains fixed. The
number of ?’s indicates the level of the hierarchy, while
n?, n??, ... are the numbers of qudits involved in the
new bipartite subgraph that forms at that iteration. In
Table I we present three levels of iteration. The qudits
involved in the new bipartite subgraphs at the first and
second iterations are shown in blue and red, respectively.

The first iteration yields the k-UNI state |φn,n?〉. This
protocol proceeds as follows: We start from the adja-
cency matrix Γ(n,0) (Eq. (3)) containing four blocks, two

of which are matrices −A and −AT , and the remaining
blocks are 0’s. In the first iteration, we replace part of
one zero-block by the new adjacency submatrix Γ(n?,0).
More explicitly, we take the adjacency matrices:

Γ(n,0) =

[
0 −A
−AT 0

]
, and Γ(n?,0) =

[
0 −A?

−A?T 0

]
,

and construct the following new adjacency matrix

Γ(n,n?) =

 0 −A

−AT 0 0

0 Γ(n?,0)



=


0 −A

−AT
0 0

0
0 −A?

−A?T 0

 .
(6)

This yields the state |φn,n?〉, which is a k-UNI state of

n qudits. Note that the size of the matrix Γ(n,0) is n ×
n while Γ(n?,0) is a n? × n? matrix, and here we have
assumed that n? ≤ n− k. In the case of n? = n− k, the
matrix Γ(n,n?) can simply be written as

Γ(n,n?) =

[
0 −A
−AT Γ(n?,0)

]

=

 0 −A

−AT 0 −A?
−A?T 0

 .
In the corresponding graph, the number of edges in-
creases, such that a new complete bipartite graph with n?

vertices forms inside the original graph state, as shown in
part (b) of Table I. This procedure is described in further
detail using the stabilizer formalism in Appendix C 2.

This procedure continues such that at every iteration,
we replace some of the zeros of the last diagonal block of
the previous step with a new adjacency submatrix. To
continue our example from above, in the second iteration,
in order to construct the k-UNI state |φn,n?,n??〉, we take

the adjacency matrix Γ(n??,0) =

[
0 −A??

−A??T 0

]
that

corresponds to the k??-UNI graph state |φn??,0〉 and insert
this into the adjacency matrix from the first iteration:

Γ(n,n?,n??) =


0 −A

−AT
0 0

0

0 −A?

−A?T 0 0

0 Γ(n??,0)



=


0 −A

−AT

0 0

0

0 −A?

−A?T
0 0

0
0 −A??

−A??T 0

 .

(7)
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The above adjacency matrix represents the state
|φn,n?,n??〉, and the associated graph is shown in part
(c) of Table I. This procedure also applies equally well
to higher orders; here we focus on the 0th and 1st orders
of the hierarchy only for the sake of simplicity. There-
fore, iterating this process further, we can in the next
step construct the state |φn,n?,n??,n???〉. And in general,
by continuing to insert smaller and smaller submatrices
into the adjacency matrix:

Γ(n,n?,n??,... ) =

0 −A

−AT

0 0

0

0 −A?

−A?T

0 0

0

. . .

0 −A??···?
−A??···?T 0


,

(8)

each time we add more edges while preserving the number
of vertices/qudits.

V. GENERALIZING THE METHOD OF
CONSTRUCTING STATES FROM CODES

Next, we show that the state obtained after the first
iteration of the hierarchical procedure described in the
previous section, |φn,n?〉, can also be obtained directly
from Eq. (1) by applying certain operators to it. This
observation allows us to show that some of the states in
the hierarchy are inequivalent under SLOCC. We can ad-
ditionally view the result of this section as a more general
method for constructing k-UNI and AME states directly
from classical codes compared to the method summarized

by Eq. (1). Here, the codewords act as a more general
resource, rather than simply entering into an equal su-
perposition as in Eq. (1). In the following we discuss this
in more detail and provide closed-form expressions for
these new k-UNI states.

To find the closed-form expression of the state |φn,n?〉,
we first introduce operator On? based on its action on a
given product state |i1, . . . , in?〉:

On? |i1, . . . , in?〉 :=

Z−i1 ⊗ · · · ⊗ Z−ik? ⊗Xik?+1 ⊗ · · · ⊗Xin? |φn?,0〉 ,
(9)

where |φn?,0〉 is a k?-UNI state of n? qudits as in Eq. (1).
Note that, in this operation, the number of Z operators
is equal to k?, while the number of X operators is n?−k?.

Now we use operator On? to present the general
method of constructing k-UNI states |φn,n?≥2〉 from clas-
sical codes.

Proposition 1. Consider a k-UNI state |φn,0〉 con-
structed from a classical linear code according to Eq. (1),
and the operator On? based on the definition given in
Eq. (9). The pure state

|φn,n?〉 := 1
(n−n?) ⊗On? |φn,0〉 , (10)

is a k-UNI state for any 2 ≤ n? ≤ n− k.

In this context, we can now view the indices of the state
|φn,n?〉 as follows: The first index indicates the number
of qudits, while the second index indicates the number
of non-trivial local operators acting on the state. In the
case where n? = 0, the state is given by a superposition
of all the codewords with phases all equal to +1 as in
Eq. (1). As an example, we present an explicit formula
for constructing 2-UNI states |φ6,2〉, and |φ6,3〉 from a
2-UNI state |φ6,0〉 constructed from classical codes:

|φ6,0〉 =
∑
α,β

|α, β, α+ β, α+ 2β, α+ 3β, α+ 4β〉,

|φ6,2〉 = 1
(4) ⊗O2 |φ6,0〉 =

∑
α,β

|α, β, α+ β, α+ 2β〉 ⊗ Z−(α+3β) ⊗X(α+4β) |φ2,0〉,

|φ6,3〉 = 1
(3) ⊗O3 |φ6,0〉 =

∑
α,β

|α, β, α+ β〉 ⊗ Z−(α+2β) ⊗X(α+3β) ⊗X(α+4β) |φ3,0〉,

,

(11)

where the local dimension is q = 5, and the states |φ2,0〉,
and |φ3,0〉 are given in Eq. (2).

In Appendix C 2 we provide a full stabilizer descrip-
tion of the state |φn,n?〉 and then show this state is
local-unitary-equivalent to the graph state obtained from
Γ(n,n?).

VI. INEQUIVALENCE UNDER SLOCC

Now we show that the states obtained at the first two
levels of the iteratively constructed hierarchy belong to
different SLOCC classes. We first consider k-UNI states
with k < n/2 and show that two states constructed at
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the first level of the hierarchy belong to different SLOCC
classes, as summarized by the following proposition:

Proposition 2. Two k-UNI states |φn,0〉 and |φn,n?〉 de-
fined by Eq. (10) belong to different SLOCC classes.

We first note that the Schmidt-rank vector of a multi-
partite pure state cannot be modified by SLOCC proto-
cols [27]. Also we know that for the state |φn,0〉 and any
subset S ⊂ {1, . . . , n}, the rank of the reduced density
matrix satisfies [6, 7]

rank(ρS) ≤ qk , (12)

where ρS = TrSc |φn,0〉〈φn,0|. In order to prove proposi-
tion 2, we show in Appendix E that for specific subsets
of size |S| = k+ k? ≤ n/2, the reductions are maximally
mixed, where k lies in the support of the first n − n?

qudits, and k? lies in the last n? qudits.
Next we discuss the AME states that are special among

multipartite entangled states and particularly interesting
to study in terms of local equivalence classes. The long-
standing question of whether or not it is possible for two
AME states to belong to two distinct SLOCC classes was
settled in Ref. [8], although no explicit method of con-
struction were provided. Here, we show this explicitly for
two large sets of AME states constructed using the iter-
ative procedure we introduced: One is the state |φn,0〉
from Eq. (1) that is constructed from classical codes,
while the second state is |φn,n?=2〉, which is obtained at
the first level of the hierarchy. In both cases, we assume
that the number of qudits n is odd, in which case the
following holds:

Proposition 3. For any odd number of qudits n, the fol-
lowing two AME states, |φn,0〉 and |φn,2〉, are not SLOCC
equivalent.

We prove this proposition in Appendix F. We have not
been able to prove the above proposition for all AME
states constructed at different levels of the hierarchy (see
also Corollary 1. in [8]). We leave this question open for
now.

VII. CONCLUSION

In this work, we presented a general method for con-
structing highly entangled k-UNI and AME states using

the stabilizer formalism in conjunction with classical er-
ror correcting codes. This method significantly expands
the set of known k-UNI and AME states. We further
showed that a special subset of this new class of en-
tangled states can be obtained from an iterative proce-
dure that produces a hierarchy of k-UNI graph states.
For the first two levels of the hierarchy, we showed that
while the states share the same number of qudits and
the same k-UNI property, they cannot be converted into
each other by means of SLOCC operations. We also pre-
sented new sets of AME states that belong to different
SLOCC and, equivalently, LU classes. These results con-
stitute a general approach to constructing new examples
of k-UNI and AME states that admit graphical represen-
tations, providing further instances of these important
resource states and an opportunity to shed more light
on the entanglement structure of these highly entangled
multipartite states. Although we have only proven that
certain conditions on the underlying classical codes are
sufficient for k-uniformity, we anticipate that future work
will demonstrate rigorously that these conditions are also
necessary.
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Appendix A: Explicit definition of classical linear codes

In general, a classical linear error-correcting code is denoted by [n, k, dH ]q, when it encodes qk messages into
codewords living in a larger space of dimension qn, all having Hamming distance at least dH . Linear codes are a
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k-UNI state Adjacency matrix Graph state

(a) |φn,0〉 Γ(n,0) =

[
0 −A
−AT 0

]

1 2 3

k + 1 k + 2 n

…
n − 1

(b) |φn,n?〉 Γ(n,n?) =


0 −A

−AT

0 0

0
0 −A?

−A?T 0



…

1 2 3

k + 1 k + 2
nn − 1

A complete bipartite graph

 with  partiesn⋆

(c) |φn,n?,n??〉 Γ(n,n?,n??) =


0 −A

−AT

0 0

0

0 −A?

−A?T
0 0

0
0 −A??

−A??T 0



A complete bipartite graph

 with  partiesn⋆

A complete bipartite graph

 with  partiesn⋆⋆

1 2 3

k + 1 k + 2
nn − 1

TABLE I: Different levels of the hierarchical graph construction that yields k-UNI graph states. (a) State, adjacency matrix,
and graph obtained directly from a classical code. (b) The k-UNI graph state obtained at the first level of the hierarchy. (c)
The k-UNI graph state obtained at the second level of the hierarchy. In the first and second levels of the hierarchy, the blue
part of the graph contains n? qudits, and the red part contains n?? qudits.

special class of codes whose injective map from the set of messages to the set of codewords is linear and defined over
a finite field GF (q) (for the motivation for using finite fields see [24, Chapter 3]). Codewords of a linear code are
constructed by taking linear combinations of the rows of a matrix called the generator matrix Gk×n. For a given
vector ~xi, a codeword can be written as ~ci = ~xiGk×n. A generator matrix can always be written in the standard form

Gk×n = [1k|A] , (A1)

where 1k is a k × k identity matrix, and A is a k × (n − k) matrix with elements in GF (q). Every linear code
C = [n, k, dH ]q has a dual code C⊥ defined such that its codewords are orthogonal to all the codewords of the original
code with respect to the standard Euclidean inner product of the finite field [24, Chapter 1]. The generator matrix of
the dual code is the so-called parity check matrix H. It satisfies GHT = 0.



7

A k-UNI state |φn,0〉, Eq. (1), can be constructed by taking a superposition of the computational basis states
corresponding to all of the codewords of a linear code C such that it and its dual C⊥ have a minimum distance of at
least k + 1. Using Eq. (1), we have

|φn,0〉 =
∑
i

|~ci〉 =
∑
i

|~xiGk×n〉 =
∑
i

|~xi, ~xiA〉 , (A2)

Note that the linear code C with a given matrix A is an MDS (maximum distance separable) code if and only if
every square submatrix of A is nonsingular [24, Chapter 11], [28]. The MDS codes are those linear codes that achieve
maximum possible minimum Hamming distance [28] [24, Chapter 11]:

dH ≤ n− k + 1 . (A3)

Now let us discuss how to construct suitable A matrices. For this, we first need to introduce the concept of
Singleton arrays [28, 29][24, chapter 11]. Any finite field GF (q), with q a power of a prime number, contains at least
one primitive element [24, chapter 4]. An element γ ∈ GF (q) is called primitive if all the nonzero elements of GF (q)
can be written as some integer power of γ. Given any such primitive element γ, the Singleton array of size q is defined
as

Sq :=

1 1 1 . . . 1 1 1
1 a1 a2 . . . aq−3 aq−2

1 a2 a3 . . . aq−2

...
...

... . .
.

1 aq−3 aq−2

1 aq−2

1

, (A4)

with

ai :=
1

1− γi
. (A5)

It follows that by taking rectangular submatrices of Sq, it is hence possible to construct proper A matrices [24,
chapter 11]. All one has to do is to take a power of a prime q sufficiently large such that Sq contains a submatrix of
the required size, and then take this as the matrix A in Theorem 1.

As an example, let us consider the case q = 5. Taking γ = 3, which is a primitive element in GF (5) = {0, 1, 2, 3, 4}
mod (5), we find

a1 =
1

1− 3
=

1

3
= 2 (A6)

a2 =
1

1− 9
=

1

2
= 3 (A7)

a3 =
1

1− 27
=

1

4
= 4 , (A8)

and obtain

S5 =

1 1 1 1 1
1 2 3 4
1 3 4
1 4
1

. (A9)

The biggest submatrix has size 3× 3. Hence, taking

A3×3 =

 1 1 1
1 2 3
1 3 4

 , (A10)

we can construct a matrix A, and the resulting AME state can precisely be constructed using the method discussed
in Theorem 1. In the Appendix of Ref. [6], more details on the explicit construction of Singleton arrays are available.
We also note that the main conjuncture for the MDS codes emphasise that this is the method of constructing A
matrices for the following interval [28–30]:

n =

{
q + 2 for k = 3and k = q − 1 both with q even

q + 1 in all other cases
. (A11)
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Appendix B: Stabilizer formalism

The stabilizer formalism is a useful tool in different branches of quantum information science like quantum error
correcting codes [6, 19, 31], one-time or cluster states [13], and graph states [9]. We first recall the definition of the
generalized Pauli operators acting on a q-dimensional Hilbert space:

X|j〉 = |j + 1 mod q〉,
Z|j〉 = ωj |j〉 ,

where ω := ei 2π/q is the q-th root of unity. X and Z are unitary, traceless, and they satisfy the conditions Xq = Zq = 1

and ZX = ωXZ. For a collection of n qudits, we shall use subscripts to identify the corresponding Pauli operators.
For example, Zi and Xi operate on the space of i-th qudit. Operators of the form

ωλXw1
1 Z

w′1
1 ⊗ · · · ⊗Xwn

n Z
w′n
n , (B1)

are called Pauli products, where λ,wi, and w′i ∈ Zq for all i ∈ {1, . . . n}. For a given number of qudits n, the collection
of all possible Pauli products (B1) form a group called the Pauli group Pn.

Now we are ready to define the stabilizer formalism. For a given state |ψ〉 of n qudits, the element S ∈ Pn is called
a stabilizer operator of a state if it leaves the state invariant, i.e. S|ψ〉 = |ψ〉. The set of all stabilizer operators of a
state |ψ〉 is denoted by S|ψ〉. If |S|ψ〉| = qn, the state |ψ〉 is called a stabilizer state, and its density matrix has the
following representation: [32]

|ψ〉〈ψ| = 1

qn

∑
S∈S|ψ〉

S . (B2)

Each stabilizer state has exactly n independent and commuting stabilizers, called stabilizer generators, Si ∈ S|ψ〉,
such that any operator S ∈ S|ψ〉 is of the form

S = Sw1
1 · · ·Swnn , (B3)

for some choice of wi ∈ Zq, i ∈ {1, . . . n}.
For a stabilizer state, there is a straightforward method to calculate the form of a reduced density matrix ρC .

Consider any subsystem C ⊂ {1, . . . , n} of n qudits and an element of the Pauli group S ∈ Pn. By S|C we denote

the restriction of the operator S to the subsystem C. For example, the operator S = X1 ⊗ X2Z
2
2 restricted to the

subsystem {2} ⊂ {1, 2} has the form S|{2} = X2Z
2
2 . Using Eq. (B2) and the fact that Pauli operators Xxi

i Z
zi
i are

traceless except when xi = zi = 0, one can show the following:

Proposition 4. Consider a stabilizer state |ψ〉 of n qudits with local dimension q and the stabilizer operators S|ψ〉 ⊂
Pn. Consider any subsystem C ⊂ {1, . . . , n} of the n qudits and its complementary subsystem Cc = [n]/C, where
[n] = {1, . . . , n}. The reduced density matrix ρC has the following form:

ρC = TrCc |ψ〉〈ψ| ∝ TrCc
∑

S∈S|ψ〉
S|Cc=1⊗|C

c|

S .

In particular, ρC is maximally mixed, i.e. ρC ∝ 1, if and only if for any S ∈ S|ψ〉, S|Cc = 1
⊗|Cc| implies S = 1

⊗n.

Observe that the following corollary is an immediate consequence of the above proposition, because the only
stabilizer operators S ∈ S|ψ〉 that contribute after the partial trace are those that have identity operators acting on
all qudits belonging to the complementary set Cc (see also [33]).

Corollary 1. A pure stabilizer state of n qudits is a k-UNI state if and only if in its stabilizer operators the identity
matrix appears at most on n− k − 1 different qudits. We note that there is one stabilizer operator that is formed by
tensoring n identity matrices.

Appendix C: Stabilizer formalism of the k-UNI states

1. The states obtained from classical codes

Now we discuss the stabilizer formalism of the k-UNI states |φn,0〉 given in Eq. (1). Remember that, given a classical
linear code with codewords ~ci for i ∈ {1, . . . , n}, it is possible to construct a k-UNI state |φn,0〉. The codewords can
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be obtained from ~ci = ~xiGk×n where Gk×n = [1k|A] (see Appendix A). Denoting the matrix elements of A by ai,j ,
it is straightforward to see that for q prime, the stabilizer generators of state |φn,0〉 have the following form (see also
[6] and [7]):

S|φn,0〉 :=


⊗i−1

j=1 1⊗X
⊗k

j=i+1 1
⊗n−k

j=1 X
ai,j 1 ≤ i ≤ k

⊗k
j=1 Z

−aj,i
⊗i−1

j=1 1⊗ Z
⊗n

j=i+1 1 1 < i ≤ n− k
. (C1)

If one performs a local Fourier transform on all the last n− k qudits, mapping Z operators into X operators and vice
versa, the stabilizer generators become

S|φn,0〉 :=


⊗i−1

j=1 1⊗X
⊗k

j=i+1 1
⊗n−k

j=1 Z
−ai,j 1 ≤ i ≤ k

⊗k
j=1 Z

−aj,i
⊗i−1

j=1 1⊗X
⊗n

j=i+1 1 1 < i ≤ n− k
. (C2)

In this case, the resulting state is a graph state corresponding to a complete bipartite graph with the following set of
stabilizer generators:

S
|φn,0〉
i = Xi

∏
j

(Zj)
Γ
(n,0)
i,j , 1 ≤ i ≤ n , (C3)

where (see Eq. (3))

Γ(n,0) =

[
0 −A
−AT 0

]
. (C4)

One method to check for k-uniformity is based on the stabilizer formalism. For this, as we discussed at the end
of section II, one can check if in all the stabilizer generators and arbitrary products of them, identity operators
appear on at most n− k − 1 different qudits. In order to check this, we note that every row of the adjacency matrix
Γ(n,0) corresponds to one of the stabilizer generators. It is easy to check that identity operators appear on at most
n−k− 1 different qudits for each of the stabilizer generators. Moreover, as every square submatrix of the A matrix is
nonsingular, it follows that any subset of up to k column vectors of Γ(n,0) is linearly independent (for a proof see [24,
Chapter 1] [6]). Due to this linear independence, we can conclude that multiplying stabilizer generators does increase
the number of identity operators.

2. The states constructed from the general method

Rather than simply taking the equally weighted superposition of the codewords, we showed in the main text how to
generalise the method and construct k-UNI states |φn,n?〉 by applying operators On? . This approach provides explicit
closed form expressions for the states. In this appendix, we show that the state |φn,n?〉, Eq. (10), corresponds to the
first level of the hierarchical construction presented in part (b) of Table I. To do this, we first recall Eq. (10):

|φn,n?〉 = 1
(n−n?) ⊗On? |φn,0〉

=
∑
i

|c(i)1 , . . . , c
(i)
n−n?〉 ⊗ Z

−c(i)
n−(n?−1) ⊗ · · · ⊗ Z−c

(i)

n−(n?−k?) ⊗Xc
(i)

n−(n?−k?)+1 ⊗ · · · ⊗Xc(i)n |φn?,0〉 ,
(C5)

where |φn?,0〉 is a k?-UNI state, and in this case, ~cj = (~x Gk?,n?) = (~xj , ~xj A
?), and ~x is a vector of size k?. A given

state |φn,n?〉 constructed using this method is the common eigenstate with eigenvalue +1 with respect to each of the

following stabilizer generators S
|φn,n? 〉
i :

⊗i−1
j=1 1⊗X

⊗k
j=i+1 1

⊗n−k−n?
j=1 Xai,j

⊗n−k−n?+k?

j=n−k−n?+1 Z
−ai,j

⊗n
j=n−k−n?+k?+1X

ai,j 1 ≤ i ≤ k

⊗k
j=1 Z

−aj,(i−k)
⊗i−1

j=k+1 1⊗ Z
⊗n

j=i+1 1 k + 1 < i ≤ n− n?

⊗k
j=1 Z

−aj,(i−k)
⊗i−1

j=k+1 1⊗X
⊗n−n?+k?

j=i+1 1
⊗n?−k?

j=1 Xα(i−n+n?),j n− n? + 1 ≤ i ≤ n− n? + k?

⊗k
j=1 Z

−aj,(i−k)
⊗n−n?

j=k+1 1
⊗k?

j=1 Z
−αj,(i−n+n?−k?)

⊗i−1
j=n−n?+k?+1 1⊗ Z

⊗n
j=i+1 1 n− n? + k? + 1 ≤ i ≤ n

,

(C6)
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where matrix elements of A? are denoted by αi,j . By performing local Fourier transforms F on the last n− k qudits,
except the qudits in the interval (n− n?, . . . , n− n? + k? + 1), the stabilizer generators can be converted into graph
state form:

S
|φn,n? 〉
i = Xi

∏
j

(Zj)
Γ
(n,n?)
i,j , 1 ≤ i ≤ n , (C7)

where

Γ(n,n?) =

 0 −A

−AT 0 −A?
−A?T 0

 . (C8)

We see that the graph representation of the state |φn,n?〉 is the same as what is shown in Table I, part (b).
Note that the stabilizer generators (C7) are all linearly independent; hence in accordance with the discussion in

Appendix B about expressing the density matrices of stabilizer states in terms of stabilizer operators, we conclude
that |φn,0〉〈φn,0| is locally equivalent to

ρ =
1

nq

∑
(wi,...,wn)∈Znq

n∏
i=1

(
Xi

∏
j

(Zj)
Γ
(n,0)
i,j

)wi
. (C9)

Similarly, |φn,n?〉〈φn,n? | is locally equivalent to

σ =
1

nq

∑
(wi,...,wn)∈Znq

n∏
i=1

(
Xi

∏
j

(Zj)
Γ
(n,n?)
i,j

)wi
. (C10)

In the above equations, ρ and σ are local unitary equivalent to the density matrices |φn,0〉〈φn,0|, and |φn,n?〉〈φn,n? |
respectively, as we performed local Fourier gates to bring the states into graph form.

Appendix D: Proof of Theorem 1

Here we give the proof of Theorem 1. We first discuss the structure of the stabilizer generators of k-UNI states in
more detail. Recall from Appendix C 1 that the stabilizer generators of state |φn,0〉 are formed using codewords ~ci
and the matrix A, which has the property that every square submatrix is nonsingular.

Lemma 2. If every square submatrix of A is nonsingular, any linear combination of t rows has at most t−1 vanishing
elements.

Proof. Consider any linear combination of t rows of matrix A with the matrix elements ai,j :

~v :=
( t∑
`=1

wi`ai1,1 , . . . ,
t∑
`=1

wi`ai1,n

)
, (D1)

where wi1 , . . . , wit ∈ GF (q) are non-vanishing coefficients. Suppose that the corresponding vector ~v has at least t
vanishing elements indexed by j1, . . . , jt. This is equivalent to the statement that matrix A restricted to the square
t× t matrix formed from the elements with row indices i1, . . . , it and column indices j1, . . . , jt is singular. This holds
regardless of the number t and choice of indices j1, . . . , jt and i1, . . . , it. Hence, we conclude that for a matrix A
for which every square submatrix of A is nonsingular, any linear combination of t rows has at most t − 1 vanishing
elements.

Before we show that the state described in Theorem 1 is a k-UNI state, we first prove a Lemma about the stabilizer
operators of the k-UNI state |φn,0〉:

Lemma 3. Suppose that the Pauli strings S1, S2, . . . , Sn (Eq. (C3)) are stabilizer generators of the k-UNI state |φn,0〉.
Therefore for any nonzero multi-index (w1, . . . , wn) ∈ Znq the product,

S|φn,0〉 = Sw1
1 · · ·Swnn =

n∏
i=1

(
Xi

∏
j

(Zj)
Γ
(n,0)
i,j

)wi
, (D2)

has identity operators acting on at most n− k − 1 different qudits.
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Proof. As we discussed in Appendix C 1, the generators of the stabilizer formalism of the state |φn,0〉 are equivalent
to

Si = Xi

∑
j

(Zj)
Γ
(n,0)
i,j , (D3)

for i = {1, . . . , n}, and

Γ(n,0) =

[
0 −A
−AT 0

]
. (D4)

All of the stabilizer operators can be expressed as S|φn,0〉 = Sw1
1 · · ·Swnn , where w1, . . . , wn ∈ Zq. Here we want to

show that the number of the identity matrices in S is at most n− k − 1.
Consider any non-zero multi-index (w1, . . . , wn) ∈ Znq . Since (w1, . . . , wn) 6= 0, there are two possibilities, either

(w1, . . . , wk) 6= 0 or (wk+1, . . . , wn) 6= 0 (or both). Firstly, suppose that (w1, . . . , wk) 6= 0, and denote by t the
number of non-vanishing elements in the tuple (w1, . . . , wk), for example, in (1, . . . , 1︸ ︷︷ ︸

t

, 0, . . . , 0︸ ︷︷ ︸
k−t

) the first t elements are

non-vanishing. In that case, the operators Xi will appear on at least t positions out of the first k positions in

k∏
i=1

(
Xi

∑
j

(Zj)
Γ
(n,0)
i,j

)wi
. (D5)

Recall that the form of the matrix Γ(n,0) is related to the matrix A by Eq. (C4). Since the matrix A is nonsingular,
the operators Zi will appear on at least n− k − t+ 1 positions out of the last n− k positions in Eq. (D5). Note that
in

n∏
i=k+1

(
Xi

∑
j

(Zj)
Γ
(n,0)
i,j

)wi
, (D6)

there are no Xi operators on the first k positions and Zi operators on the last n − k positions. Now we check the
number of identity matrices in Eq. (D2). Obviously, (D2)=(D5)·(D6), and hence the operator in Eq. (D2) has non-
identity elements on at least t positions out of the first k positions, and on at least n− k− t+ 1 positions among the
last n− k positions. In total, the number of non-identity elements in Eq. (D2) is greater than or equal to n− k + 1.
Note that n− k + 1 > k + 1.

Secondly, assume that (wk+1, . . . , wn) 6= 0 and denote by t the number of non-vanishing elements in the tuple
(wk+1, . . . , wn). Similarly to the previous calculations, one may conclude that the number of non-identity elements
in Eq. (D2) on the first k positions is greater than or equal to k − t + 1, while the number of non-identity elements
in Eq. (D2) on the last n− k positions is greater than or equal to t. In total, the number of non-identity elements in
Eq. (D2) is greater than or equal to k + 1, which proves the statement.

We are now ready to prove Theorem 1. For this we use Lemma 3 and show that the number of identity matrices
in the stabilizer operators corresponding to the state |φ〉 described in the theorem, i.e.,

S|φ〉 = Sw1
1 · · ·Swnn =

n∏
i=1

(
Xi

∑
j

(Zj)
Γni,j

)wi
, (D7)

with (recall Eq. (4))

Γn =

[
0 −A
−AT B

]
, (D8)

is at most n− k − 1.

Lemma 4. The state |φ〉 corresponding to the adjacency matrix Γn is k-UNI, because for any nonzero multi-index
(w1, . . . , wn) ∈ Znq , the combination of Pauli strings

n∏
i=1

(
Xi

∑
j

(Zj)
Γni,j

)wi
, (D9)

has identity elements acting on at most n− k − 1 different qudits.
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Proof. Consider the nonzero multi-index (w1, . . . , wn) ∈ Znq . Similarly as in the proof of Lemma 3, we shall consider
two cases, either (wk+1, . . . , wn) = 0 and hence (w1, . . . , wk) 6= 0, or (wk+1, . . . , wn) 6= 0.

In the first case, the proof absolutely agrees with the proof of Lemma 3, since Γni,j ≡ Γ
(n,0)
i,j for i ≤ k. Consider now

the second case, i.e., suppose that (wk+1, . . . , wn) 6= 0, and denote by t the number of non-vanishing elements in the
tuple (wk+1, . . . , wn). Note that the operators Xi will appear on at least t positions out of the last n− k positions in

n∏
i=k+1

(
Xi

∑
j

(Zj)
Γni,j

)wi
. (D10)

Note that the matrix Γni,j ≡ Γ
(n,0)
i,j for all j ≤ k, and it is related to the matrix A by (8). Since the matrix A is

nonsingular, the operators Zi will appear on at least k− t+ 1 positions out of the first k positions in Eq. (D10). Note
that in

k∏
i=1

(
Xi

∑
j

(Zj)
Γni,j

)wi
, (D11)

there are no Zi operators on the first k positions and Xi operators on the last n − k positions. Obviously,
(D9)=(D10)·(D11), and hence the operator Eq. (D9) has non-identity elements on at least k − t+ 1 positions out of
the first k positions, and on at least t positions among the last n− k positions. In total, the number of non-identity
elements in Eq. (D9) is greater than or equal to k + 1, which finishes the proof.

Note that the proof is valid for the adjacency matrix of the form

Γn =

[
0 −A
−AT B

]
, (D12)

where the only conditions we considered are that A is a nonsingular matrix, and B is an arbitrary adjacency matrix.
But in this paper, we focus on the hierarchical structure, therefore we choose a specific form for the B matrix. For
example, in the first level of iteration we have

B =

 0 0

0
0 −A?

−A?T 0

 , (D13)

and in the second level of iteration, it is

B′ =


0 0

0

0 −A?

−A?T
0 0

0
0 −A??

−A??T 0

 . (D14)

And in general, the hierarchical method constructs k-UNI states at every level of iteration, i.e., the adjacency matrix

Γ(n,n?,n??,... ) =



0 −A

−AT

0 0

0

0 −A?

−A?T
0 0

0
0 −A??

−A??T
. . .


, (D15)

corresponds to the states |φn,n?,n??,...〉 that are k-UNI.
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Appendix E: Inequivalence under SLOCC

It is well known that the number of product states needed to specify a pure state is an upper bound to the rank of
all possible reduced density matrices. It is also known that this number cannot be increased by SLOCC operations.
This implies that, for a k-UNI state |φ(n,0)〉, and for any subset S ⊂ {1, . . . , n}, one has

rank(ρS) ≤ qk , (E1)

where ρS = TrSc |φ(n,0)〉〈φ(n,0)|. This means that all the reductions up to k parties of the state |φ(n,0)〉 are maximally
mixed, i.e., it is a k-UNI state. However, if one can find a pure state that is a k-UNI state and in addition to this,
there exists at least one subset of size larger than k parties such that the reduced density matrix are maximally mixed,
then these two k-UNI states cannot be converted into one another via SLOCC.

In this section, we show that some reduced states ρS = TrSc |φn,n?〉〈φn,n? |, for subsystem size |S| > k, are maximally
mixed. More precisely, we show that ρS for a subset S comprised of two parts S1 and S2, is maximally mixed, where
S1 has size |S1| = k and is contained entirely in the support of the first n−n? qudits, i.e., the subset {1, . . . , n−n?},
and S2 (with size |S2| = k?) is contained in the last n? qudits, i.e, the subset {n−n?+ 1, . . . , n}. Concretely, we want
to show

ρS = TrSc |φn,n?〉〈φn,n? |
= TrSc1 TrSc2 |φn,n?〉〈φn,n? |
∝ 1 .

(E2)

To proceed further, let us first review the structure of the state |φn,n?〉. This state is obtained by applying operator
On? on the state |φn,0〉, Eq. (10), and can be expanded as

|φn,n?〉 = 1
(n−n?) ⊗On? |φn,0〉

=
∑
i

|c(i)1 , . . . , c
(i)
n−n?〉 ⊗ Z

−c(i)
n−(n?−1) ⊗ · · · ⊗ Z−c

(i)

n−(n?−k?) ⊗Xc
(i)

n−(n?−k?)+1 ⊗ · · · ⊗Xc(i)n |φn?,0〉

=
∑
i

|c(i)1 , . . . , c
(i)
n−n?〉 ⊗ |ψn

?

i 〉 ,

(E3)

where as above we denote

|ψn
?

i 〉 := Z
−c(i)

n−(n?−1) ⊗ · · · ⊗ Z−c
(i)

n−(n?−k?) ⊗Xc
(i)

n−(n?−k?)+1 ⊗ · · · ⊗Xc(i)n |φn?,0〉 . (E4)

The state |φn?,0〉 is a k?-UNI state constructed from classical codes using the method presented in Eq. (1). For

every i, the state |ψn?i 〉 is also a k?-UNI state, as acting with local unitaries on a given state does not change the

entanglement properties. Moreover, it is proven in [7, Lemma 1] that the states |ψn?i 〉 for i ∈ {1, . . . , qn?} form a

complete orthonormal basis of k?-UNI states with n? qudits, i.e., 〈ψn?i |ψn
?

i′ 〉 = δi,i′ .
To prove that the reduced density matrix σS is maximally mixed for the given subset of size |S| = k + k?, i.e, to

show that Eq. (E2) holds, we check two different cases: (i) k ≤ n? and (ii) k > n?.

case (i) We first consider the case k ≤ n?, where we have

ρS = TrSc1 TrSc2 |φn,n?〉〈φn,n? |

= TrSc1

∑
i,i′

|c(i)1 , . . . , c
(i)
n−n?〉〈c

(i′)
1 , . . . , c

(i′)
n−n? | ⊗ TrSc2 |ψ

n?

i 〉〈ψn
?

i′ | . (E5)

We know that the states |ψn?i 〉, Eq. (E4), are a complete basis of k?-UNI states. When k = n? the set
i = {1, . . . , qk} contains the entire basis, and otherwise in the case of having k < n?, we have only part of
the basis. It is obvious that in both cases, TrSc2 |ψ

n?

i 〉〈ψn
?

i | = δi,i′ 1k? . Therefore, the reduced density matrix
simplifies to

ρS = TrSc1

∑
i,i′

|c(i)1 , . . . , c
(i)
n−n?〉〈c

(i′)
1 , . . . , c

(i′)
n−n? | ⊗ 1k? δi,i′

= 1k ⊗ 1k? .
(E6)

where we used the fact that ~ci = (~xiGk×n) = (~xi, ~xiA) are codewords of a suitable classical code such that the
number of free indices in the code is equal to k.
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case (ii) In the case where k > n?, there can be a repetition in the basis |ψn?i 〉, because the number of the states that

form a complete orthonormal basis in a Hilbert space H(n?, q) := C⊗n?q , is equal to qn
?

, while i ∈ {1, . . . , qk}.
Therefore, to proceed with the proof, we consider the known conditions on the codewords ~ci = (c

(i)
1 , . . . , c

(i)
n )

that are used to construct the state |φn,n?〉 and the orthonormal basis |ψn?i 〉.
We can have two conditions depending on the exponents of the X and Z operators in Eq. (E4). One corresponds

to the case that the two sequences c
(i)
n−(n?−1), . . . , c

(i)
n and c

(i′)
n−(n?−1), . . . , c

(i′)
n differ in at least one position. In

this case we get TrSc1 |ψ
n?

i 〉〈ψn
?

i′ | = δii′ 1k? . Therefore, as for case (i), we have ρS = 1k ⊗ 1k? .

In the second condition, the two sequences c
(i)
n−(n?−1), . . . , c

(i)
n and c

(i′)
n−(n?−1), . . . , c

(i′)
n that are part of the code-

words ~ci and ~ci′ , do not differ. Therefore, these parts of the codewords, with the size n?, have overlap.

We know that, based on the properties of classical linear codes (see Appendix A), in general, every two codewords
~ci and ~ci′ with i 6= i′ have a distance at least equal to the Singleton bound (A3), i.e., dH = n − k + 1. As
sequences of these codewords, with size n?, have overlap, the remaining part is orthogonal

TrSc1

∑
i,i′

|c(i)1 , . . . , c
(i)
n−n?〉〈c

(i′)
1 , . . . , c

(i′)
n−n? | = δi,i′ TrSc1

∑
i

|c(i)1 , . . . , c
(i)
n−n?〉〈c

(i)
1 , . . . , c

(i)
n−n? | . (E7)

In other words, we used the fact that dH − n? ≥ |Sc1| = n − n? − k, and considering this, there cannot be any

overlap with the sequences c
(i)
1 , . . . , c

(i)
n−n? and c

(i′)
1 , . . . , c

(i′)
n−n? of the codewords. Putting all this together, the

reduced density matrix ρS simplifies to

ρS = TrSc1

∑
i

|c(i)1 , . . . , c
(i)
n−n?〉〈c

(i)
1 , . . . , c

(i)
n−n? | ⊗ TrSc2 |ψ

n?

i 〉〈ψn
?

i |

= 1k ⊗ 1k? ,
(E8)

in which we used the fact that every linear code contains k free indices.

Now, we can conclude that for both cases k ≤ n? and k > n?, the reduced density matrix σS , for S given by the
union of S1 and S2, is maximally mixed, where S1 ⊆ {1, . . . , n− n?} with |S1| = k and S2 ⊆ {n− n? + 1, . . . , n} with
|S2| = k?. Obviously, this can only be achieved if |S| = k + k? ≤ n/2.

Here, we have only proven that the two sets of k-UNI states, |φ(n,0)〉 and |φ(n,n?)〉, belong to different SLOCC
classes, we leave the proof for the more general cases to future, in which we will show that all the k-UNI states
|φ(n,n?)〉 and |φ(n,n?′)〉 with n? 6= n?′ as well as those k-UNI states belonging to different hierarchy levels.

Appendix F: Two inequivalent types of AME states under SLOCC

In this section, we examine the problem of SLOCC-discrimination of different AME states with the same number
of qudits n and local dimension q. Here, we consider two states |φn,0〉 and |φn,2〉 of odd numbers of qudits n = 2k+ 1
defined by Eq. (10). We demonstrated in Appendix D, that if state |φn,0〉 is an AME state, then the second state
(i.e., the state |φn,2〉) is also an AME state. We shall see that they are not SLOCC-equivalent. Observe that for
each subsystem, the reduced density matrices of both states always have the same rank. Therefore the method used
in Appendix E for verification of SLOCC-equivalence between two k-UNI states with k < n/2, cannot be applied
anymore. In the following we explain the proof.

In order to simplify notation, we renormalize both states, |φn,0〉 and |φn,2〉, by the same factor
√
qk.

Firstly, we consider again the closed formula for the state |φn,0〉 and its reduction ρS(φn,0) = |φn,0〉〈φn,0|, to the
subsystem S = {1, . . . , k + 1} that includes the first (k + 1) qudits. According to Eq. (A2), the state |φn,0〉 can be
written as follows:

|φn,0〉 =
∑

~xi∈[q]k

|~xi, ~xiA〉 , (F1)

where [q] := (0; . . . , q − 1), and A is k × (n − k) matrix with elements in GF (q). We separate qudits k and k + 1 in
the notation, thus Eq. (F1) reads

|φn,0〉 =
∑

~xi∈[q]k−1

xj∈[q]

|~xi〉︸︷︷︸
k−1

⊗ |xj〉︸︷︷︸
1

⊗ |~xiA1 + axj〉︸ ︷︷ ︸
1

⊗ |~xiA2 + xjA3〉︸ ︷︷ ︸
n−k−1

, (F2)
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where the matrix A is separated into four submatrices

A =

[
A1 A2

a A3

]
(F3)

where A1, A2, A3 are of size (k − 1) × 1, (k − 1) × (n − k − 1), and 1 × (n − k − 1) respectively, while a ∈ GF (q).
Since |φn,0〉 is an AME(2k + 1,q) state, the states |~xiA2 + xjA3〉 are linearly independent for different values of
~xi ∈ [q]k−1, xj ∈ [q]. In fact, the set of states {|~xiA2 +xjA3〉}~xi∈[q]k−1,xj∈[q] ∈ H(k, q) forms a basis in H(k, q) := C⊗kq .
Therefore the reduced density matrix ρS(φn,0), with S corresponding to the first k + 1 qudits reads

ρS

(
φn,0

)
=

∑
~xi∈[q]k−1

xj∈[q]

|~xi〉|xj〉|~xiA1 + axj〉〈~xi|〈xj |〈~xiA1 + axj |. (F4)

Secondly, we study the state |φn,2〉 and its reduction ρS(φn,2) to the subsystem S = {1, . . . , k + 1} containing the
first (k + 1) qudits. Note that the maximally entangled state of two qudits with the local dimension q is locally
equivalent to the state

|φ2,0〉 =
1
√
q

∑
`∈[q]

|`, `〉. (F5)

The state |φn,2〉 is constructed from |φn,0〉 and |φ2,0〉 via the non-local operator O2 acting on the last two qudits of
|φn,0〉, as indicated in Eqs. (9) and (10). Because of the properties that k-UNI states have, after any permutation of
its subsystem, without loss of generality, we can change the subspace of the action of the operator O2 onto subsystem
{k, k + 1}. In this way, the state |φn,2〉 reads

|φn,2〉 =
1
√
q

∑
~xi∈[q]k−1

xj ,`∈[q]

|~xi〉︸︷︷︸
k−1

⊗Xxj |`〉︸ ︷︷ ︸
1

⊗Z~xiA1+axj |`〉︸ ︷︷ ︸
1

⊗ |~xiA2 + xjA3〉︸ ︷︷ ︸
n−k−1

. (F6)

As we noticed before, states {|~xiA2 + xjA3〉}~xi∈[q]k−1,xj∈[q] ∈ H(k, q) form a basis of C⊗kq . Therefore the state |φn,2〉
reduced to the subsystem S reads

ρS

(
φn,2

)
=

1

q

∑
~xi∈[q]k−1

xj∈[q]

∑
`,`′∈[q]

ω(~xiA1+axj)(`−`′)|~xi〉|xj + `〉|`〉〈~xi|〈xj + `′|〈`′|, (F7)

where ω is a qth root of unity. Note the difference in the last two positions in ρS(φn,0) and ρS(φn,2) given in Eq. (F4)
and Eq. (F7), respectively. We shall show the following.

Lemma 5. Both reduced density matrices are LU-equivalent by the following transformation:

U = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−1

⊗W ⊗ V, (F8)

where unitary matrices W = [wij ]
q
i,j=1 and V = [vij ]

q
i,j=1 are defined by wij := 1

qω
−aij+j2T and vij := 1

qω
ij−j2T where

ω is a q-th root of unity, while T is an element in GF (q) such that 2T = a.

Proof. Observe that

ρS

(
φn,0

)
=

∑
~xi∈[q]k−1

∑
`∈[q]

|~xi〉|`〉|~xiA1 + a`〉〈~xi|〈`|〈~xiA1 + a`| 1
⊗(k−1)⊗W⊗V7−−−−−−−−−−→

∑
~xi∈[q]k−1

|~xi〉〈~xi|
( 1

q2

∑
m,m′,
k,k′∈[q]

∑
`∈[q]

ω

(
−a`(m−m′)+T (m2−m′2)+(~xiA1+a`)(k−k′)−T (k2−k′2)

)
|m, k〉〈m′, k′|

)
. (F9)
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In the above expression, we change the summation indices m,m′ to j := m− k and j′ := m′ − k′ respectively. In this
way, the right-hand side of Eq. (F9) reads

(F9) =
∑

~xi∈[q]k−1

|~xi〉〈~xi|

∑
k,k′,
j,j′∈[q]

(
1

q2

∑
`∈[q]

ω

(
−a`(j+k−j′−k′)+T ((j+k)2−(j′+k′)2)+(~xiA1+a`)(k−k′)−T (k2−k′2)

))
|k + j, k〉〈k′ + j′, k′|

=
∑

~xi∈[q]k−1

|~xi〉〈~xi|
∑
k,k′,
j,j′∈[q]

(
1

q2

∑
`∈[q]

ω−a`(j−j
′)

︸ ︷︷ ︸
=qδjj′

ωT (j2−j′2)+2T (kj−k′j′)ω(~xiA1)(k−k′)

)
|k + j, k〉〈k′ + j′, k′|

=
∑

~xi∈[q]k−1

|~xi〉〈~xi|
∑
k,k′,
j,j′∈[q]

(
δjj′

1

q
ω(2Tj+~xiA1)(k−k′)

)
|k + j, k〉〈k′ + j′, k′|

=
∑

~xi∈[q]k−1

|~xi〉〈~xi|
∑

k,k′∈[q]

∑
j∈[q]

(
1

q
ω(aj+~xiA1)(k−k′)

)
|k + j, k〉〈k′ + j, k′|,

which is equal to ρS(φn,2) (compare with Eq. (F7)).

Now, we recall the notion of a monomial matrix, and the support of a state. The support of a state |ψ〉 is the
number of non-zero coefficients when |ψ〉 is written in the computational basis.

Definition 1. A unitary matrix M is called a unitary monomial matrix if one of the following holds:

1. M has exactly one nonzero entry in each row and each column,

2. M is a product of a permutation and diagonal matrix,

3. M does not change the support of any quantum state.

Proof of Theorem 3. We show the statement by contradiction. Assume that states |φn,0〉 and |φn,2〉 are LU-equivalent
by some unitary matrices:

U1 ⊗ · · · ⊗ Uk+1 ⊗ Uk+2 ⊗ · · · ⊗ Un

We shall keep ”⊗” in the notation in order to distinguish it from matrix multiplication. Since the (partial) trace is
invariant under cycling permutations, one can show that:

ρS(φn,0) =
(
U1 ⊗ · · · ⊗ Uk+1

)
ρS(φn,2)

(
U†1 ⊗ · · · ⊗ U

†
k+1

)
(F10)

Hence, the operator Ũ := (U1 ⊗ · · · ⊗ Uk+1) provides the local equivalence between ρS(φn,0) and ρS(φn,2). Notice
that in Lemma 5, we pointed out that the local matrices U = 1

⊗k−1 ⊗W ⊗ V provide the LU-equivalence between

ρS(φn,0) and ρS(φn,2). Therefore ŨU provides an LU-equivalence between ρS(φn,0) and itself, i.e.

ρS(φn,0) = ŨUρS(φn,0)U†Ũ†. (F11)

Note that the operator ŨU has the following form

ŨU = U1 ⊗ · · · ⊗ Uk−1 ⊗ UkW ⊗ Uk+1V. (F12)

According to [8, Proposition 2], all matrices in Eq. (F12), i.e. U1, . . . , Uk−1, UkW,Uk+1V are monomial matrices.
We shall see that such a restriction on matrices U1, . . . , Uk−1, UkW, Uk+1V leads to a contradiction. To sum up

the discussion so far, LU-equivalence between states |φn,0〉 and |φn,2〉 has the following form:

M1 ⊗ · · · ⊗Mk−1 ⊗MkW ⊗Mk+1V ⊗ Uk+2 ⊗ · · · ⊗ Un
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where Ui are arbitrary unitary matrices, W,V are defined in Lemma 5, while Mi are products of diagonal and
permutation matrices. From the form of Eq. (F2), we have

|φn,2〉 =
∑

~xi∈[q]k−1

xj∈[q]

~M |~xi〉︸ ︷︷ ︸
k−1

⊗B~xi,xj︸ ︷︷ ︸
2

⊗ ~U |~xiA2 + xjA3〉︸ ︷︷ ︸
n−k−1

, (F13)

where ~M = M1 ⊗ · · · ⊗Mk−1, and ~U = Uk+2 ⊗ · · · ⊗ Un, and

B~xi,xj := MkW |xj〉 ⊗Mk+1V |~xiA1 + axj〉. (F14)

Since the matrix A is nonsingular, its k × k submatrix
[
A2
A3

]
is also non-singular. As a consequence the following

n−k−1 = k states: |~xiA2 +xjA3〉 are linearly independent for different values of multi-indices ~xi, xj ∈ [qk]. Similarly,

their unitary transformation ~U |~xiA2 + xjA3〉 remains linearly independent. Furthermore, from the form of matrices
V and W , the support of the state B~xi,xj equals q2 for any multi-index ~xi, xj ∈ [qk]. Therefore, we conclude that the

support of a state (F13) equals at least qk+2.
On the other hand, from Eq. (F6), we have

|φn,2〉 =
∑

~xi∈[q]k−1

xj∈[q]

|~xi〉︸︷︷︸
k−1

⊗C~xi,xj︸ ︷︷ ︸
2

⊗ |~xiA2 + xjA3〉︸ ︷︷ ︸
n−k−1

, (F15)

where

C~xi,xj =
1
√
q

∑
`∈[q]

|`+ xj〉 ⊗ ω(~xiA1+axj)`|`〉. (F16)

Clearly, the support of a state Eq. (F15) equals to qk+1. As a consequence, the support of states in Eq. (F13) and
Eq. (F15) differs. Note that both equations present the same state |φn,2〉, hence should have the same support. This
ends the proof.

In such a way, we have shown that two families of AME(n,q) states: |φn,0〉 and |φn,2〉 for n = 2k + 1 are not
SLOCC-equivalent and hence LU equivalent.
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