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The prospect of using quantum computers to solve combinatorial optimization problems via the
quantum approximate optimization algorithm (QAOA) has attracted considerable interest in recent
years. However, a key limitation associated with QAOA is the need to classically optimize over a
set of quantum circuit parameters. This classical optimization can have significant associated costs
and challenges. Here, we provide an expanded description of Lyapunov control-inspired strategies
for quantum optimization, as first presented in arXiv:2103.08619, that do not require any classical
optimization effort. Instead, these strategies utilize feedback from qubit measurements to assign
values to the quantum circuit parameters in a deterministic manner, such that the combinatorial
optimization problem solution improves monotonically with the quantum circuit depth. Numerical
analyses are presented that investigate the utility of these strategies towards MaxCut on weighted
and unweighted 3-regular graphs, both in ideal implementations and also in the presence of mea-
surement noise. We also discuss how how these strategies compare with QAOA, how they may be
used to seed QAOA optimizations in order to improve performance for near-term applications, and
explore connections to quantum annealing.

I. INTRODUCTION

Combinatorial optimization problems have a variety of
broad and high-value applications, including in routing
and scheduling problems [1, 2]. The desire to use quan-
tum resources to aid in solving them has a long history,
spanning the development of adiabatic and annealing-
based strategies [3–5], as well as the development of early
quantum algorithms [6, 7]. More recently, the quan-
tum approximate optimization algorithm (QAOA) [8]
was proposed in 2014, as a method for leveraging quan-
tum computers to solve combinatorial optimization prob-
lems. In particular, QAOA is a method for determining
an approximate solution to a combinatorial optimization
problem by using a hybrid quantum-classical framework;
a classical computer is utilized to iteratively minimize
the value of the cost function, and the cost function is
evaluated on a quantum computer using a parameter-
ized quantum circuit. Since its development, QAOA has
captured the attention of numerous theoretical and ex-
perimental groups, e.g., [9–14], particularly as a potential
application of noisy, intermediate-scale quantum (NISQ)
[15] devices.

Recently, numerous connections have been made be-
tween QAOA and quantum optimal control (QOC) [16],
which is a strategy for identifying the controls needed
to steer the dynamics of a quantum system in a desired
manner by iteratively optimizing over a set of control
functions or parameters [17, 18]. Certain connections
have rested on the control-theoretic notion of controlla-
bility, which implies that QOC solutions can be found
for driving the dynamics of a system under considera-
tion towards arbitrary objectives [19–26]. For instance,

controllability considerations have recently been applied
to show that QAOA can be computationally universal in
certain circumstances [27, 28], and to assess the number
of QAOA quantum circuit parameters needed to achieve
controllability [29].

A key challenge in identifying QAOA and QOC solu-
tions is the difficulty of searching for the optimal QAOA
and QOC parameters, respectively. If the number of
QAOA layers, and correspondingly variational parame-
ters, can be limited to O(poly(log(n))), then the com-
plexity scaling of the optimization can be polynomial
in the number of qubits, n. However, this scaling be-
lies the difficulty of such optimizations – the fact is that
QAOA, and most variational algorithms, require opti-
mization over non-linear, stochastic cost functions with
derivative information that is noisy and hard to obtain.
Scaling classical optimization to thousands of parameters
is challenging in this context, e.g., [30].

Even in the absence of noise, the difficulty of identi-
fying the optimal parameters is determined in large part
by the structure of the optimization landscape, and land-
scape features such as local optima, saddle points, and
barren plateaus can complicate and hinder the optimiza-
tion process [31–38]. However, we note that a variety of
alternate quantum control frameworks, including quan-
tum tracking control [39–43], quantum Lyapunov control
[44–52], and quantum feedback control [53–56], have been
developed that do not rely on the iterative classical op-
timization procedure inherent to QOC and thus do not
share these challenges.

Here, we explore a new connection between quan-
tum algorithms and quantum control theory, and de-
velop strategies for quantum combinatorial optimiza-
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tion inspired by the theory of quantum Lyapunov con-
trol (QLC). In particular, this article provides an ex-
panded discussion of the details of these strategies, be-
yond that contained in [57]. Importantly, these QLC-
inspired strategies do not involve any classical optimiza-
tion. Instead, they use measurement-based feedback to
assign values to the quantum circuit parameters. We
show that this feedback-based procedure yields a mono-
tonically improving solution to the original combinatorial
optimization problem, with respect to the depth of the
quantum circuit.

The remainder of this article is organized as follows.
We begin by providing background on QAOA, as mo-
tivation for this work. This is followed by a descrip-
tion of certain aspects of QLC. We then introduce a
Feedback-based ALgorithm for Quantum OptimizatioN
(FALQON) inspired by QAOA and QLC, and discuss
extensions that can be used to improve performance, in-
cluding the addition of a reference perturbation, the im-
plementation of an iterative procedure, and the intro-
duction of additional control functions. We then discuss
applications of FALQON towards solving the MaxCut
problem. To this end, we provide numerical illustrations
of the ideal performance of FALQON towards solving
MaxCut on 3-regular graphs, and we also explore how it
performs in the presence of measurement noise, and how
its performance compares to that of QAOA. We go on
to discuss how FALQON can be used to boost the per-
formance of QAOA in NISQ applications, and explore
connections to quantum annealing. We conclude with an
outlook.

II. QUANTUM APPROXIMATE
OPTIMIZATION ALGORITHM

Combinatorial optimization problems are concerned
with identifying configurations of discrete optimization
variables that best achieve one or multiple goals, as quan-
tified by an associated cost function C. The quantum
approximate optimization algorithm (QAOA) [8] is an
approach for finding or approximating solutions to com-
binatorial optimization problems using quantum comput-
ers. It operates by first encoding the cost function C into
an Ising Hamiltonian, Hp, which is diagonal in the quan-
tum computational basis such that each eigenstate of Hp

corresponds to a single spin configuration, which encodes
a configuration of the associated optimization variables
[58]. The encoding is done such that the best solution
to the combinatorial optimization problem is encoded in
the ground state of Hp.

Using this encoding, QAOA is a hybrid quantum-
classical algorithm for solving

min
{γk},{βk}

〈ψ({γk}, {βk})|Hp|ψ({γk}, {βk})〉 . (1)

To do so, a classical computer is utilized to iteratively
minimize the value of the objective function, evaluated

as 〈ψ({γk}, {βk})|Hp|ψ({γk}, {βk})〉, and optimized over
the set of 2` parameters {γk}`k=1 and {βk}`k=1.

The objective function value is determined at each it-
eration using a quantum computer, which prepares the
multiqubit state |ψ({γk}, {βk})〉 using a parameterized
quantum circuit of the form

UQAOA = Ud(β`)Up(γ`) · · ·Ud(β1)Up(γ1) , (2)

such that |ψ({γk}, {βk})〉 = UQAOA|ψ0〉 for an initial
state |ψ0〉. The elements of the QAOA circuit, Up(·)
and Ud(·), are created by simulating an evolution under
Hp and under a driver Hamiltonian Hd, which is chosen
to not commute with Hp. Following the implementa-
tion of UQAOA, measurements of Hp in the multiqubit
state |ψ({γk}, {βk})〉 allow for estimating the value of
the objective function at each iteration of the classical
optimization algorithm.

III. QUANTUM LYAPUNOV CONTROL

Quantum Lyapunov control (QLC) is a local-in-time
method for identifying controls to asymptotically steer
the dynamics of a quantum system towards a desired
objective [44–52]. The controls are identified utilizing a
feedback law, which is derived from a suitable control
Lyapunov function [59], chosen to capture the target ob-
jective. In this section, we describe the theory of QLC
and outline certain results from the literature pertain-
ing to its asymptotic convergence behavior. We begin
by considering a quantum system whose dynamics are
governed by

i
d

dt
|ψ(t)〉 = (Hp +Hdβ(t))|ψ(t)〉 (3)

where |ψ(t)〉 is the system state vector, we have set ~ = 1,
and Hp and Hd denote the (unitless) “drift” and “con-
trol” Hamiltonians, and the latter couples a scalar, time-
dependent control function β(t) to the system. In this
article, we choose our QLC objective to be the mini-
mization of 〈Hp〉 = 〈ψ(t)|Hp|ψ(t)〉, and thus seek a QLC
strategy for designing β(t) to accomplish this. We pro-
ceed by defining a Lyapunov function

Ep(|ψ(t)〉) = 〈ψ(t)|Hp|ψ(t)〉 (4)

to capture our QLC objective. Then, to minimize Ep we
seek to design β(t) such that the QLC condition

d

dt
Ep ≤ 0, ∀t ≥ 0 (5)

is satisfied. There is significant flexibility in choosing β(t)
to satisfy Eq. (5). Namely, given that

dEp

dt
= 〈ψ(t)|i[Hp + β(t)Hd, Hp]|ψ(t)〉

= 〈ψ(t)|i[β(t)Hd, Hp]|ψ(t)〉
= 〈ψ(t)|i[Hd, Hp]|ψ(t)〉β(t)

= A(t)β(t) ,

(6)
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where

A(t) ≡ 〈ψ(t)|i[Hd, Hp]|ψ(t)〉 , (7)

we may take

β(t) = −w f(t, A(t)) , (8)

for w > 0, where f(t, A(t)) is any continuous function
with f(t, 0) = 0 and A(t)f(t, A(t)) > 0 for all A(t) 6= 0
[60]. This choice of β(t) guarantees that Ep will decrease
monotonically over time. When β(t) is chosen according
to Eq. (8), the system dynamics are governed by

i
d

dt
|ψ(t)〉 = (Hp +Hdβ(t, A(t)))|ψ(t)〉 , (9)

which are highly nonlinear, due to the dependence of β(t)
on the state |ψ(t)〉 via A(t).

We refer to Eq. (8) as a feedback law, as it relies on
feedback in order to evaluate the observable expectation
value A(t). Conventionally, QLC laws like Eq. (8) are
used in simulations to design open-loop control laws; that
is, they cannot be applied directly in experiments as-is,
as the destructive, real-time measurements required to
estimate A(t) would lead to a collapse of the system state.
This distinguishes QLC from real-time feedback control.

Ideally, designing β per Eq. (8) would result in asymp-
totic convergence to the global minimum of Ep, and it has
been shown that this behavior can be guaranteed when
a set of sufficient conditions are met [50, 60–62]. How-
ever, these conditions are very stringent (see Appendix
A). When the protocol we construct in Sec. IV is applied
to the MaxCut problem, per Sec. V, they are not satis-
fied. Nonetheless, asymptotic convergence to the global
minimum can still be obtained in such settings (e.g., as
illustrated in Fig. 1), and in situations where convergence
is not obtained, a variety of techniques can be employed
improve control performance, as discussed in the follow-
ing subsections.

A. Inclusion of reference perturbation in β(t)

The inclusion of a reference perturbation in β(t) can
improve the likelihood of asymptotic convergence to the
global minimum of Ep [60–62]. Here, we consider the
inclusion of a reference perturbation λ(t) such that the
time-dependent system Hamiltonian is given by

H(t) = Hp + (λ(t) + β(t))Hd . (10)

Inspecting Eq. (10), we may define system (a) as a system
with drift Hamiltonian Hp, control Hamiltonian Hd, and
control function (λ(t) +β(t)). Meanwhile, we may define
system (b) as a perturbed system with time-dependent
drift Hamiltonian

Hp,(b)(t) ≡ Hp + λ(t)Hd , (11)

control Hamiltonian Hd, and control function β(t).
Within (b), we may define the perturbed Lyapunov func-
tion

Ep,(b)(|ψ(t)〉) = 〈ψ(t)|Hp,(b)(t)|ψ(t)〉 , (12)

and seek a control law that will ensure

dEp,(b)

dt
≤ 0 , (13)

while at the same time, ideally improving convergence to
the minimum of our original objective Ep. At this stage,
it is important to note that in practice, λ(t) can be de-
fined explicitly as a desired function of t, or implicitly as
a function of |ψ(t)〉, Ep, or Ep,(b). For practical reasons,
we restrict our attention to the former case; for further
details on the latter, we refer to refs. [61, 62].

When λ(t) is defined as an explicit function of time,
the left-side of Eq. (13) is given, conveniently, by,

d

dt
Ep,(b) = 〈ψ(t)|i[H(t), Hp,(b)(t)]|ψ(t)〉

= 〈ψ(t)|i[Hp,(b)(t) + β(t)Hd, Hp,(b)(t)]|ψ(t)〉
= 〈ψ(t)|i[β(t)Hd, Hp,(b)(t)]|ψ(t)〉
= 〈ψ(t)|i[Hd, Hp]|ψ(t)〉β(t)

= A(t)β(t)
(14)

which implies that even after the inclusion of the refer-
ence perturbation λ(t) and the definition of a perturbed
Lyapunov function Ep,(b), we may nonetheless define the
control law for β(t) as before, as β(t) = −w f(t, A(t)), to
ensure Eq. (13) is satisfied.

Within this framework, if system (b) converges to the
ground state of Hp,(b)(t) at a terminal time t = T , and
λ(T ) = 0, then system (b) becomes system (a), such
that Hp,(b)(T ) = Hp, meaning that the ground state of
Hp,(b)(t) is also the ground state of Hp, and convergence
to the desired state has been obtained. As such, it is often
practical to select λ(t) to be a slowly-varying function
that tends to 0 as t→ T .

B. Iterative quantum Lyapunov control

Another technique to improve the likelihood of asymp-
totic convergence to the minimum of Ep is to use an itera-
tive procedure for refining the QLC control function β(t)
[51]. We emphasize that the iterative QLC procedure
outlined in this section is conceptually distinct from the
iterative optimization procedure utilized in QOC, as the
iterations involved do not involve updates determined by
an optimization routine. Instead, β(t) is updated using
a QLC-derived control law, in the following manner.

We begin by considering a system initialized as |ψ(t =
0)〉 = |ψ0〉, and then design a control field β(0)(t) to con-
trol Ep using QLC, as per the control law of Eq. (8), over
some fixed time interval t ∈ [0, T ]. We denote the trajec-

tory of Ep over this time interval by E
(0)
p (t), and denote
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the associated state by |ψ(0)(t)〉. Subsequent steps are
then carried out as follows. For iterations j ≥ 1, β(j−1)(t)
serves as a reference perturbation, as denoted by λ(t) in

Sec. III A. Then, β(j−1)(t), E
(j−1)
p (t), and |ψ(j−1)(t)〉 all

describe the dynamics of a perturbed system (b), whose
time-dependent Hamiltonian is

H
(j−1)
p,(b) (t) = Hp + β(j−1)(t)Hd . (15)

A new QLC field β̃(j)(t) is then determined for t ∈ [0, T ]
using the framework in Sec. III A, where a perturbed Lya-

punov function based on H
(j−1)
p,(b) is utilized, and β̃(j)(t)

is chosen according to Eq. (8). After β̃(j)(t) has been
computed for t ∈ [0, T ], the update rule is given by

β(j)(t) = β(j−1)(t) + β̃(j)(t). (16)

For T chosen to be large enough for the perturbed sys-
tem to converge to the unperturbed system at each itera-

tion, i.e., such that β(j)(T ) = 0, causing H
(j)
p,(b)(T ) = Hp,

∀j, this procedure guarantees a monotonic improvement
of Ep(T ) with respect to iteration, as per,

〈ψ(j)(T )|Hp|ψ(j)(T )〉 = 〈ψ(j)(T )|H(j−1)
p,(b) (T )|ψ(j)(T )〉

≤ 〈ψ(j)(0)|H(j−1)
p,(b) (0)|ψ(j)(0)〉

= 〈ψ0|H(j−1)
p,(b) (0)|ψ0〉

= 〈ψ(j−1)(0)|H(j−1)
p,(b) (0)|ψ(j−1)(0)〉

= 〈ψ(j−1)(T )|H(j−1)
p,(b) (T )|ψ(j−1)(T )〉

= 〈ψ(j−1)(T )|Hp|ψ(j−1)(T )〉,
(17)

such that E
(j)
p (T ) ≤ E

(j−1)
p (T ) [51]. We note that

in line 5 of the above, we have utilized the fact that
d
dt 〈ψ

(j−1)(t)|H(j−1)
p,(b) (t)|ψ(j−1)(t)〉 = 0, due to the fact

that |ψ(j−1)(t)〉 evolves under H
(j−1)
p,(b) (t).

C. Extensions to multiple control functions

The framework of QLC can be extended in a straight-
forward manner to settings with multiple control func-
tions, i.e., where the system Hamiltonian is given by

H(t) = Hp +
∑
j

β(j, t)Hd,j , (18)

where β(j, t) denotes the value of the control function
that scales the j-th control Hamiltonian Hd,j at time t.

Then, in order to satisfy the QLC condition that d
dtEp ≤

0, we see that

d

dt
〈ψ(t)|Hp|ψ(t)〉 = 〈ψ(t)|i[Hp +

∑
j

β(j, t)Hd,j , Hp]|ψ(t)〉

= 〈ψ(t)|i[
∑
j

β(j, t)Hd,j , Hp]|ψ(t)〉

=
∑
j

〈ψ(t)|i[Hd,j , Hp]|ψ(t)〉β(j, t)

=
∑
j

A(j, t)β(j, t) ,

(19)
where

A(j, t) ≡ 〈ψ(t)|i[Hd,j , Hp]|ψ(t)〉 . (20)

As such, the following control laws may be used:

β(j, t) = −wjfj(t, A(j, t)), ∀j (21)

to ensure that Ep decreases monotonically over time. We
remark that in cases with multiple control functions, ref-
erence perturbations may be included for any β(j, t), fol-
lowing the framework outlined in Sec. III A, and iterative
QLC schemes can also be used, following the framework
of Sec. III B.

IV. FEEDBACK-BASED ALGORITHM FOR
QUANTUM OPTIMIZATION

We now consider how the QLC framework outlined in
Sec. III (eqs. (5) – (8)) can be translated into FALQON,
a feedback-based algorithm for minimizing the expecta-
tion value of a Hamiltonian, that can be implemented on
quantum devices. To this end, we now assume that Hp

is the problem Hamiltonian that encodes a combinato-
rial optimization problem of interest, noting that when
defined this way,

Ep = 〈ψ(t)|Hp|ψ(t)〉 (22)

may not meet all of the requirements of being a true
Lyapunov function, such as positive definiteness. Now,
without loss of generality, we consider alternating, rather
than concurrent, applications of Hp and Hd, such that
the state |ψ(t)〉 undergoes a time evolution of the form

U = Ud(β`)Up · · ·Ud(β1)Up , (23)

where

Ud(βk) ≡ e−iβkHd∆t (24)

and

Up ≡ e−iHp∆t (25)

and βk = β((2k − 1)∆t) for k = 1, 2, · · · , `, such that
after each period of ∆t, the Hamiltonian that is applied
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alternates between Hp and Hd. For small ∆t, this yields
a Trotterized approximation to the time evolution that
would be achieved in Eq. (3). To ensure that Eq. (5) is
satisfied, we may again define β from Eq. (8). In this
work, we use

w = 1, f(t, A(t)) = A(t) , (26)

such that in the alternating framework

βk+1 = −Ak , (27)

where Ak = 〈ψk|i[Hd, Hp]|ψk〉, and |ψk〉 = |ψ(2k∆t)〉.
Importantly, we note that it is always possible to select
∆t small enough such that Eq. (5) is satisfied when the
control law in Eq. (27) is used (see Sec. IV A). However,
if ∆t is chosen to be too large, the condition in Eq. (5)
can be violated.

The implementation of this alternating procedure on a
qubit device can be accomplished according to the steps
in Algorithm 1. The preliminary step is to seed the pro-
cedure by setting β1 = βinit, and we use βinit = 0. Then,
a set of qubits are initialized in a fixed initial state |ψ0〉,
and a single circuit “layer” is implemented to prepare the
state

|ψ1〉 = Ud(β1)Up|ψ0〉 . (28)

Next, the qubits are then measured in order to estimate
A1. This can be accomplished by expanding A1 in the
Pauli operator basis as

A1 = 〈ψ1|i[Hd, Hp]|ψ1〉 =

N∑
j=1

αj〈ψ1|Pj |ψ1〉 , (29)

where αj are scalar coefficients and Pj are Pauli basis
operators. We note that the number of Pauli basis oper-
ators N in the expansion depends on the structure of Hp

and Hd (see Eq. (48) below). Each Pj can then be mea-
sured, and the measurements can be repeated to collect
sufficiently many samples to estimate the associated ex-
pectation values. Finally, the resultant expectation val-
ues of each Pj can then be used to evaluate the weighted
sum in Eq. (29) to estimate A1. Following this, the result
is “fed back” to set β2 = −A1 (or, more precisely, β2 is
set to be the negative of the approximation of A1).

For subsequent steps k = 2, · · · , `, the same procedure
is repeated: the qubits are initialized in the state |ψ0〉,
after which k layers are applied to obtain

|ψk〉 = Ud(βk)Up · · ·Ud(β1)Up|ψ0〉 . (30)

Then, the qubits are measured to estimate Ak using the
same procedure described above, and the result is fed
back to set the value of βk+1. By design, this procedure
causes 〈Hp〉 to decrease layer-by-layer as per

〈ψ1|Hp|ψ1〉 ≥ 〈ψ2|Hp|ψ2〉 ≥ · · · ≥ 〈ψ`|Hp|ψ`〉 , (31)

such that the quality of the solution to the combinato-
rial optimization problem monotonically improves with

circuit depth. The protocol can be terminated when the
value of 〈Hp〉 converges (i.e., stops decreasing), as deter-
mined via measurements, or when a threshold number
of layers ` is reached. At that point, the set of β values
{βk}`k=1 is recorded as the output.

After Algorithm 1 concludes, the set {βk}`k=1 can sub-
sequently be used to prepare the state |ψ`〉 in post-
processing steps as needed, e.g., in order to estimate
the value of 〈Hp〉, by measuring |ψ`〉 and repeating the
experiment enough times to ensure reliable statistics.
In addition, the associated `-layer quantum circuit can
also be implemented in order to estimate the bit string
z = z1z2 · · · zn associated with the best candidate solu-
tion to the underlying combinatorial optimization prob-
lem. This latter task can be accomplished by sampling
the bit string z1z2 · · · zn from the output distribution as-
sociated with the output state |ψ`〉, i.e., by measuring
zj = 〈ψ`|Zj |ψ`〉 for j = 1, · · · , n and then concatenating
the results to form

z = z1z2 · · · zn, (32)

where Zj denotes the Pauli operator acting on qubit j
[63]. After collecting a set of samples, the bit string
associated with the best solution to the combinatorial
optimization problem, i.e., the bit string z that returns
the minimum value of the associated cost function C(z),
should be saved as the best approximate solution to the
combinatorial optimization problem of interest.

Algorithm 1 FALQON

1: set Hp, Hd, ∆t, `, |ψ0〉
2: Seed the procedure

β1 ← 0
3: Initialize the qubits

|ψ〉 ← |ψ0〉
4: Implement 1 layer

|ψ1〉 ← Ud(β1)Up|ψ0〉
5: Estimate the value of A1 by measuring the qubits in the

state |ψ1〉 and repeating the experiment enough times to
ensure reliable statistics.

6: β2 ← −A1

7: k ← 1
8: while k < ` do
9: k ← k + 1

10: Initialize the qubits
|ψ〉 ← |ψ0〉

11: Implement k layers
|ψk〉 ← Ud(βk)Up · · ·Ud(β1)Up|ψ0〉

12: Estimate the value of Ak by measuring the qubits in the
state |ψk〉 and repeating the experiment enough times
to ensure reliable statistics.

13: βk+1 ← −Ak

14: end while
15: output {βk}`k=1

We note that FALQON has similarities to other quan-
tum circuit parameter-setting protocols that involve
“greedy”, layer-by-layer optimization, e.g., where a clas-
sical optimization routine is used to sequentially opti-
mize quantum circuit parameters in order to minimize
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a cost function in a layer-wise manner [64–67]. In fact,
the parameter-setting rule given in Eq. (27) corresponds
to taking a step “down” in the direction of the local
gradient d

dβk
Ep with a step size of ∆t, thus suggesting

that there is a natural connection between FALQON
and layer-wise circuit optimization methods that pro-
ceed by gradient descent [68]. We also remark that the
ADAPT-QAOA approach developed in ref. [69] has cer-
tain similarities to FALQON, e.g., it also utilizes infor-
mation about d

dt 〈ψ(t)|Hp|ψ(t)〉 to step forward from layer
to layer. However, their stepping procedure involves se-
lecting from a set of driver Hamiltonians, while still con-
taining a classical optimization loop.

Having outlined FALQON, we now turn to the
prospect of boosting its performance using the techniques
outlined in Secs. (III A), (III B), and (III C). We begin
by discussing how a reference perturbation may be intro-
duced, as per Eq. (10) and how the framework outlined
in Sec. (III A) may be adapted to the quantum device
setting. As before, this can be accomplished by simply
“Trotterizing” Eq. (10), and implementing a quantum
circuit with the form

Ud(ν`)Up · · ·Ud(ν1)UpUd(ν0)Up (33)

where νk = λk + βk, where λk is the value of the refer-
ence perturbation at the k-th layer and βk is the value
of the control parameter at the k-th layer, determined
via βk = Ak−1. Numerical illustrations showing how the
performance of FALQON can be improved with the in-
clusion of a reference perturbation can be found in [57].
In a similar fashion, the iterative QLC procedure dis-
cussed in Sec. III B can also be adapted the context of
quantum optimization, in order to successively improve
the quality of the solutions obtained. After applying a
first-order Trotter decomposition, the circuits at the j-th
iteration will have the structure

Ud(β
(j)
` )Up · · ·Ud(β

(j)
1 )UpUd(β

(j)
0 )Up , (34)

where β
(j)
k = β

(j−1)
k (t) + β̃

(j)
k (t) for k = 0, · · · , `, and the

iterative procedure is seeded by determining β(0) via Al-
gorithm 1. Finally, the approach discussed in Sec. (III C)
may also be extended to the quantum device setting, by
modifying the layered quantum circuit structure to in-
clude evolutions under additional driver Hamiltonians.

A. Selecting ∆t

We now consider the selection of the time step ∆t in
order to ensure that Eq. (5) will hold. To this end, we
consider a single layer of FALQON, such that

Ep,t+2∆t = 〈ψ(t+ 2∆t)|Hp|ψ(t+ 2∆t)〉
= 〈ψ(t)|eiHp∆teiHdβt∆tHpe

−iHdβt∆te−iHp∆t|ψ(t)〉 .
(35)

For the following, we adopt the notation 〈·〉t ≡ 〈ψ(t)| ·
|ψ(t)〉. We express each of the exponentials above using
a Taylor series expansion:

Ep,t+2∆t = Ep,t + i〈[Hd, Hp]〉tβt∆t− 〈[Hp, [Hd, Hp]]〉tβt∆t2

− 〈[Hd, [Hd, Hp]]〉tβ2
t∆t2 +O(∆t3)

= E
(0)
p,t+2∆t + E

(1)
p,t+2∆t + E

(2)
p,t+2∆t + · · ·

(36)
where the superscripts label the orders of ∆t. Since we
only use β to design the first order term, we would like
this to be the dominant term in the expansion such that

|E(1)
p,t+2∆t| > |

∞∑
k=2

E
(k)
p,t+2∆t| . (37)

This way, designing E
(1)
p,t+2∆t appropriately will enforce

that Ep,t+2∆t decreases. The left-side of Eq. (37) is given
by

|E(1)
p,t+2∆t| = |〈[Hd, Hp]〉t| |βt|∆t

= |At| |βt|∆t .
(38)

Meanwhile, the magnitude of higher-order terms such as

E
(2)
p,t+2∆t can be bounded as,

|E(2)
p,t+2∆t| = |〈[Hp, [Hd, Hp]]〉tβt + 〈[Hd, [Hd, Hp]]〉tβ2

t |∆t2

≤
(
|〈[Hp, [Hd, Hp]]〉t|
+ |〈[Hd, [Hd, Hp]]〉t||βt|

)
|βt|∆t2

≤
(
‖[Hp, [Hd, Hp]]‖+ ‖[Hd, [Hd, Hp]]‖ |βt|

)
|βt|∆t2

≤
(
2 ‖HpHdHp‖+ ‖HpHpHd‖+ ‖HdHpHp‖

+ ‖HdHdHp‖+ ‖HpHdHd‖
+ 2 ‖HdHpHd‖ |βt|

)
|βt|∆t2

≤
(
2 ‖Hp‖2 ‖Hd‖+ 2 ‖Hd‖2 ‖Hp‖ |βt|

)
2|βt|∆t2

= 2npnd|βt|
(
2np + 2nd|βt|

)
∆t2 ,

(39)
where in the last line we introduce the abbreviated no-
tation nd ≡ ‖Hd‖ and np ≡ ‖Hp‖. Expressions for the
magnitude of any higher-order (i.e., k ≥ 2) term can be
found following the same procedure, which results in the
following general expression at k-th order:

|E(k)
p,t+2∆t| = 2npnd|βt|

(
2np + 2nd|βt|

)k−1
∆tk . (40)

Given Eq. (40), the right side of Eq. (37) can be
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bounded by

|
∞∑
k=2

E
(k)
p,t+2∆t| ≤

∞∑
k=2

|E(k)
p,t+2∆t|

≤ 2npnd|βt|
∞∑
k=2

(2np + 2nd|βt|)k−1∆tk

=
npnd|βt|
np + nd|βt|

( ∞∑
k=0

(2∆t(np + nd|βt|))k

− 1− 2∆t(np + nd|βt|)
)
.

(41)
For 2∆t(np + nd|βt|) < 1 the geometric series converges.
Under this assumption, we can rewrite the condition in
Eq. (37) as

|At||βt|∆t >
npnd|βt|
np + nd|βt|

(
1

1− 2∆t(np + nd|βt|)

− 1− 2∆t(np + nd|βt|)
)
.

(42)

We rearrange this equation to obtain a bound for ∆t:

|∆t| < |At|
2(2ndnp + |At|)(np + nd|βt|)

. (43)

For these values of ∆t, we can confirm that the geometric
series in Eq. (41) does converge, because

1 > 2∆t(np + nd|βt|)

=
2|At|(np + nd|βt|)

2(2ndnp + |At|)(np + nd|βt|)

=
|At|

2ndnp + |At|

(44)

is always satisfied. Therefore, if ∆t is selected accord-
ing to Eq. (43), it is ensured that the QLC condition in
Eq. (5) will hold, and thus, that Ep will decrease mono-
tonically as a function of layer as desired. In practice we
find that ∆t can be chosen to be much larger than the
value in Eq. (43) due to the looseness of the bound.

V. APPLICATIONS TO MAXCUT

We now consider applications of FALQON towards the
combinatorial optimization problem MaxCut, which aims
to identify a graph partition that maximizes the number
of edges that are cut. For a graph G, with n nodes and
edge set E , the MaxCut problem Hamiltonian is defined
on n qubits as

Hp = −
∑
i,j∈E

1

2

(
1− wijZiZj

)
, (45)

where wij denote the edge weights, and for unweighted
graphs, wij = 1 for all i, j ∈ E . In our analyses involving
weighted graphs, we consider random edge weights wij
drawn from a uniform distribution between 0 and 2, such
that the average edge weight is w = 1, matching the
unweighted case. Furthermore, we consider Hd to have
the standard form

Hd =

n∑
j=1

Xj . (46)

Given these choices for Hp and Hd,

Ak = 〈ψk|i[Hd, Hp]|ψk〉

=
∑
i,j∈E

wij
(
〈ψk|YiZj |ψk〉+ 〈ψk|ZiYj |ψk〉

)
, (47)

where Xj and Yj denote the Pauli operators acting on
qubit j. As such, evaluating the feedback law βk+1 =
−Ak = −〈ψk|i[Hd, Hp]|ψk〉 requires measuring the ex-
pectation values of

N ≤ n(n− 1) (48)

Pauli basis operators (i.e., in this case, two-qubit Pauli
strings), where the exact value ofN depends on the struc-
ture of the graph under consideration.

In order to assess the performance of FALQON towards
MaxCut, we consider two figures of merit: the approxi-
mation ratio,

rA =
〈Hp〉
〈Hp〉min

, (49)

which is proportional to the original Lyapunov function
Ep, and the success probability of measuring the (poten-
tially) degenerate ground state,

φ =
∑
i

|〈ψ|q0,i〉|2 , (50)

which gives the probability of obtaining the global mini-
mum solution to the original combinatorial optimization
problem. Each of these two figures of merit can take on
values between 0 and 1, where rA = φ = 1 corresponds
to the optimal (i.e., ground state) solution.

A. Numerical illustrations on 3-regular graphs

We now examine the performance of FALQON to-
wards MaxCut on 3-regular graphs via a series of nu-
merical illustrations (for a demonstration in quantum
hardware, see our companion article [57]). We consider
both weighted and unweighted 3-regular graphs with
n ∈ {8, 10, · · · , 20} vertices. For weighted graphs, the
edge weights are randomly sampled from a uniform dis-
tribution over (0, 2). For graphs with n = 8, 10 vertices,
we consider the set of all nonisomorphic, connected 3-
regular graphs. For each value of n = 12, · · · , 20, we
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consider a set of 50 randomly-generated nonisomorphic
graphs. The qubits are initialized in the ground state of
Hd, and the performance of FALQON is quantified using
the mean (over the set of graphs) of rA, and φ. We relate
the performance to two reference values: rA = 0.932, cor-
responding to the highest approximation ratio that can
currently be guaranteed using a classical approximation
algorithm for MaxCut on unweighted, 3-regular graphs
(i.e., the algorithm of Goemans and Williamson [70]),
and φ = 0.25, which implies that on average, 4 circuit
repetitions will be needed in order to obtain a sample bit
string corresponding to the ground state. The results are
collected in Fig. 1.

In Fig. 1(a) and (b), the rA and φ results are shown
for graphs with n = 8, 10, · · · , 16 vertices, and the as-
sociated reference values are plotted in black. The solid
curves show the results for unweighted graphs, while the
dotted curves of corresponding color show the results
for weighted graphs. We find that FALQON has supe-
rior performance on unweighted graphs, given that rA
and φ appear to converge to higher values. Nonetheless,
FALQON does lead to monotonic convergence towards
high rA values as a function of layer for weighted graphs
as well. However, for weighted graphs, we find many
instances where φ fails to converge to 1, as shown in
Fig. 1(b). Like behavior has been found in numerical
studies of QAOA, where the inclusion of edge weights
in MaxCut leads to the appearance of additional poor-
quality local minima in the optimization landscape [71].
Meanwhile, in Fig. 1(c), we plot the associated values of
β up to layer k = 50, where the solid and dotted curves
correspond to the results for unweighted and weighted
3-regular graphs, respectively. We find that there is
strong agreement between the β curves for unweighted
and weighted graphs at each problem size n. Further-
more, all β curves exhibit a very consistent shape.

In these illustrations, the only free parameter is the
time step ∆t. This is tuned to be as large as possible
for each value of n, a value we call the critical time step
and denote by ∆tc, as long as the condition in Eq. (5)
is met for all (unweighted) problem instances considered
up to 1,000 layers. We then utilize the same value of ∆t
for the weighted graphs at each problem size, noting that
in some weighted instances, this leads to a violation of
Eq. (5), and subsequent non-monotonic behavior of rA
and φ. For a closer look at how violations of Eq. (5)
can manifest in individual problem instances, we refer to
Appendix B).

Noting that convergence can be more challenging for
weighted instances of MaxCut, we next explore how the
performance of FALQON can be improved when it is
modified using the iterative QLC heuristic introduced
in Sec. III B, with results presented in Fig. 2. We ap-
ply this iterative QLC heuristic to a weighted instance
of a 3-regular graph with n = 8 vertices, where the base
FALQON algorithm displays good convergence with re-
spect to rA, but where φ fails to reach high values, and
asymptotes to only φ ≈ 0.57. In Fig. 2(c), we show the β

(a)

(b)

(c)

Figure 1. The performance of FALQON, as quantified by the
approximation ratio rA in (a) and the success probability φ
in (b) is shown for different values of n as a function of layer
k, where each layer is formed by an application of the prob-
lem Hamiltonian, Hp, and a driver Hamiltonian, Hd, defined
according to Eqs. (45) and (46), respectively. This leads to
full circuits with an alternating structure, as per Eq. (30).
The solid curves of different colors show the mean results for
MaxCut on unweighted 3-regular graphs over a set of different
graphs at each problem size n, where the latter denotes the
number of vertices (equivalently, the number of qubits) of the
graph. For n = 8, 10, all possible graphs are considered; for
n = 12, 14, 16, 50 graphs are considered at each problem size.
The dotted curves show mean results for weighted 3-regular
graphs, where edge weights are assigned to each graph, se-
lected from a uniform distribution between 0 and 2. The
solid black lines show the reference values rA = 0.932 and
φ = 0.25. In (c), the mean values of β are plotted as a func-
tion of layer.

curves that result from three iterations of the procedure,
while panel (b) shows how these iterations serve to im-
prove the convergence of φ. We refer to Ref. [57] for an
illustration of the improvement provided by the reference
perturbation heuristic and also another random pertur-
bation heuristic motivated by simulated annealing.
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(a)

(b)

(c)

Figure 2. Performance of FALQON using the iterative QLC
approach, applied to a weighted 3-regular graph with n = 8
vertices. Three iterations are shown, using a time step of
∆t = 0.012. In (a) and (b), the approximation ratio, rA and
the success probability, φ are plotted as a function of layer,
respectively. Panel (c) shows how the associated β curves are
refined at each iteration of the procedure.

B. Behavior under measurement noise

Here, we analyze the performance of FALQON under
measurement noise, which affects each Ak value, and con-
sequently, each βk value as well. This type of noise en-
ters due to the fact that in practice, a finite number of
measurement samples m are used to estimate each Ak.
We simulate this effect by sampling measurement out-
comes from a multinomial distribution, defined at layer
k as the probability distribution over the set of eigenval-
ues of i[Hd, Hp] when in the state |ψk〉 [72]. The results
are collected in Fig. 3, which shows the performance of
FALQON when m = 2, 5, 20 and 50 samples are used to
estimate Ak, for an instance of MaxCut on a 3-regular
graph with 8 vertices. The results shown are represen-
tative of the behavior across other instances we studied.
Our findings suggest that FALQON is robust to the ef-
fects of sampling noise, and can be effective even in the
presence of significant measurement noise. We also find
that as the number of samples m that are used decreases,
performance improves if ∆t is selected to decrease as well.

(a)

(b)

(c)

Figure 3. Performance of FALQON on an instance of Max-
Cut on an unweighted, 3-regular graph with n = 8 vertices
in the presence of sampling noise. The time step is set to
∆t = 0.034. In panel (a), the approximation ratio rA is plot-
ted as a function of layer when m = 2, 5, 20, and 50 measure-
ment samples are used to evaluate each of the expectation val-
ues Ak, k = 1, · · · , 400. The solid black curves show the ideal,
noiseless reference case. The remaining solid curves represent
the mean taken over 100 realizations of this sampling pro-
cess using different numbers of measurement samples, m; the
shading shows the associated standard deviation over these re-
alizations. Panels (b) and (c) show analogous results for the
success probability, φ, of measuring the 2-degenerate ground
state, and the circuit parameter, β, respectively.

C. Comparison with QAOA

In this section, we consider how the performance of
FALQON can be expected to compare with that of
QAOA. We recall that a key feature of FALQON is that
it does not require any classical optimization, and as
a result, the resources required for FALQON are sub-
stantially different, compared with the resources required
for QAOA. In particular, in Fig. 1 we found that when
FALQON is applied to MaxCut on regular graphs, it is
able to achieve high values of the approximation ratio,
rA, and relatively high values of the success probability,
φ, with no classical optimization. Furthermore, it can
also achieve high values of rA and φ in the presence of
measurement noise, i.e., when only a small number of
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(a)

(b)

Figure 4. Numerical analysis of the performance of QAOA
for an instance of MaxCut on an unweighted, 3-regular graph
with n = 8 vertices; the instance of MaxCut considered here is
the same that is considered in the analysis presented in Fig. 3.
For this analysis, we simulate implementations of QAOA that
scan over k = 1, 2, · · · , 25 layers. A series of 100 realizations
are performed at each value of k, in which the initial circuit
parameter values are selected at random, and q = 1000 it-
erations of SPSA is are performed in order to optimize the
circuit parameters. SPSA makes two calls to the objective
function per iteration, and for each of these calls, we consider
estimating the value of 〈Hp〉 using m = 10, m = 1000, and
m = ∞ samples, where the latter corresponds to the case of
ideal measurements and perfect resolution of the expectation
value 〈Hp〉. The performance of QAOA for each pair of (m, k)
values is then quantified by the approximation ratio, rA, and
the success probability, φ, in panels (a) and (b), respectively.
In each panel, the dotted curves and shaded regions show the
mean and standard deviations computed over the realizations,
respectively, as a function of k for each value of m. Mean-
while, the gray horizontal lines denote the references values
of rA = 0.932 and φ = 0.25.

measurement samples, m, are used to estimate the ex-
pectation values Ak at each layer, as shown in Fig. 3.
However, it is evident from these figures that FALQON
does require relatively deep circuits in order to achieve
this good performance.

We now turn to QAOA. Applications of QAOA as a
hybrid quantum-classical algorithm have mostly focused
on shallow circuits. In this regime, QAOA can be ex-
pected to find better solutions than FALQON, through
the aid of classical optimization. The premise is that the
classical optimization will allow for extracting the best
attainable solution from the quantum processor within a
limited circuit depth. Beyond shallow circuits, in princi-
ple QAOA is capable of achieving solutions that improve

monotonically with respect to the depth of the circuit.
However in practice, seeing a monotonic improvement in
solution quality as the number of QAOA layers k → ∞
would require resources that are not practically feasible
(i.e., the ability to identify globally optimal solutions at
each value of k through classical optimization). In prac-
tice, scaling up QAOA to larger problem sizes and deeper
circuits will cause the classical optimization cost to rise,
due to the fact that optimization is harder in higher di-
mensions, and in fact, formally scales exponentially with
increasing number of layers [73].

Because QAOA and FALQON require different re-
sources it is difficult to compare them directly, especially
with one figure of merit. Instead, in the following we
analyze the performance of each separately on the same
problem instance. Fig. 4 presents the performance of
QAOA on the same instance of MaxCut as is considered
in the FALQON analysis presented in Fig. 3. In par-
ticular, Fig. 4 presents the results of QAOA simulations
for circuits with k = 1, 2, · · · , 25 layers. A series of 100
QAOA realizations are performed at each value of k. For
each realization, the initial parameter values are chosen
uniformly randomly from βk ∈ [0, π), γk ∈ [0, 2π). Then,
the parameter optimization is performed using 1,000 iter-
ations of the Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) algorithm [74, 75], which involves
perturbing 〈Hp〉 in order to estimate an approximate gra-
dient at each optimization iteration, and utilizing this
to perform gradient descent. The gradient is approxi-
mated at each iteration by evaluating the objective func-
tion 〈Hp〉 twice, regardless of how many optimization
parameters are involved. For each of these evaluations,
we consider estimating the value of 〈Hp〉 using m = 10,
m = 1000, and m = ∞ samples, where the latter corre-
sponds to the case of ideal measurements and perfect res-
olution of the expectation value 〈Hp〉. The performance
of QAOA is then quantified by the approximation ratio,
rA, and the success probability, φ, with results plotted in
Fig. 4(a) and (b), respectively.

We now contrast the results in Fig. 4 with the earlier
FALQON results in Fig. 3. Recalling first the FALQON
results, we find monotonic improvements in rA and φ
with respect to layer, k. We also find that increasing
m leads to faster convergence. Turning to QAOA, we
find that the QAOA results for different values of m are
not significantly different, indicating that SPSA performs
comparably in the presence of different levels of sampling
noise for this problem instance. We also find that the be-
havior of rA and φ with respect to k is non-monotonic.
That is, both of these figures of merit first increase as a
function of k. This is likely due to the increased expres-
sivity of circuits as more layers are added, i.e., better
solutions become reachable, and 1,000 SPSA iterations
is sufficient for exploring the parameter space and iden-
tifying these solutions. As k increases further, the ad-
vantages of this increasing expressivity are subsequently
counterbalanced by the fact that adding layers also adds
more optimization variables, increasing the dimension of



11

the optimization space and the difficulty of the optimiza-
tion problem. The behavior of rA and φ then rolls over
and begins to deteriorate as a consequence of the increas-
ing difficulty of the optimization problem, once the lim-
ited number of optimization iterations allowed becomes
insufficient for exploring the space and finding good so-
lutions.

We emphasize that these findings are not specific to the
MaxCut problem instance analyzed here, and hold gener-
ically. Also, the choice of optimization algorithm does
not significantly affect the conclusions, the same overall
behavior is seen with other optimization algorithms.

These findings support the notion that QAOA is likely
favorable in settings where classical optimization re-
sources are sufficiently available and quantum resources
are limited to the regime of shallow circuits. On the
other hand, FALQON demonstrates strong performance
for deep circuits, and does not require classical optimiza-
tion resources, meaning that it has the advantage of not
incurring a rising classical cost as the circuit depth is
scaled up. This suggests that in cases where it is feasi-
ble to implement deep circuits, FALQON could offer a
considerable advantage.

We conclude this section with another comparison of
the resources required by FALQON and QAOA, now in
the context of their sampling complexity for MaxCut, as
quantified by the total number of samples (i.e., circuit
repetitions) that are required, denoted Ns. We denote
by m the number of samples needed to estimate the ex-
pectation value of a two-qubit Pauli string Pj , and for
simplicity, m is assumed to be independent of Pj . We
first consider QAOA: given that all terms in Hp com-
mute, for q(`) classical optimization iterations of QAOA,
Ns = mq(`), assuming one evaluation of 〈Hp〉 per op-
timization iteration. We note that for any reasonable
convergence, the number of optimization iterations, q(`)
depends at least linearly on `. However, if a gradient
algorithm is used for QAOA, additional samples will be
needed. We assume that for ` layers of QAOA, 2` gradi-
ent elements are required, for each of the 2` circuit pa-
rameters. Assuming that at least m samples are needed
to estimate each gradient element (i.e., to evaluate 〈Hp〉
for at least one perturbation of each circuit parameter),
then for q iterations,

NQAOA
s ≥ mq(`)(1 + 2`) = O(mq(`)`). (51)

In FALQON, additional measurements are needed to
evaluate A1, · · · , A`. This involves measuring each of the
terms in i[Hd, Hp], which contains a set of Y Z terms and
a set of ZY terms. In principle, these two sets can be
combined to form a single set, given that each YjZk term
commutes with each ZjYk term and can thus be mea-
sured together [76–78]; however, we consider the scenario
that commuting YiZj and ZiYj terms are measured sepa-
rately, as per current convention, although terms such as
YiZj and ZlYm, which act nontrivially on disjoint pairs
of qubits, may be measured simultaneously. Then, for a
graph G with maximum degree d, the expectation value

of i[Hd, Hp] can be estimated in maximally 2m(d + 1)
repetitions [79]. For ` layers, this yields

NFALQON
s ≤ 2m`(d+ 1) = O(md`). (52)

This comparison suggests that FALQON has a more fa-
vorable sampling complexity than QAOA for cases where
the number of QAOA optimization iterations q(`) ex-
ceeds d` in general, or d when a gradient algorithm is
utilized.

VI. COMBINING FALQON AND QAOA

As we described previously, FALQON has flexibility
in the choice of a control law, e.g., Eq. (27) and the
value of β1, the introduction of a reference perturba-
tion (Sec. III A), and the choice of driver Hamiltonian.
Once these features are selected, FALQON is a deter-
ministic, constructive procedure, i.e., in the limit of per-
fect measurements, the resulting set of parameters {βk}
is uniquely specified for a problem Hamiltonian Hp. On
the other hand, QAOA has flexibility in the choice of the
driver Hamiltonian(s), as well as the classical optimiza-
tion method and all initial values of the parameter set
elements βk and γk.

The numerical results presented in Sec. V suggest that
solving MaxCut using FALQON alone can require many
layers and therefore may not be suitable for NISQ de-
vices with limited circuit depths. In this section, we ex-
plore how FALQON results from a smaller number of
layers can be used as a seed to initialize a QAOA cir-
cuit, thereby aiding in the subsequent search for optimal
circuit parameters. Related work from Egger et al. pro-
poses a somewhat similar idea for “warm-starting” low-
depth QAOA using the solution from a relaxation of the
original combinatorial optimization problem [80]. While
Sack and Serbyn introduce a “Trotterized quantum an-
nealing protocol” to initialize QAOA [81], parametrized
by the time step ∆t. In our work, we consider Max-
Cut on ensembles of unweighted 3-regular graphs with
n ∈ {8, 10, 12, 14} vertices and 10-layer circuits imple-
menting FALQON and QAOA. All of the simulations in
this section are performed using pyQAOA, a Python-based
simulator of QAOA circuits [82]. As before, for graphs
with n = 8, 10 vertices, we consider all nonisomorphic,
connected 3-regular graphs. For graphs with n = 12
or n = 14 vertices, we consider a set of 50 randomly-
generated nonisomorphic graphs for each value of n.

For each graph, the set of parameters {βk} is gener-
ated for a 10-layer circuit using FALQON as described
in Algorithm 1 with Hd as specified in Eq. (46). To use
the results of FALQON to initialize QAOA, the product
βk∆t obtained from FALQON becomes the initial value
for βk in QAOA; analogously, ∆t from FALQON becomes
the initial value of all γk in QAOA, i.e.,

βk∆t→ βk and ∆t→ γk for all k. (53)
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This follows from the relationship between FALQON uni-
tary operations and QAOA unitary operations, i.e., com-
pare Up and Ud(βk) in Eqs. (24)–(25) to the correspond-
ing QAOA operations.

Within the context of a 10-layer QAOA circuit, the
two sets of parameters {βk} and {γk} are then optimized
using a quasi-Newton optimization method (BFGS). For
simplicity, we refer to this sequential FALQON + QAOA
procedure as “FALQON+”. In addition, we compare the
performance of FALQON+ to QAOA with multiple ran-
dom initializations, i.e., we perform QAOA using multi-
start BFGS with 20 randomly-selected initial values for
{βk} and {γk}.

Approximation ratios rA and success probabilities φ
for FALQON, corresponding FALQON+, and multistart
QAOA are reported in Fig. 5. In both figures, the color-
shaded boxes and encompassed horizontal line represent
the interquartile range and the median value of the data,
respectively, while the whiskers extend out to 1.5 of the
interquartile range; points beyond this range are identi-
fied as “outliers” (represented as grey diamond symbols).
Comparing the results of FALQON and FALQON+,
note that in addition to improved approximation ratios,
FALQON+ also substantially improves the success prob-
abilities, at the cost of only one application of QAOA
with BFGS. Since the final state measured at the end of
the circuit corresponds to an actual (approximate) solu-
tion of the MaxCut problem, increasing success proba-
bilities is more important than increasing approximation
ratios. For our multistart QAOA simulations, we present
distributions of maximum, median, and minimum (with
respect to the randomly-selected then optimized sets of
initial parameters {βk} and {γk}) approximation ratios
and corresponding success probabilities for each ensem-
ble of graphs. In the legend of Fig. 5, these distributions
are denoted as QAOAmax, QAOAmed, and QAOAmin, re-
spectively. In principle, QAOA can perform better than
FALQON overall since QAOA parameters can be opti-
mized globally and these parameters include the addi-
tional set {γk}. However, in practice, achieving this im-
proved performance may require multiple optimizations.
For our simulations, FALQON+ performs comparably to
the maximum and median cases of multistart QAOA.

In Fig. 6, we present example instances of FALQON
(βk∆t and ∆t) and corresponding FALQON+ (βk and
γk) parameters for n ∈ {8, 10, 12, 14} vertices [83]. Com-
bined with results presented in Fig. 5, these examples il-
lustrate that substantial changes and improvements can
occur between FALQON initialization and subsequent
FALQON+ convergence, indicating that the parameters
generated by FALQON, i.e., βk∆t and ∆t, do not corre-
spond to local optima for the QAOA landscape. In this
sense, FALQON can prepare parameters for a success-
ful application of QAOA, thereby reducing the expense
of the optimization effort for QAOA. Although not pre-
sented here, the FALQON-QAOA parameter differences
presented in Fig. 6 are typical of all of our simulation
results.

Based on results and analysis presented here,
FALQON+ may provide a tractable solution to the chal-
lenge of identifying optimal parameters for QAOA. Over-
all, our results demonstrate that FALQON can be used to
enhance the performance of depth-limited QAOA, with
minimal additional cost. See ref. [57] for estimates of
FALQON and QAOA sampling complexity.

VII. QUANTUM ANNEALING APPLICATIONS

Quantum annealing [84] is an approach for preparing
the ground state of a problem Hamiltonian Hp that pro-
ceeds by initializing a quantum system in the ground
state of another Hamiltonian Hd, and then evolving the
system via the time-dependent Hamiltonian

H(t) = u(t)Hd + (1− u(t))Hp (54)

for t ∈ [0, T ], where u(t) is the quantum annealing sched-
ule, with u(0) = 1 and u(T ) = 0. Without known struc-
ture in Hp to exploit, often the simplest annealing sched-
ule is linear, where u(t) = 1− t/T , and we consider this
in the following. Then, the aim is to choose T to be
large enough such that the system remains in the instan-
taneous ground state of H(t) at all times, so that as Hp

is slowly turned on, this will evolve the system into the
ground state of Hp at time T .

In this section, we compare FALQON to linear quan-
tum annealing because of numerical evidence suggesting
that FALQON may proceed via a similar adiabatic mech-
anism, i.e., by slowly switching on the problem Hamilto-
nian Hp, such that the system remains in the instanta-
neous ground state. Evidence of this potential adiabatic
behavior is shown in Fig. 7, for a representative instance
of unweighted 3-regular MaxCut on n = 8 vertices with
∆t = ∆tc. The population in the instantaneous ground
state, φinst, is computed as φinst =

∑
j |〈ψ|q̃0,j〉|2, where

the sum is taken over j degenerate instantaneous ground
states (found numerically, as the eigenstates whose as-
sociated eigenvalues are within 0.01 of the lowest eigen-
value); the set of instantaneous eigenstates {q̃} is com-
puted by numerically diagonalizing Hp + βHd at each
layer. The consistently high values of φinst in Fig. 7,
which is representative of the behavior seen across other
MaxCut instances, suggest that FALQON may give rise
to a Trotterized version of an adiabatic process, i.e., in
which strong rotations are applied initially to transfer |ψ〉
into the instantaneous ground state, and then, the sys-
tem remains primarily in the instantaneous ground state
for the remaining evolution. In order to achieve this be-
havior, we see in Fig. 1(c) that β initially has large val-
ues, then decreases monotonically as a function of layer,
similar to the behavior of an annealing schedule u(t).
Particularly notable from Fig. 1(c) is that the β curves
appear to concentrate around a single average curve for
each value of n, indicating that there may be a universal
FALQON solution for this class of problems. As such, we
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Figure 5. Performance of MaxCut on ensembles of 3-regular graphs with n vertices for n ∈ {8, 10, 12, 14} for FALQON,
FALQON+, and multistart QAOA for 10-layer circuits, quantified by (a) the approximation ratio rA and (b) the success
probability φ, where QAOAmax, QAOAmed, and QAOAmin denote distributions of maximum, median, and minimum QAOA
results, respectively. In both figures, the color-shaded boxes and encompassed horizontal line represent the interquartile range
and the median value of the data, respectively, while the whiskers extend out to 1.5 of the interquartile range; points beyond
this range are identified as “outliers” (represented as grey diamond symbols).

relate these curves to digitized quantum annealing sched-
ules, and consider the digitized time T = 2k∆t needed
to achieve rA = 0.932 or φ = 0.25 using FALQON. The
results are shown in Fig. 8, which shows that T scales
favorably with respect to n, with an a linear scaling at
the problem sizes evaluated.

We then compare the performance of FALQON against
that of a digitized linear quantum annealing schedule.
We present the results of our numerical comparison in
Fig. 9 for the same MaxCut problem instances considered
in Fig. 1. Our findings indicate that for the same value
of T , FALQON consistently shows stronger performance,
as quantified by both rA and φ.

It is of course important to note that this comparison
is limited insofar as we compare only to a linear anneal-
ing schedule. This restriction was chosen for simplicity;
it remains to be seen how FALQON compares relative to
quantum annealing with various optimized schedules [85–
87]. Nevertheless, these results suggest that feedback-
based protocols could be useful for improving perfor-
mance of analog annealing devices as well. For example,
the control schedule determined by FALQON, β(t), could
be used as the basis for an adiabatic annealing schedule.
Alternatively, an annealing schedule could be derived
through execution of an analogous Lyapunov-control in-
spired feedback strategy on an analog annealer, assuming
the required measurements for determining A(t) could be
performed.

VIII. OUTLOOK

We have introduced FALQON as a constructive,
feedback-based algorithm for solving combinatorial op-
timization problems using quantum computers, and ex-
plored its utility towards the MaxCut problem via a se-
ries of numerical experiments. Crucially, FALQON does
not require classical optimization, unlike other quantum
optimization frameworks such as QAOA. However, this
advantage comes at a cost. As we found in our numer-
ical illustrations, the quantum circuits needed tend to
be much deeper than those conventionally considered in
QAOA, suggesting that there is a tradeoff between the
classical and quantum costs.

Our numerical demonstrations utilized the feedback
law given in Eq. (27), although a much broader class
of functions could be considered, as per Eq. (8), and the
performance for different choices of w and f should be ex-
plored. Furthermore, the use of bang-bang control laws,
e.g., where β ∈ {±βmax} switches between ±βmax, for a
value of βmax chosen according to the sign of A, could
also be considered in the future. Furthermore, we re-
mark that the performance of FALQON depends on the
choice of ∆t, suggesting that it may be possible to de-
sign methods to optimally or adaptively choose ∆t, e.g.,
for a given problem, or in a layer-by-layer manner based
on measurement data, perhaps informed by Eq. (43), in
order to enhance the algorithm performance.
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Figure 6. Comparison of FALQON and corresponding
FALQON+ parameters for example instances of 3-regular
graphs with n vertices for n = 8 (a), n = 10 (b), n = 12
(c), and n = 14 (d). Orange and black diamonds denote
FALQON βk∆t and γk = ∆t parameters; red and blue cir-
cles denote FALQON+ βk and γk parameters, as described
in Eq. (53). Because each FALQON and QAOA circuit layer
contains a sequence of unitary operations, i.e., Ud(βk)Up(γk)
in Eqs. (2) and (23), we plot γk at k and βk at k + 1/2 for
clarity.

Figure 7. The population in the ground state, φ, and the pop-
ulation in the instantaneous ground state, φinst, are plotted as
a function of layer, for an application of FALQON to MaxCut
on an unweighted 3-regular graph with n = 8 vertices.

In future implementations, FALQON could be used
alone as a substitute for conventional QAOA, or it could
be used in combination with QAOA (e.g., by taking
|ψ0〉 to be the terminal state from an already-optimized
QAOA circuit). Similarly, in this work we have explored
how FALQON could be used to seed QAOA, by identi-
fying a set of initial QAOA parameters that can serve as
the starting point for subsequent classical optimization.
We expect that this seeding procedure may have particu-
lar benefit in settings with limited circuit depth, in cases
where FALQON fails to converge on its own, and in cases
where QAOA fails to converge on its own due to difficulty
with effective initialization of the classical optimization
procedure.

Figure 8. The mean digitized time T = 2k∆t needed to
achieve the reference values of rA = 0.932 (brown) and
φ = 0.25 (black) using a FALQON-inspired annealing sched-
ule is shown for the unweighted MaxCut problems considered
in Fig. 1. The mean is taken over the set of unweighted, 3-
regular graphs that are considered at each problem size n,
and the error bars show the associated standard deviations.

(a)

(b)

Figure 9. (a) The mean approximation ratios, rA, obtained
by FALQON (solid curves) and a linear quantum annealing
schedule (dotted curves) for MaxCut on unweighted, 3-regular
graphs with n = 8, 10, 12, 14 vertices. The mean is taken over
the set of different graphs that are considered at each problem
size n. For the linear quantum annealing schedule, T is chosen
to be the time when FALQON reaches the reference value
rA = 0.932 for each value of n. This reference value is plotted
as a horizontal black line. Panel (b) shows the corresponding
results for the success probabilities, φ.

We further remark that in situations where circuit
depth is limited, FALQON can be extended to incor-
porate additional driver Hamiltonians, drawing on the
framework outlined in Sec. III C, and it could also be
modified to use a hardware-inspired ansatz, where the
circuit is formed by alternating rounds of an Ising Hamil-
tonian defined by the hardware connectivity, denoted as
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Hh, and a driver Hamiltonian Hd, while the objective
remains determined by the Ising problem Hamiltonian,
denoted as Hp. In this scenario, despite changes in the
structure of the quantum circuits, the measurements of
i[Hd, Hp] needed to assign values to the β parameters
would remain unchanged.
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Appendix A: Convergence of QLC

Within the QLC framework outlined in Sec. III, it has
been shown that asymptotic convergence to the ground
state of Hp can be guaranteed when the following suffi-
cient criteria are met [50, 60–62]:

1. Hp has no degenerate eigenvalues, i.e., qi 6= qj for
i 6= j where qi and qj are the i-th and j-th eigen-
values of Hp

2. Hp has no degenerate eigenvalue gaps, i.e., ωji 6=
ωlk for (i, j) 6= (k, l), where ωji = qj − qi is the gap
between the i-th and j-th eigenvalues of Hp

3. 〈qj |Hd|qi〉 6= 0 for all i 6= j

4. Ep(|q0〉) < Ep(|ψ(t = 0)〉) < Ep(|q1〉)

In particular, if criteria 1-3 are met, then the LaSalle
invariance principle [90] can be used to show that any
initial state |ψ(t = 0)〉 will converge asymptotically to
the largest invariant set, i.e., the largest set of states
where d

dtEp = 0. When Ep is chosen per Eq. (4), it
can be shown that the largest invariant set is the set of
eigenstates of Hp. Within this set, the eigenstate |q0〉
with the smallest eigenvalue is the minimum, the eigen-
state with the largest eigenvalue is the maximum, and all
other eigenstates with intermediate eigenvalues are sad-
dle points. In order to ensure convergence to the desired
critical point |q0〉, criterion (4) stipulates that the value
of Ep(|ψ(0)〉) at time t = 0 must be strictly lower than
Ep(|q1〉) = q1, such that the only critical point inside
Ep(|ψ(t)〉) ≤ Ep(|ψ(0)〉) is the desired target, |q0〉. Thus,
the satisfaction of criteria (1)-(4) is sufficient to ensure
that the system state will converge asymptotically to the
desired target |q0〉 [50, 60–62].

Appendix B: Selecting ∆t > ∆tc

Fig. 10 illustrates the effects of selecting a time step
that is too large, i.e., ∆t > ∆tc, for an instance of
unweighted, 3-regular MaxCut on n = 8 vertices, with
∆t = 0.065. The behavior in Fig. 10 is representative of
the behavior seen across other instances when ∆t > ∆tc.
In general, there is a balance between selecting a large
∆t for improving convergence and satisfying ∆t ≤ ∆tc
for ensuring monotonic improvement in Ep.

Appendix C: Log-log plot of MaxCut results

In Fig. 11, we plot the results presented in the main
text in Fig. 1 using a log-log scale.
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(a)

(b)

Figure 10. Typical behavior when the time step ∆t is chosen
to be too large, leading to a violation of the QLC criterion
that 〈Hp〉 decreases monotonically with respect to layer, k.
In (a), the behavior of the approximation ratio, rA, and the
success probability, φ, are shown, with the violation in mono-
tonicity occurring around 100 layers. In (b), the associated
behavior of the circuit parameter β is plotted, indicating that
the violation of the QLC criterion corresponds to the creation
of rapid oscillations in β.

(a)

(b)

Figure 11. The performance of FALQON, as quantified by the
approximation ratio rA in (a) and the success probability φ
in (b), is shown as a function of the layer k for different qubit
counts n on a log-log scale. The same results are plotted
on a linear scale in Fig. 1. The solid curves show the average
results for unweighted 3-regular graphs, and the dotted curves
show average results for weighted 3-regular graphs.
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