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Superradiance and subradiance are collective effects that emerge from coherent interactions be-
tween quantum emitters. Due to their many-body nature, theoretical studies of extended samples
with length larger than the atomic transition wavelength are usually restricted to their early time
behavior or to the few-excitation limit. We hereby use a mean-field approach to reduce the complex
many-body system to an effective two-atom master equation that includes all correlations up to
second order and that can be numerically propagated in time. We find that three-dimensional and
two-dimensional inverted atomic arrays sustain superradiance below a critical lattice spacing and
quantify the scaling of the superradiant peak for both dimensionalities. Finally, we study the late-
time dynamics of the system and demonstrate that a subradiant phase appears before the system
finally relaxes.

I. INTRODUCTION

The decay and interaction of dilute ensembles of two-
level atoms with the radiation field is commonly de-
scribed by the semiclassical Maxwell-Bloch equations,
which assume the atoms to emit independently and result
in an exponential decay of the atomic excitation. While
this approximation is accurate when emitters are sepa-
rated by large distances, it breaks down for dense media.
As first noted by Dicke, the photon emitted by one atom
can coherently interact with close-by atoms and there-
fore stimulate emission of additional photons [1–3]. As a
result, the atomic dipoles lock in phase, build up coher-
ences and collectively emit at a higher rate, giving rise to
the superradiant burst in Fig. 1. This phenomenon has
been experimentally observed in a wide variety of sys-
tems, ranging from thermal gases [4–6] to Bose-Einstein
condensates [7, 8] and Rydberg atoms [9–11].

In the simplest model, one assumes all atoms to lie in
the same spatial position, such that they cannot be dis-
tinguished. Then, the N -atom system can only be in one
of the N+1 symmetric states and the maximum intensity
of the emitted light pulse for an initially inverted sample
scales with N2 [1, 3], as opposed to the linear scaling
characteristic of independent emitters. In extended sam-
ples larger than one atomic transition wavelength, dipole-
dipole interactions between different atoms become rele-
vant and the aforementioned symmetry is broken. As a
result, the whole Hilbert space with dimension 2N needs
to be considered and most theoretical studies of super-
radiance and subradiance are consequently restricted to
the emission of few photons [12–17] or to systems with
a small number of atoms [18–20] such that numerical
Monte-Carlo type methods can be applied.

The recent experimental advances in optical lattices
[21–23] and atomic tweezers [24–26], which allow to
produce atomic lattices —as well as more complex
configurations— with inter-particle spacing of the order
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FIG. 1. Superradiance in atomic arrays Collective emis-
sion of light from a three-dimensional array of closely-spaced,
dipole-coupled atomic emitters. The radiated intensity grows
at early times, giving rise to the superradiant burst.

of an atomic transition wavelength, have revived the in-
terest in superradiant and subradiant physics. While
these systems have been extensively studied in the case
where only one excitation is present in the lattice [27–34],
the behavior of inverted lattices is poorly understood.
Recent theoretical studies have shown that the appear-
ance of the superradiant burst in inverted samples is de-
termined by the statistics of the first two photons [35, 36],
or alternatively by the Taylor series expansion of the pho-
ton emission rate at time t = 0 [37]. While these methods
allow to determine the superradiant phase diagram and
the initial slope of the emitted radiation, they provide no
information about the scaling of the superradiant peak
or the nature of the subsequent time evolution.

In this work, we use an alternative method developed
in Refs. [38–40] based on a mean-field approach that in-
cludes all correlations up to second order. By tracing
out the degrees of freedom of N − 2 atoms and the ra-
diation field, one can reduce the description of the full
many-body system to an effective non-linear two-atom
master equation, which can be numerically propagated
in time. We hereby confirm the appearance of a super-
radiant burst in two-dimensional and three-dimensional
atomic arrays with small enough inter-particle spacing
and extend the results in Refs. [35–37] by characterizing
the scaling of the superradiant peak for both dimension-
alities, as well as by studying the long-time dynamics of
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the system —which exhibit a subradiant behavior.

II. FORMALISM

We first summarize the formalism derived in full detail
in Ref. [40] and that reduces the description of the atomic
array to a two-atom master equation [41]. We consider
an ensemble of N two-level atoms that interact with the
vacuum electromagnetic field. The Hamiltonian of the
system can be written as the sum of three terms: the free
Hamiltonian of the atoms Hatoms, the free Hamiltonian
of the field Hfield and the interaction term in the dipole

approximation Hint = −
∑
i ~pi

~E(~ri), where the index i

labels the lattice atoms, ~p is the dipole operator and ~E(~ri)
represents the quantized field at the atomic positions.
Then, two probe atoms labeled as i ∈ {1, 2} are selected
—as illustrated by the two red particles in Fig. 2— and
the Hamiltonian is split in two parts H = H0 + V such
that V contains the interaction of the two atoms with
the field and H0 includes the rest of the terms

H0 = Hatoms +Hfield −
∑
i 6=1,2

~pi ~E(~ri),

V = −
∑
i=1,2

~pi ~E(~ri). (1)

Moving to the interaction picture and tracing over the
environment degrees of freedom —that is, the radiation
field and the N −2 non-selected atoms—, one can obtain
the effective time evolution operator of the reduced sys-
tem on the Schwinger-Keldysh contour [42]. Using the
Markov and the rotating-wave approximations, and per-
forming a cumulant expansion that keeps all correlations
up to second order, finally results in a master equation for
the two probe atoms. We additionally consider randomly
polarized two-level atoms and neglect retardation effects
of the electromagnetic field, such that all changes in the
atomic variables propagate instantaneously. In that case,
the coordinate dependence of the reduced density matrix
for the two-probe atom can be dropped [39, 40]. The dy-
namics of the reduced system are then described by the
quantities

a = 〈 σ̂
(1)
ee + σ̂

(2)
ee

2
〉 = ρee,ee +

ρee,gg + ρgg,ee
2

,

n = 〈σ̂(1)
z σ̂(2)

z 〉 = ρee,ee − ρee,gg − ρgg,ee + ρgg,gg,

ρeg,ge = 〈σ̂(1)
− σ̂

(2)
+ 〉, (2)

where we have defined the density matrix elements

ραβ,γδ = 〈α1γ2|ρ|β1δ2〉, as well as the operators σ̂
(i)
ee =

|e(i)〉 〈e(i)|, σ̂
(i)
+ = |e(i)〉 〈g(i)|, σ̂

(i)
− = |g(i)〉 〈e(i)| and

σ̂
(i)
z = |e(i)〉 〈e(i)| − |g(i)〉 〈g(i)|. These three variables

have a clear physical meaning. a represents the aver-
age upper-level population in the system, such that −ȧ
directly gives the emitted intensity per particle. n is the

average value of the spin-spin correlation σ̂
(1)
z σ̂

(2)
z , which

takes a maximum value (n = 1) when both atoms are ei-
ther excited or deexcited and a minimum value (n = −1)
when only one of the atoms is in the excited state. To-
gether with a, it fully determines the populations of both
probe atoms and we therefore refer to it as the “effective
two-atom inversion” of the system. Finally, ρeg,ge cor-

responds to the two-atom flip–flop term 〈σ̂(1)
− σ̂

(2)
+ 〉 and

quantifies the coherence built between the probe atoms,
that is, between the single-excitation states |e(1), g(2)〉
and |g(1), e(2)〉.

The resulting equations of motion can be written as

ȧ = −(2Γ + γ)a+ Γ,

ṅ = −2(2Γ + γ)n− 2γ(2a− 1) + 8Γ̄ρeg,ge,

ρ̇eg,ge = −(2Γ + γ)ρeg,ge + Γ̄n, (3)

and depend on three decay rates, as depicted in Fig. 2.
The first is the spontaneous decay rate of a single atom in
the presence of the vacuum field, γ. The second and the
third are the cooperative decay rates Γ and Γ̄, which arise
from the interaction with the remaining N−2 atoms me-
diated by the electromagnetic field. Γ can be understood
as a self-energy or self decay rate that comes into the
reduced master equation through terms involving rais-
ing and lowering operators of one probe atom only (e.g.

σ̂
(1)
− σ̂

(1)
+ ). As for the two-atom decay rate Γ̄, it describes

the effective interaction between both probe atoms [see
sketch in Fig. 2] and appears through cross terms such as

σ̂
(1)
− σ̂

(2)
+ . Note that, additionally, the interaction between

the atoms generates a cooperative energy shift. Because
such shifts are generally small in two-level atoms [43], we
hereby set it to zero.

As shown in Ref. [40], a closed form can be found for
the collective decay rates

Γ̄

γ

γ
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Γ
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FIG. 2. Reduced two-atom system Two probe atoms,
represented in red, are chosen from an N -atom array with
inter-particle spacing d. Tracing out the degrees of freedom
from the radiation field and the N−2 non-selected atoms and
performing a cumulant expansion results in a master equation
for the reduced two-atom system. The evolution of the system
depends on three decay rates that arise from the dipole-dipole
interactions between all array atoms mediated by the electro-
magnetic field: the spontaneous decay rate, γ, and the coop-
erative single-particle and two-particle decay rates, Γ and Γ̄.
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Γ(~r) =
℘4

~4

2a

γ/2 + Γ

∑
~x

∣∣∣D̃ret(~r − ~x)
∣∣∣2 +

℘4

~4

2ρeg,ge
γ/2 + Γ

∑
~x1

∑
~x2

D̃ret(~r − ~x1)D̃∗ret(~r − ~x2),

Γ̄(~r1, ~r2) =
℘4

~4

2a

γ/2 + Γ

∑
~x

D̃ret(~r1 − ~x)D̃∗ret(~r2 − ~x) +
℘4

~4

2ρeg,ge
γ/2 + Γ

∑
~x1

∑
~x2

D̃ret(~r1 − ~x1)D̃∗ret(~r2 − ~x2), (4)

where ℘ is the dipole matrix element. These collective
decay rates involve summations over all lattice atoms, lo-
cated at positions ~x, and consequently depend on the size
or number of particles of the system. Γ and Γ̄ additionally
depend on the state of the atomic system —characterized
by the variables a, n and ρeg,ge— and therefore vary over
time during the decay process. If all atoms are in the
ground state (a = ρeg,ge = 0 and n = 1), both collective
decay rates are zero and the equations of motion given in
Eq. (3) reduce to ȧ = ṅ = ρ̇eg,ge = 0. That is, the ground
state of the system is simultaneously its steady state, as
expected in the absence of an external driving field. Im-
portantly, Γ and Γ̄ also depend on the specific positions of
the probe atoms, ~r1 and ~r2. This dependence, however, is
much weaker than that of the retarded Green’s function
in the medium D̃ret, as it is washed out by the sum-
mation over all lattice atoms located at positions ~x. To
account for it and to obtain the behavior representative
of the whole atomic ensemble, we hereby consider and
compare two different ways of computing the two-atom
cooperative decay rate. The first, labelled as Γ̄(n.n.), as-
sumes that the two probe atoms are nearest neighbors,
while the second, labelled as Γ̄(av.), considers an average
over different positions of the atom pairs (please refer to
Appendix B for a more detailed discussion).

Finally, the collective decay rates —and therefore the
evolution of the system— depend on the retarded Green’s
function in the medium D̃ret. This quantity describes the
propagation of the electromagnetic field in the presence
of the ensemble of atoms and therefore depends on the
dimension of the system. It can be obtained from the
free space Green’s function and the polarization of the
medium by means of the Dyson equation formalism [44],
as described in Appendix A. For a three-dimensional
ensemble of randomly polarized atoms, it can be written
as

D̃ret
3D(r) = − i~k

2
0

6πε0

e−ik0reξr

r
,

ξ = γ
2a− 1

γ/2 + Γ

π

k2
0d

3
, (5)

where d is the lattice spacing, k0 = 2π/λ is the wave
number associated to the atomic transition wavelength λ

and r =
√
x2 + y2 + z2. In a two-dimensional medium

such that all atoms are at z = 0, it takes the form

D̃ret
2D(ρ) = − i~k0

6πε0

∫ ∞
0

dq
qJ0(qρ)√

q2/k2
0 − 1 + 2iε/k0 − iχ

,

χ = γ
2a− 1

γ/2 + Γ

π

k2
0d

2
, (6)

where ρ =
√
x2 + y2 is the distance on the plane defined

by the two-dimensional array and the small, positive con-
stant ε ensures the convergence of the integral.

Both Green’s functions are complex valued, oscillate
with distance and their absolute values are increasing
functions of the upper-level population a. While the
two-dimensional Green’s function in the medium D̃ret

2D(ρ)
decreases with distance ρ for all values of a, its three-
dimensional counterpart D̃ret

3D(r) increases with distance
r for a > 1/2. In that case, the three-dimensional atomic
array turns into an amplifying medium.

Equations (3) and (4), together with the expressions
of the retarded Green’s functions in the medium, form
a self-consistent set of equations that can be numerically
propagated in time to obtain the dynamics of the system.

III. THREE-DIMENSIONAL ATOMIC ARRAYS

Fig. 3(a) shows the resulting dynamics for a spherical,
three-dimensional atomic array with Nrad = 25 particles
in the radial direction and obtained with the averaged
decay rate Γ̄(av.). As shown in Appendix C, the major
features for three-dimensional lattices are independent of
the specific form considered for the two-atom cooperative
decay rate. For a small inter-particle spacing of d = 0.1λ,
the average upper-level population a (solid purple, left-
most curve) initially decays at a much faster rate than
would occur for non-interacting particles (black dotted
curve). The decay rate or emitted intensity per parti-
cle −ȧ, given by the purple (upper) trace in Fig. 3(b),
increases at early times and a superradiant burst ap-
pears. This substantial increase of emission results from
the build-up of coherences in the system, as illustrated
by the two-particle coherence ρeg,ge [dashed purple curve
in Fig. 3(a)]. After the initial superradiant decay, a sub-
radiant phase appears. The emitted intensity is heavily
suppressed and the average upper-level population re-
mains roughly constant, while the coherences build up
during the superradiant burst slowly decay. As soon as
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(a)

(b)

FIG. 3. Time evolution of three-dimensional atomic
arrays (a) Average upper-level population a (solid lines)
and two-atom coherence ρeg,ge (dashed lines) as a function
of time for a spherical, three-dimensional atomic array with
Nrad = 25 particles in the radial direction (and 7153 atoms
in total) and for different inter-particle spacings d. The black
curve represents the decay in the absence of interactions be-
tween particles, that is it recovers the limit d/λ → ∞. The
dotted-dashed traces represent the dynamics for an homoge-
neous spherical gas of atoms with same radius and atomic
density. The two-atom coherence is nearly identical in both
cases. (b) Intensity per particle −ȧ as a function of time for
atomic arrays with different spacings. Same color code as in
panel (a). These results are obtained using the averaged col-

lective decay rate Γ̄(av.).

no coherence remain in the system, the atoms decay and
finally reach the ground state.

If the distance d between the nearest-neighbors in the
lattice is increased, these effects get weaker. More con-
cretely, the superradiant burst decreases and disappears
above a certain critical spacing dcrit, the maximum two-
particle coherence is reduced and the subradiant phase
vanishes. For inter-particle distances much larger than
the atomic transition wavelength, as it is the case of the
peach (light) curve with d = 2λ, the non-interacting case
is recovered. That is, the atomic dipoles do not build up
coherences and simply decay exponentially at the fixed
rate γ.

The time evolution of the two probe atoms can be fur-
ther used to characterize the superradiant peak. The
inset in Fig. 4(a) shows the intensity per particle during
the burst for three-dimensional arrays of spacing d = 0.1λ
and different number of particles along the radial direc-
tion Nrad. The magnitude of the peak −ȧmax increases
with lattice size and the point at which the emission is

maximum tmax shifts to earlier times. The exact scaling
of both features depends on two quantities: the charac-
teristic length or size of the array, given by Nradd/λ; and
the number of particles within a cubic atomic transition
wavelength λ3/d3, which corresponds to the density of
the sample and coincides with the relevant length scale
that appears in the three-dimensional retarded Green’s
function through the parameter ξ given in Eq. (5). For
a three-dimensional ensemble, its product results in the
optical depth of the medium O = Nradλ

2/d2. As il-
lustrated in Fig. 4, we find that the maximum emis-
sion rate per particle scales linearly with the optical
depth −ȧmax ∝ O, whereas the time at which the
maximum emission occurs is inversely proportional to it
tmax ∝ O−1 [3]. For a spherical sample, the number
of particles along its characteristic direction —that is,
its radius— scales as Nrad ∝ N1/3, where N is the total
amount of atoms in the array. Thus, the total peak inten-
sity emitted by the array scales as N × O ∝ N4/3, well
below the typical N2-scaling found in the Dicke limit,
where all atoms are contained in a volume much smaller
than λ3. Note that the optical depth of a sample with
a fixed number of atoms depends on the specific shape
of the system. Samples with a preferential axis, such as
cigar-shaped clouds, have a smaller amount of transverse
photon modes [45] and can therefore attain a quadratic
dependence of the pulse intensity with atom number [46].
Additionally, such samples do not scatter photons in all
directions as it is the case for spherical arrays or clouds
[47], but emit light predominantly along the preferential
directions with highest optical depth [7, 46].

Defining that a superradiant burst occurs if the emit-
ted intensity per particle initially increases (d2a/dt2<0),
one can obtain the superradiant phase diagram for three-
dimensional atomic arrays in Fig. 5(a). A burst appears
below a critical inter-particle spacing dcrit, that is, for
a dense enough medium. The spacing dcrit depends on
the size of the array, such that larger samples can sus-
tain superradiance at larger lattice constants. Note that
these values are much lower than those reported in other
references [35–37] and have to be understood as a very
conservative estimate. This is due to the self-consistent
procedure used to compute the cooperative rate Γ, which
considers interactions and cooperativity to be present
from the beginning. As a result, the initial decay rate
−ȧ(t = 0) is overestimated and masks the appearance
of a burst at finite time if the superradiant peak is not
prominent enough. Alternatively, one can obtain a more
realistic estimate of the critical spacing by using the scal-
ing of the superradiant peak −ȧmaxd2/λ2 ≈ f(Nrad),
where f is a liner function of the number of atoms in
the radial direction. For a certain Nrad, dcrit corre-
sponds to the spacing that results in −ȧcritmax = 1, that
is, dcrit = d

√
−ȧmax. Fig. 5(b) shows the resulting phase

diagram extracted from the traces in Fig. 4(a), which
qualitatively matches those reported in Refs. [35–37]. For
both phase diagrams, we obtain a critical spacing that
scales as dcrit/λ ∝

√
Nrad [37] (as shown by the black
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(b)

(a)

FIG. 4. Superradiant peak for a three-dimensional ar-
ray (a) Maximum emission rate per particle −ȧmax multi-
plied by the dimensionless parameter d3/λ3 versus radius or
characteristic length of the sample Nradd/λ for different lat-
tice spacings d. The inset shows the emitted intensity per
particle as a function of time for atomic arrays with fixed
d = 0.1λ and different Nrad. (b) Time at which the maxi-
mum emission occurs versus sample radius and for different
spacings. As shown by the black linear fittings, −ȧmax scales
with Nradλ

2/d2 and tmax with d2/Nradλ
2. We use Γ̄(av.) for

both panels.

dashed fitted curves), which coincides with recent theo-
retical predictions [36, 37] and benchmarks the validity
of our formalism.

Interestingly, the early dynamics (superradiant and
subradiant phases) of the atomic array are very similar to
those of a three-dimensional, homogeneous gas of atoms
with the same size and density of particles [39, 40], as
shown in Fig. 3(a). More specifically, an identical scal-
ing of the superradiant peak and a similar phase dia-
gram as the one shown in Fig. 5 are found for a homo-
geneous gas. However, the late dynamics differ consider-
ably. While the partially excited, ordered atomic array
rapidly decays once the coherences between atoms van-
ish, the excitation remains in the system much longer in
the case of an homogeneous gas of atoms, giving rise to
a radiation trapping regime [48–50]. When more than
half of the excitation has been emitted, that is a < 1/2,
the three-dimensional Green’s function in the medium
D̃ret

3D becomes absorbing and its value decays with dis-

(a) (b)

FIG. 5. Phase diagram for a three-dimensional array
(a) Maximum spacing dcrit at which superradiance is sus-
tained as a function of system size Nrad. A burst is considered
to occur if the emitted intensity per particle initially grows,
that is, if −d2a/dt2 > 0. (b) Phase diagram estimated from
the scaling of the superradiant peak −ȧmaxd

2/λ2 ≈ f(Nrad).
Using the traces in Fig. 4(a), the critical spacing for a given
Nrad is obtained as dcrit = d

√
−ȧmax. The dashed black

curves are fittings of the form dcrit = a+ b
√
Nrad.

tance. Thus, the interaction predominantly occurs be-
tween nearest neighbors. Even if the average spacing
between the atoms in the gas is of the order of a wave-
length, there is a non-negligible chance that some atoms
are found to be much closer than that. This gives rise to
an enhanced interaction in the gas and therefore a larger
collective decay rate Γ, which ultimately suppresses emis-
sion according to Eq. (3).

IV. TWO-DIMENSIONAL ATOMIC ARRAYS

For two-dimensional atomic arrays —that is, ensem-
bles of atoms lying on a plane—, the time evolution of
the average upper-level population a and the two-level
coherence ρeg,ge presents the same three regimes as the
three-dimensional case in Fig. 3(a). However, the two-
dimensional superradiant burst is weaker, the subradi-
ant phase is less prominent and both collective effects
emerge only at lower inter-particle spacings. This is con-
sistent with the fact that three-dimensional lattices are
better packed geometries that contain many more parti-
cles within a cubic transition wavelength and therefore
exhibit stronger cooperative effects. Unlike in the three-
dimensional case, the properties of the superradiant burst
of two-dimensional arrays depend on the specific way
to compute the two-atom cooperative decay rate —or
equivalently, on the position of the two probe atoms—.
Fig. 6(a) depicts the emission rate per atom −ȧ for small
samples (Nrad = 21) of various spacings and demon-
strates the appearance of a superradiant burst at low
enough d, while Fig. 6(b) shows the maximum emission
rate −ȧmax as a function of system size, Nradd/λ. In
both cases, the solid lines represent the results obtained
with the averaged collective decay rate Γ̄(av.), whereas
the dashed lines correspond to the dynamics in the case
where the probe atoms are nearest neighbors, computed
with Γ̄(n.n.). We find that the peak intensities obtained
with Γ̄(n.n.) are generally larger than those correspond-
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(a) (b)

(c)

(d)

FIG. 6. Superradiant peak for a two-dimensional array
(a) Intensity per particle −ȧ emitted by a two-dimensional
atomic array as a function of time for different lattice con-
stants d. A circular sample with Nrad = 21 particles in the
radial direction (317 atoms in total) is considered. (b) Maxi-
mum intensity per particle −ȧmax for samples with different
Nrad and d. Same colorscale in all panels. In panels (a) and
(b), the dashed lines correspond to the two-atom coopera-

tive decay rate Γ̄(n.n.), whereas the solid lines represent the
result for Γ̄(av.) (see Appendix B). (c) Scaling of the super-

radiant peak resulting from Γ̄(av.). The black dashed curve
corresponds to a power-law fit of the form −ȧmax(d/λ)1.52 ∝
(Nradd/λ)0.23. An equally good fitting can be obtained with
the logarithmic function −ȧmax(d/λ)1.52 ∝ log(Nradd/λ).

(d) Scaling of the superradiant peak resulting from Γ̄(n.n.).
The black dashed curve corresponds to a fit of the form
−ȧmax(d/λ)1.85 ∝ (Nradd/λ)0.4.

ing to Γ̄(av.). This occurs because the two-atom collec-
tive decay rate Γ̄(~r1, ~r2) decreases with the distance be-
tween probe atoms |~r2 − ~r1| (see Appendix D), which
ultimately reduces the coherence ρeg,ge built in the sys-
tem and, consequently, the strength of the cooperative
effects. As shown in Appendix D, gradually increasing
|~r2−~r1| when computing Γ̄(~r1, ~r2) results in a transition
from Γ̄(n.n.) to Γ̄(av.).

Additionally, Fig. 6(b) shows that −ȧmax does not in-
crease monotonically with sample size, but oscillates with
period 2λ. That is, a maximum (or minimum) is reached
every time the radius of the atomic array increases by
one atomic transition wavelength. This behavior arises
from the oscillating nature of the retarded Green’s func-
tion in the medium, which results in constructive and
destructive interference between the different “shells” of

the array when computing the cooperative decay rates Γ
and Γ̄. Note that these oscillations also appear in three-
dimensional arrays [see Fig. 4(a)], although the effect is
much weaker due to the strongly amplifying nature of the
three-dimensional medium.

The functional form of −ȧmax can be obtained by ap-
propriately scaling the emission axis. Fig. 6(c) shows
that the maximum emission rate per particle obtained
with Γ̄(av.) scales as −ȧmax ∝ N0.23

rad (λ/d)1.29. As shown
in Appendix D, a similar scaling is obtained from the
minima of −ȧmax computed with Γ̄(n.n). As for the max-
ima, the traces in Fig. 6(d) result in a power-law scal-
ing of the form −ȧmax ∝ N0.4

rad(λ/d)1.45. Noting that
the peak intensity for pairs of probe atoms separated by
more than one lattice site ranges between the values ob-
tained with Γ̄(n.n.) and Γ̄(av.) (see Appendix D) and using
the fact that Nrad ∝ N1/2 in two-dimensional lattices,
we can conclude that the total peak intensity radiated
by the array scales as a power law Nα with exponent
α ∈ {1.115, 1.2}. As expected, we obtain a smaller expo-
nent than that of three-dimensional arrays —where coop-
erative effects are stronger— and non-extended systems
—where the Dicke limit holds—.

We finally note that the initial slope of the total radi-
ation [−Nȧ(t = 0)] was recently found to scale in two-
dimensional arrays with the logarithm of Nrad [37]. Mo-
tivated by this result, we hereby find that the minima
of −ȧmax computed with Γ̄(n.n.), as well as the traces
in Fig. 6(c) obtained with Γ̄(av.), are also compatible
with a logarithmic scaling. That is, both the logarithmic
function and the power law overlap for systems of length
up to ten times the natural transition wavelength. This
corresponds to arrays of 100 × 100 atoms in the case of
d = 0.1λ, well beyond the size that has been experimen-
tally realized in lattices of cold atoms with subwavelength
spacing [21].

V. CONCLUSION AND OUTLOOK

We have analyzed the many-body dynamics of closely-
spaced and dipole-coupled atomic arrays by means of a
reduced two-atom master equation that captures cor-
relations with the rest of the ensemble. As opposed
to the formalism used in Refs. [35–37], which perfectly
captures the photon emission at zero time, our method
overestimates the initial cooperative effects in the array
and consequently does not provide accurate estimates
of the superradiant phase diagrams. However, it sat-
isfactorily captures the mid- and long-term behavior of
the atomic system. This allows us not only to demon-
strate the appearance of superradiance and subradiance
below a critical spacing, but also to characterize the
scaling of the superradiant peak for three-dimensional
and two-dimensional atomic arrays. In particular, we
show that the total intensity in extended samples scales
with a lower exponent than in the ideal Dicke case —
where all atoms are contained within a cubic transi-
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tion wavelength— and find that three-dimensional ar-
rays present a larger exponent than their two-dimensional
counterparts —consistent with the notion that three-
dimensional lattices are better packed geometries that
exhibit stronger cooperative effects—. We additionally
show that the figures of merit for the superradiant burst
of ordered arrays and homogeneous gases of atoms are
similar, and identify significant differences in the late-
time dynamics of both systems. As opposed to arrays,
homogeneous gases can sustain radiation trapping once
the atomic coherences vanish due to non-zero probabil-
ity of finding two atoms at distances much lower than the
average inter-particle spacing.

The collective phenomena studied in this paper may
be experimentally realized in a wide variety of platforms,
ranging from ultracold atoms trapped in optical lattices
[21, 51] and tweezers [25, 26] to condensed matter systems
such as quantum emitters in two-dimensional materials
[52, 53] or color centers in bulk crystals [54–56]. Further,
this work could be extended by adding a classical driv-
ing field, which may elucidate the behavior of arrays in
other regimes of the multi-excitation sector for which the-
oretical and numerical understanding is still very limited
[37, 57, 58]. Also, the effective two-atom description of
the many-body problem can be potentially leveraged to
study other systems or reservoirs by appropriately mod-
ifying the Green’s function of the medium [59].

We thank Hanzhen Ma for insightful conversations
about the effective two-atom model used to describe the
atomic arrays. We also acknowledge valuable discussions
with Ana Asenjo-Garcia and Stuart J. Masson. This
work has been supported by the NSF through The CUA
Physics Frontier Center, and through PHY-1912607, as
well as by the AFOSR through the grant FA9550-19-1-
0233. ORB acknowledges support from Fundació Ban-
caria “la Caixa” (LCF/BQ/AA18/11680093).

Appendix A: Retarded Green’s function in the
medium

The retarded Green’s function in the medium is ob-
tained from the free-space Green’s function Dret

0 and the
polarization source function P ret using the Dyson equa-
tion formalism [38, 44], which is graphically represented
in Fig. 7. It can be formally written as

= + Pret
Dret DretDret

0Dret
0

FIG. 7. Graphical respresentation of the Dyson equation. The
retarded Green’s function inside the medium Dret is gener-
ated by the free-space Green’s function Dret

0 and the polar-
ization source function P ret.

Dret
αβ (~r1, t1;~r2, t2) = Dret

0αβ(~r1, t1;~r2, t2)−
∫ ∞
−∞

dt′1

∫ ∞
−∞

dt′2

×
∫
V

d3 ~r′1D
ret
0αµ(~r1, t1; ~r′1, t

′
1)P retµν (~r′1; t′1, t

′
2)Dret

νβ (~r′1, t
′
2;~r2, t2),

(A1)

where α, β represent the components of the Green’s ten-
sor.

The polarization function P ret is given by the cor-
relation function of dipole operators of non-interacting
atoms, which can be computed using the quantum re-
gression theorem [39]. Using a continuum approximation,
P ret can be expressed as

P ret(~r, t) =
℘2

~2

1

dD
2a(~r, t)− 1

γ/2 + Γ
, (A2)

where d is the lattice constant, a is the average upper-
level population of the two probe atoms, Γ is the coop-
erative decay rate and D represents the dimensionality
of the array, that is D = 3 for three-dimensional lattices
and D = 2 for two-dimensional ones.

Eq. (A1) can be solved in Fourier space if a series of
approximations are done [38]. First, we extend the spa-
tial integral to infinity. Second, the spatial dependence
of the source function is replaced by ~r2. Finally, we make
use of the Markov approximation to only keep the slow
time dependence of the source function and assume that
it depends on the time difference t′1 − t′2. We can then
Fourier transform with respect to space ~x = ~r1 − ~r2 and
time τ = t1 − t2 and obtain

˜̃Dret(~q, ω; t) =
[
1 + ˜̃Dret

0 (~q, ω)P̃ret(ω; t)
]−1 ˜̃Dret

0 (~q, ω),

(A3)

where ˜̃Dret and P̃ret are 3x3 matrices and 1 is the iden-
tity matrix.

The free-space retarded Green’s function in real space
is

D̃ret
0αβ(~x, k0) = − i~

4πε0

(
k2

0δαβ +
∂2

∂xα∂xβ

)
e−ik0r

r
,

(A4)
where r = |~x|. If the medium is randomly polarized,
one can apply the polarization average 〈℘α℘β〉 = 1

3δαβ .
This is equivalent to performing the orientation average
xαxβ/r

2 → 〈xαxβ/r2〉 = 1
3δαβ . The Green’s function

then becomes a spherical tensor with components

D̃ret
0 (~x, k0) = − i~k

2
0

6πε0

e−ik0r

r
, (A5)

with k0 = 2π/λ. The spherical nature of the problem
now simplifies Eq. (A3) to the scallar equation

˜̃Dret(~q, k0) =
1(

˜̃Dret
0 (q, k)

)−1

+ P ret
. (A6)
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˜̃Dret
0 (~q, k0) is obtained by Fourier transforming Eq. (A5)

and it therefore depends on the dimensionality of the
sample.

1. Three-dimensional sample

For a three-dimensional sample, the free-space Green’s
function in momentum space is

˜̃Dret
0 (~q, k0) = −2i~k2

0

3ε0

1

q2 − k2
0 + 2ik0ε

, (A7)

where the small, positive constant ε moves the pole at
q = k0 to the lower half of the complex plane. Plugging
this result in Eq. (A6), performing the inverse Fourier
transform with respect to ~q and inserting the explicit
form of the source function given by Eq. (A2), one finally
obtains Eq. (5) of the main text [38]

D̃ret
3D(r) = − i~k

2
0

6πε0

e−ik0reξr

r
,

ξ = γ
2a− 1

γ/2 + Γ

π

k2
0d

3
, (A8)

where we have defined the spontaneous decay rate γ =
℘2k3

0/3πε0~.
Thus, the Green’s function in a three-dimensional

medium oscillates with period λ. For a predominantly
excited medium such that the average upper-level pop-
ulation a > 0.5, ξ is positive and D̃ret

3D exponentially in-
creases with distance. In this regime, the medium is am-
plifying. For a < 0.5, the medium becomes absorbing
and D̃ret

3D decreases with distance.

2. Two-dimensional sample

We assume that the atomic sample is located in the xy-
plane, such that z = 0 for all atoms. Then, the Fourier
transform is carried out only over x and y and the re-
tarded free-space Green’s function in momentum space
is

˜̃Dret
0 (~q, z = 0, k0) = − i~k0

3ε0

1√
q2/k2

0 − 1 + 2iε/k0

, (A9)

where the momentum is now defined in two dimensions

~q = (kx, ky) and q =
√
q2
x + q2

y. Again, a small, positive

constant ε is introduced.
From Eq. (A6) and Eq. (A2), it follows

˜̃Dret
2D(~q, k0) = − i~k0

3ε0

1√
q2/k2

0 − 1 + 2iε/k0 − iχ
, (A10)

where we have defined the parameter

χ =
γ

γ/2 + Γ

π

k2
0d

2
(2a− 1) (A11)

(a)

(b)

FIG. 8. Two-dimensional retarded Green’s function
Retarded Green’s function in a two-dimensional medium
D̃ret

2D ε0/k
3
0~ as a function of distance for (a) a > 0.5 and

χ = 0.8 and (b) a < 0.5 and χ = −0.8. The solid orange and
dash-dotted blue traces correspond to the real and imaginary
parts respectively, whereas the dashed black line represents
the absolute value. A spacing of d = 0.1λ is considered.

that depends on the state of the two probe atoms and
the lattice constant of the array. Performing the inverse
Fourier transform, we obtain

D̃ret
2D(ρ, z = 0) =

1

(2π)
2

∫ ∞
−∞

dqx

∫ ∞
−∞

dqy
˜̃Dret(~q, k0)e−i~q~r

=
1

(2π)
2

∫ 2π

0

dθ

∫ ∞
0

qdq ˜̃Dret(~q, k0)e−iqρ cos θ

= − i~k0

6πε0

∫ ∞
0

dq
qJ0(qρ)√

q2/k2
0 − 1 + 2iε/k0 − iχ

,

(A12)

where J0 is the zeroth order Bessel function of the first
kind and ρ =

√
x2 + y2 is the distance between two

points on the xy-plane.
The integral is performed numerically for the discrete

set of distances ρ that appear in an atomic array. That
is, given a lattice with spacing d, one needs to consider

ρ = d
√
n2
x + n2

y, where nx and ny are integers. Note

also that Eq. (A12) has a pole at q = ±k0

√
1− χ2. The

small constant ε therefore ensures the convergence of the
integral when the pole is located in the real axis.

As shown in Fig. 8, D̃ret
2D(ρ) oscillates and its absolute

value decays with distance for all values of χ. That is,
the medium is absorbing for all average upper-level pop-
ulations a.

Appendix B: Cooperative decay rates

After tracing out the degrees of freedom of the elec-
tromagnetic field and the N − 2 non-selected atoms, the
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resulting master equation for the reduced system —and
therefore the equations of motion given by Eq. (3)— de-
pend on the cooperative decay rates Γ and Γ̄. These
quantities can be expressed in terms of the two-time cu-

mulants of the field operators and are therefore related
to the Green’s function in the atomic medium. As shown
in Refs. [39, 40], one can find the closed form expressions

Γ(~r) =
℘4

~4

∑
~x

2a

γ/2 + Γ

∣∣∣D̃ret(~r − ~x)
∣∣∣2 +

℘4

~4

∑
~x1

∑
~x2

2ρeg,ge
γ/2 + Γ

D̃ret(~r − ~x1)D̃∗ret(~r − ~x2),

Γ̄(~r1, ~r2) =
℘4

~4

∑
~x

2a

γ/2 + Γ
D̃ret(~r1 − ~x)D̃∗ret(~r2 − ~x) +

℘4

~4

∑
~x1

∑
~x2

2ρeg,ge
γ/2 + Γ

D̃ret(~r1 − ~x1)D̃∗ret(~r2 − ~x2), (B1)

where the summation is carried out over all the atoms of
the system, located at positions ~x. The specific form of
the retarded Green’s function depends on the dimension-
ality of the lattice, and the collective decay rates depend
on the positions of the two probe atoms, ~r1 and ~r2. Γ
and Γ̄ can be understood as the one-atom and two-atom
cooperative decay rates, respectively. That is, Γ appears
in the reduced master equation through terms involving
raising and lowering operators of one probe atom only

(e.g. σ1σ
†
1), while Γ̄ corresponds to terms that involve

both probe atoms (e.g. σ1σ
†
2). Note also that the decay

rates for an homogeneous gas can be obtained by replac-
ing

∑
~x → N

∫
V
d3~x, where N denotes the density of the

medium [39, 40]. For clarity, we define Γ = Γ1 + Γ2 and
Γ̄ = Γ̄1 + Γ̄2, where the subindexes indicate the first and
second term of both collective decay rates.

We hereby assume that the spatial dependence of the
atomic variables is much weaker than that of the field
correlations, which rapidly oscillate according to D̃ret.
We thus describe the atomic system with the averaged
variables a, n and ρeg,ge. Physically, this assumption
amounts to neglecting retardation effects of the electro-
magnetic field (as well as the edge effects that might arise
from the boundaries of finite-sized systems). Addition-
ally, we consider that the one-atom cooperative decay
rate can be approximated as Γ ≈ Γ(~r = ~0), consistent
with the fact that the majority of the atoms are deep in-
side the array for large enough samples. Similarly, Γ̄2 is
approximated as

∑
~x1
D̃ret(~r1−~x1)

∑
~x2
D̃∗ret(~r2−~x2) ≈∑

~x

∣∣∣D̃ret(~x)
∣∣∣2 and is therefore equal to Γ2. However, Γ̄1

strongly depends on the choice of ~r1 and ~r2, as the ad-
dends in

∑
~x D̃

ret(~r1−~x)D̃∗ret(~r2−~x) interfere differently
depending on the exact value of both quantities. In order
to account for this dependence and obtain the behavior
representative of the whole ensemble, we hereby consider
and compare different ways of computing Γ̄1:

(i) Γ̄
(pair)
1 = Γ̄1(~r1 = ~0, ~r2): Decay rate for a specific

pair of atoms located at positions ~r1 = 0 and ~r2. We
label the specific case of nearest neighbors, where

|~r2 − ~r1| = d, as Γ̄
(n.n)
1 .

(ii) Γ̄
(mean)
1 = 1

N

∑
~r2 6=~0 Γ̄1(~r1 = ~0, ~r2): Average or

arithmetic mean over all possible atom pairs, con-
sidering that one of the atoms is at the center of the
array.

(iii) Γ̄
(av.)
1 = 1

N
℘4

~4
2a

γ/2+Γ

∣∣∣∑~x D̃
ret(~x)

∣∣∣2: Alternative av-

erage introduced in Ref. [39], which results from
adding an extra summation 1

N

∑
~x2

and thus sepa-
rating the ~x-dependence into two different variables

~x1 and ~x2. While Γ̄
(av.)
1 provides similar values

as Γ̄
(mean)
1 (see Appendix C and Appendix D), it

is faster to compute and therefore allows to study
larger lattices.

The results presented in the main text are obtained

using Γ̄
(av.)
1 in the case of the three-dimensional arrays

and Γ̄
(av.)
1 and Γ̄

(n.n.)
1 in the case of two-dimensional lat-

tices. Also, the differences between the various ways of
computing Γ̄1 for both dimensionalities are discussed in
Appendix C and Appendix D, respectively.

Appendix C: Three-dimensional array

Fig. 9 shows the different values of Γ̄1 obtained for
a three-dimensional square lattice with spherical shape.
For an individual pair of atoms at positions ~r1 and ~r2, it
is simply proportional to

∑
~x D̃

ret(~r1 − ~x)D̃∗ret(~r2 − ~x).
Given that the retarded Green’s function oscillates with
distance, both factors overlap in different ways depend-
ing on the relative position of ~r1 and ~r2. If both atoms
are at positions such that D̃ret(~r1) and D̃∗ret(~r2) have
the same sign, the retarded Green’s functions overlap in
phase and the addends add up constructively. Also, the
farther away both atoms are, the smaller is the result-
ing sum. However, if the signs of D̃ret(~r1) and D̃∗ret(~r2)
differ, the Green’s function at the atomic positions have
opposite phases and the resulting Γ̄ can become negative.
This represents a non-physical scenario in which Γ can,
in turn, also become negative during the time evolution,
probably due to an overestimation of the phase coherence
over distance.
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FIG. 9. Γ̄1 in a three-dimensional array Γ1/γa (solid
blue) and Γ̄1/γa as a function of number of atoms in the radial
direction Nrad for an array with d = 0.2λ and Γ = 10γ. The
different colors correspond to the different ways of computing

Γ̄1: Γ̄
(n.n.)
1 /γa as a dashed orange line, Γ̄

(av.)
1 /γa as a dash-

dotted green line and Γ̄
(mean)
1 /γa and −Γ̄

(mean)
1 /γa as red

circles and purple diamonds, respectively.

For Γ̄
(n.n.)
1 , there is an almost perfect, constructive

overlap and the resulting decay rate (dashed orange

trace) is always positive and close to Γ1 = Γ̄
(pair)
1 (~r1 =

~r2) (solid blue trace). Both Γ̄
(mean)
1 and Γ̄

(av.)
1 repre-

sent averages over different atom pairs and their absolute

values are therefore smaller than those of Γ1 or Γ̄
(n.n.)
1 .

The arithmetic mean Γ̄
(mean)
1 additionally results in re-

gions with positive (red circles) and negative (purple dia-
monds) decay rates, which alternate every time the sam-

ple size increases by λ. Interestingly, Γ̄
(av.)
1 is always pos-

itive and is close to the absolute value of Γ̄
(mean)
1 . Note

also that Γ1, Γ̄
(n.n.)
1 and Γ̄

(av.)
1 only involve a summa-

tion over the N ≈ N3
rad lattice sites of the array, whereas

Γ̄
(mean)
1 contains two nested summations, which increases

the number of operations quadratically and largely re-
duces the maximum array size that can be numerically
simulated.

The results shown in the main text are obtained using

Γ̄
(av.)
1 . In Fig. 10, we present the dynamics and values

of the superradiant peak obtained with the other forms
of the cooperative decay rate. In particular, we demon-
strate the time-evolution of the decaying ensemble for

Γ̄
(av.)
1 in Fig. 10(a) and for Γ̄

(mean)
1 in Fig. 10(b). One

can see that the resulting dynamics —that is, the super-
radiant burst, the subradiant phase and the subsequent
decay to the ground state of the system— are identi-
cal in both cases. Additionally, we obtain an identical
value of the emission peak per particle −ȧmax for all
forms of Γ̄1. In Fig. 10(c)-(d), we plot −ȧmax as a func-
tion of lattice size and for three different lattice spacings.
The overlap between the dashed lines —which show the

results obtained with Γ̄
(av.)
1 and presented in the main

text— and the markers —which correspond to the val-

ues computed with Γ̄
(mean)
1 in Fig. 10(c) and with Γ̄

(n.n.)
1

Fig. 10(d)— demonstrates that both methods result in

(a) (c)

(d)

(b)

(e)

FIG. 10. Result comparison for three-dimensional ar-
rays (a)-(b) Average upper-level population a (solid lines)
and two-atom coherence ρeg,ge (dashed lines) as a function
of time for a spherical, three-dimensional atomic array with
Nrad = 25 particles in the radial direction and for different

lattice constants d. In (a), the cooperative decay rate Γ̄
(av.)
1 is

used, whereas (b) is obtained with Γ̄
(mean)
1 . (c)-(e) Maximum

emission rate multiplied by (d/λ)3 versus radius or charac-
teristic length of the sample Nradd/λ for different values of

d. The dashed lines are obtained with Γ̄
(av.)
1 , whereas the

markers correspond to Γ̄
(mean)
1 in panel (c), Γ̄

(n.n.)
1 in panel

(d) and Γ̄
(pair)
1 (~r2 = (|~r2|, 0, 0)) in panel (e). In panel (e), an

array of spacing d = 0.2λ is considered.

the same scaling of the peak with the optical depth of
the system. Similarly, Fig. 10(e) depicts −ȧmax for a
lattice of spacing d = 0.2λ and for the collective decay

rate Γ̄
(pair)
1 computed for different distances |~r2| between

probe atoms. Again, almost identical values are obtained
independently of |~r2|. These results confirm both the
linear scaling of the superradiant peak with the opti-
cal depth of the array O = Nrad/d

2 and the slight os-
cillations arising from the interference between different
“shells” of the lattice.

Appendix D: Two-dimensional array

Fig. 11(a) shows Γ̄
(pair)
1 (~r1 = 0, ~r2) for circular two-

dimensional arrays with different sizes Nrad as a function
of ~r2 = (|~r2|, 0). Again, in-phase and out-of-phase over-

laps in the term
∑
~x D̃

ret(~x)D̃∗ret(~r2 − ~x) result in max-
ima and minima of Γ̄1 and a subsequent oscillating be-
havior of Γ̄1 with the distance between probe atoms. Due
to the absorbing nature of the two-dimensional Green’s
function, i.e. D̃ret

2D(ρ) decays with distance ρ, the oscil-
lations are damped and the contribution of Γ̄1 to the
two-atom cooperative decay rate becomes very small for
probe atoms that lie far apart.
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(a)

(b)

FIG. 11. Γ̄1 in a two-dimensional array (a) Γ̄
(pair)
1 (~r =

0, ~r2)/γ for a two-dimensional, circular array of atoms with
spacing d = 0.1λ and for different positions of the probe atom
~r2 = (|~r2|, 0). The different colors represent arrays of different
sizes. (b) Γ1/γ (solid blue trace) and Γ̄1/γ as a function of
number of atoms in the radial direction Nrad for an array with
d = 0.1λ. The different colors and linestyles correspond to

the different ways of computing Γ̄1: Γ̄
(n.n.)
1 in dashed orange,

Γ̄
(mean)
1 in dash-dotted green and Γ̄

(av.)
1 in dotted red. In both

panels, we consider an initially inverted array a = 1 and the
corresponding Γ given by Eq. (B1).

In Fig. 11(b), we compare the different ways of comput-
ing Γ̄1 for arrays of various sizes. As can be inferred from

Fig. 11(a), Γ̄
(n.n.)
1 (|~r2| = d) is a growing function of the

sample size and is close to Γ1 = Γ̄
(n.n.)
1 (|~r2| = 0). Γ̄

(mean)
1

is obtained by averaging over all positions ~r2 present in
the array and decays and oscillates with Nrad due to the

additional periods that emerge in Γ̄
(pair)
1 (~r = 0, ~r2) when

the sample size is increased. Again, it follows a similar

trend as Γ̄
(av.)
1 .

As opposed to the three-dimensional case, the value
of the two-dimensional superradiant peak depends on
the specific choice of Γ̄1. In the main text, we present

the results obtained using both Γ̄
(n.n.)
1 and Γ̄

(av.)
1 . Note

that the fact that Γ̄
(n.n.)
1 > Γ̄

(av.)
1 results in larger val-

ues of the two-atom coherence and consequently of the
superradiant peak for nearest neighbors, as shown in
Fig. 6(b) in the main text. Also, the oscillations in

Γ2 = Γ̄2 = Γ̄
(av.)
1 Nρegge/a lead to an oscillatory be-

havior of the maximum emission rate −ȧmax, which can
be understood as an interference effect between differ-
ent “shells” of the array. In Fig. 12(a), we complement
the results reported in the main text with the maximum

emission rate for probe atoms separated by different dis-

tances, obtained with Γ̄
(pair)
1 . One can see that the re-

sulting −ȧmax is contained within the values retrieved

from Γ̄
(n.n.)
1 and Γ̄

(av.)
1 for all distances |~r2| between the

probe atoms. This suggests that the scaling of the super-
radiant peak is also contained within the values predicted

using Γ̄
(n.n.)
1 and Γ̄

(av.)
1 .

Finally, Fig. 12(b) shows the maximum decay rate

−ȧmax obtained with Γ̄
(n.n.)
1 for arrays with differ-

ent sizes and spacings. The minima of −ȧmax can
be fitted both by the power law −ȧmax(d/λ)1.65 ∝
(Nradd/λ)0.22 (black dashed trace) and by the logarith-
mic function −ȧmax(d/λ)1.65 ∝ log(Nradd/λ) (grey dash-
dotted trace), which matches the scaling obtained in

Fig. 6(c) of the main text with Γ̄
(av.)
1 .

(a)

(b)

FIG. 12. Two-dimensional superradiant burst (a) Max-

imum emission rate per particle −ȧmax resulting from Γ̄(pair)

for different probe atom pairs, represented by different col-
ors. The dashed black and grey lines correspond to −ȧmax

computed with Γ̄(n.n.) and Γ̄(av.), respectively. A lattice with
spacing d = 0.06λ is considered. (b) Scaling of the minima

of the superradiant peak resulting from Γ̄(n.n.). The black
curve corresponds to a fit of the form −ȧmax(d/λ)1.65 ∝
(Nradd/λ)0.22 and the grey trace to the functional form
−ȧmax(d/λ)1.65 ∝ log(Nradd/λ).
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