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The collective modes of two-dimensional ordered atomic arrays can modify the radiative environ-
ment of embedded atomic impurities. We analyze the role of the lattice geometry on the impurity’s
emission linewidth by comparing the effective impurity decay rate obtained for all non-centered
Bravais lattices and an additional honeycomb lattice. We demonstrate that the lattice geometry
plays a crucial role in determining the effective decay rate for the impurity. In particular, we find
that the minimal effective decay rate appears in lattices where the number of the impurity’s nearest
neighbors is maximal and the number of distinct distances among nearest neighbors is minimal. We
further show that, in the choice between interstitial and substitutional placement of the impurity,
the former always wins by exhibiting a lower decay rate and longer photon storage. For interstitial
placements, we determine the optimal impurity position in the lattice plane, which is not necessarily
found in the center of the lattice plaquette.

I. INTRODUCTION

Light-matter quantum interfaces [1] are a crucial build-
ing block for future quantum technologies. They are a
necessity for building up networks of quantum informa-
tion processors [2, 3], where an efficient link between pho-
tonic degrees of freedom and atoms or other solid-state
based quantum processors is decisive. A broad variety
of potential platforms realizing efficient light-matter in-
terfaces are currently explored theoretically and experi-
mentally. Prominent examples are single atoms or ions
in cavities [4, 5], quantum dots [6, 7] or excitons in two-
dimensional solid-state materials [8–10].

Recently, arrays of quantum emitters were found to be
a versatile tool to enhance and control the interaction
between single photons and quantum matter [11–21]. If
the interatomic distance is smaller than the atomic tran-
sition wavelength, these arrays exhibit cooperative effects
due to light-induced resonant dipole-dipole interactions
among the single emitters [22]. This enhances the ef-
fective cross-section of the array, as impinging photons
excite collective lattice modes [23]. The precise control
over these collective lattice modes results in a broad vari-
ety of potential applications in future quantum technolo-
gies. Some examples are the efficient storage and retrieval
of photons by dynamically populating subradiant lattice
modes [24, 25], lattice based quantum memories [26] or
the generation of topological phases of matter [27].

Here, we consider a setup where the collective lattice
modes modify the radiative environment of an atomic
impurity, see Fig. 1(a). The impurity can either be a
different atomic species compared to the lattice atoms
or a different transition for the same atomic species. It
was recently shown that two dimensional square arrays
can act as structured Markovian baths for the impurity,
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Figure 1. (a) Setup – an impurity is embedded in a periodic
two-dimensional array. We analyze the effect of the lattice
geometry on the effective impurity decay rate. Here, we show
the interstitial case. The subsitutional case corresponds to re-
placing a lattice atom with an impurity. (b) Distance depen-
dence of the coherent dipole-dipole interactions Jij(rij) and
light-induced collective dissipation Γij(rij) as given in Eq. (3).

effectively suppressing its decay rate by several orders
of magnitude for an optimal detuning between the im-
purity’s and the lattice atoms’ transition frequency [28].
The enhanced excited state lifetime also depends on the
structure of the lattice. In this work, we analyze the
fundamental role of the lattice geometry for the photon
storage efficiency. Specifically, we focus on three key as-
pects: i) the performance of various lattice geometries,
especially the non-centered Bravais lattices and an addi-
tional honeycomb lattice, ii) the differences between in-
terstitial and substitutional impurity positions, i. e., be-
tween placing the impurity inside the lattice plaquette
and substituting a lattice atom by an impurity, and iii)
the optimal interstitial position of the impurity inside
a lattice plaquette and the effect of imperfect impurity
placement.

We demonstrate that the nearest neighbors of the im-
purity play a central role in determining the impurity’s
decay properties. In particular, the number of nearest
neighbors and the number of distances between nearest
neighbor atoms decide which geometries present a lower
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effective decay rate. We further find that interstitial im-
purity placement always results in a smaller decay rate
than the substitutional case. While the minimum decay
rate is found well beyond the band edge of the collective
spin wave modes of the lattice for interstitial impurities,
the optimal detuning for substitutional impurities is lo-
cated at the band edge. This compromises the perfor-
mance of substitutional impurities, as they can strongly
couple to resonant lattice modes when operating at the
optimal detuning. If one allows the interstitial impurity
to take any position within the lattice plaquette, the op-
timal impurity placement corresponds to the most sym-
metrical points inside the plaquette, which interestingly
do not correspond to the plaquette center for some of
the studied geometries. Lastly, we investigate the sen-
sitivity of decay rates to perturbations of the impurity
away from its optimal position, to judge how precise ex-
perimental realizations of such atomic arrays must be to
achieve suppressed decay rates.

II. MODEL

We consider a two-dimensional lattice of quan-
tum emitters, which interact via light-induced reso-
nant dipole-dipole interactions. An additional impu-
rity is placed either interstitially in the lattice plane
[see Fig. 1(a)] or at a lattice position by replacing an
array atom (substitutional case). The emitters are as-
sumed to be two-level systems with a ground state |g〉
and an excited state |e〉. The transition frequencies of
the lattice atoms and the impurity are ωL = 2πc/λL
and ωI = 2πc/λI , respectively, such that the transition
wavelength λL is of the order of the lattice spacing. In
this case, pairwise resonant dipole-dipole interactions re-
sult in collective couplings Jij(ri, rj) and collective decay
rates Γij(ri, rj) for the emitters i and j located at posi-
tions ri and rj [29, 30],

Jij(ri, rj) = −
3π
√
γiγj

ω
d†i · Re[G(rij , ω)] · dj , (1a)

Γij(ri, rj) =
6π
√
γiγj

ω
d†i · Im[G(rij , ω)] · dj . (1b)

Here γi,j is the decay rate of the individual atoms i
and j, di,j are the respective atomic dipole moments,
rij = ri − rj is the vector connecting both atoms. The
atoms are assumed to be point particles, which is a good
approximation if the trap frequency is large enough [31].
We also assumed ωI ≈ ωL ≡ ω in Eq. (1). The couplings
in Eq. (1) are governed by the Green’s tensor for a point
dipole in vacuum G(r, ω) ith components

Gαβ(r, ω) =
eiωr

4πr

[(
1 +

i

ωr
− 1

ω2r2

)
δαβ

−
(

1 +
3i

ωr
− 3

ω2r2

)
rαrβ
r2

]
− δ(r)

3ω2
δαβ , (2)

where r = |r| denotes the distance from the dipole and
α, β = x, y, z. In this work, we assume both the lattice
atoms and the impurity to be circularly polarized dL =
dI = 1√

2
(1, i, 0)T . Then, the collective shifts and decay

rates in Eq. (1) are independent of dipole orientation, and
are determined solely by the distance rij = |rij | between
emitters. They can be written as

Jij(rij) = −
3
√
γiγj

8ωrij

(
cos(ωrij) +

sin(ωrij)

ωrij
+

cos(ωrij)

(ωrij)2

)
,

(3a)

Γij(rij) =
3
√
γiγj

4ωrij

(
sin(ωrij)−

cos(ωrij)

ωrij
+

sin(ωrij)

(ωrij)2

)
,

(3b)

and their functional dependence is shown in Fig. 1(b).

In the single excitation subspace the system is de-
scribed by the non-Hermitian Hamiltonian H = HL +
HI +HLI . In this expression, HI =

(
ωI − i

2γI
)
s†s is the

bare Hamiltonian of the impurity, where s = |gI〉 〈eI | de-
notes its transition operator, ωI its transition frequency
and γI its decay rate. Note that we take ~ = 1 for the
remainder of this work. HL corresponds to the Hamilto-
nian describing the lattice atoms and HLI describes the
interaction between the array atoms and the impurity.
They are defined as

HL =

NL∑
i=1

(
ωL −

i

2
γL

)
σ†iσi +

NL∑
i,j 6=i

(
Jij −

i

2
Γij

)
σ†iσj ,

(4a)

HLI =

NL∑
i=1

[(
Jis −

i

2
Γis

)
σ†i s+

(
Jsi −

i

2
Γsi

)
s†σi

]
,

(4b)

where NL is the number of lattice atoms and σi = |gi〉 〈ei|
is the transition operator for lattice atom i. To simplify
notation, we retain from including the argument rij in
the terms Jij and Γij .

To quantify the photon storage efficiency of the con-
sidered setup, we calculate the effective impurity decay
rate. Previous work (see Ref. [28]) presented this calcu-
lation based on the collective lattice bands in momen-
tum space, which are found by applying Bloch’s theo-
rem for the periodic lattice. Here, we follow an alterna-
tive method to eliminate the lattice dynamics and calcu-
late the effective impurity decay rate, derived solely in
real space. In the single excitation manifold the atomic
wave function can be written as |ψ(t)〉 = a(t) |G, gs〉 +∑NL

i=1 bi(t)e
iωIt |ei, gs〉+c(t)eiωIt |G, es〉, where |G, gs〉 de-

notes the state with all dipoles in the ground state, |ei, gs〉
the state where only the ith lattice atom is excited and
|G, es〉 the state where only the impurity is excited. The
Schrödinger equation i∂t |ψ(t)〉 = H |ψ(t)〉 then results
in a set of coupled equations for the amplitudes bi(t) and
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c(t),

∂tbi(t) = ibi(t)

(
δLI +

i

2
γL

)
− i
∑
j 6=i

bj(t)

(
Jij −

i

2
Γij

)

− ic(t)
(
Jis −

i

2
Γis

)
, (5a)

∂tc(t) = −i
∑
i

bi(t)

(
Jis −

i

2
Γis

)
− γI

2
c(t). (5b)

We introduced the detuning between the lattice and im-
purity atom transition frequencies as δLI := ωI − ωL.
Note that we neglect any classical driving terms in the
Hamiltonian in Eq. (4) so the derivatives of the excited
state populations don’t depend on the ground state pop-
ulation a(t). Instead we will assume that the system is
prepared with an excited impurity at t = 0. The remain-
ing set of equations can be written in Matrix form

i


ḃ1(t)

...

ḃNL
(t)

ċ(t)

 =


c1s

HL

...
cNLs

cs1 · · · csNL
iγI/2

 ·

b1(t)

...
bNL

(t)
c(t)


(6)

where the NL×NL matrix HL represents the bare lattice
Hamiltonian matrix containing the terms ∝ (δLI−iγL/2)
in the diagonal and the coupling terms ∝ (Jij − iΓij/2)
in the off-diagonals [see first line in Eq. (5a)]. The com-
plex numbers cis = csi represent the coupling terms be-
tween the lattice atoms and the impurity ∝ Jis− iΓis/2.

If the impurity decay rate is much smaller than the
lattice atoms’ decay (γI � γL), the lattice acts as a
Markovian bath coupled to the impurity and the lat-
tice dynamics can be adiabatically eliminated. Defining
the quantities b(t) := (b1(t) . . . bNL

(t))T and the lattice-
impurity coupling vector CLI := (c1s . . . cNLs)

T and set-

ting ḃi(t) = 0 results in the steady state for the lattice
atoms,

bss(t) = −
(
H−1
L ·CLI

)
c(t). (7)

Plugging this result back into Eq. (6), we obtain the equa-
tion of motion for the impurity population c(t)

ċ(t) = −i
[
i

2
γI −CT

IL ·H−1
L ·CLI

]
c(t), (8)

with CT
IL := (cs1, . . . , csNL

). Eq. (8) shows that the im-
purity’s resonance frequency and decay rate are modified
by the self-energy

ΣI := −CT
IL ·H−1

L ·CLI , (9)

which describes how the impurity is influenced by its own
presence in the lattice. This allows us to define the effec-
tive decay rate for the impurity Γeff as

Γeff = γI − 2 Im[ΣI ]. (10)

We see that the effective impurity decay rate can be lower
than the free space decay rate γI if Im[ΣI ] > 0. The effec-
tive decay rate Γeff is the central parameter for compar-
ing different lattice geometries and impurity placements
throughout this work. Note that the ultimate value of the
effective decay rate non-trivially depends on the relative
detuning between the lattice atoms and the impurity δLI
[see also Fig. 3(c)].

III. COMPARISON OF DIFFERENT LATTICE
GEOMETRIES

While a square lattice geometry is the natural choice
for traditional optical lattice experiments, the recent ad-
vent of optical tweezer arrays for individual atoms [32–
36], establishes a versatile tool to realize arbitrary lat-
tice geometries. This motivates a more general study
going beyond square lattices. Current state of the art
tweezer arrays don’t necessarily operate in the regime
where strong light-induced dipole-dipole interactions oc-
cur. However, new advances in generating optical lattices
with more arbitrary geometries [37, 38], and tweezer ar-
rays of alkaline-earth atoms or lanthanides open the door
to the experimental realization of this regime in the near
future [39–41]. For example, trapping strontium atoms
in a blue-detuned magic wavelength optical lattice with
a lattice spacing a = 206.4nm and using the 3P0 ↔3D1

transition at 2.6µm [42] results in aSr/λ = 0.079. Al-
ternatively, recent progress on cooling and trapping er-
bium in optical lattices would allow the generation of
lattice spacings on the order of 250nm. Using the avail-
able 1.2µm transition [43] then results in aEr/λ = 0.2.
Hence, the lattice spacings used below are expected to
be achievable in the near term. It should also be noted
that the qualitative picture of the effects presented below
will also be observable for larger lattice spacings as long
as the condition a < λL is fulfilled.

In the following, we analyze whether alternative ge-
ometries could enhance the photon storage time, i. e.,
diminish Γeff further than the square lattice geometry.
To this end, we compare all four non-centered Bravais
lattices, i. e., square, triangular, oblique and rectangu-
lar lattices. In addition, we also consider a honeycomb
lattice to get an understanding how the photon storage
efficiency behaves for non-Bravais lattices. In Fig. 2, we
sketch all considered geometries, with interstitial cases
on the top line, and substitutional cases on the bottom.
The impurity atom is marked with a red dot. We also
indicate the impurity’s nearest neighbors (blue filled cir-
cles with red borders) and the different distances between
those nearest neighbors (green lines). We analyze the
difference between interstitial impurity placement (po-
sitioning the impurity in the center of the lattice pla-
quette), and substitutional impurity placement (replac-
ing a lattice atom with an impurity atom). The lat-
ter is particularly relevant for optical lattice based se-
tups, where adding an additional trap for the impurity
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Figure 2. All lattices and cases considered in this work. The upper line corresponds to the interstitial cases whereas the second
line shows the substitutional cases. The first four lattices left of the dashed line (square, triangular, oblique and rectangular)
are Bravais lattices, whereas the honeycomb lattice is not a Bravais lattice. The red dot with solid black border marks the
impurity and the blue dots with a dashed red boundary mark the nearest neighbors. Green lines indicate the different distances
nearest neighbors can have in the particular geometries. The number Nn.n. specifies the number of nearest neighbors and Nd

the number of nearest neighbor distances for each case.

atom at interstitial positions is challenging. The consid-
ered Bravais lattices are spanned by the following lat-
tice vectors: i) square lattice asq.

1 = (asq., 0, 0)T , asq.
2 =

(0, asq., 0)T , ii) triangular lattice atri.
1 = (atri., 0, 0)T ,

atri.
2 = (atri./2,

√
3atri./2, 0)T , iii) oblique lattice aobl.

1 =
(aobl., 0, 0)T , aobl.

2 = (cot(θ)aobl., aobl., 0)T with open-
ing angle θ ∈ (0, π) and iv) rectangular lattice arec.

1 =
(arec.s, 0, 0)T , arec.

2 = (0, arec, 0)T with a scaling factor
s ∈ (0,∞). To make the geometries comparable we keep
the total number of lattice atoms constant at Ntot = 100
and choose the lattice spacing such that the distance be-
tween the impurity atom and its nearest neighbors is con-
stant. This implies the following rescaled lattice spac-
ings for the interstitial triangular, oblique, rectangular
and honeycomb lattices if the square lattice with lattice
spacing asq. is chosen as a reference:

atri. =

√
2asq.

1 + tan2(π/6)
, aobl. =

√
2asq.√

1− 2 cot θ + cos θ2
,

arec. =

√
2asq.√

1 + s2
, ahoney. =

√
2asq.

2
. (11)

For the data shown in this section, we choose a 10 ×
10 square lattice with a lattice spacing a = 0.15λ as
reference lattice. Note that given the fast decay with

distance of the dipole-dipole coupling, nearest neighbor
atoms have the greatest influence on cooperative photon
storage [see Fig. 1(b)]. However, in practice a certain
lattice size is crucial because the impurity atom will be
excited by a laser beam impinging onto the lattice, which
as a result should be larger than the laser beam’s waist.

Fig. 3(a) shows the minimum Γeff obtained at the op-
timal lattice-impurity detuning δLI . The results for the
interstitial cases are shown in blue and the subsitutional
cases in orange. We find that the interstitial impurity
placement always results in a smaller (and hence bet-
ter) Γmin

eff compared to the substitutional case for each
lattice geometry, and that the square lattice geometry
always yields the smallest Γmin

eff overall. When analyzing
a single Γeff vs. δLI curve (see Fig. 3(c) as an example
for the rectangular lattice case), another major advan-
tage of the interstitial configuration for Bravais lattices
is found. The distance dBE between the detuning at
which the minimal value of Γeff is obtained and the band
edge of collective lattice modes is non-zero for interstitial
impurity placement but zero for substitutional impurity
placement. Note that, because we restrict our analysis to
finite lattices in real-space, the notion of lattice bands is
somewhat ambiguous, since we cannot define a complete
momentum space basis without assuming an infinite lat-
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Figure 3. (a) Comparison of the minimal effective impurity
decay rate Γmin

eff for the different lattice geometries considered
in this work. The blue bars (with crosses indicating the max-
ima) correspond to interstitial impurity placement and the
orange bars (with stars indicating the maxima) to the sub-
stitutional case for the corresponding lattices. (b) Band edge
distance dBE of the lattice detuning at which the impurity
decay rate is minimal. dBE is non-zero for all interstitial Bra-
vais lattices and zero otherwise. (c) Exemplary curves (for
the rectangular lattice case) for the effective impurity decay
rate as a function of lattice-impurity detuning δLI for the
interstitial (blue solid) and the substitutional (orange dash
dotted) case. dBE marks the distance to the band edge plot-
ted in panel (b) for all cases. It is non-zero in the interstitial
case. All lattices are chosen such that the distance between
the impurity and the nearest neighbor is constant when com-
pared to the square lattice with lattice spacing asq = 0.15λ; cf.
Eq. (11). Other parameters: oblique lattice: θ = 0.3π, rect-
angular lattice: s = 1.5.

tice. We determine the band edge as the frequency δBELI
at which strong resonances occur in the Γeff vs. δLI curve
[see Fig. 3(c)]. In this regime the excited impurity res-
onantly couples to collective spin-waves of the lattice.
Hence, the Markovian condition, which was employed to
arrive at Eq. (10) is no longer fulfilled, i. e., the dynamics
in this regime is non-Markovian. In Fig. 3(b), we plot the
distance dBE for all considered lattice configurations. It
is non-zero for interstitial impurity placement in a Bra-
vais lattice, but zero in all other cases. In particular, it
is zero for the honeycomb lattice independent of intersti-
tial or substitutional impurity placement. This implies
that, for interstitial Bravais lattices, a well defined mini-
mum at a finite distance from any resonant lattice mode
exists [see blue curve in Fig. 3(c)]. Hence, the system
can be easily prepared in this regime of minimal effective
decay rate and it will be robust to small fluctuations in
frequency. In the substitutional case, however, the opti-

Figure 4. Functional dependence of the four coherent cou-
plings between atoms making up a plaquette as a function of
θ for an oblique lattice. The highest symmetry in couplings is
obtained for θ = π/2, which corresponds to a square lattice.

mal point – which lies at the band edge – is highly sus-
ceptible to tiny frequency fluctuations, which can cause
resonant coupling to lattice modes and therefore dimin-
ish the photon storage properties of the impurity. Sub-
stitutional impurities should therefore be operated at a
detuning slightly larger than the optimal one, which still
allows to attain an enhancement of its lifetime by one or
two orders of magnitude compared to free space.

Based on the results above and by comparing the num-
ber of nearest neighbors and nearest neighbor distances
shown in Fig. 2, we determine the following condition for
optimal photon storage: A lattice geometry is optimal
(smallest Γmin

eff ) if the impurity has the maximum num-
ber of nearest neighbors while simultaneously the number
of distances between those nearest neighbors is minimal.
This condition holds for both cases interstitial and sub-
stitutional.

The condition for optimal geometries formulated above
can also be understood from a slightly different angle.
Ultimately, defining a lattice geometry corresponds to
choosing different distances between atoms, hence, sam-
pling a finite number of points from the dipole-dipole
coupling curves shown in Fig. 1(b). The Hamiltonian
in Eq. (4) contains a sum over all these possible couplings
among lattice atoms. Our results suggest that this sum
should contain as few terms as possible to optimize the
photon storage for different geometries. This symmetry
in the dipole-dipole coupling terms can also be visualized
when considering the transition from a square lattice to
an oblique lattice. In Fig. 4 we show how the coherent
and dissipative dipole-dipole interactions change when
transitioning from a square lattice to an oblique lattice as
a function of the opening angle θ determining the oblique
lattice. Under the condition that the distance between
the impurity and its nearest neighbors is kept constant,
the four fundamental distances between atoms defining
one lattice plaquette are parametrized as a function of θ
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Figure 5. (a) Square lattice with a missing atom. The im-
purity is moved along the diagonal, from the center of the
plaquette (purple with solid black border) to a lattice po-
sition (pastel orange with dashed black border), recovering
then the substituational case. (b) Impurity decay rate Γeff as
a function of lattice-impurity detuning δLI for a 10×10 lattice
with spacing a = 0.15λ. The colorscale represents the posi-
tion of the impurity. The purple dashed line corresponds to
the center of the plaquette to p1 = (0, 0), and the solid pastel
orange line to the lattice position p5 = (−0.5a,−0.5a). The
other traces correspond to p2 = (−0.1a,−0.1a) (dash dot-
ted), p3 = (−0.2a,−0.2a) (dotted) and p4 = (−0.3a,−0.3a)
(dash-dot-dotted).

via

d1 =

√
2asq.√

1− 2 cot θ + csc2 θ
, (12a)

d2 =

√
2asq.

√
1 + cot2 θ√

1− 2 cot θ + csc2 θ
, (12b)

d3 =

√
2asq.

√
2 + cot2 θ − 2

√
1 + cot2 θ cos θ√

1− 2 cot θ + csc2 θ
, (12c)

d3 =

√
2asq.

√
2 + cot2 θ + 2

√
1 + cot2 θ cos θ√

1− 2 cot θ + csc2 θ
. (12d)

One sees from Fig. 4 that the most couplings for atoms
in a plaquette coincide for the most symmetric case i. e.,
a square lattice (θ = π/2). This implies that the square
lattice is preferable compared to oblique lattices. Simi-
lar arguments can be applied to all other studied lattice
geometries.

While nearest neighbors determine to a large extent
the suppression of the decay rate of the impurity, quanti-
ties like the optimal detuning from the band edge depend
on the symmetry of the whole lattice and the exact po-
sition of the impurity in the array. For example, the
square interstitial and square substitutional lattices have
the same number of nearest neighbors and nearest neigh-
bor distances, but result in dBE 6= 0 in the first case and
dBE = 0 in the second. Fig. 5 shows how this transition
occurs. We first consider an interstitial square lattice
with a missing nearest neighbor, which presents a mini-
mum decay rate away from the band edge, as shown by
the purple trace in Fig. 5(b). Note that the achieved Γeff

is larger than the one reported in Fig. 3(a) due to a miss-
ing nearest neighbor. If the impurity is moved along the
diagonal towards the position of the missing lattice atom

the optimal detuning is continuously shifted towards the
band edge. When the impurity reaches the position of
the missing lattice atom, we recover the substitutional
case and the minimum decay rate occurs exactly at the
band edge (see pastel orange trace). This phenomenon
arises from two different processes. First, the position
of the band edge solely depends on the geometry of the
array – a square lattice with spacing a for the case shown
here – and therefore remains constant at δLI = 2γL for
a lattice with a = 0.15λ. When the impurity is placed at
the position of the missing atom, it lies again at the cen-
ter of a square plaquette whose axes are rotated by 45◦

and whose lattice constant has increased to a′ =
√

2a.
This suggests that the optimum decay rate of the sub-
stitutional lattice should be similar to that of a square
interstitial lattice with spacing a′ =

√
2 × 0.15, that is

δLI ≈ 1.95δL, which approximately lies at the band edge
of the full lattice. Note that the rotated square lattice
has two atoms per unit cell. It was numerically confirmed
that removing the excess atom shifts the band edge to a
lower detuning, but leaves the minimum decay rate at
around δLI = 2γL, thus recovering the interstitial case
for a larger lattice spacing.

IV. INTERSTITAL CASE - OPTIMAL
IMPURITY POSITION

In the previous section we placed the impurity in the
center of the lattice plaquette for the interstitial case.
Here, we analyze if this is the optimal placement of the
impurity for all considered geometries. For a given im-
purity position, δLI can be chosen to give optimal Γeff

by minimizing along a similar curve as the one shown
in Fig. 3(c). By conducting this optimization for all im-
purity positions within a plaquette, a map of the opti-
mal impurity placement can be constructed. The results
of this procedure are depicted in Fig. 6. We observe,
that the center of the plaquette is the optimal impurity
position (indicated by green crosses in Fig. 6) for the
square, triangular and rectangular lattices, but not for
the oblique and honeycomb lattice.

In all cases, geometric symmetries determine where the
points of minimal Γeff lie. For all Bravais lattices, the
paths of minimal Γeff follow the lines along which the dis-
tances to two nearest lattice points are equal. Such par-
titions of a lattice are commonly referred to as Voronoi
partition [44] (see white dashed lines in Fig. 6). The ver-
tices where edges of this Voronoi partition meet are the
points of minimal Γeff and correspond to the global min-
ima. The number of edges that coincide at any one point
roughly correlates to how low the effective decay rate will
be compared to high symmetry points of other lattices.
For instance, the center of the square plaquette, where
four edges coincide, has an optimal Γmin

eff = 5.94×10−5γL
that is approximately an order of magnitude less than
the optimal Γeff at the center of the triangular plaquette
(1.03× 10−4γL), where only three edges coincide.
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Figure 6. Optimal impurity positioning for the interstitial case for all lattices considered in this work. The color coding shows
the minimal effective decay rate Γeff/γL, which can be obtained by placing the impurity at the respective position in the
plaquette. The optimal impurity position(s), i. e., the positions at which Γmin

eff /γL exhibits a global minimum, is (are) indicated
by green cross(es). For the oblique and the honeycomb lattice multiple global minima away from the palquette center are
found. The top panels show cuts along the orange dashed lines and the green dash-dotted lines indicate the respective global
minima positions of Γmin

eff /γL. The white dashed lines indicate the lines along which the distance between two plaquette atoms
is always equal. These lines make up the Voronoi partition of the lattice.

The Voronoi partitions of the lattice plaquettes also
capture the fact that the oblique lattice has two optimal
positions other than the center of the plaquette. In this
case the optimal positions are on the line of symmetry
along the long diagonal of the plaquette, at a pair of
points where three Voronoi edges meet. As we approach
the square lattice at θ = π

2 , these two optima merge into
a single one located at the center of the plaquette.

The role that symmetry plays in creating the Voronoi
geometries can again be understood based on the results
shown in Fig. 4. In general, the larger the number of cou-
plings, the lower the Γeff for an impurity placed at that
optimal point. In this way, lattices with higher degrees
of symmetry (i.e. the square and triangular lattices) and
with higher numbers of atoms in a single plaquette (i.e.
any Bravais lattice other than the triangular lattice) pos-
sess impurity positions with the smallest Γeff. The fact
that the square lattice possesses both of these properties
helps to explain why it stands out amongst the various
Bravais lattices as the optimal choice.

Note that the results presented in Fig. 6 also imply
that even if an optimal impurity placement is not possible
due to experimental constraints or imperfections, placing
the impurity in the vicinity of this optimal point still
allows for a significantly enhanced photon storage time
compared to the free space case. This also applies to
slight disorder in the positioning of the lattice atoms,
as long as the disorder is much smaller than the lattice
period [17].

V. CONCLUSIONS AND OUTLOOK

By performing a detailed analysis of different geome-
tries we determined that the number of nearest neighbors
and in particular the number of distances between near-
est neighbors plays a crucial role in determining the opti-

mal geometry for enhanced photon storage in an impurity
interacting with an atomic array. While the substitu-
tional case, i. e., substituting a lattice atom with an im-
purity is found to be always worse (i. e., results in smaller
photon storage times) compared to interstitial impurity
placement, it still allows an enhancement compared to
the free space case of several orders of magnitude. The
dominant role of the impurity’s nearest neighbors is also
beneficial for potential experimental implementations be-
cause lattice vacancies will not have a large impact as
long as they do not involve nearest neighbors. Note that
the results concerning the fundamental role of the lattice
symmetry presented in this work also hold for efficient
coherent coupling of multiple impurities via collective lat-
tice modes [13, 28]. While this work focuses on atom ar-
rays, our model applies to a wide array of quantum emit-
ters in the solid state, such as excitons in transition metal
dichalcogenides (TMDs) [8, 9, 45] and arrays of nitrogen
and silicon vacancy centers in diamond [46, 47]. That
being said, a complete modelling of these systems would
require the inclusion of further effects, such as dephasing,
emitter delocalization, and a more thorough analysis of
lattice vacancies. For TMDs, the emitters can in general
no longer be described as point particles and a modified
model needs to be developed. Such avenues constitute
but a few of the numerous potential extensions of this
work.

The results on the optimal impurity positioning pre-
sented in section IV also suggest a promising future re-
search direction. The values of Γmin

eff /γL for each impu-
rity position render an effective potential generated by
the lattice for the impurity atom. Hence, including mo-
tional degrees of freedom for the impurity [48] could re-
sult in non-trivial dynamic phenomena [49]. Note that in
this work we solely focused on circular polarizations for
both the lattice atoms and the impurity. In general, the
atomic polarizations are another parameter to optimize
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for enhanced photon storage. While a detailed investi-
gation goes beyond the scope of the present manuscript,
some insights can be obtained via related works optimiz-
ing geometries for minimizing the collective light shifts
for optical lattice clocks [50]. The lattice geometry is
also expected to play a role beyond the single-excitation
manifold where non-linear quantum effects such as pho-
ton blockade and entanglement can occur as was pointed
out in recent works [51–53].

In this work we focused on periodic lattice geometries,
which in general allow the extension to infinite size by
proper definition of unit vectors. In general, alternative
geometries such as bio-inspired coupled nano-rings [54–
56] can be studied in a similar fashion. Besides, finding
more general geometries in two- or three dimensions that
might enhance the photon storage times even further via
tailored machine learning algorithms [57, 58] is an excit-
ing research avenue for the future.
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The numerical simulations were performed with the
open-source framework QuantumOptics.jl [59].

Appendix A: Data for case comparison

Here we provide the data, which were obtained by min-
imizing Γeff along δLI to generate Fig. 3.

case Nn.n. Nd Γmin
eff /γL dBE/γL

square int. 4 2 5.94 × 10−5 2.65
triangular int. 3 1 1.03 × 10−4 5.845
oblique int. 2 1 5.38 × 10−4 2.32
rectangular int. 4 3 1.74 × 10−4 1.42
honeycomb int. 6 4 2.9 × 10−2 0.0

square subst. 4 2 2.63 × 10−4 0.0
triangular subst. 6 4 1.3 × 10−2 0.0
oblique subst. 2 1 8.54 × 10−3 0.0
rectangular subst. 2 1 1.51 × 10−3 0.0
honeycomb subst. 3 1 7.78 × 10−3 0.0

Table I. Data to generate the bar plots shown in Fig. 3(a) and
(b).
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A. Imamoğlu, Realization of an Electrically Tunable
Narrow-Bandwidth Atomically Thin Mirror Using Mono-
layer MoSe 2, Physical Review Letters 120, 037401
(2018).

[10] T. I. Andersen, R. J. Gelly, G. Scuri, B. L. Dwyer, D. S.
Wild, R. Bekenstein, A. Sushko, J. Sung, Y. Zhou, A. A.
Zibrov, X. Liu, A. Y. Joe, K. Watanabe, T. Taniguchi,
S. F. Yelin, P. Kim, H. Park, and M. D. Lukin, Beam
steering at the nanosecond time scale with an atomically
thin reflector, Nature Communications 13, 3431 (2022).

[11] D. E. Chang, L. Jiang, A. V. Gorshkov, and H. J. Kimble,
Cavity QED with atomic mirrors, New Journal of Physics
14, 063003 (2012).

[12] M. Mirhosseini, E. Kim, X. Zhang, A. Sipahigil, P. B.
Dieterle, A. J. Keller, A. Asenjo-Garcia, D. E. Chang,
and O. Painter, Cavity quantum electrodynamics with
atom-like mirrors, Nature 569, 692 (2019).

[13] S. J. Masson and A. Asenjo-Garcia, Atomic-waveguide
quantum electrodynamics, Physical Review Research 2,
043213 (2020).

[14] S. J. Masson, I. Ferrier-Barbut, L. A. Orozco,
A. Browaeys, and A. Asenjo-Garcia, Many-Body Signa-
tures of Collective Decay in Atomic Chains, Physical Re-
view Letters 125, 263601 (2020).

[15] R. J. Bettles, S. A. Gardiner, and C. S. Adams, En-
hanced Optical Cross Section via Collective Coupling of
Atomic Dipoles in a 2D Array, Physical Review Letters
116, 103602 (2016).

[16] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht,
H. Kimble, and D. Chang, Exponential Improvement in
Photon Storage Fidelities Using Subradiance and “Selec-
tive Radiance” in Atomic Arrays, Physical Review X 7,
031024 (2017).

[17] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F.
Yelin, Cooperative Resonances in Light Scattering from

https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1038/nature07127
https://doi.org/10.1038/nature07127
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1126/science.aam9288
https://doi.org/10.1126/science.1143835
https://doi.org/10.1126/science.1143835
https://doi.org/10.1103/PhysRevLett.114.023602
https://doi.org/10.1103/PhysRevLett.114.023602
https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/10.1103/RevModPhys.87.347
https://doi.org/10.1088/2058-9565/aa91bb
https://doi.org/10.1088/2058-9565/aa91bb
https://doi.org/10.1007/978-3-030-01482-7_5
https://doi.org/10.1007/978-3-030-01482-7_5
https://doi.org/10.1103/PhysRevLett.120.037401
https://doi.org/10.1103/PhysRevLett.120.037401
https://doi.org/10.1038/s41467-022-29976-0
https://doi.org/10.1088/1367-2630/14/6/063003
https://doi.org/10.1088/1367-2630/14/6/063003
https://doi.org/10.1038/s41586-019-1196-1
https://doi.org/10.1103/PhysRevResearch.2.043213
https://doi.org/10.1103/PhysRevResearch.2.043213
https://doi.org/10.1103/PhysRevLett.125.263601
https://doi.org/10.1103/PhysRevLett.125.263601
https://doi.org/10.1103/PhysRevLett.116.103602
https://doi.org/10.1103/PhysRevLett.116.103602
https://doi.org/10.1103/PhysRevX.7.031024
https://doi.org/10.1103/PhysRevX.7.031024


9

Two-Dimensional Atomic Arrays, Physical Review Let-
ters 118, 113601 (2017).

[18] R. Bekenstein, I. Pikovski, H. Pichler, E. Shahmoon,
S. F. Yelin, and M. D. Lukin, Quantum metasurfaces
with atom arrays, Nature Physics 16, 676 (2020).

[19] J. Rui, D. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher,
D. M. Stamper-Kurn, C. Gross, and I. Bloch, A subradi-
ant optical mirror formed by a single structured atomic
layer, Nature 583, 369 (2020).

[20] A. S. Solntsev, G. S. Agarwal, and Y. S. Kivshar, Meta-
surfaces for quantum photonics, Nature Photonics 15,
327 (2021).

[21] D. Fernández-Fernández and A. González-Tudela, Tun-
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[59] S. Krämer, D. Plankensteiner, L. Ostermann, and
H. Ritsch, QuantumOptics.jl: A Julia framework for sim-
ulating open quantum systems, Computer Physics Com-
munications 227, 109 (2018).

https://doi.org/10.1103/PhysRevA.101.063833
https://doi.org/10.1103/PhysRevA.101.063833
https://doi.org/10.1103/PhysRevLett.110.113606
https://doi.org/10.1209/0295-5075/114/14003
https://doi.org/10.1209/0295-5075/114/14003
https://doi.org/10.1103/PhysRevLett.125.073601
https://doi.org/10.1103/PhysRevLett.125.073601
https://doi.org/10.1103/PhysRevLett.125.073602
https://doi.org/10.1103/PhysRevLett.125.073602
https://doi.org/10.1038/s42005-020-00404-3
https://doi.org/10.1038/s42005-020-00404-3
https://doi.org/10.1103/PhysRevA.100.023806
https://doi.org/10.1103/PhysRevA.100.023806
https://doi.org/10.1088/1367-2630/aba4d4
https://doi.org/10.1088/1367-2630/aba4d4
https://doi.org/10.1364/OE.437396
https://doi.org/10.1021/acsnano.9b02371
https://doi.org/10.1021/acsnano.9b02371
https://doi.org/10.1063/1.5134792
https://doi.org/10.1063/1.5134792
https://doi.org/10.1016/j.cpc.2018.02.004
https://doi.org/10.1016/j.cpc.2018.02.004

	Optimized geometries for cooperative photon storage in an impurity coupled to a two-dimensional atomic array
	Abstract
	Introduction
	Model
	Comparison of different lattice geometries
	Interstital case - optimal impurity position
	Conclusions and Outlook
	Data for case comparison
	References


