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We explore the dynamical transport of an impurity between different embedding majority species
which are spatially separated in a double well. The transfer and storage of the impurity is trig-
gered by dynamically changing the interaction strengths between the impurity and the two majority
species. We find a simple but efficient protocol consisting of linear ramps of majority-impurity inter-
actions at designated times to pin or unpin the impurity. Our study of this highly imbalanced few-
body triple mixture is conducted with the multi-layer multi-configuration time-dependent Hartree
method for atomic mixtures which accounts for all interaction-induced correlations. We analyze
the dynamics in terms of single-particle densities, entanglement growth and provide an effective
potential description involving mean-fields of the interacting components. The majority compo-
nents remain self-trapped in their individual wells at all times, which is a crucial element for the
effectiveness of our protocol. During storage times each component performs low-amplitude dipole
oscillations in a single well. Unexpectedly, the inter-species correlations possess a stabilizing impact
on the transport and storage properties of the impurity particle.

I. INTRODUCTION

Tunneling of microscopic particles through a classically
forbidden barrier is an exceptionally important quantum-
mechanical phenomenon. It is a direct consequence of
the particle-wave duality and the uncertainty principle.
Tunneling has a wide range of real-world applications: it
imposes a fundamental limit for the size of transistors [1]
and lies at the heart of numerous technological devices
such as the scanning tunneling microscope [2, 3], the tun-
nel diode [4], ultrasensitive magnetometers (SQUID) [5]
and superconducting qubits [6]. The concept has been
used to explain fundamental problems in physics, chem-
istry and biology with great success, including radioac-
tive decay processes [7, 8], nuclear fusion [9], astrochem-
ical synthesis [10], chemical reactions [11] and DNA mu-
tations [12].

Tunneling can be observed on a macroscopic scale be-
tween two phase-coherent spatially overlapping matter
waves [13], and has been detected via a current between
two superconductors separated by a thin insulating layer
(SJJ), even though no external voltage is applied (dc-
Josephson effect). An external voltage gives then rise to
a rapidly oscillating current (ac-Josephson effect). The
Josephson effect [14, 15] was also reported for super-
fluid helium [16–19], cavity polaritons [20] and ultracold
atomic gases [21–28]. The latter platform is of particu-
lar relevance for a quantitative analysis of the tunneling
effect, as it provides an exquisite control over system pa-
rameters and versatile detection techniques [29]. Atomic
Josephson junctions [30] have been suggested as a stan-
dard of chemical potential [31], to perform measurements
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of gravity [32, 33] and off-diagonal long-range order [34]
with a high spatial resolution.

A double well loaded with a many-body ensemble of ul-
tracold bosons, known as the bosonic Josephson junction
(BJJ) [35–37], has drawn particular attention due to its
fundamental nature and conceptual simplicity. Two wells
separated by a barrier is a paradigmatic external poten-
tial to investigate tunneling dynamics [21–28], interfer-
ence of matter waves [23, 38–41], the Shapiro [42, 43]
and ratchet effects [44], macroscopic superposition states
[45–49] and entanglement [50–52]. Furthermore, it serves
as a prototype model for finite-size lattices [53–57].

BJJ can be understood in a two-mode approxima-
tion (lowest band Bose-Hubbard model) [58–68]. Non-
interacting particles, initially prepared in one well, will
perform Rabi oscillations between the two wells with a
well-defined frequency. For an ensemble of particles, the
spectral response is strongly affected by tunable inter-
particle interactions and the initial population imbal-
ance, evincing dc-/ac-Josephson effects and plasma os-
cillations [59–61, 65]. Moreover, interactions give rise
to novel dynamical regimes, not possible with SJJ, such
as π-phase modes [62, 63] and, above a critical value of
the interaction strength, the macroscopic quantum self-
trapping (MQST) [58, 59], i.e., a suppression of tunneling
even though the particles repel each other. Interestingly,
the two-mode model has a classical analogue, namely it
can be mapped to a non-rigid pendulum [45, 59–61, 63]:
the population and relative-phase difference between two
condensate fractions translate to the angular momentum
and displacement, respectively. In particular, MQST cor-
responds to the pendulum making full revolutions, im-
plying a non-zero average population imbalance and the
relative phase increasing monotonically in time.

Alternatively, MQST can be understood from a few-
body perspective [69–81] via correlated tunneling [71–
74]. At weak interactions a single-frequency Rabi oscil-
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lation evolves gradually into a two-mode beating with
characteristic collapse and revival sequences [58, 62]. As
interactions become stronger, the discrepancy among fre-
quencies increases [72, 73], resulting in a high-frequency
mode describing first-order tunneling of single atoms and
a low-frequency mode corresponding to a simultaneous
co-tunneling of atoms, which in fact can be measured
in experiments [54–56, 78]. Beyond a critical value of
interactions (correlated with the number of atoms), the
low-frequency mode becomes dominant, realizing MQST,
which is eventually destroyed for sufficiently long propa-
gation times [62, 64, 72–74, 82].

Even though the two-mode model displays good agree-
ment with experimental data on BJJ dynamics at short-
time scales [21, 26], there is a number of studies re-
porting discrepancies at longer times, especially in one-
dimensional BJJs featuring enhanced correlations among
particles. For instance, solutions obtained with the
multi-configuration time-dependent Hartree method for
bosons (MCTDH [83, 84] respectively MCTDHB [85]),
a variational approach for solving the time-dependent
Schrödinger equation, report enhanced inter-band effects
[73, 76], universal long-time fragmentation dynamics [77],
conditional tunneling of fragmented pairs [72] and MQST
being overall reduced by high-order correlations [74].

An interesting extension of the tunneling problem in-
volves mixtures of distinct species, such as binary Bose
[86–96] or Fermi mixtures [97–103] realized by different
atoms, isotopes or hyperfine states of the same kind of
atoms. In optical double-well traps we can even have
spinor condensates [87, 104–109], where spatial tunnel-
ing (external Josephson junction) is augmented by spin
tunneling (internal Josephson junction) [104]. The un-
derlying correlations in spin and motional degrees of free-
dom realize an atomic analogue of macroscopic quantum
tunneling of magnetization (MQTM) with potential ap-
plications in the framework of magnetic tunneling [110].

The interplay of intra- and inter-species interactions
greatly impacts the tunneling period of the individual
components and produces novel dynamical regimes, such
as a symmetry-restoring dynamics where the two species
avoid each other by swapping places between the two
wells [111], a symmetry-broken MQST where the two
species localize in separate wells or coexist in the same
well [91], and where one component realizes an effective
non-rigid material barrier, see [93, 94, 112] for the defi-
nition and use of this concept, which can interact with
tunneling atoms in contrast to a rigid barrier realized by
an external trap.

In the context of binary mixtures, a special case of an
impurity immersed into a medium warrants a particu-
lar attention. A single atom [113, 114] or ion [115–117]
placed in-between the two wells of a tunneling medium
realizes a controlled BJJ. The internal state of the im-
purity serves as an additional tunneling channel and can
act as a switch between coherent transport and MQST.
In a similar spirit, the tunneling of an impurity can be
controlled by a background medium [118, 119] allowing

to change the tunneling period and even to pin it inside
the barrier.

In this work we combine several of the above physi-
cal insights to study the transport and tunneling of an
impurity in a symmetric double-well when it becomes im-
mersed into a background of two different bosonic species.
Relevant questions to be addressed are the possibility to
control the state of the impurity via these embeddings,
the realization of an efficient and at the same time reliable
transfer of the impurity between the two wells, as well as
the quest for a localization and long-time storage of the
impurity. These questions are not straightforward to an-
swer, considering that the build-up of interaction-induced
correlations is difficult to predict and even more chal-
lenging to control often leading to unexpected outcomes.
Moreover, in order to control the impurity we also need
to ensure some sort of control over the two majority com-
ponents. Our idea is to initialize the two majority com-
ponents in opposite wells in the MQST regime. In partic-
ular, by manipulating the sign and strength of majority-
impurity interactions at designated times we can make
each majority species to act either as an attractor or as
a repeller for the impurity, assuming of course that the
majority species stay self-localized for the complete time
during the dynamics.

The dynamics is simulated numerically by the
multi-layer multi-configuration time-dependent Hartree
method for atomic mixtures (ML-X) [120–122], which
takes into account all interaction-induced correlations.
We work out a successful protocol and analyze the re-
sulting dynamics of, among others, the one-body den-
sities to visualize the motion of particles and quantify
the performance of our protocol. Furthermore, we inves-
tigate the build-up and impact of entanglement for any
pair of species, and employ an effective potential descrip-
tion for the impurity, which is reminiscent of tunneling
in an asymmetric double well [47, 73, 89, 123] where the
asymmetry changes over time.

This work is structured as follows. In Section II we in-
troduce our Hamiltonian. In particular, we characterize
the initial state and motivate a time-dependent control
sequence of majority-impurity interactions meant to re-
alize a controlled transport. In Section III we provide
essential details on the numerical approach and formu-
late explicitly our variational ansatz for the many-body
state. The obtained results are described, discussed and
analyzed in Section IV. Finally, in Section V we provide
our conclusions and a corresponding outlook.

II. SETUP, HAMILTONIAN AND
PROPAGATION PROTOCOL

We study a three-component particle-imbalanced mix-
ture. We assume equal masses mσ = m with σ ∈
{A,B,C} denoting the component label. The compo-
nents A and B have ten bosons each, NA = NB = 10, and
are referred to as majority species, while the component
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C is composed of a single particle, NC = 1, called the
impurity. Each species is subject to a one-dimensional
double-well confinement realized as a cigar-shaped har-
monic oscillator potential (ω⊥ � ω‖) superimposed with
a Gaussian barrier along the longitudinal direction (x-
axis). By introducing dimensionless units E‖ = ~ω‖ for

the energy, x‖ =
√

~
mω‖

for the length and t‖ = 1
ω‖

for
the time with ~ being the Planck constant, the external
potential reads Vdw(x) = 1

2x
2 + h√

2πw
e−

x2

2w2 , where the
width w = 0.5 and the height h = 8 of the barrier are
fixed for the remainder of this work. The corresponding
single-particle energy spectrum is depicted in Fig. 1(b).
Finally, we assume the zero-temperature limit. Thus, a
particle of component σ interacts with a particle of com-
ponent σ′ via a s-wave contact-type potential of strength
gσσ′ , which is tunable by Feshbach [124] or confinement-
induced resonances [125–127].

Explicitly, the single-species Hamiltonian Hσ takes the
following form:

Hσ = H(1)
σ +Wσ, (1)

H(1)
σ =

Nσ∑

i=1

(
−1

2

∂2

(∂xσi )2
+ Vdw(xσi )

)
, (2)

Wσ = gσσ

Nσ∑

i<j

δ(xσi − xσj ), (3)

with xσi the spatial coordinate of the i-th particle of com-
ponent σ and gσσ the intra-species interaction strength
among identical particles. The triple-mixture Hamilto-
nian reads:

Ht =
∑

σ

Hσ +
1

2

∑

σ 6=σ̄

gσσ̄(t)

Nσ∑

i

Nσ̄∑

j

δ(xσi − xσ̄j ), (4)

with gσσ̄(t) the time-dependent interaction strength
among distinct particles (σ 6= σ̄).

In the following, we aim to switch between ‘tunnel-
ing’ and ‘single-well localized’ regimes for the impurity.
To this end, we first initialize our system in the ground
state of a Hamiltonian Hrlx (see Section IIA). It de-
scribes a disentangled (gσσ̄ = 0) mixture, which is aug-
mented by a species-dependent tilt potential. In par-
ticular, we prepare the two majority species at differ-
ent wells in a self-trapped regime and trigger tunneling
oscillations of the impurity between the two wells, see
Fig. 1(a). Subsequently, in Section II B we exploit the
two spatially-separated majority-species embeddings and
employ a simple time-dependent control sequence of the
majority-impurity couplings, i. e., gAC(t) and gBC(t), to
either trap the impurity inside one particular well or re-
lease it to tunnel again. The dynamics is then governed
by Ht in Eq. (4).

(a)
species A
species B
species C

−4 −2 0 2 4
x/x‖

2

4

6

8

ε j
/E

‖

(b)

∆E = ε1 − ε0 = π/ttun

Figure 1. (a) Illustration of the initial (t = 0) setup for the
subsequent dynamics. The colored areas indicate the one-
body densities of the different species. The majority species
A (red) and B (blue) are displayed broader and with a larger
maximum as compared to the impurity C (grey), indicative of
the corresponding particle-number ratios. The species A and
C start in the left well (x < 0), whereas the species B is posi-
tioned in the right well (x > 0). The interactions among iden-
tical bosons are weakly repulsive, whereas the inter-species
interactions are switched off. (b) Spectrum of a single par-
ticle (impurity C) in a symmetric double-well potential, see
Eq. (2).

A. Relaxation

The initial setup is illustrated in Fig. 1(a). The two
majority species are prepared spatially separated on op-
posite sides of the double-well barrier in a self-trapped
regime. The impurity can be localized in any of the two
wells. Here, we choose the left well. Explicitly, we set
gσσ = 0.2 and overlay a species-dependent linear tilt
Vσ(x) = −dσ · x with dA = −dB = dC = 0.5 to ener-
getically favor a particular side of the double-well, i. e.,
to account for the ‘loading’ process. Thus, species A and
C experience a force to the left (x < 0) and species B to
the right (x > 0). The two majority components will act
as site-dependent species embeddings for the impurity
during propagation, but for now the inter-species inter-
action parameters are switched off, i. e., gσσ̄ = 0. The
corresponding Hamiltonian reads:

Hrlx =
∑

σ

Hσ + Vσ(x). (5)
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Our initial many-body state is the ground state of
Eq. (5). It is obtained using ML-X by time propagat-
ing the non-interacting ground state of

∑
σH

(1)
σ + Vσ(x)

in imaginary time.
Note that the tilt |dσ| required to realize a self-trapped

regime for a single-component condensate depends in
a non-trivial way on the number of particles and the
strength of intra-component interactions. For absent
inter-component interactions, we have verified long-term
localization of the two majority species in the initialized
wells, which is a dynamical property we want also to
maintain at finite majority-impurity interactions. That
this must be the case is by far not obvious. What is rather
more likely is that the self-trapping becomes destabilized
or even destroyed by the impurity.

Alternatively to the species-dependent tilt potential
Vσ(x) for the initial state preparation one can set gAB
to be repulsive such as to realize a phase-separated state
between the majority species A and B and then impose
a species-independent tilt. A sufficiently repulsive gAB
can ensure that the species A and B stay localized at op-
posite wells, whereas the impurity C relocates to a well
favored by the chosen tilt.

B. Propagation

Given the initial state of a decoupled mixture (gσσ̄ = 0)
from Section IIA at t = 0, we instantaneously switch
off the tilt to recreate the symmetric double well, i. e.,
dσ = 0. The dynamics is now governed by Ht from
Eq. (4). The majority components become self-trapped
owing to repulsive intra-species interactions, whereas the
impurity undergoes tunneling. When the strength of
majority-impurity interactions is at zero, the tunneling
period ttun = π/∆E for the impurity is determined by
the energy gap ∆E between the two lowest eigenstates
of Eq. (2) with σ = C, which for the selected double-well
in Fig. 1(b) equals ttun = 90 in harmonic units.

Now, we keep gAB(t) = 0 and control only the
majority-impurity interactions gAC(t), gBC(t) such as to
transfer the impurity to the opposite side of the double-
well and freeze it there. To this end, we devise a simple
time-dependent interaction scheme depicted in Fig. 2(a).
It is a four-step procedure which we call the ‘transfer-
pin-store-unpin’ protocol, which is characterized by the
following durations: the fixed transfer time ttr = ttun−1,
short (un)pin time ∆t = 1 and flexible storage time ts.

In the first step, the transfer, the majority-impurity
interaction parameters are kept at zero, which lasts for
ttr (yellow-shaded area). During this time the impurity
is allowed to freely tunnel. Once the tunneling to the op-
posite well is almost accomplished, the impurity features
a large overlap with the component B. In the second
step, the pin, we apply a linear ramp within a very short
time window ∆t with gAC → g+ becoming repulsive and
gBC → g− attractive. The final values of interactions are
g+ = 0.2 and g− = −2. Note that in Fig. 2(a), this step

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

g
/E

‖x
‖

(a)

ttr ∆t ts ∆t

gAC

gBC

0 100 200 300 400
t/t‖

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

g
/E

‖x
‖

(b)

ttr ∆t ts1 ∆t ttr ∆t ts2 ∆t

Figure 2. (a) Interaction protocol ‘transfer-pin-store-unpin’
characterized by a fixed transfer time ttr = ttun − 1, which is
determined by the tunneling time ttun/t‖ = 90 according to
the splitting of the lowest doublet in Fig. 1(b), flexible storage
time ts and short (un)pinning times ∆t/t‖ = 1. At t = 0,
the impurity C starts in the left well, occupied by species A.
First, at 0 < t < ttr, it tunnels (yellow-shaded area) to the
right well, occupied by species B. Then, at 0 < t− ttr < ∆t,
it is quickly pinned inside the right well by a linear ramp
(narrow white-shaded area) of majority-impurity interactions
with gAC → g+ becoming repulsive and gBC → g− attractive.
Note that in the figure the linear ramp resembles a quench due
to very short times. Once pinned, at 0 < t − ttr − ∆t < ts,
it is stored (green-shaded area) inside the right well, here
ts/t‖ = 310. Finally, at 0 < t−ttr−∆t−ts < ∆t it is unpinned
by a linear ramp of interactions back to zero. (b) Interaction
scheme ‘back-and-forth-transfer’ with variable storage times
ts1 and ts2 . At t = 0, the impurity starts in the left well. First,
we perform ‘transfer-pin-store-unpin’ to the right, similar to
Fig. 2(a) except for a different storage time ts1/t‖ = 110.
Afterwards, we perform ‘transfer-pin-store-unpin’ to the left
with a storage time ts2/t‖ = 110. Note that for the back
transfer the interactions have been inverted with gAC → g−
becoming attractive and gBC → g+ repulsive.

resembles a quench (very narrow white-shaded region).
As a result, the impurity is captured by the component
B and is prevented from tunneling back. In the third
step, the storage, we keep interactions constant for a flex-
ible duration ts (green-shaded area). Finally, in the last
step, the unpin, we very quickly ramp down the majority-
impurity interactions linearly back to zero, within a very
short time window ∆t (very narrow white-shaded area).
From there, the impurity resumes its interrupted tunnel-
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ing.
To transfer the impurity forth and back, we employ

the protocol depicted in Fig. 2(b). Essentially, it applies
‘transfer-pin-store-unpin’ from Fig. 2(a) two times. First,
we transfer the impurity to the right well and hold it
there for ts1 = 110 with species A being repulsive and B
attractive. Second, we transfer the impurity back to the
original well and hold it there for ts2 = 110. As opposed
to the first sequence, the species A is now attractive and
B repulsive. Note that in the second sequence we use
the same transfer period ttr, even though the state of the
impurity is different from the one at t = 0.

Let us note that, in principle, many other protocols
could be imagined and applied. Indeed, we have explored
several other strategies which, however, turned out to be
much less successful. Nevertheless, we want to give a
brief sketch of some alternative protocols and why they
don’t work. First, we investigated much slower linear
ramps by starting to change the majority-impurity inter-
actions right at the start of transfer periods. As it turns
out, already for a forward transfer this results in a frac-
tion of the impurity density to be left behind, i. e., a sub-
optimal transfer, whereas the majority component, inter-
acting attractively with the impurity, sustains a sizable
decay of self-trapping, thereby making it an unreliable
container for the impurity during storage times. Second,
we tried to quench the majority-impurity interactions at
times immediately before and after the storage period,
i. e., infinitely steep ramps. While the forward trans-
fer was very promising, the subsequent back-transfer was
less efficient as compared to the protocol from Fig. 2(b)
in every aspect and, on top of that, extremely sensitive
to the particular time of the impurity release.

III. METHOD AND COMPUTATIONAL
APPROACH

To obtain the initial state and to simulate the sub-
sequent dynamics we need to solve the many-body
Schrödinger equations for imaginary time ∂τ |Ψ(t)〉 =
Hrlx |Ψ(t)〉 and for real time i∂t |Ψ(t)〉 = Ht |Ψ(t)〉,
respectively. One method is particularly well-tailored
to this problem, especially in the context of multi-
component systems of indistinguishable particles, the
multi-layer multi-configuration time-dependent Hartree
method for atomic mixtures [120–122], usually abbrevi-
ated as ML-MCDTHX but here, for short, we call it ML-
X.

This ab-initio approach expands the many-body wave
function in a finite orthonormal basis whose vectors
are time-dependent and have a product form, prop-
erly symmetrized to account for the corresponding ex-
change symmetry of the identical particles. Both the
basis and expansion coefficients are variationally opti-
mized to span the relevant part of the full Hilbert space
at each time step of the state evolution. This allows
to reduce the total number of configurations as com-

pared to a time-independent basis, which provides a
great boost in convergence and makes larger system sizes
numerically accessible. The multi-configuration ansatz
takes interaction-induced inter-particle correlations into
account, whereas the multi-layer structure introduces a
hierarchy of Hilbert-space truncations by clustering to-
gether strongly correlated degrees of freedom (see below).

Our ansatz for a triple mixture has three layers of ex-
pansion. First, we formally group the spatial degrees
of freedom of indistinguishable particles

⋃
i x

σ
i into three

collective coordinates qσ. Each qσ is then provided with a
set of Sσ time-dependent orthonormal species wave func-
tions Ψσ

i (qσ, t). In the first step, we expand our wave
function |Ψ(t)〉 according to the following product form:

|Ψ(t)〉 =

SA∑

i=1

SB∑

j=1

SC∑

k=1

Aijk(t) |ΨA
i (t)〉 ⊗ |ΨB

j (t)〉 ⊗ |ΨC
k (t)〉 ,

(6)
where Aijk(t) ∈ C are time-dependent expansion coef-
ficients. This partitioning turns out to be particularly
useful when correlations among species are considerably
weaker compared to correlations among identical parti-
cles.

Next, since a species wave function characterizes iden-
tical bosons, each of them is expanded in terms of sym-
metrized and normalized product states |~nσ(t)〉 (so-called
permanents encoding that nσi particles occupy a time-
dependent single-particle orbital ϕσi (x, t)):

|Ψσ
i (t)〉 =

∑

~nσ|Nσ

Ci,~nσ (t) |~nσ(t)〉 , (7)

where Ci,~nσ (t) ∈ C are time-dependent expansion coeffi-
cients, ~nσ|Nσ restricts the Fock space to configurations
with a fixed number of particles

∑
i n

σ
i = Nσ, further

truncated to sσ single-particle orbitals which can be oc-
cupied. The Fock space dimension is thus given by a
binomial coefficient

(
Nσ+sσ−1

Nσ

)
.

Finally, applying any of the, in case of analyticity,
equivalent time-dependent variational principles [128]
leads to a set of coupled time-differential equations for
Aijk(t), Ci,~nσ (t) and ϕσi (x, t). The single-particle func-
tions are represented in a time-independent basis of sg
spatially-localized functions χα(xβ) = δα,β (grid DVR)
[129]:

|ϕσi (t)〉 =
∑

α

dσi;α(t) |χα〉 , (8)

where dσi;α(t) ∈ C are time-dependent expansion coeffi-
cients. Note that our grid does not depend on the species
label σ.

The parameter sg defines the number of grid points
to resolve spatial variations of time-evolving single par-
ticle functions. To fulfill this requirement, we choose an
equally spaced grid with sg = 300 spanning an interval
[xmin, xmax] = [−7, 7]. The parameter Sσ truncates cor-
relations between distinct particles, the so-called inter-
species correlations or entanglement. For selected phys-
ical parameters we find SA = SB = SC − 1 = 3 to be
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suitable to faithfully capture the dynamical build-up of
entanglement. The parameter sσ truncates correlations
among identical particles, the so-called intra-species cor-
relations or fragmentation. We find sσ = 4 to be suffi-
cient to account for majority depletion, which is primarily
caused by majority-component interactions of strength
gσσ. Note that Sσ ≤

(
Nσ+sσ−1

Nσ

)
. Simulations performed

with the above choice of numerical parameters Sσ, sσ and
sg will be referred to as ML-X simulations. Additionally,
let us mention two kinds of approximate solutions. Set-
ting Sσ = 1 neglects entanglement among species and is
called a species-mean-field (SMF) ansatz. Setting sσ = 1,
implying also that Sσ = 1, neglects all types of correla-
tions and is known as a mean-field ansatz or coupled
Gross-Pitaevskii equations (cGPE).

IV. RESULTS, ANALYSIS AND DISCUSSION

A. A single transfer

First, we apply the interaction protocol from Fig. 2(a).
The goal of this scheme is to realize a smooth transfer of
an initially localized impurity to the opposite well and,
subsequently, to store it inside that well for a specified
time period ts while maintaining the shape of the un-
derlying density distribution to resemble a Gaussian of
a similar width as the initial wave-packet. The major-
ity components are required to remain self-trapped and
well-localized during the entire protocol. It goes without
saying that such a transfer where the impurity is embed-
ded into separate background majority species on the left
and on the right well is not only a physically very differ-
ent situation from the transfer of an isolated single atom
but is also much more difficult to achieve.

In Fig. 3 (a1)-(a3) we show the time-evolution of one-
body densities ρσ1 (x, t) for each species. In Fig. 3 (b1)-
(b3) we present the corresponding integrated quantities:
i) pσL(t) =

∫ 0

−∞ dx ρσ1 (x, t) = 1 − pσR(t), which indicates
the probability for a particle of species σ to be located
on the left side w. r. t. the double-well barrier, and ii)

Γσ(t) =
√∫

dx x2ρσ1 (x, t)− [
∫
dx xρσ1 (x, t)]2 which is the

standard deviation of the corresponding density distribu-
tion.

The majority component A, see Fig. 3 (a1) and (b1),
initialized in the left well, the same as the impurity,
is barely affected by the protocol. During the transfer
period ttr, when the majority-impurity interactions are
at zero, the observed dynamics is a result of the ini-
tialization procedure, namely quenching the tilt of the
external potential to zero triggers low-amplitude high-
frequency dipole-like oscillations in the initial density dis-
tribution. Note that this dynamics does not destroy the
self-trapping regime of the majority component for long
times. By the time the majority-impurity interactions
are switched on, the impurity has tunneled from the left
to the right well and the component A, interacting now

repulsively with the impurity, has no sizable overlap with
it during the storage time ts to be noticeably affected.
Thus, the species A remains self-trapped and localized
in the left well the whole time as desired. In particular,
it acts as a ‘material barrier’ for the impurity making it
energetically unfavorable for the impurity to tunnel back
to its initial left well.

The majority component B, see Fig. 3 (a2) and (b2),
initialized in the right well exhibits a mirror dynamics
compared to component A during the transfer time ttr.
During the storage period ts, when the interactions be-
tween the component B and the impurity become at-
tractive and there is a large overlap between them, the
component B becomes slightly compressed while density
fluctuations get reduced. Importantly, the species B also
remains self-trapped and well-localized. On top of that,
it acts as a ‘container’ for the impurity preventing it from
dispersing within the storage well.

The impurity C, see Fig. 3 (a3) and (b3), first under-
goes a free tunneling process during the transfer time ttr:
the density distribution delocalizes and finally localizes
again at the opposite well. Then, the impurity becomes
quickly pinned accompanied by an additional compres-
sion of the density. During the storage time ts it remains
highly localized and features only minor fluctuations of
the mean position and width reminiscent of sloshing os-
cillations.

B. Back-and-forth transfer

Next, we analyze the interaction protocol depicted in
Fig. 2(b). The goal of this scheme is to demonstrate
the reverse process, i. e., that the impurity can be just as
smoothly transported back and pinned at the left well, by
applying a ‘mirror’ protocol starting at t = ttr + 2∆t +
ts1 . This is by far not obvious, since the many-body
wave function has become species-entangled (see later)
as compared to the initial species-disentangled state at
zero inter-species interactions. Importantly, we find (see
Section IVD) that the storage performance of the second
sequence (at the left well) is not sizably affected by the
storage time ts1 of the first sequence (at the right well),
which is yet another benefit of the protocol from Fig. 2(b)
in addition to its simplicity.

The corresponding observables are shown in Fig. 4.
The majority component A, see Fig. 4 (a1) and (b1),
is visibly affected by the interaction protocol only when
it becomes attractive to the impurity, namely during the
second transfer-and-storage sequence. At this time inter-
val (t > 291), it sustains very minor density losses to the
opposite well, which can seen by an overall decrease of
pAL (gray solid line), but remains otherwise well-localized
as indicated by only minor fluctuations in ΓA (green dot-
ted line). The majority component B, see Fig. 4 (a2)
and (b2), is also visibly affected by the interaction pro-
tocol only when it is attractive to the impurity, namely
during the first transfer-and-storage sequence. After the
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Figure 3. Time-evolution of several observables after quenching the tilt of the external potential to zero and, subsequently,
following the majority-impurity interaction scheme as depicted in Fig. 2(a). (a1)-(a3): The one-particle density distribution
ρσ1 (x, t) of species σ: A(B) denotes a self-trapped majority component while C stands for the impurity. The gray solid line at
x = 0 indicates the position of the double-well barrier and the gray dashed lines at x/x‖ ≈ ±1.27 the position of the double-well
minima. (b1)-(b3): the integrated probability pσL(t) or 1-pσL(t) (gray solid line) to find a particle of component σ on the left or
right side of the double-well potential, respectively, and the standard deviation of the density distribution Γσ(t) (green dotted
line).

interactions have been ramped down, the density sustains
slight losses to the opposite well, but otherwise restores
(to a large extent) its initial shape from t = 0. Overall,
both majority components remain self-trapped and lo-
calized as intended. The impurity C, see Fig. 4 (a3) and
(b3), features slightly higher density losses to the oppo-
site well during the second storage time and is on average
less compressed. Nevertheless, the second transfer-and-
storage sequence is just as smooth and stable.

Considering that a back-and-forth transfer includes a
single transfer as its first sequence, we concentrate on the
former from now on.

C. Entanglement measures and analysis

We proceed by analyzing the build-up of entanglement
for the back-and-forth transfer based on the protocol pro-
vided in Fig. 2(b). To this end, we employ two measures:
the von-Neumann entropy SvN and the logarithmic neg-
ativity LN .

The von-Neumann entropy SvN characterizes entan-
glement of a bipartite system. Our system, however, is
tripartite. To render it bipartite, we partition it into a
single-component and a double-component subsystems.

This gives us three measures defined as follows:

SvN(ρσ) = −
∑

j

λσj log(λσj ), (9)

ρσ = Trσ′ 6=σ[ρ] =
∑

j

λσj |Φσj 〉 〈Φσj | , (10)

where ρσ is the reduced density matrix of a component σ
obtained from a pure many-body state ρ by tracing out
all particles from other components σ′ 6= σ. Here, it is
represented in terms of natural orbitals |Φσj 〉 (eigenvec-
tors) and natural populations λσj (eigenvalues) satisfying∑
j λ

σ
j = 1 and λ1 > · · · > λSσ . In the absence of entan-

glement λ1 = 1 and SvN = 0 vanishes. For a maximally
entangled state all natural populations are the same, i. e.,
λj = 1/Sσ ∀j (see Section III), which gives SvN = logSσ.

The von-Neumann entropy is depicted in Fig. 5(a).
Keep in mind that it tells us whether a single compo-
nent is entangled with a pair of other two components.
In particular, it lacks the ability to resolve entanglement
between any specific two components of a tripartite sys-
tem. During the first transfer period, which is free of
inter-component interactions, there is no entanglement
as expected. After the ramp-up, at t = 90, the compo-
nents B and C have (individually) accumulated a sizable
and comparable amount of entanglement, whereas the
component A is not (notably) entangled. This is in ac-
cordance with our expectations: during the ramp-up B
and C feature a large overlap with each other and almost
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Figure 4. Time-evolution of several observables after quenching the tilt of the external potential to zero and, subsequently,
following the majority-impurity interaction scheme as depicted in Fig. 2(b). (a1)-(a3): The one-particle density distribution
ρσ1 (x, t) of species σ: A(B) denotes a self-trapped majority component while C stands for the impurity. The gray solid line at
x = 0 indicates the position of the double-well barrier and the gray dashed lines at x/x‖ ≈ ±1.27 the position of the double-well
minima. (b1)-(b3): the integrated probability pσL(t) or 1-pσL(t) (gray solid line) to find a particle of component σ on the left or
right side of the double-well potential, respectively, and the standard deviation of the density distribution Γσ(t) (green dotted
line).

no overlap with A. Thus, it might be reasonable to as-
sume a product state between subsystems A and B −C.
During the subsequent storage time, when interactions
are kept fixed, we observe fluctuations of the entropy in
components B and C. After the ramp-down, at t = 200,
the entropy of B and C has dropped considerably and,
for the next transfer period at zero majority-impurity in-
teractions, becomes frozen. The component A is still not
noticeably affected for the same reasons as before.

At the start of the second ramp-up at t = 290, the
relations become alternated: C has returned to the left
well occupied by A, such that now A and C become (in-
dividually) strongly entangled. During the subsequent
storage time, the corresponding entropies undergo larger-
amplitude fluctuations as opposed to B and C in the first
storage period. In addition, they do not exactly match
each other. Regarding the component B, it preserves the
value of entropy accumulated after the first storage-and-
transfer sequence and features only minor fluctuations
during the second storage period.

Thus, the evolution of the von-Neumann entropy fol-
lows a particular pattern. It remains frozen at non-
interacting transfer times. For overlapping components it
builds up when interactions are ramped up, and abruptly
decays but stays finite when interactions are ramped
down. Moreover, it features large-amplitude fluctuations
during storage times. To resolve to which extent one
single component is entangled with another single com-
ponent, we require a different measure.

The logarithmic negativity LN quantifies pair-wise en-
tanglement between two distinct components σ and σ̄,
which are described by a mixed state ρσσ̄. The latter is
obtained from a pure many-body state ρ by tracing out
all particles from the third component σ′ /∈ {σ, σ̄}:

ρσσ̄ = Trσ′ /∈{σ,σ̄}[ρ] =
∑

i,j,k,l

bijkl |Ψσ
i ,Ψ

σ̄
j 〉 〈Ψσ

k ,Ψ
σ̄
l | ,

(11)
here represented in terms of species orbitals |Ψσ

i 〉 of the
ML-X expansion from Eqs. (6) and (7). The logarithmic
negativity LN depends on the partial transpose ρTσσσ̄ in
the following way:

LN (ρσσ̄) = log2(|ρTσσσ̄|1) = log2(1 + 2N ), (12)

ρTσσσ̄ =
∑

i,j

bkjil |Ψσ
i ,Ψ

σ̄
j 〉 〈Ψσ

k ,Ψ
σ̄
l | = (ρTσ̄σσ̄)T , (13)

with |ρ|1 = Tr
{√

ρ†ρ
}

the trace norm and N =
∑
i |µi|

the negativity, which is the sum of negative eigenvalues
µi < 0 of ρTσσσ̄. When there is no entanglement between
components σ and σ̄, ρTσσσ̄ is positive semi-definite and
LN = 0 vanishes. Otherwise, it is positive with larger
values indicating a stronger entanglement.

The logarithmic negativity is depicted in Fig. 5(b). For
the first transfer-and-storage sequence (t < 200), the high
values of entropy for the components B and C can be now
indeed attributed to them being pairwise entangled with
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Figure 5. Time-evolution of entanglement measures after
quenching the tilt of the external potential to zero and, sub-
sequently, following the majority-impurity interaction scheme
as depicted in Fig. 2(b). (a): the von-Neumann entropy
SvN(ρσ), see Eq. (9), of a reduced single-species density ρσ.
(b): the logarithmic negativity LN (ρσσ̄), see Eq. (12), for
a two-component subsystem described by a mixed state ρσσ̄
with σ 6= σ̄.

each other. The entanglement between A and C (green
solid line) becomes also more apparent, though it is still
an order of magnitude less than between B and C (red
dotted line). There is no entanglement between A and B
(blue dashed line) as expected.

For the second transfer-and-storage sequence (t > 200)
the distribution of entanglement is less obvious. Remark-
ably, during the ramp-up we observe a gradual build-up
of entanglement between A and B. As they are non-
interacting and barely overlap, it must be mediated by
the tunneling impurity. At the same time, the entangle-
ment between B and C decreases by a similar amount,
which is in accordance with a (roughly) constant entropy
of B mentioned before. The logarithmic negativity be-
tween A and C behaves similarly to the evolution of indi-
vidual entropies of A or C in Fig. 5(a) at t > 291. Thus,
the logarithmic negativity provides complementary in-
sights into the build-up of entanglement in a tripartite
system. To some extent, the entropy of a component σ is
proportional to a sum of logarithmic negativities involv-

ing that component.
Given that the inter-species entanglement is quite siz-

able during the dynamics, one might ask what impact it
has on the ongoing dynamics, in particular the impurity
motion. To this end, in Fig. 6 we show the previously
analyzed observables for the back-and-forth transfer as-
suming now a SMF expansion (Sσ = 1) for the many-
body wave function, as introduced in Section III. We re-
mind that this ansatz assumes a single product state in
Eq. (6), thus ignoring entirely any inter-species corre-
lations. Apparently, the majority components are not
visibly affected when compared to Fig. 4, whereas the
impurity seems to be destabilized by the absence of inter-
species correlations, featuring larger fluctuations on the
density width, see Fig. 6(b3). Thus, the build-up of en-
tanglement contributes in a non-trivial way to a robust
transfer and storage of the impurity particle.

Furthermore, a mean-field ansatz (sσ = 1) displays
a similar dynamics to Fig. 6 (see Appendix). Initially,
the majority components are almost condensed. In the
course of the dynamics, they experience only a slight
fragmentation (∼ 3%), which explains the strong sim-
ilarity between uncorrelated and correlated results. In
this spirit, we have done mean-field simulations for NA =
NB = 20 with gA = gB = 0.1 and NA = NB = 50 with
gA = gB = 0.04 (see Appendix). Again, we observed a
very similar dynamics to Fig. 6. Among the differences,
we noticed that during storage the width of the impurity
density and its fluctuations increase with an increasing
number of particles, which has a negative impact on the
storage performance. However, it might be that correla-
tions will stabilize the impurity, though we cannot ver-
ify it here numerically given the increased computational
complexity.

D. Effective potential analysis

While applying a variational approach, such as ML-X,
to solve the time-dependent Schrödinger equation turns
out to be efficient in terms of sparsity of the wave func-
tion representation, it often comes at the cost of reduced
interpretability. Thus, the variationally optimal single-
particle orbitals can be rarely assigned as eigenstates of
a single particle in some external potential. However,
having such a picture can be often helpful to understand
some dynamical processes. One such example is a mean-
field picture where interacting particles experience the
averaged spatial distribution of all other particles as an
effective external potential and behave accordingly.

Here, we want to provide a similar viewpoint on the
dynamics of the impurity. To this end, we are going to
decompose the corresponding (one-body) density opera-
tor ρC ≡ ρC1 , see Eq. (10), into projections pj ≥ 0 on
single-particle basis states {|φj〉}, which gives us a dis-
tribution of occupation probabilities over these states.
As our projection basis we choose eigenstates of a time-
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Figure 6. Time-evolution of several observables after quenching the tilt of the external potential to zero and, subsequently,
following the majority-impurity interaction scheme as depicted in Fig. 2(b). The physical and numerical parameters are the
same as Fig. 4 except here we neglect the entanglement in the ML-X ansatz (Sσ = 1) for the many-body wave function, see
Section III. (a1-a3): The one-particle density distribution ρσ1 (x, t) of species σ: A(B) denotes a self-trapped majority component
while C stands for the impurity. The gray solid line at x = 0 indicates the position of the double-well barrier and the gray
dashed lines at x/x‖ ≈ ±1.27 the position of the double-well minima. (b1-b3): the integrated probability pσL(t) or 1-pσL(t) (gray
solid line) to find a particle of component σ on the left or right side of the double-well potential, respectively, and the standard
deviation of the density distribution Γσ(t) (green dotted line).

dependent effective Hamiltonian:

(H(1)
σ + V σind(t)) |φσj (t)〉 = εσj (t) |φσj (t)〉 , (14)

V σind(x, t) =
∑

σ′ 6=σ

Nσ′gσσ′(t)ρσ
′

1 (x, t), (15)

pσj (t) = 〈φσj (t)|ρσ1 (t)|φσj (t)〉 , (16)

where ρσ1 = TrNσ−1[ρσ] is obtained from ρσ, see Eq. (10),
by tracing out all σ particles except one, εσj the eigenen-
ergy of |φσj 〉 and gσσ′(t) evolving according to the back-
and-forth interaction protocol from Fig. 2(b). We note
that ρσ1 (t) is obtained from a correlated many-body state
ρ(t) = |Ψ(t)〉 〈Ψ(t)| as defined in Section III with SA =
SB = SC − 1 = 3 and sσ = 4.

The induced potential V σind in Eq. (15) is a sum over
(time-dependent) one-body densities of the two majority
components, each amplified by the number of particles
and further modulated by the time-dependent majority-
impurity interaction parameter. We already know from
Section IVB that in the course of the dynamics the ma-
jority components remain self-trapped in the initially pre-
pared well. Moreover, they take a Gaussian-like shape
localized at the minimum of the corresponding well with
only small-amplitude fluctuations around that minimum.
Thus, during storage times the repulsive component rep-
resents a potential barrier for the impurity, thereby de-
creasing the depth of the corresponding external well,
whereas the attractive component acts as a potential well,

i. e., it increases the depth of the corresponding external
well even further. As a result, we get an asymmetric
double-well potential, see Fig. 7. Even though this ef-
fective potential picture for the impurity is formally re-
lated to a species-mean-field (non-entangled) ansatz for a
triple mixture, we emphasize that our many-body state
ρ and the corresponding derived quantities ρσ1 include
inter-species correlations.

In Fig. 8 we show the evolution of probabilities pCj (t)
from Eq. (16) for the impurity to occupy the eigenstates{
|φCj (t)〉

}
of the Hamiltonian Eq. (14) and the corre-

sponding instantaneous eigenenergies εσj (t). Initially, the
state of the impurity is an almost equal superposition of
the two lowest (quasi-degenerate) eigenstates of the sym-
metric double-well potential, see also Fig. 1(b). Thus, it
tunnels. After the first ramp-up of interactions at t = 90,
the right well becomes energetically more favorable, and
we get an asymmetric double-well, see Fig. 7 (blue dashed
curve). The impurity still occupies the two lowest eigen-
states though the weights of occupations are now largely
shifted in favor of the ground state, which is now a Gaus-
sian localized at the right well. A slight contribution of
the first excited state explains the high-frequency low-
amplitude dipole motion, i. e., the left-to-right sloshing,
of the impurity density inside the right well during the
storage time. The low-amplitude fluctuations of occupa-
tion probabilities are due to interaction with the major-
ity component B, which undergoes a dipole motion inside
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Figure 7. Effective potential V Ceff(t) = Vdw+V Cind(t) for the im-
purity C during the back-and-forth interaction protocol from
Fig. 2(b) averaged over selected time intervals: transfer period
ttr (gray solid line), first storage period ts1 (blue dashed line)
and second storage period ts2 (red dotted line). The potential
is a superposition of an external (static) double-well trap Vdw

from Fig. 1(b) with a (time-dependent) material barrier and
well V Cind(t) from Eq. (15) which is created by the interchange-
ably repulsive and attractive majority components. The solid
red and blue curves indicate the two lowest-energy eigenstates
of the corresponding potentials at designated eigenenergies.

the right well excited at t = 0 by the instantaneous re-
moval of the external tilt potential.

Once interactions have been ramped down at t = 201,
we recover the symmetric double-well potential and (to
a good approximation) the same state composition (in
terms of amplitudes) as before the storage sequence. The
impurity resumes the tunneling motion with the same
oscillation frequency. The aforementioned sloshing mo-
tion of the impurity impacts the phases of contributing
double-well states and thus also the time it takes to tun-
nel back. However, given that the amplitude of sloshing
is rather small, we do not encounter major differences on
the transfer time ttr upon changing the storage time ts.
In other words, we can release the impurity at any point
in time during the storage sequence. This has been ver-
ified numerically for a random sample of storage times
taken in the interval ts1 ∈ [150, 300].

Regarding the second transfer-and-storage sequence,
we observe the same patterns except for fluctuations dur-
ing the storage time becoming larger. This might be
caused by the minor decay of self-trapping in the major-
ity components and related density losses to the opposite
well, see Fig. 4.

V. CONCLUSIONS AND OUTLOOK

We have investigated the possibilities for a controlled
impurity tunneling dynamics in a double-well contain-
ing a mixture of three distinct species. Building upon
insights from the literature, we prepared two bosonic
species of ten atoms each in a self-trapped configuration
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Figure 8. Projectors on instantaneous single-particle eigen-
states pCj (a) and instantaneous eigenenergies εCj (b) of the
time-dependent effective Hamiltonian from Eq. (14) for the
impurity C, which includes time-dependent induced poten-
tials (see Eq. (15)) created by the majority components A
and B. In (b), each eigenenergy εCj is color-coded with its
occupation probability pCj extracted from (a).

on opposite sides of the double-well barrier to act as a
background for the embedded impurity. By a suitable
manipulation of majority-impurity interactions we real-
ized a smooth transport and demonstrated a robust stor-
age of the impurity. The study was conducted employ-
ing the multi-layer multi-configuration time-dependent
Hartree method for bosonic mixtures.

The protocol consists of a sequence of quick ramps
of interaction parameters and does not require any fine
tuning. To initiate trapping, one majority component
is made weakly repulsive and the other strongly attrac-
tive, depending on the storage well. To initiate transport,
interactions are switched off. The transfer time is deter-
mined by the double-well geometry and the ramp time
needs to be much smaller than the (lowest-band) tun-
neling time and the storage time is very flexible (within
simulated times). The protocol is similar in spirit to the
pinning procedure in quantum gas microscopy where one
freezes the position of particles by an instantaneous ramp
of the lattice depth.

The impurity undergoes a low-frequency large-
amplitude dipole oscillation between wells during trans-
fer times and high-frequency small-amplitude dipole mo-
tion inside a single well during storage times. The
majority components remain self-trapped and perform
high-frequency low-amplitude sloshing motion around
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the double-well minima. We have analyzed the role of en-
tanglement in terms of the von-Neumann entropy and the
logarithmic negativity. Our initial state is not entangled.
We find that during ramps the impurity becomes strongly
correlated with the attractive majority component. Sub-
sequently, the accumulated entanglement undergoes low-
amplitude modulations during storage times. After a
ramp-down, the entanglement becomes greatly reduced
but remains finite. Interestingly, during the back-and-
forth transfer, we evidenced a build-up of entanglement
between the two majority components, even though they
do not interact and barely overlap. Apparently, the im-
purity mediates correlations between spatially-separated
majority components. Furthermore, we compared the
correlated many-body dynamics to a species-mean-field
dynamics, which ignores all entanglement effects. Even
though we find a good overall agreement between ob-
servables, there were also sizable discrepancies. The en-
tanglement has a stabilizing impact on the dynamics by
reducing the amplitude of density fluctuations during
transfer and storage times.

Finally, we applied an effective potential picture to
describe the impurity motion as an independent parti-
cle evolving in a time-dependent potential, which alter-
nates between symmetric and asymmetric double wells.
This potential includes a static double-well and time-
dependent mean-fields produced by the majority parti-
cles. The dynamics is well captured by the two lowest
eigenstates of this effective potential. During transfer
times the two eigenstates contribute equally, and dur-
ing storage times the ground state dominates with minor
fluctuations caused by oscillations of the mean fields.

Even though the current protocol demonstrates al-
ready some very good results, the underlying minor im-
perfections might be amplified as the number of transfer-
and-storage cycles is increased. The partial decay of
self-trapping in the majority species might be compen-
sated by introducing repulsive interactions among ma-
jority components or by changing the strength of in-
traspecies interactions. In addition, the entanglement
between components was observed to gradually increase
with every transfer-and-storage sequence, which might
become a limiting factor requiring a disentangling proce-
dure. The latter can be realized by optimizing the ramp
times and/or the strength of majority-impurity interac-
tions individually for each transfer-and-storage cycle.

Considering that the impurity can be switched between
two configurations, left |L〉 and right |R〉, the setup might
serve as a basic building block of a quantum circuit. How-
ever, the protocol needs to be modified to also include ar-
bitrary superposition states, i. e., cL |L〉+ cR |R〉. To this
end, as opposed to the current protocol, we would adapt
the transfer times accordingly and introduce purely at-
tractive majority-impurity couplings to confine each den-
sity fraction independently during storage times. Finally,
to build a quantum circuit, one needs to arrange such
qubits in a lattice geometry, e. g., by using arrays of
optical tweezers. Another interesting topic deserving a

thorough investigation is the gradual build-up of entan-
glement between non-interacting majority components,
mediated through the impurity.
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Appendix A: The impact of majority-impurity
interaction values.

Regarding the choice of protocol parameters g± for
the forward transfer, we have studied several combina-
tions of parameter values (g+, g−) and judged on their
performance by evaluating the time-averaged probability
p̃CR = 1

ts

∫ ts
0
dt pCR(t − ttr − ∆t) for the impurity to be

successfully stored in the right well during the storage
time. The results can be seen in Table I. All pairs of con-
sidered interaction values perform quite well with only
minor differences among them. As we were not able to
recognize any conclusive trends, we have chosen g− = −2
and g+ = 0.2 among best performing pairs.

p̃CR
g+

0.1 0.2 0.5 0.7

g−

−1.5 0.995 0.997 0.998 0.998

−2.0 0.998 0.998 0.998 0.998

−5.0 0.997 0.997 0.996 0.996

Table I. Probability p̃CR to find the impurity on the right side of
the symmetric double-well potential during the storage time
ts following the interaction scheme from Fig. 2(a) for multiple
choices of protocol parameters g+ and g−.

In a similar way, to select parameters g± for the for-
ward and backward transfers, we evaluated the transfer
performance by calculating the time-averaged probability
p̃CL = 1

ts2

∫ ts2
0

dt pCL (t−2ttr−3∆t−ts1) for the impurity to
be successfully pinned at the left well during the second
storage sequence. The results can be seen in Table II. As
compared to Table I the storage performance has slightly
decreased over all parameter pairs, especially at strong
attractions g− = −5. Our former choice g− = −2 and
g+ = 0.2 performs comparatively well.
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p̃CL
g+

0.1 0.2 0.5 0.7

g−

−1.5 0.993 0.994 0.993 0.992

−2.0 0.990 0.992 0.990 0.992

−5.0 0.987 0.986 0.982 0.983

Table II. Probability p̃CL to find the impurity on the left side of
the symmetric double-well potential during the storage time
ts2 following the interaction scheme from Fig. 2(b) for multi-
ple choices of protocol parameters g+ and g−.

Appendix B: The impact of particle-number
imbalance using a mean-field ansatz.

Initially, the majority components are almost con-
densed. In the course of the dynamics the degree of
fragmentation gradually increases, though the condensed
fraction does never drop below 97%. In this spirit, a

mean-field ansatz might provide a very good qualitative
description of the ongoing dynamics. Indeed, Fig. 9 bears
a strong similarity to ML-X simulations from Fig. 4.
There are only slight differences as compared to a species-
mean-field ansatz from Fig. 6.

These observations motivate us to employ a mean-field
ansatz to explore the dependence of our protocol on the
number of particles in majority components. In order to
maintain the self-trapping regime, we keep Nσgσσ con-
stant. In Fig. 10 we show the forth-and-back transfer
for NA = NB = 20 and gA = gB = 0.1 and in Fig. 11
for NA = NB = 50 and gA = gB = 0.04. Qualitatively,
the dynamics is similar to Fig. 9. Among differences,
the width of the impurity density and its fluctuations
increase with increasing number of particles. This de-
creases the storage performance. Nevertheless, the inter-
species correlations might stabilize the impurity, though
we cannot verify it with ML-X owing to the exponential
scaling of the Hilbert space dimension with the number
of particles.
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