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We present a hydrodynamic model of ultracold, but not yet quantum condensed, dipolar Bosonic
gases. Such systems present both s-wave and dipolar scattering, the latter of which results in
anisotropic transport tensors of thermal conductivity and viscosity. This work presents an analytic
derivation of the viscosity tensor coefficients, utilizing the methods established in [R.R.W. Wang and
J.L. Bohn, Phys. Rev. A 106, 023319 (2022)], where the thermal conductivities were derived. Taken
together, these transport tensors then permit a comprehensive description of hydrodynamics that is
now embellished with dipolar anisotropy. An analysis of attenuation in linear waves illustrates the
effect of this anisotropy in dipolar fluids, where we find a clear dependence on the dipole orientation
relative to the direction of wave propagation.

I. INTRODUCTION

The field of ultracold dipolar physics has seen excit-
ing progress in the last 2 decades [1–3], brought about
by technological advances in the cooling and trapping
of magnetic lanthanide atoms [4–8], and heteronuclear
polar molecules [9–13]. Of note are recent experiments
that have realized evaporative cooling in 3-dimensional
polar molecular gases, made possible by electric field [14]
or microwave shielding [15, 16]. The observed high ra-
tio of elastic to inelastic collision rates permit long lived
samples even at high densities, motivating study of dipo-
lar induced anisotropic phenomena deep in the hydrody-
namic regime. Ref. [? ] takes the first step in formulating
a hydrodynamic model of ultracold dipolar Bose gases,
by deriving the transport tensor of thermal conductivity
using the Chapman-Enskog procedure [18–21]. Here we
extend this formulation by deriving the viscosity tensor
for gases consisting of dipolar constituents.

To construct these tensors, we assume molecular scat-
tering cross sections due to ideal point dipoles aligned
in a particular direction in space, as described in
Ref. [22]. Fortunate for our analysis, the effective
long-ranged molecular interaction potential between mi-
crowave shielded molecules is equivalent to the classical
dipole potential [16, 23], permitting use of the collision
cross sections derived in Ref. [22]. The same is apparently
not strictly true for electric field shielded molecules [24],
but use of the same cross section has previously proven
adequate in describing cross-dimensional thermalization
experiments [14, 25].

These transport tensors then permit us to study the
propagation of waves through the dipolar gas via the dis-
persion relation [26], derived from the equations of con-
servation and constitution. Although extensively studied
in quantum degenerate dipolar gases [27–31], wave phe-
nomena in their still thermal counterparts remain less
treated. A goal of this work is, therefore, also to moti-
vate deeper investigations of normal phase dipolar gases
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in the ultracold community. These systems promise a
vast variety of dynamical phenomena still unexplored, for
example anisotropies in flow behavior or in turbulence.

The remainder of this manuscript is organized as fol-
lows: In Sec. II, we follow the procedure outlined in
Ref. [? ] to derive the transport tensor of viscosity from a
microscopic theory of dipolar collisions. A linearization
of the hydrodynamic equations allow us to extract the
dispersion relation in Sec. III, where it is used to illus-
trate anisotropic wave attenuation. Finally, discussions
and concluding remarks are drawn in sec. IV.

II. ANISOTROPIC VISCOSITY

A. General

Whereas a dilute gas is described in terms of the dis-
tribution of molecular velocities, a fluid in the hydrody-
namic limit is described in terms of macroscopic observ-
ables such as the density ρ, velocity U , and temperature
T , all of which may vary in time and space. The govern-
ing equations for these quantities, including in ultracold
systems [32], are the equations of conservation [33]:

∂ρ

∂t
+ ∂j (ρUj) = 0, (1a)

∂

∂t
(ρUi) + ∂j (ρUjUi) = ∂jσij , (1b)

∂

∂t
(ρT ) + ∂j (ρTUj) =

2m

3kB
(σij∂jUi − ∂jJj) , (1c)

where ∂i denotes the partial derivative with respect to co-
ordinate ri, and we invoke the summation conventions.
The left-hand side of each of these equations denotes the
rate of change of the relevant quantity at a given loca-
tion in the fluid, including convective transport due to the
fact that the fluid is in motion. In the first, this deriva-
tive of the mass density ρ is zero; this is the equation of
continuity. In the second equation, the change of the mo-
mentum density ρU is given by forces acting in the fluid,
thus giving the Navier-Stokes equation [34, 35]. These
forces are in turn given as gradients of the stress tensor
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σ, denoting the force on a surface with normal vector r̂i,
in direction r̂j . These forces are illustrated schematically
in Figure 1, where all vectors appear to have the same
length, although this is not generally true in the fluid.
In the third equation of motion, for the mass-weighted
temperature distribution, the rate of change depends on
both the stress tensor and heat conduction vector J .

The equations (1) are general in the absence of long-
ranged forces between the molecules, and are described
in Refs. [21, 36, 37]. Additional external forces, such as
the trap confining the atoms, can be added as necessary.
To apply the equations of change to a particular fluid,
such as the dipolar gas we have in mind, requires some
constitutive relations describing the fluid. For example,
the stress tensor is written

σij = −Pδij + τij . (2)

Here P is the thermodynamic pressure, related to the
density and temperature by the fluid’s equation of state,
which we will take as the ideal gas law in what follows.
The remaining part, τ , is the viscous stress tensor, i.e.,
the part arising from viscosity. In a Newtonian fluid the
viscous shear is assumed to be a linear function of the
velocity gradients, so that generally,

τij = µijk` ∂`Uk, (3)

where µ is in general a fourth-rank viscosity tensor and
the flow velocity gradients ∂`Uk, characterize the rate of
strain on differential fluid volumes. We will see, how-
ever, that ultracold inelastic collisions leave only a sym-
meterized portion of ∂`Uk relevant. Meanwhile, the heat
conduction vector is assumed to be linearly related to
temperature gradients in accordance with Fourier’s law,

Ji = −κij∂iT, (4)

where κ is the thermal conductivity tensor,
The hydrodynamic relations of the dilute dipolar gas

are therefore specified once the tensors µ and κ are de-
termined. The thermal conductivity κ was previously
derived in Ref. [? ]. Here we turn our attention to the
viscosity tensor µ.

B. Microscopic Theory

The hydrodynamic variables are given by the velocity-
averaged quantities

ρ(r, t) = mn(r, t) =

∫
d3vf(r,v, t)m, (5a)

U(r, t) =
1

n(r, t)

∫
d3vf(r,v, t)v, (5b)

T (r, t) =
2

3n(r, t)kB

∫
d3vf(r,v, t)

1

2
mu2. (5c)

where f(r,v, t) denotes the phase space distribution of
the molecules. The so-called peculiar velocity u(r) =

v−U(r), is the velocity of molecules relative to the local
flow velocity.

Similarly, the stress tensor is defined microscopically
by the integral

σij = −m
∫
d3uf(u)uiuj . (6)

This integral computes the mean flux of momentum mui
through a surface with normal unit vector r̂j , thus de-
scribing a force per area on that surface.

In the spirit of the perturbative method of Chapman
and Enskog, the phase space density is assumed to differ
but little from its equilibrium value,

f ≈ f0 [1 + Φ] , (7)

where Φ� 1 and the equilibrium distribution of peculiar
velocities is

f0(u, β) = n0(β)c0(u, β)

= n0(β)

(
mβ

2π

)3/2

exp

(
−mβ

2
u2

)
, (8)

n0 is the gas equilibrium number density, β = (kBT )−1

and u2 = ukuk.
Reference [? ] argued, after a lengthy derivation and

comparing terms in the approximate Boltzmann equa-
tion [36] (see Sec.II C below), that a suitable variational
ansatz for Φ is given in terms of gradients of temperature
and velocity as

Φ = Vlblk∂k(lnT ) + 2mβWijaijklDkl. (9)

This expression is written in terms of the vector

Vi(u) ≡
(
βmu2

2
− 5

2

)
ui, (10)

and symmetrized quantities

Wij(u) ≡ uiuj −
1

3
δiju

2, (11a)

Dij(U) ≡ 1

2
(∂jUi + ∂iUj)−

1

3
δij∂kUk, (11b)

where the coefficients b and a are to be determined vari-
ationally.

The term in Φ involving lnT contributes to the thermal
conductivity and was evaluated in Ref. [? ]. Here we
focus on the other term, in terms of which the stress
tensor becomes

σij = −m
∫
d3uf0(u) [1 + Φ(u)]uiuj (12)

= −n0

β
δij − 2

(
m2β

∫
d3uf0(u)uiujWmnamnk`

)
Dk`.

This expression identifies the thermodynamic pressure as
P = n0/β, and the quantity in parentheses as related to
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the shear viscosity. We find that with symmetry argu-
ments detailed in App. A, the viscous stress tensor can
in fact be written in terms of just the strain rate tensor
of Eq. (11b) as

τij = 2µijk`Dk`. (13)

Then comparing the forms of Eqs. (2) and (13) with τij
above, the shear stress integrand is readily evaluated to
give the viscosity tensor

µijk` = −2n0

β
Iijmnamnk`, (14)

in terms of the variational parameters a and

Iijmn =
δimδjn + δinδjm

2
− 1

3
δijδmn. (15)

These parameters must be determined by an approximate
solution of the Boltzmann equation.

C. Approximate Solution to the Boltzmann
Equation

To this end, we start with the Boltzmann equation for
the local phase space distribution(

∂

∂t
+ vi∂i

)
f(r,v, t) = C[f(r,v, t)], (16)

where C[f ] is the two-body collision integral [40]. We ig-
nore molecular finite-size effects required at higher den-
sities, which would modify the collision integral above
[21, 41]. At the current experimental regime of inter-
est (detailed in Sec. III), we find that such effects only
contribute < 5% changes to the transport coefficients.

Assuming the close-to-equilibrium phase space distri-
bution of Eq. (7), we arrive at the ansatz in Eq. (9) and
the approximate Boltzmann equation

f0 Wk`Dk` ≈ 2C[f0Wij ]aijk`Dk`. (17)

Note that this refers to the portion of the simplified equa-
tion that pertains to viscosity, i.e., it does not include

terms with temperature gradients. Further details of this
approximation are provided in Ref. [? ].

To obtain explicit forms for the variational coefficients
aijk` and hence the viscosities by Eq. (14), we rewrite the
right-hand side of Eq. (17) as

2C[f0Wmn]amnk`Dk` = 2C[f0Wmn] (Imnrsarsk`)Dk`

= − β

n0
C[f0Wmn]µmnk`Dk`. (18)

Multiplying both sides of Eq. (17) by Wij and integrating
over u then gives

Tijk` = Mijmnµmnk`. (19)

FIG. 1. A schematic diagram of the stresses (black arrows)
on a differential fluid volume element (red cube) due to ther-
modynamic pressure and gradients in the velocity field.

where

Tijk` =

∫
d3uf0(u)WijWk` =

2n0

(mβ)2
Iijk`, (20a)

Mijmn = − β

n0

∫
d3uWijC[f0Wmn]. (20b)

The Mijmn integrals are particularly involved due to
the highly anisotropic differential cross section of dipolar
Bosons, for which the appropriately symmeterized scat-
tering amplitude from Ref. [22] is given as

fB (û′r, ûr) =
ad√

2

(
4

3
− 2as

ad
− 2(ûr · Ê)2 + 2(û′r · Ê)2 − 4(ûr · Ê)(û′r · Ê)(ûr · û′r)

1− (ûr · û′r)2

)
, (21)

where as is the s-wave scattering length, ur = u− u1 is
the relative peculiar velocity between colliding molecules,
primes denote post-collision velocities and Ê is the dipole
alignment axis. This provides us the differential cross

section via dσ/dΩ′ = |fB (û′r, ûr)|
2
, to compute M .

After evaluating the integrals in Eq. (20b), the com-
plicated explicit expressions for the viscosity coefficients
are tabulated in App. B, as functions of the dipole angle
Θ, defined to be the angle between Ê, and ẑ in the x, z-
plane. More details of this derivation are also in App. B.
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D. Viscosities for Upright Dipoles

In the case where the dipole and ẑ axes coincide (i.e.
Θ = 0), we find that the stress tensor simplifies greatly
and can be written in a form more familiar in the usual
theory of viscosity. That is, the stress tensor can be
decomposed into a “normal” part which includes a pro-
portionality with the symmetrized velocity gradients,

τ0
ij = 2µ0

ij ◦Dij , (22)

and 2 additional “anomalous” stress terms which modify
the radial diagonal stresses [42]

τ ′11 = τ ′22 = 2µ′D33. (23)

The symbol ◦ denotes the Hadamard product, which is
the element-wise product in which repeated indices re-
main unsummed. The total stress is then written as the
sum of the above two parts τij = τ0

ij + τ ′ij , with the
corresponding viscosity coefficients in this representation
given explicitly as

µ0
13 = µ0

23 =
µ0

2(A2 − 3A1 − 4ã2
d/63)

, (24a)

µ0
12 = µ0

11 = µ0
22 =

µ0

2A2
, (24b)

µ0
33 =

µ0

2A2
+

2µ0A1

A2(A2 − 4A1)
, (24c)

µ′ =
1

2

(
µ0

11 − µ0
33

)
. (24d)

Above, the A ’s are polynomial functions of the reduced
dipole length ãd ≡ ad/as, in units of the scattering length

A1 =
4

63
ã2
d −

16

21
ãd, (25a)

A2 =
32

63
ã2
d −

32

21
ãd + 4. (25b)

The dipole length is defined as ad = md2/(8πε0~2) where
d is the electric dipole moment, m is the molecular mass
and ε0 is the vacuum permittivity. The viscosity coeffi-
cients are given in units of the Chapman-Enskog result

µ0 =
5

16a2
s

√
m

πβ
. (26)

corresponding to the viscosity of a gas of hard spheres
with diameter as [21].

We remark in passing that the stress tensor in this
representation remains traceless, therefore the gas should
not possess a bulk viscosity. This is a feature expected
of monatomic gases in general and applies here since,
at ultralow temperatures, only the ground state of the
molecule is accessible.

In the limit where the scattering length remains finite
and the dipole length goes to zero, we get µ′ = 0 and all
the other coefficients reduce to the same value,

µ0
ij(ad = 0) =

µ0

8
=

5

128a2
s

√
m

πβ
, (27)

which is 8 times smaller than µ0 since the s-wave scat-
tering cross section in Bose gases is 8πa2

s (instead of πa2
s

for classical hard spheres), consistent with Ref. [43].
To illustrate the deviation from the isotropic result

above as ad increases, we plot the the unique viscosi-
ties of Eq. (24) normalized by the isotropic viscosity of
Eq. (27):

η0
ij(ad) ≡

µ0
ij(ad)

µ0
ij(ad = 0)

, η′(ad) ≡
µ′(ad)

µ0
ij(ad = 0)

, (28)

as a function of ãd for both positive scattering length
(Fig. 2) and negative scattering length (Fig. 3). To make
these plots, we assume bosonic NaK molecules with a
scattering length of magnitude |as| = 500a0.

FIG. 2. The unique unit-free viscosity tensor elements with
dipoles aligned along ẑ, normalized by the finite scattering
length isotropic viscosity of Eq. (27), plotted as a function of
ad/as (unit-free) from 0 to 10. The scattering length here is
assumed positive (as > 0).

FIG. 3. The unique unit-free viscosity tensor elements with
dipoles aligned along ẑ, normalized by the finite scattering
length isotropic viscosity of Eq. (27), plotted as a function of
ad/as (unit-free) from 0 to 10. The scattering length here is
assumed negative (as < 0).
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On the microscopic level, the differential scattering of
dipolar molecules exhibits a large anisotropy due to the
dipole interaction itself, compounded by the interference
of this scattering with the s-wave part characterized by
a scattering length. The way in which this interference
plays out is via a tremendous variation of the relative vis-
cosity coefficients as ãd is varied. Indeed, the ratio of µ0

33

to µ0
11 can vary from 0.36 to 9.3 based on the value and

sign of as. Relative viscosities are therefore highly tun-
able in laboratory experiments via the scattering length
with blue-detuned circularly polarized microwaves [44]
(also tunable in Lanthanide atoms via the multitude of
Fano-Feshbach resonances [45, 46]), leading to phenom-
ena yet to be explored.

Fig. 3 reveals that the anomalous viscosity is nega-
tive when as < 0, implying a negative proportionality
between radial viscous stresses and axial strain rates.
Fortunately, this aberration does not imply an unwar-
ranted dynamical instability since the positive axial vis-
cous stress ensures the bulk fluid dilation remains iden-
tically zero.

III. ATTENUATION IN DIPOLAR GASES

Having both the thermal conductivity and viscosity
tensors now allows fluid dynamical studies in ultracold
dipolar systems. As a first application, we analyze linear
wave propagation through an initially uniform density
gas. To do so, the density, flow velocity, and temperature
variations are written in terms of fluctuations about their
equilibrium distributions

ρ(r, t) = ρ0[1 + χ(r, t)], (29a)

Ui(r, t) = vsξi(r, t), (29b)

T (r, t) = T0[1 + ε(r, t)]. (29c)

where vs =
√

5/(3mβ0) is the ideal gas speed of sound.
Plugging the form of Eq. (29) into Eq. (1) and assuming
χ, ξi, ε � 1, allows a linearization to first-order in the
fluctuations which gives

∂χ

∂t
≈ −vs∂jξj , (30a)

∂ξi
∂t
≈ −3

5
vs∂i(ε+ χ) +

3β0vs
5n0

∂jτij , (30b)

∂ε

∂t
≈ −2

3
vs∂jξj +

2

3n0kB
κij∂i∂jε, (30c)

as detailed in App. C.

Solutions to Eqs. (30) are obtained by utilizing the
planewave ansatz for each dynamical variable, resulting
in the system of equations

ωχ ≈ vsKjξj , (31a)

ωξi ≈
3

5
vsKi(ε+ χ)− i

ρ0
µijk`KjK`ξk, (31b)

ωε ≈ 2

3
vsKjξj −

2i

3n0kB
κijKiKjε, (31c)

Defining thermal conductivity and viscosity associated
rates

Γ = − 2κij
3n0kB

KiKj , (32a)

Λik = −µijk`
ρ0

KjK`, (32b)

we get the linear system above written as the eigenvalue
matrix equation 0 vsK

T 0
3
5vsK iΛ 3

5vsK
0 2

3vsK
T iΓ

χξ
ε

 = ω

χξ
ε

 . (33)

A dispersion relation is then obtained via the charac-
teristic polynomial of Eq. (33). Further analytical in-
sight is gained by asserting only long wavelength (λ) ex-
citations and large densities, which allow us to define
the small parameter ε = K0L, where K0 = 2π/λ is the
sourced-fixed wave-number, L = (σn0)−1 is the molec-
ular mean-free path and σ = 32πa2

d/45 is the angular
averaged total cross section [22]. The dispersion relation
to first-order in ε is then given as

ω3 − iω2[Γ + tr(Λ)]− ω[vsK]2 (34)

+
i

5
v2
s

[
K2
x(3Γ + 5(Λ22 + Λ33))

+K2
y(3Γ + 5(Λ11 + Λ33))

+K2
z (3Γ + 5(Λ11 + Λ22))

− 10(Λ12Ky + Λ13Kz)Kx − 10Λ23KyKz

]
= 0,

where tr(Λ) denotes the matrix trace of Λ.
To analyze the dispersion relation, we envision an ex-

periment with a uniform density sample of ultracold
23Na39K polar molecules. A wave generation source of
constant frequency ν = ω

2π , is then applied that propa-
gates waves along the z-direction. We focus our atten-
tion to the case where the scattering length is zero, which
emphasizes the universal dipolar anisotropy while simpli-
fying the viscosity and thermal conductivity expressions.
We then solve the dispersion relation for the wave vector
K as functions of ν and Θ, to first order in ε. This yields
2 pairs of K solutions:
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K1,±(ω,Θ) = ± ω
vs

[
1− i63ω

16384vsa2
dn0

√
5

3π
(3 cos(4Θ)− 21 cos(2Θ)− 94)

]
, (35a)

K2,±(ω,Θ) = ±

√
iω

vsa2
dn0

√
5

3π

[(
16384a2

dn0
√
π + 63iω(3 cos(4Θ)− 21 cos(2Θ)− 94)

√
β0m

)
384
√

35(2 cos(4Θ) + 17 cos(2Θ) + 93)

]
. (35b)

The second solution pair K2,±, has dominant imaginary

terms which scale as
√
K0a2

dn0 ∼ K0/
√
K0L, causing

corresponding wave solutions to attenuate within length
scales of order

√
L. We therefore take it that these solu-

tions do not support wave propagation.
As for K1,±, these do support propagating waves with

attenuation length ra = |Im[K1,±]|−1
, and phase velocity

vp = ω|Re[K1,±]|−1
. We see that to first-order in ε, the

phase velocity is simply the frequency-independent ideal
gas speed of sound vp = vs, whereas the attenuation
length still retains a frequency dependence:

ra(ω) =
1

L

(vs
ω

)2 512
√

15/π

7(94 + 21 cos(2Θ)− 3 cos(4Θ))
. (36)

Therefore, we plot the ratio of attenuation length to the
source-fixed wavelength λ = ν/vs in Fig. 4 for Θ = 0 to π
and ν = 50Hz to 250Hz. This frequency range is chosen
to ensure ε ≈ 0.1. The experimental parameters used to
generate this plot are listed in Tab. I, intended to reflect
relevant experiments with NaK [12, 16].

Fig. 4 showcases a clear variation of ra with the dipole
angle Θ, indicating that the attenuation of waves are
highly dependent on the direction of propagation relative
to the dipole orientation. In particular, waves that travel
parallel to the dipole orientation attenuate faster in this
case than those perpendicular to it. Moreover, the at-
tenuation length is seen to decrease at higher frequencies
as occurs with acoustic waves in ordinary dry air. The
Θ-dependence of wave attenuation is further made clear
in Fig. 5, which plots the percentage extinction of the
waveform cos(|Re[K1]|r) exp(−r/ra) × 100%, as a func-
tion of distance from the wave source r, for Θ = 0 and π

2
with ν = 150Hz. Fig. 5 also plots the decay envelop with
fainter colors for clarity.

We have thus far neglected long-range effects, which
would modify the Navier-Stokes equation by adding the
gradient of a mean-field potential

Umf(r) =

∫
d3r′n(r′)Udd(r − r′), (37)

where Udd(r) =
d2

4πε0

(
1− 3(r̂ · Ê)

r3

)
(38)

is the potential between 2 point electric dipoles. Close
to uniform density with χ ≈ 0.1, the experimental pa-
rameters of Tab. I yield Umf/kBT ≈ 0.01, validating this
approximation.

TABLE I. Table of parameter values utilized to generate the
plots for Bosonic 23Na39K dipolar molecules. Da = 1.661 ×
10−27 kg stands for Dalton (atomic mass unit), a0 = 5.292 ×
10−11 m is the Bohr radius and D= 3.336 × 10−30 Cm is a
Debye.

Parameter Symbol Value Unit
Relative molecular mass, Mr 62 Da
Effective electric dipole moment deff 0.75 D
Dipole length, ad 4.95 × 104 a0

Equilibrium number density, n0 5 × 1012 cm−3

Equilibrium gas temperature, T0 250 nK

FIG. 4. The attenuation length ra, normalized by the
sourced-fixed wavelength λ, as a function of frequency ν (in
Hertz, Hz) and dipole alignment angle Θ (in radians, rad).

As an added remark, we find that the viscosities of ul-
tracold NaK molecules presented here are around 1011

times less than that of ordinary dry air at room temper-
ature, µair(T = 300K) ≈ 18.5 µPa·s.

IV. CONCLUSIONS AND OUTLOOKS

Recent experiments have demonstrated the ability to
shield ultracold molecules from inelastic collisional losses,
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FIG. 5. The percentage extinction as a function of distance
from the source r, normalized by the sourced-fixed wavelength
λ, for Θ = 0 (dashed blue curve) and Θ = π

2
(solid green

curve) with ν = 150Hz. The fainter curves are the decay
envelopes associated to each extinction curve.

allowing long-lived dense samples of highly dipolar gases.
As these molecular gases enter the hydrodynamic regime,
a continuum model which includes the transport tensors
of thermal conductivity and viscosity is warranted to de-
scribe the fluid dynamics. The thermal conductivities
have been derived in Ref. [? ], and viscosities in this
work, which now permit comprehensive phenomenologi-
cal studies of Bosonic fluid systems that are enriched by
dipolar anisotropy.

As a first analysis, we looked at how the dipole orien-
tation dependence of our derived transport tensors carry
over into the attenuation of linear waves generated by a
constant frequency source. We find that attenuation is
most pronounced when the directions of wave propaga-
tion and dipole alignment coincide (i.e. Θ = 0), whereas
least attenuation occurs in the orthogonal configuration
(i.e. Θ = π

2 ). These results are illustrated with plots
of the attenuation length (36) and percentage extinc-
tion (Figs. 4 and 5), that show a significant variation
of these quantities with Θ. Experiments which measure
the attenuation length as a function of the dipole orien-
tation could therefore provide an experimental means to
extracting the anisotropic transport tensor coefficients.

In the future, higher density corrections to the derived
transport tensors can be included using the generalized
Chapman-Enskog method [21, 41]. This modification
would result in the emergence of a bulk viscosity and
explorations of hydrodynamic phenomena not present in
the current theory. At lower temperatures, the inclusion
of quantum statistical effects [33] to our derived transport
tensors could permit a normal-superfluid phase coupled
hydrodynamic model for dipolar systems, extending the
formalism established by Zaremba, Griffin and Nikuni
[47–49]. The mechanism to which dipolar gases crossover
from the dilute to hydrodynamic regimes might also be of
interest to the ultracold community, such as in the con-
text of evaporative cooling. Such a theory would inter-
polate the formulation presented in this work with that

in Refs. [25, 50]. Finally, the results of this work can also
be extended to systems of Fermionic polar molecules and
lanthanide atoms, by utilizing the scattering cross section
for identical Fermions found in Ref. [22].
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Appendix A: A Note on Symmetry

The viscosity tensor as defined by Eq. (3) gives the
stresses as linear combinations of the unsymmetrized
second-rank tensor ∂lUk giving the gradients of the fluid’s
velocity components. By contrast, the microscopic eval-
uation of stresses (13) from the Boltzmann equation, re-
lates these stresses only to the symmetrized tensor D.
The difference is telling: generally this tensor can be re-
duced in the usual way into the traceless, second-rank D,
along with an antisymmetric tensor R and a scalar,

∂`Uk = Dk` +Rk` +
1

3
δk`∇ ·U , (A1)

where

Rk` =
1

2
(∂`Uk − ∂kU`) . (A2)

The absence of the antisymmetric tensor and the scalar
from the expression connotes that there are no rotational
viscosities, nor bulk viscosities in a dilute gas of particles
with no internal degrees of freedom [21, 38, 39]. Without
loss of generality, the viscous stress tensor can now be
written in terms of just the strain rate tensor of Eq. (11b)

τij = 2µijk`Dk`. (A3)

Note that this conclusion is independent of the form of
the collision cross section of the molecules.

The relation between the two forms of the symmetrized
tensors is conveniently handled via a contraction,

Wij(u) = Iijk`uku` = uku`Ik`ij , (A4a)

Dij(U) = Iijk`∂`Uk = ∂`UkIk`ij , (A4b)

with the traceless symmetric tensor

Iijmn =
δimδjn + δinδjm

2
− 1

3
δijδmn. (A5)

Written in these terms, the expression for the shear stress
tensor in Eq. (13) is

τij = −2m2β

∫
d3uf0uiujumunImnopaopk`Dk`. (A6)
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The integrand now consists of products of components of
the peculiar velocity u, multiplied by the known equilib-
rium velocity distribution. All such integrals are readily
evaluated (many leading to Kronecker delta functions),
whereby the viscosity tensor ultimately becomes

µijk` = −2n0

β
Iijmnamnk`, (A7)

as presented in Eq. (14) of the main text.

Appendix B: Evaluation of the Viscosity Tensor

To obtain the viscosity tensor, the collision integrals of
Eq. (20b) must be evaluated. These integrals are evalu-
ated with methods identical to those described in Ref. [?
]. However, the integrand differs slightly where instead
of

Nik ≡
2mβ

5n0

∫
d3u ViC[f0Vk], (B1)

we are now evaluating

Mijmn = − β

2n0

∫
d3uWijC[f0Wmn]. (B2)

The collision integral is therefore similarly set-up by
rewriting it in terms of center-of-mass (COM) and rel-
ative (r) velocity coordinates, uCOM and ur respectively,
which renders the product of equilibrium distributions as

f0(u)f0(u1) = fCOM(uCOM)fr(ur). (B3)

Expanding the collision integral and writing it in terms
of the COM and r coordinates leaves us with

Mijmn = − β

2n0

∫
d3uCOMfCOM(uCOM) (B4)

×
∫
d3ur urfr(ur)Wij

∫
dΩ′

dσ

dΩ′
∆Wmn.

The collision-varied quantity is written as

∆Wij = ∆(uiuj) =
1

2

(
u′r,iu

′
r,j − ur,iur,j

)
, (B5)

so the integral over post-collision velocities with the
differential cross section for dipolar Bosons given in
Ref. [22], becomes

IΩ′ ≡ 1

2

∫
dΩ′r

dσ

dΩ′r

(
u′r,iu

′
r,j − ur,iur,j

)
. (B6)

We then utilize Mathematica [51] to evaluate and plug
the integral above back into Eq. (B4) to obtain the ele-
ments of Mijmn.

Obtaining the µ tensor now requires us to invert M ,
which is most easily performed by converting M into its
matrix representation denoted by an overhead circle, M̊ .

This is done by mapping index pairs to single indices
(i, j)→ (i′), via the relation

i′ = 3(j − 1) + i, (B7)

rendering Mijk` → M̊i′k′ . In its 9 × 9 matrix represen-
tation, the inherent symmetries of M reduces its matrix
rank from 9 to 5. This prevents us from inverting the ma-
trix in its current representation, so we are now required
to perform a change of basis transformation which de-
composes the 9 × 9 matrix into a block-diagonal matrix
with a 5× 5 irreducible block. The desired change of ba-
sis matrix C̊, is obtained by diagonalizing the isotropic
tensor I in its matrix representation,

I̊ = C̊ (I5×5 ⊕ 04×4) C̊−1, (B8)

where I and 0 are the identity and zero matrices respec-
tively, with dimensions specified by their subscripts, and
⊕ denotes a direct sum. Applying the transformation C̊
to Eq. (19) gives

C̊−1T̊ C̊ = C̊−1
(
M̊µ̊

)
C̊

=
(
C̊−1M̊C̊−1

)(
C̊µ̊C̊

)
, (B9)

which leaves both sides of the equation above to only
have a 5 × 5 non-trivial matrix block. The structure of
these matrices are shown more explicitly by writing[

C̊−1T̊ C̊
]

5×5
⊕ 04×4 =[(

C̊−1M̊C̊
)(
C̊−1µ̊C̊

)]
5×5
⊕ 04×4. (B10)

The direct sum with 04×4 is trivial, so we can just con-
sider the 5× 5 irreducible subspace. This now allows us
to effectively invert M̊ by[
C̊−1µ̊C̊

]
5×5

=
[(
C̊−1M̊C̊

)]−1

5×5

[(
C̊−1T̊ C̊

)]
5×5

,

(B11)

and taking the direct sum of the expression above with
04×4, to give

µ̊ = C̊
(
C̊−1M̊+C̊

)(
C̊−1T̊ C̊

)
C̊−1 = M̊+T̊ , (B12)

where M̊+ is a pseudo-inverse of M̊ defined by the pro-
cedure above, which satisfies M̊+M̊µ̊ = µ̊. Finally, we
apply the inverse mapping of Eq. (B7) to attain the rank-
4 tensor form of µ.

For brevity of presentation, we divide each viscosity
tensor element by the isotropic viscosity as derived by
Chapman and Enskog [21], denoted by a tilde:

µ̃ijk` ≡ µijk`/µ0. (B13)

The 13 unit-free unique viscosity tensor elements are tab-
ulated below as a function of scattering length as, dipole
length ad and dipole orientation angle Θ:
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µ̃1111 =
21

128P1P2P3
[9P1P2 + 11P1P3 + 12P2P3 − 48O1P1 cos(2Θ) + 12O3 cos(4Θ)] , (B14a)

µ̃1113 =
63

32P1P2P3
[2O1P1 sin(2Θ)− O3 sin(4Θ)] , (B14b)

µ̃1122 = − 21

8P2P3
[1 + P1 − 3O1 cos(2Θ)] , (B14c)

µ̃1133 =
21

128P1P2P3
[3P1P2 − 7P1P3 − 12P2P3 − 12O3 cos(4Θ)] , (B14d)

µ̃1221 =
63

32P1P3
[P1 + P3 − 4O2 cos(2Θ)] , (B14e)

µ̃1223 =
63

8P1P3
O2 sin(2Θ), (B14f)

µ̃1331 =
63

128P1P2P3
[P1P2 + 3P1P3 + 4P2P3 − 4O3 cos(4Θ)] , (B14g)

µ̃1322 = − 63

8P2P3
O1 sin(2Θ), (B14h)

µ̃1333 =
63

16P1P2P3
[O1P1 + O3 cos(2Θ)] sin(2Θ), (B14i)

µ̃2222 =
21

16P2P3
(3P2 + P3) , (B14j)

µ̃2233 = − 21

8P2P3
[1 + P1 + 3O1 cos(2Θ)] , (B14k)

µ̃2332 =
63

32P1P3
[P1 + P3 + 4O2 cos(2Θ)] , (B14l)

µ̃3333 =
21

128P1P2P3
[9P1P2 + 11P1P3 + 12P2P3 + 48O1P1 cos(2Θ) + 12O3 cos(4Θ)] , (B14m)

having defined the adimensonal polynomials of reduced
dipole length ãd = ad/as,

O1 = ã2
d − 12ãd, (B15a)

O2 = ã2
d − 9ãd, (B15b)

O3 = 369− 60ãd − 4ã2
d, (B15c)

P1 = 63 + 12ãd + 4ã2
d, (B15d)

P2 = 63 + 24ãd + 4ã2
d, (B15e)

P3 = 63− 24ãd + 8ã2
d. (B15f)

The latter 3 polynomials above that appear as denom-
inators in the viscosities, P1,P2 and P3, do not have
real roots for any combination of as, ad > 0, preventing
unphysical poles.

Other non-trivial viscosity terms are specified by the
tensor symmetry identities

µijmn = µjimn, (B16a)

µijmn = µjinm, (B16b)

µijmn = µmnij , (B16c)

µijmnδij = 0, (B16d)

µijmnδmn = 0, (B16e)

µijmnδijmn = 0, (B16f)

where δijmn is 1 if i = j = k = ` and 0 otherwise.
Repeated indices are summed over. All other unspecified
tensor elements are zero.

Appendix C: Linearizing the Balance Equations

This section of the appendix details the linearization
of the balance equations with the variational forms in
Eq. (29). First, we shall take that the thermodynamic
pressure to be given by the ideal gas law

P =
n

β
. (C1)

Then starting with the continuity equation, we have

∂ρ

∂t
+ ∂j (ρUj) = 0,

⇒ ρ0
∂χ

∂t
+ ρ0vs (∂jξj + ξj∂jχ) = 0,

⇒ ∂χ

∂t
+

√
5

3mβ0
∂jξj ≈ 0. (C2)

The Navier-Stokes equation is then

∂

∂t
(ρUi) + ∂j (ρUjUi) = −∂iP + ∂jτij ,
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⇒ vsρ0

(
(1 + χ)

∂ξi
∂t

+ ξi
∂χ

∂t

)
+ v2

sρ0

(
∂j(ξjξi) + ξjξi∂jχ

)
= −n0

β0
(1 + ε)∂iχ−

n0

β0
(1 + χ)∂iε+ ∂jτij ,

⇒ ∂ξi
∂t
≈ −

√
3

5mβ0
∂i(ε+ χ) +

1

n0

√
3β0

5m
∂jτij .ri,

(C3)

Finally, we have the energy balance equation as

∂

∂t
(ρT ) + ∂j (ρTUj) =

2m

3kB
(σij∂jUi − ∂jJj),

⇒ ρ0T0

(
(1 + χ)

∂ε

∂t
+ (1 + ε)

∂χ

∂t

)

+ vsρ0T0

[
(1 + χ)(1 + ε)∂jξj

+ (1 + χ)ξj∂jε+ (1 + ε)ξj∂jχ
]

=
2m

3kB
(vsσij∂jξi − ∂jJj),

⇒ ∂

∂t
(ε+ χ) +

5

3

√
5

3mβ0
∂jξj ≈ −

2

3

β0

n0
∂jJj ,

⇒ ∂ε

∂t
+

2

3

√
5

3mβ0
∂jξj ≈ −

2

3

β0

n0
∂jJj . (C4)

In summary these grant us the closed set of equations in
Eq. (30) of the main text.
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