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Two optically-pumped atomic magnetometer geometries, with sub-fT/
√

Hz sensitivity for radio-
frequencies, are contrasted: one with a probe beam of high power and few passes through the
atoms, the other with low power and many passes. Theoretical noise sensitivity for these conditions
is modeled and compared to experimental values, with the latter geometry achieving a sensitivity
of 0.19 ± 0.02 fT/

√
Hz; the two systems are the first RF intrinsic gradiometers capable of sub-fT

sensitivity. Further, a general approach for choosing probe parameters to optimize sensitivity is
given. With the use of a λ/2 waveplate, both systems are also configured to act as an intrinsic
gradiometer, enabling the rejection of common-mode interference. Common-mode interference is
reduced by over 50 dB in both geometries.

I. INTRODUCTION

Optically pumped atomic magnetometers are an effec-
tive tool for highly sensitive magnetic field detection, op-
erating from static into the radio-frequency (RF) regime.
In this study, we compare two multi-pass optical geome-
tries that operate as the first RF intrinsic gradiometers
with sub-fT sensitivity; one with four passes and a high
power probe beam, and one with 46 passes and a low
power probe beam. Both multiple passes and higher
probe power are methods of reducing photon-shot noise,
a fundamental noise which often limits sensitivity.

Ultra low-frequency applications in bio-medical
sciences[1–4] and geological sciences[5–7] typically use
a type of spin-exchange relaxation-free (SERF) magne-
tometer which is characterized by its high sensitivity and
long spin-relaxation times. SERFs are even being used as
dark matter detectors in the GNOME project’s search for
axion-like particles[8, 9], in the CASPEr project using nu-
clear magnetic resonance (NMR) techniques[10, 11], and
as comagnetometers in the detection of non-standard-
model spin interactions[12]. While SQUIDs are capable
of achieving competitive sensitivities[13], the necessity of
a cryogenic system limits the applicability of these sen-
sors. Conversely, diamond NV centers[14] can be oper-
ated at room temperature and theoretically have com-
parable sensitivity[15], however, the sensitivity is often
limited by experimental constraints[16].

In the radio-frequency (RF) regime, atomic magne-
tometers offer an excellent alternative to traditional coil
magnetometers as they are inherently more sensitive be-
low 50 MHz[17]. When utilized in NMR experiments,
they also offer the advantage of avoiding inductive cou-
pling with their environment. Here we present an op-
tical geometry that achieves 0.19 ± 0.02 fT/

√
Hz sensi-

tivity at a 1 MHz precession frequency, rivalling previ-
ously achieved[18] sensitivity, but with over an order-of-
magnitude smaller volume of atoms. Through the use
of a low-power, multi-pass optical geometry, the magne-
tometer reaches the fundamental limit of spin-projection

noise. In contrast, an alternate setup, which uses a higher
power probe but fewer passes is also able to reach sub-
fT/
√

Hz sensitivity, while being easier to construct; both
geometries are shown in Fig. 1. This geometry is, how-
ever, ultimately limited by photon-shot noise, due in part
to deviation of the measured optical rotation from theo-
retical. We present a general methodology for choosing
probe parameters, which can be a challenging issue[19].

An important aspect of magnetometry is the prac-
ticality of sensing, with a trade-off between sensitiv-
ity, size, complexity, power requirements, and environ-
mental constraints. Recently, miniaturized, microfabri-
cated magnetometers [20–23] have become increasingly
sensitive with the benefit of being small enough to
fit on a microchip. Furthermore, single-beam atomic
magnetometers[24–26] have greatly simplified experimen-
tal configurations, with only a single beam acting as
pump and probe. The portability and low-power require-
ments make these excellent for field use[27], typically for
non-invasive detection and/or an environment without
RF shielding[28]. Using multiple sensors, unshielded RF
atomic magnetometers[29, 30] have shown a sensitivity
competitive with shielded counterparts, thereby enabling
unshielded NQR measurements[31].

To improve on unshielded detection methods, intrin-
sic gradiometers[32–34] can be used to optically subtract
common-mode interference directly, as demonstrated in
this work. This implementation is beneficial for multiple
reasons: 1) signals can be measured on a single channel,
2) the need for post-processing is eliminated, and 3) dy-
namic range limitations, due to large interference signals,
are ameliorated. The intrinsic gradiometers described in
this work are both able to reach over 50 dB in interference
rejection, while maintaining excellent sensitivity. As de-
scribed in the following section, small errors in waveplate
tolerance and alignment ultimately limit the interference
mitigation.
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II. THEORY

A. Optical rotation

The focus of this work is on atomic magnetometers
whose signal detection scheme is through the Faraday ef-
fect, in which the optically pumped atomic vapor imparts
a rotation in the polarization of the light that traverses
it. This rotation is a measure of the strength of the reso-
nant magnetic field, B1, because the field tips the atomic
polarization into a plane transverse to the static tuning
field. The polarization rotation can be calculated from
the index of refraction for an atomic vapor[35] and is
given by[36]:

φ =
1

2
lxrecfnPtD(ν)×Np. (1)

In the above expression lx is the path length of the probe
beam, re the classical electron radius, c the speed of light,
f the oscillator strength for the D1 transition, n the num-
ber density of the atomic vapor, Pt the transverse polar-
ization proportional to B1, D(ν) the dispersion profile as
a function of optical frequency ν, and Np the number of
passes of the probe beam through the vapor.

With two identical cells in the probe path, the optical
rotation doubles as the effective path length doubles. Al-
ternatively, by adding a half-waveplate between the cells,
the optical rotation of the first cell is subtracted from that
of the second cell[32, 34]. The operation of the Faraday
rotation, as well of the half-waveplate, on the incoming
probe light polarization can be modeled using Jones ma-
trices. This is particularly convenient when considering
multiple passes through both cells and the formalism is
given in the Appendix.

As measured by a balanced polarimeter, the measured
optical rotation for a small gradient signal with a large
common-mode interference is

φm ≈ N
[
sin(φ2 − φ1) + ε2 sin(φ2 + φ1)

]
, (2)

where φ1 and φ2 are the optical rotations from the first
and second cells, respectively, ε2 the deviation of the bire-
fringence of the half-waveplate term, and N = Np/4 rep-
resents the number of passes through the waveplate sys-
tem, described in the Appendix. Therefore in the small-
angle limit, the interference rejection, expressed as

Rrejection ≡
φm

φ2 + φ1
= N × ε2 (3)

when φ1 = φ2, is fundamentally limited by errors to
retardation in the waveplates. By using the rotating
quarter-waveplate method[37], the deviation in birefrin-
gence can be measured and minimized, ε2 = S

16N2
p

, where

S is the ratio of the 2nd to 4th harmonic in the inten-
sity’s power spectrum; the second harmonic in waveplate-
rotation frequency corresponds to circularly-polarized
light, the fourth to linearly-polarized light. With the
V-geometry, minimizing S was achieved by twisting the

half-waveplate, with typical values of S <10%. From
these considerations, the rejection ratio should be ∼10−3

for both geometries.
Deviations of birefringence can come from manu-

facturing, temperature effects, and small misalignment
angles[38]. The latter effect is given by

ε =
π

2

(
χ2

2
− Ψ2

2
+
χ2Ψ2

2

)
, (4)

where χ is the angle of the light beam tilt about the
waveplate optical axis and Ψ the angle of tilt about the
orthogonal axis in the plane of the waveplate. By choos-
ing the fast axis to be 45◦ with respect to the incoming
light, as we have already assumed, errors due to angular
misalignment tend to cancel, leaving only a fourth order
term. Alternately the waveplate can be slightly twisted
to compensate for other imperfections in birefringence.

B. Sensitivity and the probe beam

The magnetic sensitivity has three fundamental con-
tributions, which are, in order of appearance under the
square root, spin-projection (SPN), light-shift (LSN),
and photon-shot noise (PSN):

δB = 1
γ
√

2nV T2

√
8 + x

16 + 16
xη , (5)

where n is the atomic number density, V the cell vol-
ume, T2 the transverse-decay constant and η the photon-
to-electron quantum efficiency. This expression assumes
the probe beam is far off-resonance and a dimensionless
parameter highlights the balance between light-shift and
photon-shot noise,

x = (Φ0Np)×
(
σ0T2

A

)
× (τe−τ ) , (6)

where Φ0 is the flux of incoming photons, σ0 the on-
resonance atomic cross-section, A the area of the cell
transverse to the probe beam, and τ the optical depth.
The optical depth, or absorption coefficient of the probe
beam, is τ = σ(ν)nlxNp. The parameter x has been
written to emphasize the product Φ0Np as well as de-
pendence on the probe frequency through τ . Equation 5
is modified from Ref. [36] for Np passes and under the
assumption that the probe beam passes over itself.

The expression for LSN in Eq. 5 is, however, only
an estimate. Light-shift noise changes with intensity of
the probe beam and, with each pass through the cell,
the intensity decreases due to atomic absorption. Equa-
tion 5 neglects this subtlety[36], which treats the effective
probe intensity as that of the exit beam, Φpr = Φ0e

−τ , a
valid approximation only for low absorption; this neglect
would lead to an underestimate in probe intensity and
therefore LSN. Equation 6, however, also neglects loss
of light from imperfect reflections; this neglect overesti-
mates the probe intensity and therefore LSN. The two
effects counterbalance each other. Therefore the use of
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Eq. 6 for LSN is a reasonable approximation for modest
to low absorption for most practical setups.

Sensitivity is minimized when contributions by light-
shift and photon-shot noise are balanced, with x =
16/
√
η. Ideally η is only the photodiode quantum effi-

ciency, but realistically also includes the collection effi-
ciency of the probe light, including loss due to unwanted
reflections. Nevertheless, it is expected 1/

√
η is on the or-

der of unity and spin-projection noise will dominate with
balancing of the other two noise sources. In practical
terms, it is difficult to make x large enough to suppress
photon-shot noise to the level of light-shift noise, and
requires either high Np or Φ0 as seen in Eq. 6. The mid-
dle term in Eq. 6 has a dependence on probe pumping
through T2, but its contribution is usually overshadowed
by experimental imperfections such as field inhomogene-
ity, diffusion to the walls, and imperfect pumping; we
treat it as predetermined and focus on the other terms.
The final term of Eq. 6 is maximized to e−1 when the
optical-density,

τ = NpOD

(
∆ν/2

ν − ν0

)2

= 1, (7)

where OD = σ0nlx is the optical depth on-resonance for a
single pass, ∆ν the optical linewidth, and ν0 the D1 tran-
sition frequency. If Np is fixed, the probe off-resonance
can be used to reach the optimal τ ,

ν − ν0 =
∆ν

2

√
NpOD. (8)

Once the frequency dependent term is maximized, the
achievement of a large x falls to the product of Φ0Np,
highlighting the choice of high-probe power or high num-
ber of passes. The benefit of using more passes is to use
a lower probe power, however, this comes with the ne-
cessity of AR-coated glass to prevent significant power
loss from reflections. In this paper we consider two sys-
tems with the same product, but differing by an order of
magnitude in power and passes.

For each geometry and cell, the choice of probe off-
resonance detuning can, in principle, be used to com-
pensate for the number of passes to reach the optimal
optical-density, Eq. 8. The number of passes, Np, is con-
strained by the design of the optical geometry. For each
geometry, the optimal off-resonance is calculated in Ta-
ble I. The experimental value of detuning matched fairly
well for the V-geometry. In contrast, the M-geometry was
not operated close to the predicted off-resonance, due to
unexpected suppression of signal for wavelengths closer
to the D1 line.

The suppression of optical-rotation is shown in Fig. 2
as function of probe power and wavelength. Static trans-
verse polarization, Pt in Eq. 1, was used to simplify the
analysis and was created by slightly tipping the atomic
polarization into the probe-beam direction; resonant Pt
depends on T2, static does not. The theoretical values
shown are obtained using a set of spin-dynamics mea-

Geometry Np OD ∆λ (nm) |λpred − λ0| |λexp − λ0|

M 4 37 0.027 0.16 0.50

V 46 107 0.012 0.43 0.51

TABLE I. Relevant parameters for each optical geometry,
where ∆λ is the pressure-broadened optical linewidth and
(λ − λ0) refers to the probe beam’s detuning from the D1

line. The two columns on the right give the detuning as pre-
dicted by Eq. 8 and as used in the experiment.

surements, outlined in Section III C, which give atomic-
number density and polarization. Small variations of the
theoretical curves come from lower polarization found for
higher pump powers. It is clear that as the wavelength
gets closer to the D1 line, the measured optical rotation
begins to deviate from the theoretical value. The source
of the deviation, and its detrimental effects on sensitivity,
is unknown and will be explored in future work. With the
deviation, it became advantageous to operate further off-
resonance, where there is agreement between measured
and theoretical optical rotation.

Ideally, from Eq. 5, for the same number of atoms
and T2, the same minimized sensitivity can be found by
balancing light-shift and photon shot noise, using a com-
bination of high probe power or number of passes, and
by optimal detuning. Fewer passes, and correspondingly
higher power, requires smaller detuning to balance the
noise. Since the optical rotation is suppressed with the
smaller detuning, the balance is never reached and the
fewer pass system is dominated by photon-shot noise.
The system with more passes, and correspondingly lower
power, is able to reach this balance, and is dominated
by spin-projection noise, as hypothesized and is shown
in Section IV B.

III. EXPERIMENTAL DESIGN

To show the limits of Np and Φ0 in multipass magne-
tometers, two optical geometries are configured to oper-
ate as an intrinsic gradiometer, shown in Fig. 1. The
primary distinction is the approach to suppressing the
contribution of photon-shot noise. The M-geometry uses
a high probe power and few passes through the cells
while the V-geometry uses an order of magnitude lower
probe power but with an order of magnitude more passes.
While the M-geometry has a slightly better fundamental
spin-relaxation rate[39] due to using 39K atoms, the V-
geometry uses 87Rb atoms and is a more practical choice
as an equivalent number density can be achieved at a
much lower temperature.

Both optical geometries are housed in boron nitride
ovens and are electrically heated using non-magnetic re-
sistance wire[40] to create an alkali vapor with a number
density of 5 ± 0.5 × 1013 atoms/cm3. Glass windows in
the oven face the pump beam, but on the probe side, the
oven is left open to prevent loss of light. The geometries
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FIG. 1. The intrinsic gradiometer setup for two experimental configurations. Left: High probe power, few-pass system, using
39K vapor cells. The beam traverses the left and then right cell, with a beam width ∼ 1.3 cm. Right: Low probe power,
many-pass system, using a 87Rb vapor cell. In the many-pass configuration, the fiber-coupled probe beam enters and the beam
traverses the first voxel 24 times and the second voxel 22 times, alternating between the two voxels. It walks across the mirror
after each pass before exiting the geometry. The effective beam width in the cell is ∼ 1 cm, as shown by the fluorescence image
in the inset.

are each placed at the center of a set of coils, consisting
of three homogenous and three first-order gradient field
coils, used to uniformly align the field along the pump
direction. In addition, there are also two smaller coils
used for generating radio-frequency magnetic fields: a
homogenous coil and a linear gradient coil. The Larmor
precession in both experiments was set at 1 MHz, requir-
ing a bias-field of 142.9 µT.

Atoms are optically pumped at the D1 line with cir-
cularly polarized light. A Keplerian telescope with an
aspheric lens[41] shapes the beams to a top-hat match-
ing the size of the vapor cells. Both probe beams are far
off-resonance and linearly polarized. The probe beam for
each geometry has a different expansion mechanism, de-
scribed in the respective section below. Upon exiting, the
beam goes into a balanced polarimeter[42] which outputs
the signal into a phase-sensitive RF spectrometer[43].
Unless otherwise noted, the spectra shown in the next
sections are obtained from the Fourier transform of
1.5 ms of data, a typical time period needed for NQR.

When the system is operated as a gradiometer, a λ/2
waveplate is placed between the two cells in order to
subtract common-mode interference and add differential-
mode signals, as shown in the previous section. One im-
portant distinction to make is in the placement of the λ/2
waveplate in the two geometries. In the M-geometry, the
waveplate is placed outside of the heated geometry so it
does not incur any errors due to thermal expansion. In

the V-geometry, however, the waveplate is placed inside
the heated geometry so thermal expansion does affect the
birefringence[44].

A. M-geometry

The first setup describes a system in which two 39K
vapor cells are heated to a temperature of 175◦C. In ad-
dition to the potassium atoms, the cells are filled with
60 torr of N2 and 680 torr of 4He that serve as a quench-
ing and buffer gas, respectively. Each cell is 2.5 × 2.0 ×
1.5 cm3, with an effective probing volume of ∼3 cm3 in
each cell, and a baseline of 3.5 cm between the cells.
A Faraday cage, constructed of copper mesh, is placed
between the static field coils and the magnetometers to
shield from RF noise.

The pump beam operates continuously so a lower
power can be used, around 0.1 W, but it can also be
pulsed when spin-dynamics diagnostic sequences are run.
As shown in Fig. 1, the vapor cells are pumped with a
small block placed in between them for isolation during
characterization. The probe beam undergoes a similar
Keplerian expansion as the pump beam and then tra-
verses through the cells in a ‘M’ pattern by reflecting
from a mirror behind each cell. The probe beam is of
relatively high power, about 28 mW entering the optical
geometry with a 30% transmittance; losses are due to re-
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FIG. 2. The DC optical rotation in the M-geometry is mea-
sured as a function of probe wavelength and incident power,
I0, and has a wavelength dependence which deviates from the
theoretical model. The model incorporates measured polar-
ization and number density. The number density employed
was the average from two separate measurement techniques,
differing by ±15%; one technique used the spin-exchange rate,
the other, the transmission of the probe light. The latter is
shown in the inset, when the probe exit power, Ipr, is shown
as a function of the optical cross-section, σ; the slopes in the
graph are the number density.

flections from air-glass interfaces at the cell and surface
abberations.

B. V-geometry

The design of V-geometry is similar in principle to the
M-geometry. There are, however, a few significant dif-
ferences. A single 87Rb vapor cell, filled with 75 torr
of N2 and 425 torr of Ne that serve as a quenching and
buffer gas, respectively, is heated to ∼ 140◦C. The cell
has dimensions 5.2 cm× 2.1 cm × 2.6 cm with an effec-
tive probing volume of 2 cm3 per voxel and a baseline
of 1.9 cm between the voxels. The optical geometry and
magnetic field coil structure is enclosed in µ-metal and
mesh-wire to provide full magnetic and RF shielding.

Unlike the M-geometry, the vapor is excited using a
strong, pulsed pump beam, around 1 W. In addition to
the expansion described above, the pump beam is di-
rected through two stacked beam splitter cubes to match
the beam to the voxels. As this setup uses a single vapor
cell, there is diffusion between the polarized atoms in the
two voxels. Therefore, the spin dynamics in each voxel
are difficult to measure independently.

The probe beam in this geometry is fiber coupled, with
an input in the geometry of ∼1 mW. The optical geom-
etry is laid out such that the probe is expanded while
traversing the cells and is contracted to focus the beam

onto a curved mirror. The beam undergoes this expan-
sion and contraction 46 times, 24 times in the first voxel
and 22 times in the second; this asymmetry was unin-
tended, but was compensated in the intrinsic gradiome-
ter by changing the pump light distribution between the
voxels. The cell windows facing the probe beam have
anti-reflection coating to minimize loss of light.

C. Spin dynamics diagnostic

In order to understand the signals measured from the
vapor cells, as given in Eq. 1, it is important to measure
number density and polarization. The spin dynamics are
measured using a pulse sequence briefly described in [31],
referred to as Vary-τ . The sequence varies the time, τ ,
between the pumping light pulse and a hard RF magnetic
pulse, measuring the free-induction decay (FID) of the
atomic vapor in various polarization states[45]. For long
τ times, the atoms are weakly polarized and have a very
short transverse decay time constant, T2low. For short
τ times, the atoms are nearly fully polarized and have
a longer decay time constant, T2high, an effect known as
line narrowing. Typical values of T2high and the corre-
sponding linewidth are around 0.8 ± 0.1 ms (0.4 kHz)
for the M-geometry and 0.4 ± 0.1 ms (0.8 kHz) for the
V-geometry. The spin-exchange rate, RSE , is related to
the decay time-constant at low polarization [36]:

RSE = 8/T2low. (9)

Furthermore, the longitudinal decay time constant, T1,
can be measured by observing how the FID amplitude
decays as a function of τ for long τ times. The constant
T1 is related to the spin-destruction rate, RSD, by a nu-
clear slowing-down factor[46], 1/6 for spin-3/2 systems

RSD = 6/T1. (10)

Typically, RSE is a few orders of magnitude larger than
RSD.

The spin-exchange rate is proportional to the alkali
number density, RSE = nvσSE , where n is the number
density, v is the relative velocity between alkali atoms,
and σSE is the atomic cross-section. The number density
can also be measured through optical absorption, how-
ever, this was found to be an underestimate[18]. Both
geometries were heated to operate with a number den-
sity around 5×1013 atoms/cm3.

Using all the time relaxation constants, the atomic po-
larization can also be calculated [47]:

Polarization = 1− 5

8
T2low

[
1

T2high
− 3

2T1

]
. (11)

Measured polarizations are typically around 90%.
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IV. RESULTS

Both optical geometries operating as an intrinsic gra-
diometer are able to achieve over 50 dB suppression of
common-mode interference, while retaining sub-fT/

√
Hz

sensitivity. As both geometries are of comparable cell
volume, the primary distinctions are in the probe beam’s
power and number of passes through the cell. The perfor-
mance of the geometries were evaluated in terms of their
capability for interference rejection and sensitivity. The
following sections discuss these aspects in detail, compar-
ing the two systems.

A. Interference rejection

Operating in an unshielded environment is important
for in-the-field applications where interfering magnetic
fields can obscure the signal of interest. One technique for
handling this is through optical subtraction. To demon-
strate the optical subtraction technique, the optical ge-
ometry is set up as an intrinsic gradiometer and three
different cases are examined: 1) large interference, 2) a
small gradient signal, and 3) simultaneous application
of the first two. The signal from a single cell can be
looked at independently by blocking the pump beam for
the voxel that is not in use. When pumping both vox-
els in this configuration, the system forms an intrinsic
gradiometer.

Figure 3 shows the resonant Fourier peaks in each of
the three cases, with field values for each geometry given
in the caption. The magnetic fields generated in this ex-
periment were produced by the common-mode and gra-
dient RF coils discussed in Section III. In the first case, a
large common-mode interference signal is generated and
reduced by more than two orders of magnitude. Indi-
vidually, each voxel experiences a large field, however,
the effect on Faraday rotation is to produce oppositely
signed signals which cancel each other. In the second
case, a linear gradient signal is applied, with an average
field value measured at the center of each voxel. The sig-
nals from the two voxels are in-phase and therefore add
together when both voxels are pumped. These signals are
equal in magnitude so it straightforward to see the addi-
tion of the two individual signals totalling to the signal
when both voxels are fully pumped. In the last case, the
common-mode interference signal and the gradient signal
are applied simultaneously. Examining the signals from
both voxels separately is not very illuminating as the in-
terference signal completely masks the gradient signal of
interest. When the signals are allowed to combine, the
interference is greatly reduced and the gradient signal is
now distinguishable. This technique bypasses instrumen-
tal limitations due to large interference signals saturating
receive channels.

One of the limiting factors of these setups is instru-
mental stability and control. In order to tune the system
for the greatest cancellation, the signals from each voxel

have to be closely matched. With a large RF field, about
1 nT, the pump power distribution between the cells and
the Bz gradient static field across the cells are iteratively
adjusted to minimize the in-phase and out-of-phase com-
ponents of the subtracted signal; This process could, in
principle, be automated to produce a more finely tuned
system with a better cancellation factor. The two sys-
tems varied in their abilities to cancel both the in- and
out-of-phase components of the interference, as shown in
Fig. 4, due to the angles of the probe beam with respect
to each other in the x − y plane. As shown in Fig. 1,
the V-geometry has a significant angle of ∼13◦ between
the two probe arms, while the M-geometry has the same
geometry in each cell.

B. Noise limits

To obtain noise spectra, data acquisition was repeated
100 times, each lasting a period of time, Tacq both with
and without a signal of size B1. The SNR is the ratio
of the average peak signal over the standard-deviation in
the frequency domain. The sensitivity is then given by
S = B1/SNR

√
Tacq.

By removing the half-waveplate, shown in Fig. 1,
the intrinsic gradiometer becomes two magnetometers in
which the rotations add. In this configuration a sensi-
tivity of 0.9 fT/

√
Hz is achieved for the M-geometry, as

shown in Fig. 5a. As an intrinsic gradiometer, the sen-
sitivity is measured to be 0.5 fT/cm/

√
Hz, as shown in

Fig. 5b. In both configurations the fundamental limiting
noise is photon-shot noise, as discussed in Section II B.

In contrast, as shown in Fig. 6, the V-geometry is dom-
inated by spin-projection noise and obtains a sensitivity
of 0.19 ± 0.02 fT/

√
Hz. To understand the fundamental

noise limits, the noise in the Fourier transform of 12 ms
of data is calculated. The noise power is shown in Fig. 6.
The total noise power is calculated by fitting the power
spectrum to a Lorentzian function; the offset predomi-
nantly comes from photon-shot noise. The resulting ar-
eas, under different illumination conditions, are largely
the same and close to the value obtained when there
is no pump light in either voxel. Therefore the domi-
nant noise contribution is spin-projection noise. A more
careful analysis dictates the noise power for fully polar-
ized atoms should be 2/3 of unpolarized, or un-pumped,
atoms[48]. In addition, it is expected that environmen-
tal magnetic noise will cancel with full illumination of
the cell due to the subtraction of signals from the two
voxels. The light shift noise, in contrast is coherent over
the voxels, and the noise power is expected to quadruple
with full illumination, compared to illumination of a sin-
gle voxel. From these conditions the relative noise power
contributions, when the full-cell is illuminated, can be
determined, as seen in Table II. With only partial illu-
mination of the cell, an increase of noise power is observed
due to environmental magnetic noise.
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FIG. 3. Shown are different cases of optical subtraction for the M-geometry (a,b) and the V-geometry (c,d) for oscillating
1 MHz fields; spectra are centered around this same frequency. The plots shown on the left are for the individual voxels of
each system. Three cases were examined: interference only, signal only, and interference + signal. For the M-geometry, the
fields applied are a 5.2 pT common-mode interference and a 32 fT/cm gradient signal. For the V-geometry, the fields applied
are 22 pT common-mode interference and a 2.3 pT/cm gradient signal. The interference is reduced by a factor of 390 in the
M-geometry and 630 in the V-geometry. As the V-geometry is pulsed, the slightly different relaxation rates in each voxel give
different spectral widths, resulting in non-uniform cancellation with respect to frequency, as seen in (d). The data shown in
each geometry are normalized to the gradient signal so the relative field sizes are more easily seen.

Total spin-projection photon-shot light-shift electronic

1 0.43 0.34 0.16 0.07

TABLE II. The relative ratios for the noise contribution in
the V-geometry.

V. CONCLUSION

The efficacy of two dual-chamber magnetometers are
compared with each other: the M-geometry with four
passes and 28 mW of probe power and the V-geometry
with 46 passes and more than an order of magnitude
smaller power. Both optical geometries are capable

of reaching sub-fT/
√

Hz sensitivity, with the dominant
noise for the M-geometry being photon-shot noise, and
for the V-geometry being spin-projection noise. Ideally,
with the increase in the product of probe power and num-
ber of passes, photon-shot noise can be decreased be-
low spin-projection noise, simply by adjusting the probe
wavelength. In practice, however, the signal was smaller
than expected with the probe wavelength closer to res-
onance. This resulted in underperformance by the M-
geometry and the sensitivity of the V-geometry was five
times better, even with a shorter T2 and a smaller ac-
tive volume. This suggests the addition of more passes,
as opposed to more power, is worth the effort of a more
complex setup.
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FIG. 4. Due to the larger angle between the arms of the
probe beam, an out-of-phase component is picked up in the
V-geometry system. The M-geometry doesn’t have such an
angle and the out-of-phase component can be well cancelled.

Used as an intrinsic gradiometer, the interference rejec-
tion ratios for the M and V-geometries are both greater
than two orders of magnitude. Theoretically, the inter-
ference rejection is solely limited by imperfections in the
half-waveplate used to form the intrinsic gradiometer. In
reality, field stability was the limiting factor. Further-
more, the angled probe beam in the V-geometry limits
the simultaneous suppression of both in-phase and out-
of-phase signals, a hinderance the M-geometry doesn’t
share. This suggests the layout of the M-geometry is
preferable for full interference suppression.
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FIG. 5. In the M-geometry, the sensitivity in each operational mode, using RF magnetic fields at 1.05 MHz and an acquire
window of 1.5 ms, is shown. The sensitivity in the additive mode is 0.9 fT/

√
Hz, using a 2.4 pT common-mode magnetic field.

The sensitivity operating as in intrinsic gradiometer is 0.5 fT/cm/
√

Hz, using a 32 fT/cm gradient magnetic field.

-5 0 5
0.0

0.5

1.0

V-geometry
(b)

 
N

oi
se

 p
ow

er
 fo

r 1
2 

m
s 

(n
or

m
al

iz
ed

)

Frequency (kHz)

Volume     Width          Relative
 pumped        (kHz)        Peak area   

 Voxel 1    1.3 ± 0.1     1.13 ± 0.05
 Voxel 2    1.5 ± 0.1     1.22 ± 0.05
 Full cell   1.0 ± 0.1     0.92 ± 0.04
 No pump  1.3 ± 0.1     1.00 ± 0.05
 No probe

-5 0 5
0.000

0.005

0.010

0.015

0 6 12
0

1

 

 

time (ms)

Volume pumped (sensitivity)
 Voxel 1    (0.32 fT/Hz1/2)
 Voxel 2 (0.30 fT/Hz1/2)
 Full cell (0.19 fT/Hz1/2)
 No pump
 No probe

N
oi

se
 fr

om
 1

.5
 m

s 
(n

or
m

al
iz

ed
 to

 re
f. 

si
gn

al
)

Frequency (kHz)

V-geometry
(a)

FIG. 6. On the left, the sensitivity from the V- intrinsic gradiometer; the noise is normalized to a 0.7 pT, 1 MHz reference
signal. A typical time-domain signal is given in the inset of Fig. 6a, showing significant decay over 12 ms. The raw noise
is higher when the full cell is illuminated (magenta or darker) compared to illumination of individual voxels (cyan/orange or
lightest/lighter). However, the signal for full illumination would presumably be doubled so the sensitivity is improved. The

sensitivity is measured to be 0.19 ± 0.02 fT/
√

Hz, an improvement over previous results, while using a 10× smaller cell volume.

The corresponding gradient sensitivity is 0.20 ± 0.02 fT/cm/
√

Hz. With the short acquisition time, the spectral resolution is
poor. Therefore the noise power is calculated from the Fourier transform of 12 ms of data and plotted in the graph to the right.
Fits to a Lorentzian function are shown as thick solid lines and the results analyzed within the text.
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Appendix A: Optical rotation

For polarized light propagating along ẑ, the ray can
be represented by E(z, t) = E0 |ψ〉 ei(kz−ωt) where |ψ〉 is
the Jones vector that represents the polarization state.
A powerful way of handling the optical elements in this
system are through the use Jones’ matrices, so that
each optical element can be represented as a matrix and
the total impact can be calculated by multiplying each
Jones matrix together. The total Jones matrix would
then be evaluated as Ŵ2R̂2Ŵ1R̂1, where R̂i represents
the Faraday rotation from the first and second voxels,
and Ŵi represents the phase-retardation from each pass
through the waveplate. To simplify calculations, the
transformations can be recast using Pauli spin matrices
as ei(a·σ) = 1 cos a + i(n̂ · σ) sin a, for a = an̂; this is
equivalent to the quaternion formalism. The waveplate
transformation can be written as:

Ŵi =

[
eiδx 0

0 eiδy

]
(A.1)

= eiϕi [1 cos θi + iσz sin θi] = eiϕeiθiσz (A.2)

where δi represents the phase retardation imparted on
the traversing light’s polarization due the waveplate, ϕi
=

δx+δy
2 , θi =

δx−δy
2 , σ are the Pauli spin matrices, and

1 is the identity matrix. The Faraday rotation can be
written as:

R̂i =

[
cosφi − sinφi
sinφi cosφi

]
(A.3)

= 1 cosφi − iσy sinφi = eiφiσy (A.4)

where φi is the rotation angle. The product Ŵ2R̂2Ŵ1 can
be simplified as the light traverses the same waveplate
twice, compacted into a rotator, R̂′2 = 1 cosφ′2 + i(n̂φ2′ ·
σ) sinφ′2. Using the result from [49], for the symmetric
case of θ1 = θ2 = θ, this gives:

cosφ′2 = cos 2θ cosφ2 (A.5)

sinφ′2n̂φ2′ = − sinφ2ŷ + 2 sin θ cos θ cosφ2ẑ. (A.6)

The final rotation, Φ̂ = R̂′2R̂1, resolves into:

cos Φ =
1

2
[cos(φ1 − φ2) (cos 2θ − 1) + cos(φ1 + φ2) (cos 2θ + 1)]

(A.7)

sin Φn̂Φ =
1

2

(
x̂
{

sin 2θ[sin(φ1 − φ2)− sin(φ1 + φ2)]
}

+ ŷ
[
sin(φ1 − φ2) (cos 2θ − 1)− sin(φ1 + φ2) (cos 2θ + 1)

]
+ ẑ

{
sin 2θ

[
cos(φ1 − φ2)− cos(φ1 + φ2)

]})
.

(A.8)

For no waveplate, i.e. θ = 0, this gives:

cos Φ = cos(φ1 + φ2) (A.9)

sin Φn̂Φ = − sin(φ1 + φ2)ŷ (A.10)

which produces the correct rotation matrix for two
adding signals, where Φ = φ1 +φ2. For a half-waveplate,
i.e. θ = π/2, this gives:

cos Φ = − cos(φ1 − φ2) (A.11)

sin Φn̂Φ = − sin(φ1 − φ2)ŷ (A.12)

which properly subtracts signals on the two cells, where
Φ = φ1−φ2. In the simple case, the combined rotator Φ̂
produces the net optical rotation when the light traverses
each of the voxels once. In a multi-pass system, this
operation can be compounded as Φ̂N in which the light
traverses each of the voxels 2 × N times, with the total
number of passes Np = 4×N . This rotator then is:

Φ̂N = eiΦ(n̂Φ·σ)N (A.13)

= 1 cos(NΦ) + i
(
n̂Φ · σ

)
sin(NΦ) (A.14)

where the total rotation, Φ, scales with N .

For small deviations in retardation θ = π/2±∆ε, the
net rotation can approximated as

Φ̂N ≈ cos
(
Nπ
)[
1− iN

(
n̂Φ · σ

)
sin Φ

]
, (A.15)

where sin Φn̂Φ, including the error term, is given by:

cos Φ = sin2 ε
[
cos(φ1 − φ2) + cos(φ1 + φ2)

]
− cos(φ1 − φ2)

(A.16)

sin Φn̂Φ = x̂
{
−1

2
sin 2ε

[
sin(φ1 − φ2)− sin(φ1 + φ2)

]}
+ ŷ

{
sin2 ε

[
sin(φ1 − φ2)− sin(φ1 + φ2)

]
− sin(φ1 − φ2)

}
+ ẑ

{
−1

2
sin 2ε

[
cos(φ1 − φ2)− cos(φ1 + φ2)

]}
.

(A.17)

The net rotation operates on the entering light placed at
45◦ with respect to the waveplate is

Efinal = Φ̂N

[
1/
√

2

1/
√

2

]
. (A.18)

The optical rotation as measured by a balanced
polarimeter[42] from Efinal is given in the text.


