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Symmetry is an important property of quantum mechanical systems which may dramatically in-
fluence their behavior in and out of equilibrium. In this paper, we study the effect of symmetry
on tripartite entanglement properties of typical states in symmetric sectors of Hilbert space. In
particular, we consider Abelian symmetries and derive an explicit expression for the logarithmic
entanglement negativity of systems with ZN and U(1) symmetry groups. To this end, we develop
a diagrammatic method to incorporate partial transpose within the random matrix theory of sym-
metric states and formulate a perturbation theory in the inverse of the Hilbert space dimension.
We further present entanglement phase diagrams as the subsystem sizes are varied and show that
there are qualitative differences between systems with and without symmetries. We also design a
quantum circuit to simulate our setup.

I. INTRODUCTION

Dynamics of quantum chaotic many-body systems
which ultimately leads to thermal equilibrium has been a
subject of fundamental research in physics. A particular
topic of great interest recently has been the dynamics of
quantum entanglement in such systems. However, the
study of large enough systems that exhibit interesting
large scale effects has been a challenge, to some extent
by definition, in quantum chaotic systems. A very useful
tool, that has played an important role in our under-
standing of universal behavior in such systems, has been
the introduction of randomness in the system; random
matrix theory, as an example, has proven to be able to
reproduce many universal properties in such systems [1–
4] and has paved the way to actually performing concrete
analytical calculations.

Another paradigmatic example is the study of quan-
tum dynamics in random unitary circuits; introduction
of randomness retains the essential physics while pro-
viding analytical handles to study averaged quantities;
this endeavor has been very successful in identifying uni-
versal dynamical properties and phenomena in quantum
chaotic systems far from equilibrium [5–8]. In many real
applications, on the other hand, one expects some fur-
ther structure in dynamics; in particular, a ubiquitous
situation is when conservation laws are present due to
e.g. a Hamiltonian dynamics or a symmetry preserving
law of motion. Such situations have also been studied
widely recently in particular in the context of random
unitary circuits and it has been shown that the addition
of a conservation law can lead to novel phenomena and
behaviors [9, 10].

In the present work, we study the entanglement prop-
erties of a chaotic system with a symmetry at late times
starting from a simple symmetric state (or many-body
eigenstates of a symmetric quantum chaotic Hamilto-
nian) through the lens of random matrix theory; we as-
sume that symmetric random many-body states are ca-
pable of capturing the essential physics in such situations.

Particularly, we will consider tripartite entanglement in
a system having a symmetric random state. In a previ-
ous work [11], entanglement negativity, as a multipartite
entanglement measure, of a random state without sym-
metry in a tripartite geometry (see Fig. 1) was studied
(see also Refs. [12–21] for early studies on the partial
transpose of random mixed states); this was, in particu-
lar, done by investigating the entanglement (encoded in
ρ̂A) between A1 and A2. Note that subsystem B can
be viewed as an environment for subsystem A. It was
shown that the entanglement between A1 and A2 sub-
systems shows different behaviors as the Hilbert space
dimensions of subsystems are varied. We briefly recapit-
ulate the main results of this work in the following two
paragraphs and next summarize our results for symmet-
ric random states in this paper.

A large-L perturbative diagrammatic approach in
Ref. [11] was introduced and employed to calculate the
entanglement negativity and the entanglement negativity
spectrum in the setting outlined above (see also Refs. [22–
26] for a similar diagrammatic approach to the entangle-
ment negativity and relative entropy of random tensor
networks and models of evaporating black holes); it was
shown that the main parameter controlling the entangle-
ment behavior is q = LB

LA
, where Ls denotes the Hilbert

space dimension of s = A,B. Looking at extreme limits
of this parameter is illuminating: for q � 1 one expects
the bath to be very large and thus A to be almost fully
entangled with B resulting in a minimal entanglement
between A1 and A2. On the other hand, for q � 1, the
bath is small and not capable of thermalizing the A sub-
system and thus one expects a volume law entanglement
between A1 and A2. Indeed, the results in [11] show that
this picture is correct and the reduced density matrix
of A shows a transition form being positive partial trans-
pose (PPT) to being negative partial transpose (NPT) as
LB is lowered from above to below the transition value
LB,PPT = 4LA. The PPT regime by definition shows
zero logarithmic negativity.

Below this transition point, where the state is NPT,
it is shown that two possibilities arise (assuming with-
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out loss of generality LA1
� LA2

): first, if A1 is not
larger than half of the system (or LA1

� LA2
LB), it

was found that the entanglement negativity between A1

and A2 becomes independent of the relative sizes of these
two subsystems; in this entanglement plateau regime, the
logarithmic negativity for a qubit system shows a be-
havior EA1:A2 ∼ 1

2 (NA − NB) (independent of the ratio
NA1/NA2). On the other hand, in the opposite limit of
LA1 � LA2LB , it was shown that there is maximal en-
tanglement between A1 and A2 with a logarithmic neg-
ativity of EA1:A2 ∼ NA2 . The two regimes are separated
by a critical point given by the relation LA1 = LA2LB ,
where the negativity spectrum exhibits a divergence at
the origin.

Here, we build on this previous work and study the
case where the random state of the system is symmet-
ric. This symmetry at the level of the state could be
present due to a global symmetry of the dynamics of the
system. If the initial state of the system has a definite
conserved charge under a global symmetry and the dy-
namics preserves the symmetry, we expect the final state,
as complicated as it could be, to have also the same quan-
tum number. Note that one example of such a conserved
quantity in a Hamiltonian system could be the energy.
We consider two separate classes of symmetries in this
work: ZR symmetry in a system consisting of qudits with
R onsite degrees of freedom (including R = 2, i.e. qubits)
and a U(1) symmetry in a qubit system. The latter can
e.g. represent systems of spin- 1

2 ’s with rotational sym-
metry around z-axis or fermionic systems with conserved
particle number.

Given that the state of the whole system has a definite
symmetry charge, and as will be discussed further later,
the density matrix of subsystem A can be written as:

ρ̂A =
⊕
qA

pqA ρ̂
(qA)
A .

Noting this, we focus in this work on the symmetry re-
solved entanglement negativity [27], i.e. entanglement
negativity of individual blocks of the density matrix that

we denote by E(ρ̂
(qA)
A ). These quantities represent a more

refined measure of mixed state entanglement than the
negativity of the whole density matrix, as different sym-
metry sectors are considered separately. Furthermore,
another quantity, i.e. the symmetry averaged entangle-
ment negativity can be calculated in terms of the above
symmetry resolved values:

EA1:A2
:=
∑
qA

pqA E(ρ̂
(qA)
A ), (1.1)

which is the analog of the first term in the bipartite en-
tanglement entropy

SA =
∑
qA

pqA S(ρ̂
(qA)
A )−

∑
qA

pqA log pqA . (1.2)

As we will see later, the symmetry averaged entanglement
negativity can also be motivated as a way to identify sym-
metric separable states which are realized by symmetric
local operations and classical communications (LOCC).

Another interesting possibility that we are considering,
which can in principle access the entanglement properties

of individual blocks ρ̂
(qA)
A is the situation in which, only

the charge of subsystem B is measured in a symmetric
system; if this is done properly, the state of subsystem A
will not completely collapse into a pure state and interest-
ing tripartite correlations will be retained. It has been
known that such measurement in symmetry protected
topological (SPT) phases can have nontrivial outcomes;
in particular, it was shown [28] that in a SPT phase, two
spatially separated regions–which should show no corre-
lations due to the SPT state being a short-range corre-
lated state–can in fact become entangled if the symmetry
charge of their complements is measured. Similarly here
in the context of symmetric random states, we will be
interested in the entanglement between A1 and A2 when
the symmetry charge of B is measured. Interestingly,
one can come up with quantum circuits that measure
only the B subsystem charges in systems with either ZR
or U(1) symmetries. Details of such charge measuring
circuits, which can be useful in possible quantum simula-
tion of the setting discussed above on near term quantum
devices, will also be presented in this paper.

A summary of our approach and results follow; in order
to study the mixed state entanglement of A1 and A2 sub-
systems, we calculate the ensemble averaged spectrum of
the partially transposed symmetry resolved blocks us-
ing the diagrammatic approach; the calculation is car-
ried out in different regimes, from which the entangle-
ment negativity is also calculated. We show that entan-
glement regimes similar to the nonsymmetric case can
be observed in the symmetric case as well. However, in
the symmetric case, the fact that we need to take into
account the charges of different subsystems adds to the
richness and complexity of the entanglement behavior.
In particular, major differences that appear between the
symmetric case and the nonsymmetric one are as follows:
first, the NPT to PPT transition loses its sharp defini-
tion and becomes a crossover rather than a transition.
Furthermore, since the Hilbert space dimensions of sub-
systems depend in general on quantum numbers of those
subsystems (e.g., for the U(1) symmetry), we see that in
general, the transition to maximal entanglement in the
NPT region happens in a critical region as opposed to
a critical line. This can be seen in Fig. 2 in the case of
U(1) symmetry, where several situations are considered
and and the critical regions are shown as shaded, while
in a nonsymmetric state we expect criticality only on the
red curve.

The rest of our paper is organized as follows: In Sec. II,
we review some background materials about the partial
transpose, the symmetry charge, modified separability
problem, and the problem setup. There, we argue that
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FIG. 1. Tripartite geometry of random pure states. In
this paper, we are interested in the entanglement negativity
between two parties (e.g., A1 and A2) out of the three. There
is no notion of locality in this setup.

why one should use the symmetry resolved logarithmic
negativity to address the separability problem in systems
subject to symmetric LOCCs. Section III is devoted to
reviewing the diagrammatic approach to random den-
sity matrices and calculating the moments of the par-
tially transposed density matrix; this section serves as
a warm-up for the subsequent sections. In Sec. IV, we
present the central results of this paper, where we use
the resolvent function method diagrammatically to de-
rive the spectral density of the partially transposed den-
sity matrix in various regimes. We also provide several
numerical benchmarks. In Sec. V, we propose a quantum
circuit to perform a local symmetry charge projection on
a subsystem, which would ultimately be useful to simu-
late the symmetry resolved entanglement negativity on a
quantum computer. Finally, we finish our paper by sev-
eral closing remarks and future directions in Sec. VI. In
several appendices, we provide more details of our calcu-
lations.

II. PRELIMINARY REMARKS

In this section, we first review the partial transpose and
the definition of symmetric states and symmetry charges,
and then we discuss the separability criterion for sym-
metric states and introduce the setup of the problem and
some notations.

A. Partial transpose and entanglement negativity

In this part, we briefly review some basics about the
partial transpose and the logarithimic negativity (LN)
which may be skipped. LN has proven to be useful in
the study various aspects of many-body physics [29–99].

Let ρ̂A be the density matrix of subsystem A which
consists of subsystems A1 and A2 with orthonormal bases∣∣e(k)

1

〉
and

∣∣e(j)
2

〉
respectively:

ρ̂A =
∑
ijkl

ρijkl
∣∣e(i)

1 , e
(j)
2

〉〈
e

(k)
1 , e

(l)
2

∣∣. (2.1)

Partial transpose of the above matrix with respect to
A2, which we denote as ρ̂T2

A , is defined by exchanging the

indices of subsystem A2 in the following way:

ρ̂T2

A =
∑
ijkl

ρijkl

∣∣∣e(i)
1 , e

(l)
2

〉〈
e

(k)
1 , e

(j)
2

∣∣∣ . (2.2)

A density matrix after partial transpose is left Hermitian
and its trace is preserved to be equal to 1, however it
can have negative eigenvalues. If the eigenvalues of the
partial transpose of a state are kept positive it is called
a positive partial transpose (PPT) state and otherwise
it is called negative partial transpose (NPT). The NPT
property indicates that the mixed state contains quan-
tum entanglement [100, 101].

Given the above properties of a partially transposed
density matrix, one can define the following two measures
for mixed state entanglement [102–104]:

• entanglement negativity:

N (ρ̂A) =

∥∥∥ρ̂T2

A

∥∥∥
1
− 1

2
, (2.3)

• and logarithmic negativity:

E(ρ̂A) = log
∥∥∥ρ̂T2

A

∥∥∥
1
. (2.4)

Here, ‖O‖1 = Tr
√
OO† is the trace norm, which for a

Hermitian matrix is the sum of the absolute values of
eigenvalues. Note also that all logarithms in this paper
are taken with base 2. Logarithmic negativity and the en-
tanglement negativity satisfy E = log(2N + 1). A more
informative measure, on the other hand, is the entan-
glement negativity spectrum that shows the probability
distribution of the eigenvalues of ρ̂T2

A :

P (ξ) =

LA∑
i=1

δ(ξ − ξi), (2.5)

Having the negativity spectrum, one can also calculate
the negativity:

N (ρ̂A) = −
∫
ξ<0

dξ ξ P (ξ). (2.6)

To see the relation with entanglement in mixed states,
we first consider mixed states that have zero entangle-
ment: separable states whose density matrices can be
written as:

ρ̂sep =
∑
i,j

pij ρ̂A1,i ⊗ ρ̂A2,j , pij > 0, (2.7)

where ρ̂A1,i and ρ̂A2,i are density matrices for subsys-
tems A1 and A2. Separable states are believed to har-
bor no entanglement as then can be prepared through
the use of local operations and classical communications
(LOCC) on manifestly unentangled states, i.e. product
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FIG. 2. Entanglement phase diagram of symmetry projected random mixed states for U(1) symmetric systems. The mixed
state is obtained from a random pure state via partial tracing. Different panels correspond to different subsystem filling factors
as indicated. Dashed lines (given by NAf(νA) = NBf(νB)) separate the upper part of the phase diagram, where the volume
law term in the negativity is suppressed (but not fully PPT), from the lower part where the negativity obeys a volume law form.
The lower region, NAf(νA) > NBf(νB), consists of two phases: First, the two corners are called maximal entanglement regimes
where 〈EA1:A2〉 = min(NA1 , NA2)f(νA); second, the middle region, where the dominant diagrams break the replica symmetry
leading to 〈EA1:A2〉 = NAf(νA)−NBf(νB) (to the leading order). The shaded regions represent the critical phase between the
replica symmetry breaking and maximal entanglement phases where the entanglement negativity spectrum diverges at zero.
Red curves are shown as a reference for critical line of non-symmetric states.

states, shared between A1 and A2. We now turn to the
entanglement negativity of these states; it is straightfor-
ward to check that partially transposed separable states
do not have negative eigenvalues, and as a result are PPT
states and have zero negativity. This means that NPT
states cannot be separable. In this paper we will employ
the entanglement negativity as a measure of mixed state
entanglement and as a result only distinguish NPT and
PPT states as opposed to distinguishing separable states
from nonseparable ones.

B. Symmetry quantum number (charge) for
Abelian symmetry groups

In this part, we discuss the notion of symmetry charge
in systems invariant under a symmetry group. Consider
a system of R-dimensional qudits. Suppose the system
is described by a Hamiltonian which is invariant under
an Abelian symmetry group where the symmetry opera-
tion acts on-site, i.e. the unitary operators representing
the symmetry group elements take a tensor product form

over the qudits of each subsystem s as Û
(j)
s =

⊗
l∈s û

(j)
l ,

where û
(j)
l ’s are single-site unitary operators and j de-

notes symmetry group element. We use an orthonormal
basis for each site {|r〉} with r = 0, . . . , R − 1, in which
the unitaries û(j) are diagonal. Each basis element fur-
nishes a one-dimensional representation for G. Note that
since G is Abelian, all its irreducible representations are
one-dimensional.

For simplicity, we define symmetry charges only for the
specific groups that we will be studying in this work, a
general construction is similar:

• Example 1: ZR symmetry− The generator of the

cyclic group ZR satisfies ĥR = 1. We form the

qudit basis by taking each state |r〉 to satisfy ĥ |r〉 =

ei
2π
R r |r〉.

A many-body basis state of N qudits is denoted by

|r1, · · · , rN 〉 ≡ |r1〉 ⊗ · · · ⊗ |rN 〉 , (2.8)

where the subscripts denote the site number. Such
a basis state has a definite charge, as[⊗
ĥ
]
|r1, · · · , rN 〉 = ei

2πh
R

∑N
i=1 ri |r1, · · · , rN 〉 , (2.9)

we note that we can assign the total charge of∑N
i=1 ri to the above state, where the sum is de-

fined modulo R.

• Example 2: U(1) symmetry− In this case, the sym-
metry group is continuous. Here, we consider a sys-
tem of qubits, i.e. R = 2. Every transformation û(θ)

is specified by a continuous real parameter θ in the
range [0, 2π); we define the states |0〉 , |1〉 such that
û(θ) |r〉 = eiθr |r〉. Furthermore, the total charge
of a many-body state |r1, · · · , rL〉 is defined by the

integer
∑N
i=1 ri.

Noting the above definitions for symmetry charges, we
define the projector onto the subset of all many-body
states in one of the subsystems s, which have a given

quantum number q as Π̂
(q)
s . It is straightforward to check

that with the above definitions, the total charge of a sys-
tem is the sum of the charges of its constituent subsys-
tems; in other words, a projector with a given charge
Q for the whole system which we denote as AB sub-
system can be written in terms of the projectors of its
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constituents A and B subsystems in the following way:

Π̂
(Q)
AB =

∑
qA+qB=Q

Π̂
(qA)
A ⊗ Π̂

(qB)
B . (2.10)

Note that the above summation qA + qB = Q should be
performed mod R for the ZR symmetry.

In this paper, we consider symmetric random pure
states |Ψ(Q)〉, i.e., states with a determined symmetry
charge which belong to the subspace associated with
Π̂(Q). In other words, Π̂(P ) |Ψ(Q)〉 = δP,Q |Ψ(Q)〉. An
immediate implication of the aforementioned additivity
of the symmetry charge is that any reduced density ma-
trix ρ̂A obtained from a symmetric pure state |Ψ(Q)〉
via partial tracing ρ̂A = TrĀ |Ψ(Q)〉 〈Ψ(Q)| is also sym-
metric, i.e., they commute with all symmetry opertors

[ρ̂A, Û
(j)
A (h)] = 0. This is because the pure state density

matrix of the total system |Ψ(Q)〉 〈Ψ(Q)| is a projector
as in Eq. (2.10). Put it differently, the reduced density
matrix takes a block diagonal form

ρ̂A =
⊕
qA

pqA ρ̂
(qA)
A , (2.11)

where ρ̂
(qA)
A is a block matrix of quantum number q and

pq = Tr(ρ̂AΠ̂
(q)
A ).

C. Separability problem in symmetric systems

As mentioned, a separable state (2.7) is a completely
classical state which can be generated by LOCCs. By
definition, ρ̂sep remains positive semi-definite even after
PT, and hence it is a PPT state. For symmetric systems,
LOCCs are constrained to be locally symmetry preserv-
ing, i.e., they commute with local symmetry charge oper-
ators (or projection operators). As a result, the definition
(2.7) has an extra constraint on local density matrices
that

[ρ̂s,j , Π̂
(qs)
s ] = 0, (2.12)

where Π̂
(qs)
s denotes local projectors into the subspace

with local symmetry charge qs within subsystem s =
A1, A2, as defined in the previous subsection. By defi-
nition, the symmetric separable states also form a con-
vex set, and because of the above constraint, this set is a
subset of generic separable states. An immediate impli-
cation of this property is that a symmetric state can have
a zero log negativity although it may not be realized by
symmetry preserving LOCCs. For example, consider a
Z2 symmetric system of two qubits (or equivalently, two
fermions) described by the state

ρ̂A =
1

4
(1 + p σ̂x1 ⊗ σ̂x2 ). (2.13)

The local Z2 symmetry operators are σ̂z1 and σ̂z2 . Clearly,
this is a symmetric state as it commutes with symmetry
operator on A, i.e., σ̂z1 ⊗ σ̂z2 , while it cannot be written

as a symmetric separable state. However, ρ̂T2

A = ρA and
E(ρ̂A) = 0. As mentioned in the introduction, a possible
resolution is to use the symmetry averaged logarithmic

negativity (1.1), where we obtain E(ρ̂
(±)
A ) = log(1 + p)

leading to EA1:A2
= log(1 + p). To understand this phys-

ically, we see that it vanishes at p = 0 as expected since
it is a fully mixed state with zero entanglement, whereas
EA1:A2

= log 2 at p = 1 where the state is an equal su-
perposition of two Bell-pair type states with different Z2

charges which are farthest away from states prepared by
symmetry preserving LOCCs.

An alternative way to see why ρ̂T2

A misidentifies the en-
tanglement in symmetric mixed states is the fact that the
action of partial transpose does not commute with sym-
metry charge projection operators (2.10). In other words,
matrix elements of different diagonal blocks in a symmet-
ric ρ̂A are exchanged as a result of the partial transpose.
Therefore, we propose to apply partial transpose to every

block ρ̂
(qA)
A separately, compute the associated logarith-

mic negativity and then take the average according to
the Born probabilities pq as in (1.1).

It is easy to see that the commutation relation (2.12)
implies that we can always write a symmetric separable
state such that each term ρ̂s,j in the expansion (2.7) has
a definite symmetry charge of the corresponding subsys-
tem, in other words, we may write

ρ̂
(qA)
A =

∑
i,j

q1+q2=qA

p
(qA)
ij ρ̂

(q1)
A1,i
⊗ ρ̂(q2)

A2,j
, (2.14)

for every block in ρ̂
(qA)
A in Eq. (2.11). This means that

all blocks in a state generated by symmetric LOCCs are
individually separable. Thus, if the symmetry averaged
negativity in Eq. (1.1) is nonzero for a symmetric state,
then it is not separable under symmetric LOCCs; this
makes the symmetry averaged negativity a suitable mea-
sure for this matter.

In the rest of this paper, we focus on the entangle-
ment negativity spectrum of each block obtained from a
symmetric random pure state.

D. Setup of the problem

We consider a tripartite system of A1, A2 and B, and
they comprise NA1

, NA2
, NB qudits which are R dimen-

sional. We assume that the system harbors an Abelian
symmetry with the symmetry group G. We start from
a random pure state |Ψ(Q)〉 that has a definite quantum
number Q under the symmetry. One can write the com-
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Variable Description

R Hilbert space dim. of a qudit

Ls Hilbert space dim. of subsys. s

Ns Number of qudits (logR Ls)

qs Symmetry charge of subsys. s

νs Filling factor of s (qs/Ns, only for U(1))

ρ̂
(qA)
A Projected reduced density matrix of A

P (ξ) Spectral density of (ρ̂
(qA)
A )T2

〈N (ρ̂
(qA)
A )〉 Ensemble-averaged negativity of ρ̂

(qA)
A

〈E(ρ̂
(qA)
A )〉 Ensemble-averaged logarithmic negativity of ρ̂

(qA)
A

Ni(ρ̂
(qA)
A ) (off-)diagonal contribution to 〈N (ρ̂

(qA)
A )〉 with i = 2(1)

n1(q1, q2) Charge-off-diagonal contribution to N1(ρ̂
(qA)
A )

n2(q1) Charge-diagonal contribution to N2(ρ̂
(qA)
A )

αq1q2

LA1,q1
LA2,q2

LqALqB

βq1

LA1,q1
LqALqB

TABLE I. Summary of notations in the paper.

ponents in a tensor product basis, as follows

|Ψ(Q)〉 =
∑
i,α

qA+qB=Q

X
(qA,qB)
iqA ,αqB

|e(qA)
iqA
〉 ⊗ |e(qB)

αqB
〉 , (2.15)

where iqA , αqB are indices enumerating states in the sec-
tors given by quantum numbers qA, qB in A and B sub-

systems and X
(qA,qB)
iqA ,αqB

is a Gaussian random variable.

Here we make use of the fact that the total quantum
number is equal to the sum of the quantum numbers of
the constituents, i.e. Eq. (2.10).

As mentioned, the fact that |Ψ(Q)〉 has a definite quan-
tum number leads to a block diagonal structure density
matrix as in Eq. (2.11). As discussed above, we study
the entanglement negativity of different sectors denoted

by ρ̂
(qA)
A separately. At this point, we require that each

one of ρ̂
(qA)
A has a unit trace on average:〈

X
(qA,qB)∗
iqA ,αqB

X
(q′A,q

′
B)

i′
q′
A
,α′
q′
B

〉
=
δqAq′A δqBq′B δiqA i′qA

δαqBα′qB
LqALqB

,

(2.16)
where Lqs denotes the dimension of the subsystem s =
A,B of charge qs. Note that the relation qA + qB = Q is
also assumed in the above equation. In principle, for ev-

ery disorder realization, ρ̂
(qA)
A needs to be normalized to

have a unit trace; however, the fluctuations in the denom-
inator lead to 1

LqALqB
corrections which will be neglected

throughout this paper (see Refs. [11, 105] for more dis-
cussion on this). Note that in this notation

〈
Ψ(Q)

∣∣Ψ(Q)
〉

is equal to the number of different symmetry sectors in
subsystem A (or B) on average.

With the above normalization for the different blocks
of the density matrix, the Born weights in the symmetry

averaged log negativity (1.1) are given by
LqALqB∑
q̃A

Lq̃ALq̃B
.

III. RENYI ENTROPY AND RENYI
NEGATIVITY

We first explain the 1/L diagrammatic perturbation
theory by calculating the Renyi entropies and Renyi neg-
ativities in this section. We start by deriving Renyi en-
tropies. The reduced density matrix in the sector given

by qA, i.e. ρ̂
(qA)
A can be written as

ρ̂
(qA)
A =

∑
iqA ,jqA

∑
αqB

X
(qA,qB)
iqA ,αqB

X
(qA,qB)∗
jqA ,αqB

∣∣∣e(qA)
iqA

〉〈
e

(qA)
jqA

∣∣∣ ,
(3.1)

with qB = Q− qA. We represent the matrix elements of

the density matrix ρ̂
(qA)
A in the following way:

[
ρ̂

(qA)
A

]
iqA ,jqA

=
iqA jqAαqB αqB

. (3.2)

We will be interested in calculating averaged quantities
over random realizations in the remainder of this work;
since X is a Gaussian random variable, all its moments
can be decomposed in terms of its second moment. Not-
ing this, in our diagrammatics, we denote an averaging
over different random realizations of products of two X’s
with curves such as:

〈XX〉 → , (3.3)

the actual value of the above second moment when ap-
propriate indices for X’s are included can be read from
Eq. (2.16). Let us start with the first moment,

〈
Tr(ρ̂

(qA)
A )

〉
= = LqA LqB

1

LqA LqB
= 1.

(3.4)
where it is understood that all possible indices should
be summed over when there is a closed loop; the factor
LqA LqB comes from this rule. On the other hand, the
factor 1

LqA LqB
comes from the variance of the Gaussian

variables.

We next calculate the ensemble-average of Renyi en-
tropies, as follows,

〈
Tr

[(
ρ̂

(qA)
A

)2
]〉

= +

=
1

LqA
+

1

LqB
, (3.5)
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〈
Tr

[(
ρ̂

(qA)
A

)3
]〉

= + 3×

+

=
1

L2
qB

+
3

LqALqB
+

1

L2
qA

. (3.6)

One can also obtain dominant contributions in certain
limits using the diagrammatic approach, first we consider
the limit LqA � LqB :

〈
Tr
[(
ρ̂

(qA)
A

)n]〉
≈ · · · = L1−n

qB ,

(3.7)

and in the opposite limit of LqA � LqB : while in the
opposite regime LA � LB , we obtain〈

Tr
[(
ρ̂

(qA)
A

)n]〉
≈ · · · = L1−n

qA .

(3.8)

The same technique can be used to calculate Renyi
negativities as well, which are defined as the moments of[
ρ̂

(qA)
A

]T2

; at this point we need to decompose the lines

corresponding to the A subsystem into A1 and A2 con-
stituents; in other words, we write the index iqA (and the
like) in (3.1) as a collection of the two indices (i1,q1 i2,q̄1)
where q1 and q̄1 are quantum numbers for A1 and A2 such

that q1+q2 = qA. As a result ρ̂
(qA)
A has the following form

in the diagrammatic notation:[
ρ̂

(qA)
A

]
(i1,q1 i2,q̄1),(j1,r1 j2,r̄1)

=
∑
αqB

X
(qA,qB)
i1,q1 i2,q̄1 ,αqB

X
(qA,qB)∗
j1,r1 j2,r̄1 ,αqB

=
r1 r̄1 q̄1 q1qB

,

(3.9)

where this time instead of the actual indices for each
line, only quantum numbers for each subsystem are de-
noted. Note that separate quantum numbers for A1 and
A2 subsystems are introduced on the diagram; dotted
and solid lines correspond to subsystems A1 and A2, re-
spectively. Furthermore quantum numbers are shown on
corresponding lines, and it is required by the symmetry
charge relations that q1 + q̄1 = qA, r1 + r̄1 = qA, and
qA + qB = Q.

The above notation makes it clear that for a given

ρ̂
(qA)
A , although the values of qA and qB are fixed, A1

and A2 subsystems can have different quantum numbers
and in fact as we will see below, one needs to sum over
them when evaluating diagrams. As a first check with

this notation we calculate the trace of ρ̂
(qA)
A using the

diagrammatic notation; it follows as:

〈Trρ̂
(qA)
A 〉 =

∑
q1

q1
q̄1

=
∑
q1

1

LqALqB
LA1,q1LA2,q̄1 LqB = 1,

(3.10)

with the quantum numbers of each subsystem shown ex-
plicitly on the lines. Since the qunatum number of the
B subsystem only takes one value we do not include it in
the diagrams. For every closed loop, one should multiply
by the size of the sector given by the quantum num-
ber in the given subsystem. Moreover, each time ensem-
ble averaging is performed, as before, a factor of 1

LqALqB
should be multiplied according to Eq. (2.16). Note that
all the contractions in the above diagram dictates that
the quantum number of the A2 subsystem should be
equal to q̄1 = qA − q1. On the second row, we have
used

∑
q1
LA1,q1LA2,q̄1 = LqA .

In order to take partial transpose with respect to the
A2 subsystem in the diagrammatic approach, we need
one further step that is swapping the A1 and A2 legs for
each density matrix insertion which will be depicted as

[
ρ̂

(qA)
A

]T2

→
r1 r̄1 q̄1 q1qB

. (3.11)

Note that similar to above, it is still required that
q1 + q̄1 = qA and r1 + r̄1 = qA; this constraint should
be imposed in every diagram containing leg crossings

such as the above. Note that the indices of
[
ρ̂

(qA)
A

]T2

do

not necessarily satisfy the quantum number constraint

that ρ̂
(qA)
A satisfies; as can be seen in Eq. (3.9) the two

row/column indices of ρ̂
(qA)
A should belong to complemen-

tary charge sectors, i.e. q1 + q̄1 = qA and r1 + r̄1 = qA.
This is, however, not true for the partially transposed

density matrix. In fact,
[
ρ̂

(qA)
A

]T2

, whose elements can

be shown as
[
ρ̂

(qA)
A

]T2

(i1,q1 i2,q2),(j1,r1 j2,r2)
, consists of two

separate blocks: first, a block with elements which do not
satisfy the relations q1+q2 = qA, r1+r2 = qA and second,
a blocks with elements that satisfy these relations. This
decomposition will be used for both our numerical (see
Figs. 3-6) and for our analytical results (see e.g. Eqs. (4.4)
and (4.5)).

One can now calculate ensemble averaged moments of
the partially transposed density matrix to obtain Renyi
negativities of different orders. The first nontrivial one
is the third moment, which without ensemble averaging
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takes the form:

Tr

([
ρ̂

(qA)
A

]T2
)3

=

(3.12)
For illustration purposes, let us only focus on one of the
terms appearing in the ensemble average of the above
quantity, i.e. the term given by

q1 q1 q1

q̄1

. (3.13)

Quantum numbers of subsystems A1 and A2 are denoted
on each of the loops corresponding to these two subsys-
tems. Quantum number relations, as discussed above,
have dictated all quantum numbers on the A1 subsys-
tem loops to be equal, while the quantum number on the
single A2 loop is its complementary q̄1 = q− q1. To com-
pute the total contribution of this diagram, we note that
every closed loop with a given quantum number brings
about one factor of the Hilbert space size corresponding
to that quantum number, i.e. the total contribution is
given by

∑
q1
L3
A1,q1

LA2,q̄1LB,qB
1

(LA,qALB,qB )
3 ; the sum-

mations takes the effect of all possible quantum numbers
into account here.

A similar diagram for the fourth moment can also be
drawn, which is only one of the terms among many:

q1 q̄2 q1 q̄2q̄1

q2

, (3.14)

the specific structure of the diagram dictates two sets
of independent quantum numbers, i.e. q1 and q2 corre-
sponding to A1 and A2 loops. Also, q̄1 = qA − q1 and
q̄2 = qA − q2 label the loops in A2 and A1 subsystems
respectively. As can be seen in the above two cases, each
diagram can be labeled by its independent loop quantum
numbers; for some diagrams there is only one indepen-
dent quantum number and for some there are two. As a
result, we can label each term contributing to the Renyi
negativities by its independent quantum numbers; in the
following we label the diagrams by the quantum num-
bers on the lines used for evaluating the overall trace,
or in other words the line or lines at the bottom of each
diagram. The contribution from this diagram take the

form
(LA1,q1

LA1,q̄2
)2

(LA,qALB,qB )4 LB,qBLA2,q2LA2,q̄1 . Note that there

are equal numbers of A1 subsystem loops with indices q1

and q̄2.

We now consider different regimes and discuss the
dominant diagrams that appear in the expansion of each
of the moments (see Table II for naming conventions in
this paper). We can then use the moments in each regime
to calculate entanglement negativity using the replica
limit:

〈E(ρ̂)〉 = lim
k→ 1

2

log 〈Tr(ρ̂T2)2k〉 . (3.15)

As a result of this, we only consider order n = 2k mo-
ments in the following.

We start by considering the case where the B subsys-
tem is larger than A; we have seen above that factors
of Hilbert space dimensions of different quantum num-
ber sectors appear when loops in the diagrams appear;
as discussed earlier, one can think about diagrams with
certain quantum numbers separately and depending on
the ratio between Hilbert space dimensions for the speci-
fied quantum numbers decide to which regime they corre-
spond. In this language, large B subsystem is understood
as having LB,qB � LA1,q1LA2,q2 for given q1 and q2 val-
ues. The dominant contribution comes from a diagram
of the form:

· · ·

q1

q̄1

=
LA1,q1LA2,q̄1

LnA,qA
.

(3.16)

If for all values of q1, the relation LB,qB � LA1,q1LA2,q2

holds, one can sum the above result over all possible q1

values to get
∑
q1

LA1,q1
LA2,q̄1

LnA,qA
= L1−n

A,qA
.

The opposite regime of LB,qB � LA1,q1LA2,q2 consists
of two different subregimes on its own; we first consider
the subregime of LA1,q1 � LA2,q2LB,qB : instead of the
general case, we focus on the fourth moment from which
the general result for even moments of the partially trans-
posed density matrix can be deduced. One can check that
the dominant diagram in this limit is given by the dia-
gram in Eq. (3.14). In general, for an even moment the
contribution from a similar diagram will be given by:

(LA1,q1LA1,q̄2)n/2(LA2,q2LA2,q̄1)

LnA,qAL
n−1
B,qB

(3.17)

Finally, there is another regime of interest where
the dominant diagrams can be considered and it is
given by requiring LB,qB � LA1,q1LA2,q2 and LAs,qs �
LAs̄,qs̄LB,qB , simultaneously. This regime essentially
means that none of the subsystems, within the specific
symmetry charge sectors, is larger than the half of the
whole sector. One of candidate diagrams that contributes
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Entanglement phase Description

Positive partial transpose B is larger than A

Replica symmetry breaking No party is larger than half total system.

Maximal entanglement A1 or A2 is larger than half total system.

TABLE II. Dictionary of various entanglement phases.

most dominantly in this regime has the following form:

· · ·
q1 q̄2 q̄2 q̄2

q̄1 q̄1 q̄1
q2

, (3.18)

resulting in the following contribution

LA1,q1LA2,q2 (LA1,q̄2LA2,q̄1)
n/2

LnA,qAL
n/2
B,qB

(3.19)

to the corresponding moment. However, different dia-
grams with different structures can also be considered
whose contributions are not subdominant compared to
the one shown above. This fact along with the different
combinations of Hilbert space dimensions corresponding
to different charge sectors makes calculating the domi-
nant contribution to Renyi negativities a not so straight-
forward matter in this regime.

The change in dominant diagram as a function of
replica index makes the analytic continuation to the
replica limit (3.15) ambiguous. A standard way to avoid
this ambiguity is to study the spectrum of the partially
transposed density matrix in a more systematic way and
derive the resolvent function; this will be done in the
next section. We consider two concrete cases of symme-
try groups, that is ZR and U(1) and apply our general
results to these two cases.

IV. ENTANGLEMENT NEGATIVITY
SPECTRUM

We now turn to calculating the negativity spectrum of
different charge sectors of the density matrix, i.e. com-

ponents shown as ρ̂
(qA)
A . To this end, we make use of a

Green function (or resolvent function) G(z) defined as:

G(z) =

〈
1

z −H

〉
=

〈
1

z
+

1

z
H

1

z
+

1

z
H

1

z
H

1

z
+ · · ·

〉
,

(4.1)

where H is taken to be (ρ̂
(qA)
A )T2 the partial transpose

of ρ̂
(qA)
A with respect to A2 for our purposes. Note that

G(z) is a matrix with the same set of indices as ρ̂
(qA)
A .

The spectral density of (ρ̂
(qA)
A )T2 is then computed as:

P (ξ) = − 1

π
Im lim

ε→0
Tr (G(z))

∣∣
z=ξ+iε

, (4.2)

where the identity limε→0
1

λ+iε = PV( 1
λ ) − iπδ(λ) has

been used.
In order to calcualte G(z) in different situations, we

use a diagrammatic approach; the set of Feynman rules
read:

• Every closed loop for each subsystem brings in one
factor of the size of that subsystem with the speci-
fied quantum number.

• On the diagrams, we will not specify the quantum
number for the loops corresponding to the B sub-
system, as it is always equal to qB when we are

calculating properties of ρ̂
(qA)
A , where qA + qB = Q.

• When a dotted line (corresponding to A1) and a
solid line (corresponding to A2) originate from the
same point in a diagram, a situation such as

q1q2
qB

,

their quantum numbers are not independent,
i.e. q2 = q̄1, where q1 + q̄1 = qA.

As mentioned earlier the resolvent function G(z) has

the same indices as those of ρ̂
(qA)
A , i.e. one needs to specify

indices qi to address a component of G(z). Interestingly,
the structure of G(z) is not very complicated. By exam-
ining diagrams in the expansion (4.1), it is easy to see
that G has a block diagonal form as in:

G = G1 ⊕G2, (4.3)

where

G1 =
⊕

q1,q2 6=q̄1

G1,q1q21A1,q1 ⊗ 1A2,q2 ,

G2 =
⊕
q1

G2,q11A1,q1 ⊗ 1A2,q̄1 .
(4.4)

In fact, every block of G is proportional to the identity as
reflected above (as a result of ensemble averaging). Us-
ing the principal value relation, we also define two com-
ponents for the spectral density

P (ξ) =
∑

q1,q2 6=q̄1

P1,q1q2(ξ) +
∑
q1

P2,q1(ξ). (4.5)

Accordingly, the total negativity of ρ̂
(qA)
A can be written

as a sum,

〈N (ρ̂
(qA)
A )〉 = N1(ρ̂

(qA)
A ) +N2(ρ̂

(qA)
A ), (4.6)
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where

N1(ρ̂
(qA)
A ) =

∑
q1,q2 6=q̄1

n1(q1, q2), (4.7)

N2(ρ̂
(qA)
A ) =

∑
q1

n2(q1). (4.8)

Here, n1(q1, q2) and n2(q1) are simply introduced to de-
note the contributions of P1,q1q2(ξ) and P2,q1(ξ) to the
total negativity through Eq. (2.6).

In the following, we will also present results on exact
numerical calculation of the spectral density of the partial
transpose for comparison with the analytical results; to
this end, we use Eq. (3.9) to construct the density matrix
in terms of random Gaussian iid entries and perform the

partial transpose explicitly.

A. Replica symmetry breaking regime

We first consider the regime in which the conditions
LA1,q1

LA2,q2
LqB

� 1 and
LA2,q2

LA1,q1
LqB

� 1 (for all q1 and q2)

hold. We call this regime the semicircle (or replica sym-
metry breaking) regime. It roughly corresponds to re-
quiring NA1

, NA2
< N

2 as will be discussed further in the
following.

In this regime, the dominant terms contributing to the
resolvent function consist of the following diagrams:

G =
q1

q2
+

q̄1

q1

+

q̄1

q1

+ · · ·

+

q2

q1

q̄1

q̄2
+

q2

q1
q̄1

q̄2

q̄1

q̄2

+ · · ·

+

q̄1
q1

q̄1

q1

+ · · ·

+

q2
q1

q̄1

q̄2

q2

q1

+ · · · .

(4.9)

In the above, whenever the external lines are labeled with
q1 and q̄1 instead of q1 and q2, it is implied that such a
term only contributes to components of G, with external
lines labels satisfying q1 +q2 = qA, which we call G2 com-
ponent; this requirement is dictated by the structure of
theses terms and the connectivity of the vertices. How-
ever, other terms with two independent external labels
q1 and q2 contribute to both G1 and G2.

Similar to the non-symmetric states, we shall call this
regime replica symmetry breaking [11] as explained be-
low. Let us recall that the replica symmetry in our setup
is a matrix identity corresponding to the invariance of the
Rényi negativity Tr(ρ̂T2

A )n under a Zn cyclic permutation

of density matrices (or replicas). The replica symmetry
action can diagrammatically be represented as a discrete
translation symmetry. Given this diagrammatic defini-
tion, we can check whether a diagram is symmetric or
not. As we see in Eq.(4.9), the dominant diagrams in
the regime of interest in this subsection are not replica
symmetric, and hence we call this regime replica sym-
metry breaking. We should however note that the over-
all summation is replica symmetric since the action of
replica symmetry on diagrams only shuffles them within
the sum.

One can write the function G(z) in the following way
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FIG. 3. Entanglement negativity spectrum of projected density matrices ρ̂
(qA)
A for (a) Z2 symmetric qubit systems R = 2, (b)

Z3 symmetric qutrit systems R = 3, and (c) Z4 symmetric ququart systems R = 4, in the semicircle regime. Solid lines are the
random matrix theory result given in Eq. (4.19). Numerical data are represented by colored circles. The agreement between
theory and numerics is evident. Here, NA1 = NA2 = 3 and ensemble average is performed over 104 samples.

as a geometric series:

G = + Σ + Σ Σ + · · ·

=
1

z − Σ(z)
,

(4.10)
in terms of the self-energy function Σ(z). Similar to G,

Σ has a block diagonal form as well:

Σ =
⊕

q1,q2 6=q̄1

Σ1,q1q2 1A1,q1 ⊗ 1A2,q2

⊕
⊕
q1

Σ2,q1 1A1,q1 ⊗ 1A2,q̄1 .
(4.11)

Σ(z) has an expansion in terms of G(z) on its own:

Σ =

q̄1

q1

+

G
q2
q1 q̄1

q̄2
,

(4.12)
forming a Schwinger-Dyson (self-consistent) equation.

Next, we plug in the resolvent function (4.4) and get

Σ =
⊕
q1

1A1,q1 ⊗ 1A2,q̄1

[
LqB

LqALqB
+

LqB
(LqALqB )2

LA1,q1LA2,q̄1 G2,q1

]
⊕

⊕
q1,q2 6=q̄1

1A1,q1 ⊗ 1A2,q2

LqB
(LqALqB )2

LA1,q̄2LA2,q̄1 G1,q̄2q̄1 .

(4.13)

On the other hand, using Eq. (4.10), and writing G in terms of Σ result in:

G1,q1q2 =
1

z − LA1,q̄2
LA2,q̄1

L2
qA
LqB

G1,q̄2q̄1

,

G2,q1 =
1

z −
(

1
LqA

+
LA1,q1

LA2,q̄1

L2
qA
LqB

G2,q1

) . (4.14)
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This yields a set of quadratic equations for G1 and G2:

G2
1,q1q2

LA1,q1LA2,q2

L2
qALqB

z −G1,q1q2

[
z2 +

1

L2
qALqB

(LA1,q1LA2,q2 − LA1,q̄2LA2,q̄1)

]
+ z = 0,

G2
2,q1

LA1,q1LA2,q̄1

L2
qALqB

+G2,q1

(
1

LqA
− z
)

+ 1 = 0.

(4.15)

The solutions to the above equations read:

G1,q1q2 =
LqA

2 z αq1q2

{[
z2 +

1

LqA
(αq1q2 − αq̄2q̄1)

]
±

√
z4 − 2z2

LqA
(αq1q2 + αq̄2q̄1) +

1

L2
qA

(αq1q2 − αq̄2q̄1)
2

}
,

G2,q1 =
LqA

2αq1q̄1


(
z − 1

LqA

)
±

√(
z − 1

LqA

)2

− 4
αq1q̄1
LqA

 ,

(4.16)

where we have defined a family of parameters,

αq1q2 =
LA1,q1LA2,q2

LqALqB
. (4.17)

1. ZR symmtery

Instead of focusing on the general case first, we initially
consider the simple case of taking the symmetry group
to be ZR. In this case, since symmetry sectors having
different quantum numbers have identical dimensions, G1

and G2 become indepenedent of their quantum number
indices. The spectral densities derived from imaginary
parts of the solutions in Eq. (4.16) can be written as:

P (ξ) =
1

π

∑
q1,q2 6=q̄1

(LA1,q1LA2,q2)
LqA
2α

√
4α

LqA
− ξ2

′

+
1

π

∑
q1

(LA1,q1LA2,q̄1)
LqA
2α

√
4α

LqA
−
(
ξ − 1

LqA

)2
′

,

(4.18)
where the summations and the initial factors of the sec-
tor dimensions account for the trace. Furthermore, the
primed square roots above and from here on are used to
denote

√
·′ = θ(·)

√
· for brevity.

In the case of ZR symmetric states, we may write the
Hilbert space dimensions explicitly as LAs,qs = RNAs−1

(which is independent of qi) and simplify (4.18) further

into

P (ξ) =
1

2π
R2NA+NB−2

{
(R− 1)

√
4

RN−1
− ξ2

′

+

√
4

RN−1
−
(
ξ − 1

RNA−1

)2
′ }

.

(4.19)
It can be seen that the spectral density consists of two
semicircles as shown Fig. 3. Direct numerical calculation
of the spectral density is also presented in this plot. One
of the semicircles is always centered at ξ = 0 irrespective
of the size of different subsystems. This means that the
partially transposed reduced density matrix always has
negative eigenvalues and thus there is some residual en-
tanglement between A1 and A2 irrespective of how large
the rest of the system is. It is important to note that
the spectral density in this regime is independent of the
way subsystem A is partitioned into A1 and A2. This
phenomenon (which was dubbed entanglement satura-
tion in Ref. [11]) is similar to the non-symmetric states
as a result of which the entanglement negativity does not
depend on the size of A1 and A2. As we see below, this
similarity does not hold in general for symmetric states.

With the above form for the spectral density, one can
calculate the negativity using Eq. (2.6). We note that the
first term in (4.19), always contributes to the negativity
and thus we call it the residual contribution which has
the following form:

N1(ρ̂
(qA)
A ) =

2

3π
(R− 1) R

1
2 (NA−NB−1). (4.20)

The second term in (4.19), on the other hand, contributes
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only if R(NA−NB−1) > 1
4 :

N2(ρ̂
(qA)
A ) =

1

2π

(
8

3
R

1
2 (NA−NB−1) +

1

3
R

1
2 (NB−NA+1)

)
×
√

1− 1

4
R(NB−NA+1)

− 1

π
cos−1

(
1

2
R

1
2 (NB−NA+1)

)
.

(4.21)
The dominant contribution of this term deep in the semi-
circle regime has the form 4

3πR
1
2 (NA−NB−1).

The logarithmic negativity as a result reads:

〈E(ρ̂
(qA)
A )〉 =



log2

(
4

3π (R+ 1)
)

+ 1
2 (NA −NB − 1) log2R

if R(NA−NB−1) � 1
4

1
log 2

4
3π (R− 1) R

1
2 (NA−NB−1)

if R(NA−NB−1) � 1
4

(4.22)

2. Generic symmetry group

For a generic symmetry group, the two components of
the spectral density (4.5) can be similarly obtained from
Eq. (4.16) as

P1,q1q2(ξ) =
1

π

L2
qALqB
2 |ξ|√

4

L2
qA

αq1q2αq̄2q̄1 −
[
ξ2 − 1

LqA
(αq1q2 + αq̄2q̄1)

]2
′

,

P2,q1(ξ) =
1

π

L2
qALqB

2

√
4
αq1q̄1
LqA

−
(
ξ − 1

LqA

)2
′

.

(4.23)
It can be seen above that P2,q1 always results in a semi-
circle law for the spectral density. These semicircles are
centered at the same point (which only depends on total
symmetry charge A), while their radii are different (de-

termined by q1). The general form of the P1 contribution
is more involved. In particular, its shape deviates from
a semicircle and generally depends on symmetry charge
sectors q1 and q2. Nevertheless, it is symmetric around
ξ = 0. It is easy to check that P1 is only non-zero over
the following range∣∣√αq1q2 −√αq̄2q̄1∣∣ < |ξ|√LqA < ∣∣√αq1q2 +

√
αq̄2q̄1

∣∣ .
(4.24)

This means that if αq1q2 6= αq̄2q̄1 for all allowed values
of q1 and q2, there will be a gap in the spectral density
around ξ = 0. We examine this prediction in the case of
U(1) symmetry as plotted in Fig. 4. We first note that
the Hilbert space dimension of subsystem As is given by
LAs,qs =

(
NAs
qAs

)
. Then, the condition αq1q2 6= αq̄2q̄1 is

always met unless qA = NA1
= NA2

. Therefore, for a
generic charge, P1 has a gap (as in Fig. 4(a)), and a non-
zero continuous form of P1 only appears at a fine tuned
point (Fig. 4(b)).

Explicit numerical calculation of the spectral density is
also presented in the same plots. We have used the fact
that a decomposition such as (4.5) can also be exploited

numerically, as
[
ρ̂

(qA)
A

]T2

consists of the two blocks of

complementary and non-complementary charges (see the
discussion below Eq. (3.11)).

3. Thermodynamic limit for the U(1) case

In this part, we describe a U(1)-symmetric system in
terms of a system with conserved number of particles. To
take the thermodynamic limit, we find it more convenient
to characterize the symmetry charge sector in terms the
filling factor νs = qs

Ns
where qs and Ns denote the particle

number and the number of sites in (or volume of) the
subsystem s, respectively. Thermodynamic limit is then
understood as taking qs, Ns →∞ while νs is kept finite.

The relations for the spectral densities in (4.23) could
be simplified in the thermodynamic limit, for example
all functionalities become those of filling factors and the
summations turn into integrals. Plugging in the spectral
density (4.23) (after the continuum approximation) to
Eq. (2.6) for the entanglement negativity, we obtain

〈N (ρ̂
(qA)
A )〉 = NA1

NA2

∫
dν1dν2 n1(ν1, ν2) +NA1

∫
dν1 n2(ν1), (4.25)

n1(ν1, ν2) =
L2
νALνB
2π

∫
ξ<0

dξ

√
4

L2
νA

αν1ν2
αν̄2ν̄1

−
[
ξ2 − 1

LνA
(αν1ν2

+ αν̄2ν̄1
)

]2
′

,

n2(ν1) =
L2
νALνB
2π

∫
ξ<0

dξ (−ξ)

√
4
αν1ν̄1

LνA
−
(
ξ − 1

LνA

)2
′

. (4.26)

In the above expressions, the first line is a continuum version of Eq. (4.6), and it is assumed that the sym-
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FIG. 4. Entanglement negativity spectrum of ρ̂
(qA)
A for a U(1)-symmetric system in the replica symmetry breaking regime.

Here, NA1 = NA2 = 5, and NB = 12. Total particle number is qA + qB = 11 and projected sector is labeled by qA. Solid
lines are random matrix theory results given by Eq. (4.23) which are in good agreement with the exact numerical simulations
(colored circles).

metry sector of A that we are considering is charac-
terized by a particle number equal to NAνA and that
the total particle number in the system is given by
NAνA +NBνB . Given a value for ν1, the complimentary
ν̄1 is chosen so that NA1

ν1 + NA2
ν̄1 = NAνA. Further-

more, αν1ν2
=

LA1,ν1
LA2,ν2

LνALνB
, and in the thermodynamic

limit,

Ls =
1√

2πNsνs (1− νs)
eNs f(νs), (4.27)

with

f(νs) = −νs log νs − (1− νs) log (1− νs) . (4.28)

In the following, we show how a saddle point approxi-
mation can be applied to calculate the negativity in the
forms presented above. We first focus on the component
given by n1:

N1(ρ̂
(νA)
A ) = NA1

NA2

L2
νALνB
2π

∫
dν1dν2

(
αν1ν2

+ αν̄2ν̄1

LνA

)3/2

∫ −√1−a

−
√

1+a

dξ̃

√
a2 −

(
1− ξ̃2

)2

,

(4.29)

where a2 =
4 αν1ν2αν̄2ν̄1

(αν1ν2+αν̄2ν̄1)
2 ≤ 1 and a change of variable

to ξ̃ is performed. Using another change of variable 1 −
ξ̃2 = a cos θ, the integral on the second row takes the

form a2 1
4

∫ 2π

0
dθ sin2 θ√

1−a cos θ
:

N1(ρ̂
(νA)
A ) =

L
1/2
νA LνB

2π
Ia

∫
dν1dν2

αν1ν2αν̄2ν̄1

(αν1ν2
+ αν̄2ν̄1

)
1/2

.

(4.30)

The integral Ia =
∫ 2π

0
dθ sin2 θ√

1−a cos θ
varies monotonically

over [π, 8
√

2
3 ) for 0 < a < 1. We now make a saddle point

approximation in the integral over ν1, ν2 for a given νA.
The important part of the integrand turns out to be the
following due to its exponential dependence on NA,i:

αν1ν2
αν̄2ν̄1

(αν1ν2
+ αν̄2ν̄1

)
1/2

=
1

(LνALνB )
3/2

eF(ν1,ν2). (4.31)

The single exponential on the right hand side has the
exponent:

F(ν1, ν2) = NA1 [f(ν1) + f(ν̄2)] +NA2 [f(ν2) + f(ν̄1)]

−1

2
log
[
eNA1

f(ν1)+NA2
f(ν2) + eNA1

f(ν̄2)+NA2
f(ν̄1)

]
,

(4.32)
where terms slower thanNA,i in the thermodynamic limit
are neglected for the process of evaluating the integral in
the saddle point approximation but will be restored even-
tually. One then needs to find the ν1 and ν2 values that
result in the maximum value for the exponent; the inte-
gral in (4.30) can thus be approximated by a Gaussian
integral around these values of ν1 and ν2. Given the form
introduced above for the function f and the ν̄i values, it
can be shown that F acquires its maximum value when
ν1 = ν2 = νA. This maximal value reads:

F(νA, νA) =
1

2
[− log 2 + 3 (NA1

+NA2
) f(νA)] . (4.33)

One then needs to also calculate the second derivatives
of F at this point. These derivatives for a general value
of νA take a very involved form which we do not show
here (but will use below), but for the special case of
νA = 1

2 , they take a simpler form; νA = 1
2 , the ma-

trix ∂νi∂νjF(ν1, ν2) assumes a diagonal form with the

elements −3N2

N1
(N1 + N2) and −3N1

N2
(N1 + N2) on the

diagonal. If we now take all the exponential factors to-
gether, we obtain the following relation:
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N1(ρ̂
(νA)
A ) ∼ 1

LνAL
1/2
νB

e
3
2NAf(νA) = e

1
2 [NAf(νA)−NBf(νB)]. (4.34)

The above expression applies to all values of νA.

Taking all the prefactors into account for the case of νA = 1
2 , we get the contribution to negativity due to n1 as:

N1(ρ̂
(νA= 1

2 )

A ) =
16

9

(
2

π

)3/4
(NA1NA2NB)

1/4

N
1/2
A

[νB(1− νB)]
1/4

e
1
2 [NAf( 1

2 )−NBf(νB)]. (4.35)

For general νA, this conribution to negativity takes the following form:

N1(ρ̂
(νA)
A ) =

16
9

(
2
π

)3/4 (NA1
NA2

NB)
1/4

N
1/2
A

[νB(1− νB)]
1/4√

1 + 4
3

NA1
NA2

NA
(1− νA) νA log2

(
1
νA
− 1
) e 1

2 [NAf(νA)−NBf(νB)]. (4.36)

A similar saddle point approximation could be employed for the other term in the negativity (4.55) that is given by

n2; we first note that n2(ν1) vanishes if 4αν1ν̄1LνA = 4
LA1,ν1

LA2,ν̄1

LνB
< 1. On the other hand, if we assume that we are

away from this limit, and actually are deep within the replica symmetry breaking regime (where
LA1,ν1

LA2,ν̄1

LνB
� 1 for

the most dominant terms contributing to the ν1 integral over n2) one can write this contribution to the negativity as:

N2(ρ̂
(νA)
A ) = NA1

∫
dν1 n2(ν1) = NA1

∫
dν1

4

3π

1√
LνBLνA

(LA1,ν1
LA2,ν̄1

)
3/2

(4.37)

The saddle point solution is given by ν1 = νA. It takes the following form after straightforward manipulations:

N2(ρ̂
(νA)
A ) =

4

3
√

3π

(
2

π

)1/4 (
NB

NA1
NA2

)1/4
[νB(1− νB)]

1/4

[νA(1− νA)]
1/2

e
1
2 [NAf(νA)−NBf(νB)]. (4.38)

One should note that unlike N (1)
A1:A2; νA

this result only holds if the exponent 1
2 [NAf(νA)−NBf(νB)] is positive, as

discussed above.

B. The general case (including maximal
entanglement in A)

In the general case, we take the condition on the sub-
system sizes to be NA1

> NA2
; in this regime, more terms

in the self energy should be taken into account as shown
below in Eq. (4.39). It can be seen that if one takes only
the first two terms in the self-energy, the previous result

in the replica symmetry breaking regime is recovered.

Apart from the single term on the first row, the rest of
the terms are grouped into two classes: one, the class of
terms on the second row, which contains diagrams with
odd numbers of resolvent function insertions which con-
tributes to both G1 and G2; and two, the class on the
third row whose terms contain even numbers of resolvent
function insertions which only contributes to G2.



16

Σ =

q̄1

q1

+

G
q2
q1 q̄1

q̄2

+

G G G
q2

q1 q̄1

q̄2 q1 q̄2
+ · · ·

+

G G
q̄1

q1

q1 q1
+

G G G G
q̄1

q1

q1 q1 q1 q1

+ · · · .

(4.39)

The self energy, as a result, obeys the following equation:

Σ =
⊕
q1

1A1,q1 ⊗ 1A2,q̄1

1

LqA
[1 + αq1q̄1G2,q1 ]

1

1− β2
q1G

2
2,q1

⊕
⊕

q1,q2 6=q̄1

1A1,q1 ⊗ 1A2,q2

αq̄2q̄1
LqA

G1,q̄2q̄1

1− βq1βq̄2 G1,q1q2G1,q̄2q̄1

,

(4.40)

where we have defined another family of parameters as βq1 =
LA1,q1

LqALqB
. Putting these back into Eq. (4.10), one can

derive the self-consistent equations for the resolvent function.

1. ZR symmetry

Let us start with the case of the symmetry group ZR:

G3
1

z

R2(NA2
+NB−1)

+G2
1

[
1

RN−1
− 1

R2(NA2
+NB−1)

]
−G1z + 1 = 0,

G3
2

z

R2(NA2
+NB−1)

+G2
2

[
1

RN−1
− 1

R2(NA2
+NB−1)

]
+G2

[
1

RNA−1
− z
]

+ 1 = 0.

(4.41)

One can see from the above that both G1 and G2 di-
verge at z = 0 if:

RN−1 = R2(NA2
+NB−1) ⇒ NA1

= NA2
+NB − 1.

(4.42)
The leading divergence for G1 and G2 can be read from
the cubic equations:

G1 ∼
i

z1/3
, G2 ∼

i

z1/2
. (4.43)

This limit corresponds to the transition between the
semicircle and the maximally entangled regimes simi-

lar to the non-symmetric states [11], albeit the transi-
tion in the latter case occurs at a different point NA1

=
NA2

+NB . In addition, in contrast to the ZR symmetry
above, the critical exponent in the non-symmetric case is
1/2. We confirm the critical exponents in the case of Z3

symmetric states in Fig. 5.

Next, we discuss the behavior of the entanglement neg-
ativity on the two sides of this transition line. We have
seen in the previous part (c.f. Eqs. (4.20)-(4.21)) that for
NAs < NAs̄ +NB − 1 the entanglement negativity shows
a plateau as NA1 and NA2 are varied and NA is kept con-
stant. Using Eq. (4.41), one can work out the entangle-
ment negativity in the limit where NA1 > NA2 +NB−1,
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FIG. 5. Critical exponents for the negativity spectrum at the
transition point in Z3-symmetric states. For a better numer-
ical accuracy, we calculate the cumulative distribution func-
tion instead of the spectral density. NA1 = 2, NA2 = 6, and
NB = 5. Inset shows the spectral density in linear scale.

i.e. the regime of maximal entanglement in A subsystem.

As shown in appendix A, deep in the maximal entan-
glement regime, the imaginary parts of G1 and G2 for
z < 0 take the form:

Im(G1) = Im(G2) = RNA1
γ2

2

√
−
(
RNA1 z +

1

γ

)2

+
2

γ

′

(4.44)
where γ = R−NA1

+NA2
+NB−1. This results in the follow-

ing total value for the negativity in this regime:

〈N (ρ̂
(qA)
A )〉 =

1

2
RNA2 . (4.45)

This result is very similar to that in the non-symmetric
case. In other words, when subsystem A1 is much larger
than its complement, the entanglement negativity be-
tween A1 and A2 is maximal and bounded by the volume
of the smaller subsystem (in this case A2).

2. General symmetry group

On the other hand, in general for an arbitrary symme-
try group the self energy shown in (4.40), results in the
following equations for the G2 component of the resolvent
functions:

G3
2,q1 zβ

2
q1 +G2

2,q1

(
1

LqA
αq1q̄1 − β2

q1

)
+G2,q1

(
1

LqA
− z
)

+ 1 = 0,

(4.46)

while the equations for G1 components read:

−z G1,q1q2 (1− βq1βq̄2 G1,q1q2G1,q̄2q̄1)

−G1,q1q2G1,q̄2q̄1

(
βq1βq̄2 −

1

LqA
αq̄2q̄1

)
+ 1 = 0.

(4.47)
One interesting property that can be derived from the
above equations is the different behaviors and the criti-
cality in the spectral density. We note that different com-
ponents of G1 and G2 with different indices qi should be
considered separately for this matter.

First, we study the G2 component with a given quan-
tum number index; it can be seen from (4.46) that for
αq1q̄1 = LqAβ

2
q1 or equivalently LA1,q1 = LA2,q̄1LqB , the

spectral density diverges, and the leading divergence is
given by P2,q1 ∼ 1

ξ1/2 . By changing subsystem sizes

while keeping the quantum numbers unchanged (when
possible), one can check that the entanglement negativ-
ity shows two different behaviors on the two sides of this
singular transition: for LA1,q1 < LA2,q̄1LqB one is in the
plateau regime and deep within that regime the entan-
glement negativity reads

n2(q1) =
4

3π

1

LqA
√
LqB

(LA1,q1LA2,q̄1)
3/2

(4.48)

(one should also have
LA1,q1

LA2,q̄1

LqB
> 1 to avoid the PPT

transition). On the other hand, for LA1,q1 > LA2,q̄1LqB
one is in the maximal entanglement regime, where the
negativity to the leading order is given by

n2(q1) =
1

2

LA1,q1LA2,q̄1

LqA
LA2,q̄1 (4.49)

deep inside that regime (see the discussion in appendix
A).

One can check the above criterion for criticality in
the case of the U(1) symmetry. The relation LA1,q1 =
LA2,q̄1LqB takes the form

NA1
f(ν1)−NA2

f(ν̄1) = NBf(νB). (4.50)

for the U(1) symmetric case, up to subleading correc-
tions. Defining the ratios r1 = NA1/NA, rA = NA/(NA+
NB), the equation takes the form

r1f(ν1)− (1− r1)f

(
νA − ν1r1

1− r1

)
=

(
1

rA
− 1

)
f

(
ν − νArA

1− rA

)
.

(4.51)

For a fixed partition given in term of the values of r1

and rA and the filling fractions νA and ν (total filling
fraction), the question of whether there is criticality in
any of the sectors or not can be addressed by checking
whether the above equation has a solution for 0 ≤ ν1 ≤ 1.
Hence, the criticality is equivalent to the existence of a
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solution for ν1 subject to a linear constraint

max

(
0,
νA − (1− r1)

r1

)
≤ ν1 ≤ min

(
1

2
,
νA
r1

)
. (4.52)

Using this, one can see that criticality is observed in a
critical region as opposed to the non-symmetric states
where there is a critical line; the extent of this critical
region can be determined numerically. A few examples
are shown in Fig. 2.

Next, we turn to studying the G1 component. Using
the analogous equation of (4.47) for G1,q̄2q̄1 , one can work
out an equation solely containing G1,q1q2 :

−G3
1,q1q2 z

2αq1q2βq1βq̄2

−G2
1,q1q2 z

(
αq1q2

[
αq̄2q̄1
LqA

− 2βq1βq̄2

]
+ αq̄2q̄1βq1βq̄2

)
+G1,q1q2

(
z2 αq̄2q̄1 + [αq1q2 − αq̄2q̄1 ]

[
αq̄2q̄1
LqA

− βq1βq̄2
])

− z αq̄2q̄1 = 0.
(4.53)

This equation shows that the only way for G1,q1q2 (and as
a result the spectral density) to have a nonzero value at
z = 0, is to have either αq1q2 = αq̄2q̄1 or

αq̄2 q̄1
LqA

= βq1βq̄2 .

One can simply check by imposing each of these two re-
lations, that there is criticality in the system only when
both of them are satisfied; under such conditions the
spectral density diverges as P1,q1q2 ∼ 1

ξ1/3 . The condi-

tions can also be written in terms of subspace dimensions
as LA1,q1LA2,q2 = LA1,q̄2LA2,q̄1 and LA1,q1 = LA2,q2LqB .

We note here that for the case of the U(1) symmetry,
the first of the above two criticality conditions can only
be satisfied if q1 = q̄2; since the indices on the G1 con-
tribution to the spectrum should strictly not satisfy this
relation, therefore the latter type of criticality does not
occur in U(1) symmetric systems. As a result, Eq. (4.50)
solely determines the critical region for U(1). Note that
in general, and with symmetries other than U(1), this
relation can be satisfied with q1 6= q̄2, such as in the ZR
case explained earlier.

Figure 6 shows some numerical simulations for various
ratios of size of A to that of B. The agreement between
analytical results from the random matrix theory and
the numerical results is evident. Importantly, we see in
Fig. 6(a)-(c) that the P2 contribution to the spectral den-
sity diverges at zero as explained earlier.

Apart from the criticality, one can also work out the
contribtion to negativity from G1 in the regime where
the A1 subsystem with the given quantum number con-
stitutes more than half of the whole system given the
specific quantum numbers in consideration. It can be
shown using the solution of Eq. (4.53) that the symme-
try resolved negativity is given by (see appendix A for
discussion):

n1(q1, q2) =
1

2

1

LqA

√
LA1,q1LA1,q̄2 LA2,q2LA2,q̄1 (4.54)

3. Maximal entanglement for the U(1) symmetry in
thermodynamic limit

We now turn to calculating the total negativity in the
regime of maximal entanglement for a U(1) symmetric
system in the thermodynamic limit. This analysis is com-
plementary to the one presented in Sec. IV A 3, i.e. to-
gether with the previous result we find the explicit form
of the negativity to the leading order in the lower part of
the phase diagram (c.f. Figs. 2 and 6).

We first note that in the thermodynamic limit and us-
ing a continuum approximation, the two contributions to
the negativity (as in Eq. (4.25)) can be written as:

n1(ν1, ν2) =
(LA1,ν1 LA1,ν̄2)

1/2
LA2,ν2 LA2,ν̄1

2LνA

n2(ν1) =
LA1,ν1

L2
A2,ν̄1

2LνA
,

(4.55)

where we make use of Eqs. (4.49) and (4.54). Note that
by definition NA1ν1 + NA2 ν̄1 = NAνA. In order to find
the saddle point solution, we write the leading exponen-
tial functionalities of n1 and n2 as follows:

n1 ∼
e(

1
2NA1

f(ν1)+NA2
f(ν̄1))+( 1

2NA1
f(ν̄2)+NA2

f(ν1))

eNAf(νA)

n2 ∼
eNA1

f(ν1)+2NA2
f(ν̄1)

eNAf(νA)

(4.56)
where the function f is defined in Eq.(4.28). After a
straightforward calculation, we find that both functions
reach their maximum value at ν1 satisfying the relation:

log

(
1− ν1

ν1

)
= 2 log

(
1− r1 − νA + r1ν1

νA − r1ν1

)
. (4.57)

We find the solution by taking ν1 to have a form as νA+δν
and assuming δν to be small. This results in the following
form for the saddle point value ν1 = νA − 1−r1

1+r1
νA(1 −

νA) log( 1−νA
νA

).

Since at the saddle point ν1 = ν̄2 and ν2 = ν̄1, the
maximum values of n1 and n2 take the same form. This
leads to the following form for the dominant contribution
to the logarithmic negativity:

〈E(ρ̂
(qA)
A )〉 = NA1

f(ν1) + 2NA2
f(ν̄1)−NAf(νA) (4.58)

where ν1 and ν̄1 should have their saddle point values.
Exploiting the above form for the saddle point value of
ν1, one arrives at the following dominant contribution to
the logarithmic negativity:

〈E(ρ̂
(qA)
A )〉 = NA2

f(νA)+NA1

νA(1− νA)
[
log
(

1−νA
νA

)]2
1 + 2NA1

/NA2

.

(4.59)
The second term is a correction to the first one which we
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FIG. 6. Evolution of the negativity spectrum as the size of subsystem B is increased for U(1) symmetric systems. This trend
corresponds to sweeping a vertical path from bottom to top in the phase diagram as shown in the first panel. The colored circles
in each panel are numerical simulations (averaged over 104 samples) and solid lines correspond to the numerical solutions to
Eqs. (4.53) and (4.46) from random matrix theory. Here, we set NA2 = 3 and NA1 = 6 and the filling fractions are νA = 1

3
and

νB = 1
2
. Note that the points within the critical region (shaded area) of the phase diagram are characterized by a diverging

spectral density at the origin (panels (a)-(c)).

get from the perturbative expansion for the saddle point
value of ν1.

V. QUANTUM CIRCUIT MEASURING THE
SYMMETRY CHARGE

In this section, we discuss a way in which the total
charge in subsystem B can be measured without to-
tally collapsing the state of B to a pure state. The
output state can then be used to calculate the symme-
try resolved Rényi entropy or Rényi negativity using the
already established protocols in circuit-based quantum
computer [106–108] or trapped ions [109]. We present the
case of the Z2 symmetry here. ZR and U(1) symmetry
groups are similar and will be discussed in Appendix C.

One needs to add one ancillary qubit to the system; it
is initialized in the |0〉 state and then a Hadamard gate

is applied to this qubit which turns its state to |0〉+|1〉√
2

.

Then, one acts with two-qubit control-Z operators on
the ancilla and all the qubits in the B subsystem one by
one. This entangles the ancilla with the B subsystem;
acting with another Hadamard gate on the ancilla and
then measuring it in the computational basis, depending
on the outcome of the measurement the Z2 charge of the
B subsystem is determined. This same construction is

|0〉 H H

B

A

FIG. 7. Quantum circuit to measure the Z2 charge of subsys-
tem B.

known to be capable of parity measurment in a system,
note that the parity of B is exactly its Z2 charge.

Let us now briefly discuss the cases of ZR and U(1)
symmetry groups. For the case of ZR symmetry, the same
circuit when all the gates are generalized to qudit gates
with d = R could be used to measure the total charge
of B. On the other hand, for the case of having a U(1)
symmetry within a qubit system, in order to measure the
charge of B, one needs to perform a series of measure-
ments similar to the one descibed above. Concretely, one
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first measures the parity of the B subsystem charge us-
ing the same circuit as the one described above. Then,
using similar circuits consisting of entangling gates and
measurements one continues to determine the B charge
mod 4, 8, etc. A total number of dlog2(NB + 1)e mea-
surements suffices to determine the charge in the B sub-
systems, where NB is the number of qubits. More details
can be found in Appendix C.

VI. DISCUSSION

In conclusion, we studied the entanglement negativity
of symmetric random mixed states. As we explained, the
PPT criterion needs to be modified in the case of sym-
metric systems when only symmetric LOCCs are permit-
ted. We introduced a more refined version of the entan-
glement negativity in terms of the average over the entan-
glement negativity associated with each symmetry charge
sector (i.e., density matrix projected into a given symme-
try quantum number). Our proposed quantity correctly
captures a subset of separable states generated by sym-
metric LOCCs. Therefore, for the most of the paper,
we focused on the entanglement negativity of a random

mixed state with a fixed symmetry charge ρ̂
(qA)
A , which

we call symmetry resolved (or projected) entanglement
negativity. To calculate this quantity, we generalized the
diagrammatic approach for the partial transpose [11] to
symmetric states and showed that charge conservation
imposes several constraints on the diagrams. It turned
out that the diagrams can be grouped into two types
and calculations can be done in a systematic manner.
As a result, we were able to fully characterize symmetry
projected mixed states in terms of their entanglement
negativity spectrum. We illustrated our predictions via
two examples of ZR and U(1) symmetry groups and ex-
plicitly derived the entanglement phase diagram in these
cases. The general structure of the phase diagram is sim-
ilar to that of non-symmetric states, however, there are
two notable differences. First, strictly speaking there is

no PPT regime for ρ̂
(qA)
A . This property is manifest in

the spectral density of (ρ̂
(qA)
A )T2 as follows: We found

that the spectral density is a sum of two distribution
functions one of which is centered around zero; hence,

(ρ̂
(qA)
A )T2 has always some negative eigenvalues. Second,

the critical line between the maximal entanglement and
the replica symmetry breaking phases, where the spec-
tral density diverges, may broaden into a critical phase.
Furthermore, the divergence exponent is 1/2 and 1/3 for
the two contributions to the spectral density as opposed
to the non-symmetric case where the critical exponent
is 1/2. Finally, we designed a quantum circuit to per-
form the symmetry charge projection which can eventu-
ally be used to simulate the symmetry resolved entangle-
ment negativity.

For the most part in this paper, we focused on char-

acterizing the symmetry projected states ρ̂
(qA)
A . This

result can then be used to compute the symmetry av-
eraged entanglement negativity (1.1) for randomly dis-
tributed mixed states. Alternatively, one can use simple
arguments to find the leading order contribution to this
quantity. We note that the Born weights pqA in (1.1) are
proportional to the Hilbert space dimensions of symme-
try charge sectors. This clearly needs to be determined
case by case. For instance, in the case of ZR symmetry

both pqA and 〈E(ρ̂
(qA)
A )〉 are independent of qA and we

get EA1:A2
= 〈E(ρ̂

(qA)
A )〉. In contrast, the Hilbert space

dimensions of various sectors of U(1) symmetry charge

depends on the filling factor, pqA ∼ e
NAf(

qA
NA

)
where f(.)

is the Shannon entropy (4.28); consequently, the sum
(1.1) is exponentially dominated by the sector having
a homogeneous charge distribution among subsystems,
i.e. qA

NA
= Q

NA+NB
.

Throughout this paper, we discussed the entanglement
negativity and its variants. It is worth comparing this
quantity with other entanglement proxies such as the
mutual information, albeit the latter is not technically
an entanglement measure. As we have shown in Ap-
pendix B, the mutual information to the leading order
matches with that of the logarithmic negativity through
the usual relation EA1:A2

∼ 1
2IA1:A2 in the case of ZR

symmetry group. In contrast, for U(1) symmetric states,
this relation does not hold (even to the leading order) in
the maximal entanglement phase (compare Eqs. (4.59)
and (C13)). The physical significance of this difference
remains to be understood. The lowest order corrections,
however, are different between the mutual information
and logarithmic negativity over the entire phase diagram.
In particular, the mutual information is constant deep in
the PPT regime, while the logarithmic negativity is expo-
nentially small. This contrast is the result of the fact that
classical correlations contribute to the mutual informa-
tion, whereas they do not contribute to the logarithmic
negativity.

Apart from the notion of mixed state entanglement
measures in symmetric systems and incorporating global
symmetry constraints in random matrix theory, our anal-
ysis is relevant to other physical systems as follows: Our
U(1) case study is applicable to a system of interacting
complex Sachdev-Ye-Kitaev dots [110, 111], where the
hopping matrix is negligible and local filling fraction is
fixed. Another example is a particle-number conserving
system coupled to a bath in a canonical ensemble such
that it can only exchange energy but not particle.

As we showed in this paper, a careful analysis of mul-
tipartite entanglement in symmetric systems requires in-
troducing new entanglement measures. However, the
block diagonal structure of the reduced density ma-
trix is quite generic and not limited to symmetric sys-
tems. For instance, a similar constraint on local en-
ergy density appears in a tripartite state described by
a microcanonical ensemble; in other words, we have∑
sNsεs =const. where Ns and εs denote the volume

and local energy density of subsystem s, respectively. In
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such scenarios, it would makes more sense to directly cal-
culate the logarithmic negativity E(ρ̂A) rather than its
symmetry averaged version. In principle, the formalism
developed in this paper is applicable to this setup upon
substituting the Hilbert space dimension LqA by den-

sity of states DA(εA) = eSA(εA) using the Boltzmann’s
entropy formula, where SA(εA) denotes the thermody-
namic entropy at energy εA [99, 112]. However, we re-
alized that using our method to calculate the resolvent
function in this case leads to a set of coupled non-linear
Schwinger-Dyson equations where finding a closed-form
solution is rather tedious (if not impossible), see Ap-
pendix D for details. Nevertheless, one can numerically
solve this set of equations. We postpone this analysis to
a future publication. Alternatively, it may make sense in
certain physical systems to approximate the three-body
condition by reducing it to a two-body condition such as
NA1

ε1 +NA2
ε2 = const. (where our method in this paper

is directly applicable) or NA1
ε1 + NBεB = const. (see

e.g., Ref. [113]).

Let us wrap up our discussion with a few more direc-
tions for future research. We considered Abelian global
symmetry groups in this work. It would be interesting
to generalize this formalism to non-Abelian symmetry
groups and systems with local symmetry constraints such
as in the gauge theories and anyon chains [114] and possi-
bly pinpoint the differences. Recently, the entanglement
negativity of random tensor networks [22, 23, 26] was in-
vestigated. Given the dramatic effects of global symme-
tries on entanglement properties of single tensors (which
was studied in the current work), it may be worth explor-
ing which universal properties in random tensor networks
would change in the presence of global symmetries.
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Appendix A: Calculation of negativity deep in each
phase

In this appendix, we discuss how the two components
n1(q1, q2) and n2(q1) are calculated deep in the maximal
entanglement regime.

We start with ZR. Using Eq. (4.41), one can work out
the entanglement negativity in the limit where NA1

>
NA2

+NB − 1, i.e. the regime of maximal entanglement
in A subsystem; In this limit, the set of equations in

(4.41) can be rewritten as:

(G1z − 1)

(
G2

1

1

R2(NA2
+NB−1)

− 1

)
+G2

1

1

RN−1
= 0,

(G2z − 1)

(
G2

2

1

R2(NA2
+NB−1)

− 1

)
+G2

2

1

RN−1
+G2

1

RNA−1
= 0.

(B1)

A redefinition of Gi = RNA1 G̃i along with z = z̃ R−NA1

results in:[(
G̃1z̃ − 1

) (
G̃2

1

1

γ2
− 1

)]
+ G̃2

1

1

γ
= 0,[(

G̃2z̃ − 1
) (

G̃2
2

1

γ2
− 1

)]
+ G̃2

2

1

γ
+

G̃2

RNA2
−1

= 0.

(B2)
where γ = α

β2LA
= R−NA1

+NA2
+NB−1 is used in accor-

dance with our previous definition of it. For the case of
ZR, the charge indices of α, β, LA are dropped. Note that
γ is a small number in the maximal entanglement regime,
and as a result the terms outside the square brackets are
subleading in both equations. The three solutions for G̃1

and G̃2 are simply found to the leading order:

G̃i = 1/z̃, ±√γ . (B3)

We are interested in finding the imaginary parts of G̃i
for negative values of z̃; as it turns out taking subleading
terms into account when two, out of three, of the above
roots are close to each other. As a result, with the sub-
stitutions G̃i = −γ + δG and z̃ = − 1

γ + δz, we expand

the equations for the new variable δG and δz and to lead-
ing order, we get the following relation for the imaginary
parts of δGi for z̃ < 0:

Im(δG1) = Im(δG2) =
γ2

2

√
−δz2 +

2

γ

′

(B4)

As a result, the imaginary parts of G1 and G2 for z < 0
read:

Im(G1) = Im(G2) = RNA1
γ2

2

√
−
(
RNA1 z +

1

γ

)2

+
2

γ

′

(B5)

This can be used to do the integral in Eq. (2.6) to
obtain:

n1 = n2 =
1

2
RNA2

−2. (B6)

These correspond to single charge sectors, although the
charge indices are dropped. Taking the effect of all charge
sectors into account, we arrive at:

〈N (ρ̂
(qA)
A )〉 =

1

2
RNA2 . (B7)
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A general symmetry group can also be considered and
very similar manipulations as above can be performed to
calculate the negativity. The results for a general sym-
metry group are shown in the main text.

Appendix B: Mutual information calculations

We will be calculating mutual information between A1

and A2, i.e.

〈IA1,A2
〉 = 〈SA1

〉+ 〈SA2
〉 − 〈SA〉 (C1)

for different settings in this appendix. For mutual infor-
mation, similar to the cases in the main text, one needs
symmetry resolved quantities and in particular in this
case the von Neumann entanglement entropy. The latter
quantity can be computed by taking the replica limit of
the Renyi entropy as follows:

Ss = lim
n→1

1

1− n
logS(n)

s , (C2)

where s stands for either of A1, A2, A. With the same
setting as the main text, where the symmetry charge of
A and B are fixed to have values qA, qB , we can write the
dominant contribution to the entanglement entropy of A
as:

SA =

{
logLA,qA LA,qA � LB,qB ,

logLB,qB LA,qA � LB,qB .
(C3)

On the other hand, the cases of A1 and A2 entan-
glement entropies are less straightforward as there is a
charge conservation constraint between them. For a gen-
eral Renyi index n, one can work out the form of the
Renyi entropy of A1 subsystem as (similar relations hold
for A2):

S
(n)
A1

=
∑
q1

S
(n)
A1,q1

, (C4)

with the symmetry resolved Renyi enetropy defined as:

S
(n)
A1,q1

=


LA1,q1

LnA2,q̄1

LnA,qA
LA1,q1 � LA2,q̄1LB,qB ,

LnA1,q1

LnA,qA
LA2,q̄1L

1−n
B,qB

LA1,q1 � LA2,q̄1LB,qB .

(C5)

Having the above relations at hand, one can now calcu-
late the mutual information for the two symmetry cases
of our interest in this work, i.e. ZR and U(1); first, we
consider ZR: this is a simple case, since in this case the
size of symmetry resolved Hilbert spaces are equal re-
gardless of the quantum number they correspond to. We
consider three different cases here:

• NA < NB :

〈IA1,A2〉 = logR. (C6)
• NA > NB and NAs < NB +NAs̄ − 1:

〈IA1,A2〉 = (NA −NB − 1) logR. (C7)

• NA > NB and NAs > NB +NAs̄ − 1:

〈IA1,A2
〉 = NA2

logR. (C8)

At this point, we consider the U(1) symmetry and cal-
culate its mutual information. The subtlety here is that
Hilbert space size depends on the quantum number. As
a result of this, we consider the thermodynamic limit and
perform a saddle point approximation. The first thing we
need to calculate is the entanglement entropy of the A1

subsystem. We consider first a case where the dominant
contributions to the entanglement entropy are from those
subspaces that satisfy the relation LA1,q1 � LA1,q̄1LB,qB :

SA1
= lim
n→1

1

1− n
log
∑
nA1

(
NA1
nA1

) [(
NA2

nA−nA1

)]n[(
NA
nA

)]n
≈ lim
n→1

1

1− n
log
∑
nA1

(
NA1
nA1

)(
NA2

nA−nA1

) [
1 + (n− 1) log

(
NA2

nA−nA1

)][(
NA
nA

)]n
≈ log

(
NA
nA

)
−
∑
nA1

(
NA1
nA1

)(
NA2

nA−nA1

)
log
(

NA2
nA−nA1

)(
NA
nA

)
≈ −1

2
logNA +NAf(νA) +

1

2
logNA2 −NA2f(νA)

= NA1f(νA)− 1

2
log

(
NA
NA2

)

(C9)
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In going from the first row to the second we have
taken n to be close to one and Taylor expanded,
form the second row to the third row we have used∑
nA1

(
NA1
nA1

)(
NA2

nA−nA1

)
=
(
NA
nA

)
and Taylor expanded the

outer logarithm. In going from the third row to the fourth
row we have done a continuum approximation and re-
placed the sum by an integral and did a saddle point
approximation, we are furthermore using the notation in-
troduced in Sec. IV A 3, where νs shows the filling factor
of a subsystem and the function f is defined in Eq.(4.28).
The saddle point solution is found to be νA1

= νA. Note
that the calculation done above is similar in spirit to
those in [112], where energy conservation considerations
are taken into account.

Similarly, in the opposite limit where the dominant
contributions are from those subspaces with LA1,q1 �
LA1,q̄1LB,qB , one can show that the entanglement en-
tropy reads:

SA1
= NA2

f(νA)− 1

2
log

(
NA
NA1

)
+ logLB,qB . (C10)

One can now calculate the mutual information in differ-
ent regime given the above forms:

• NA < NB

〈IA1,A2〉 = −1

2
log

(
NA

NA1
NA2

)
+

1

2
log (2πνA[1− νA]) .

(C11)

• NA > NB and NAs < NB +NAs̄ :

〈IA1,A2〉 = NAf(νA)−NBf(νB)

− 1

2
log

(
N2
A

NA1
NA2

NB

)
+

1

2
log (2πνA[1− νA]) .

(C12)

• NA > NB and NAs > NB +NAs̄ :

〈IA1,A2
〉 = 2NA2

f(νA)

− 1

2
log

(
NA
NA1

)
.

(C13)

Appendix C: Measuring ZR and U(1) charges

In this section of the appendix we discuss how the ZR
charge of the B subsystem in a qudit system (d = R) or
the U(1) charge of B in a qubit system is measured.

We start by considering the ZR symmetry first. The
Hilbert space of each site is spanned by the basis {|i〉}
with i = 0, 1, . . . , R − 1. In this case, one needs an an-
cillary qudit and the circuit discussed in the main text

works provided that all the unitaries are generalized to
qudit gates. In particular:

• the control-Z operator is generalized to have the
form CZ(R) =

∑
j |j〉〈j| ⊗ Zj , where now Z =

diag(1, ω, ω2, . . . , ωR−1), and ω = e
2πi
R .

• The ZR generalization of Hadamard reads HR|j〉 =
1√
R

∑R−1
i=0 ωij |i〉. Noting that this general

Hadamard gate is not Hermitian, one needs to mod-
ify the second Hadamard acting on the ancilla to
H†.

It is straightforward now to show that if the measurement
outcome is |k〉, the ZR charge of B is also determined to
be k.

We now discuss how the charge of subsystem B in the
case of a U(1) symmetry can be measured. This measure-
ment is done in a series of steps where in consecutive steps
the charge modulo 2, 4, 8, . . . is measured determining the
whole charge. A total of dlog2(NB+1)e consecutive mea-
surements is needed as explained below. For each step
an ancilla is utilized to implement the circuit shown in

Fig. 8. The unitary Z1/2n is defined as

(
1 0

0 e
πi
2n

)
. We

describe the steps below:

• Using the same circuit shown in Fig. 7, the total
charge of B modulo 2 is measured which we denote
as q1.

• In the second step, in order to measure the charge
modulo 4, the circuit in Fig. 8 is implemented with
control-Z1/2 operators. Note that Z1/2 is identical
to the S gate. After the controlled gates are ap-
plied, one acts with the unitary Ua on the ancilla.
This unitary depends on the outcome of the charge
modulo 2 measurement, i.e. Ua = (Z1/2)−q1 . This
will result in the charge modulo 4 which we denote
as q2.

• In general, for measuring the charge modulo 2n,

which we denote as qn, one utilizes control-Z1/2n−1

operators. Furthermore, Ua should be chosen based
on the outcome of all previous measurements as
Ua = (Z1/2)−qn−1 . This procedure is continued
until the charge of subsystem B is determined.

Appendix D: Negativity spectrum without
symmetry projection

In this appendix, we provide Schwinger-Dyson equa-
tions for the resolvent function associated with the par-
tial transpose of the full block-diagonal density matrix.
In other words, we consider the spectrum of ρ̂T2

A when
the total charge of A is not projected. This calculation is
mostly for completeness, since we believe that the partial
transpose of the full density matrix is not a good indica-
tor of quantum entanglement when classical correlations
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|0〉 H Ua H

B

Z1/2n−1

Z1/2n−1

Z1/2n−1

A

FIG. 8. The circuit that is used to measure the charge of the B subsystem modulo 2n.

are only due to symmetric LOCCs. Furthermore, this re-
sult may be useful if one wants to study the entanglement
negativity of random states at finite energy density or the
microcanonical ensemble with the total energy constraint
NAεA +NBεB = const. As usual, we provide two sets of
self-consistent equations: One for the replica symmetry
breaking (or semicircle) regime and Two, the more gen-
eral case which not only contains the former regime but
also the maximal entanglement regime.

1. Replica symmetry breaking regime

Here, we need to take all blocks of ρ̂
(qA)
A in ρ̂A into

account at the same time. Eq. (4.9) still holds, but since
the charge in subsystem A is not determined, one needs
to sum over all possible charge values in subsystem A (or
subsystem B since the total charge is fixed). This means
that the equations for Σ would be modified as follows:

Σ =
⊕
q1,q2

1A1,q1 ⊗ 1A2,q2

[
1∑

q̃A
Lq̃ALq̃B

LB,Q−q1−q2

+

(
1∑

q̃A
Lq̃ALq̃B

)2∑
qB

LB,qB LA2, Q−q1−qB LA1, Q−q2−qB GQ−gq−qB ,Q−q1−qB

]
.

(E1)

Note that here unlike before, the equations for differ-
ent components of the resolvent function depend on each
other; in fact, the set of equations governing Gq1,q2 with
∆q = q1−q2 kept constant is closed. Hence, we can label
the spectral density with the charge imbalance ∆q (See
Refs. [115–117] for a similar observation). Unlike the case
of U(1) symmetry, it is easy solve the above equation for
the ZR symmetry group, as all symmetry sectors have the
same Hilbert space size. Ultimately, the spectral density
is found to be

P (ξ) =
1

2π
R2NA+NB

√
4

RN
−
(
ξ − 1

RNA

)2
′

. (E2)

This means that the negativity shows a plateau when
R(NA−NB) > 1

4 .
2. General case

The self energy in the general case where there is no
projection on ρ̂A can be written as:
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Σ =
⊕
q1,q2

1A1,q1 ⊗ 1A2,q2[
1∑

q̃ Lq̃ALq̃B
LB,Q−q1−q2

1

1−
(

LA1,q1∑
q̃ Lq̃ALq̃B

Gq1q2

)2

+

(
1∑

q̃ Lq̃ALq̃B

)2∑
qB

LB,qB
LA2,Q−q1−qB LA1,Q−q2−qB GQ−q2−qB ,Q−q1−qB

1− LA1,q1
LA1,Q−q2−qB

(
∑
q̃ Lq̃ALq̃B )

2 Gq1q2GQ−q2−qB ,Q−q1−qB

]
.

(E3)

Note that this includes both the replica symmetry break- ing regime that was discussed above and also the regime
of maximal entanglement between A1 and A2.
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