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We study the effects of entanglement and control parameters on the symmetry of the energy
landscape and optimization performance of the variational quantum circuit. Through a systematic
analysis of the Hessian spectrum, we characterize the local geometry of the energy landscape at
a random point and along an optimization trajectory. We argue that decreasing the entangling
capability and increasing the number of circuit parameters have the same qualitative effect on the
Hessian eigenspectrum. Both the low-entangling capability and the abundance of control parameters
increase the curvature of non-flat directions, contributing to the efficient search of area-law entangled
ground states as to the optimization accuracy and the convergence speed.

I. INTRODUCTION

The variational quantum algorithm (VQA) is arguably
the most promising framework to achieve the near-term
quantum advantage [1, 2]. The structure of typical VQA
computation consists of three parts: First, the quantum
processor constructs the wavefunction |ψ(θ)〉 by acting a
sequence of unitary gate operations, which often depend
on randomly chosen control parameters θ, on the ini-
tial product state |0〉⊗n. Second, the quantum processor
measures the variational wavefunction, where outputs of
the repeated measurements, e.g., 〈ψ(θ)|Zi|ψ(θ)〉 for 1 ≤
i ≤ n, are passed to the classical processor for quantum
state tomography. Third, the classical processor esti-
mates the energy function L(θ) ≡ 〈ψ(θ)|H|ψ(θ)〉, where
H is the Hamiltonian that encodes a given problem, and
searches an optimal parameter θ∗ = arg minθ L(θ) that
minimizes it. Such optimization is typically done by the
local gradient search that requires the iterative evalua-
tion of the energy function and the updated parameter.
See [3, 4] for the recent reviews on the VQA algorithms.

At the heart of these VQA approaches lies the varia-
tional circuit that generates quantum wavefunctions de-
pending on a set of control parameters stored and ma-
nipulated in classical devices. Common choices of uni-
tary gates are usually limited to one-qubit rotation gates
and two-qubit entangling gates acting only upon adjacent
qubit pairs for the feasibility of hardware implementa-
tion [5]. There are numerous ways to design the vari-
ational circuits even within this limited class. In most
applications, we rely on the heuristic approach to find
an effective circuit whose expected performance is not a
priori known. The goal of this paper is to bring design
principles for an efficient circuit ansatz concerning its en-
tangling capability and number of control parameters, by
measuring how these factors influence the quantum en-
ergy landscape defined by L(θ) and the performance of
parameter optimization.

The overwhelming majority of the Hilbert space is oc-
cupied by highly entangled generic quantum states that
exhibit the volume-law scaling of entanglement entropies,
i.e., proportional to the number of subsystem qubits. As
a result, the broader range of states the circuit ansatz

|ψ(θ)〉 can express, the higher the mean entanglement en-
tropy over randomly sampled states {|ψ(θs)〉}s becomes.
In this regard, the average entanglement entropy R(k) of
the circuit generated states can represent the expressibil-
ity [6] of the variational ansatz.

There is, however, a negative correlation between the
average entanglement entropy and the optimization suc-
cess of the circuit parameters θ → θ∗ [7–9]. The area
law scaling of the entanglement entropy is a commonly
expected correlation pattern of the ground states of local
gapped Hamiltonians [10]. In contrast, most of the cir-
cuit parameter space is associated with highly-entangled
typical quantum states, especially if the mean entangle-
ment entropy of the variational circuit is close to the
maximum. That makes the local parameter search of a
highly expressible ansatz less likely to succeed in finding
a trajectory towards the low-entangled ground states.

A closely related geometric statement is known as the
barren plateau theorem: Assuming the 2-design charac-
teristic of the random circuit ensemble, the gradient of
the energy function L(θ) with respect to the circuit vari-
ables θ is zero on average, with the variance exponentially
suppressed for the growing system size n [11]. This has
been shown in [12] to be equivalent to the exponential de-
cay of Varθ [L(θ +α)− L(θ)] with respect to n, indicat-
ing how generically flat the quantum energy landscape of
the highly expressible variational circuit is. In this work,
we will further investigate how flatness of the quantum
landscape is correlated with the entangling capability of
the circuit by examining the local geometry near generic
random points as well as certain special points, which we
describe below, extracted from the parameter optimiza-
tion trajectory.

Since the quantum states generated by the circuit are
controlled by continuous variables θ stored and manip-
ulated in the classical computer, the number of classical
parameters can also be a crucial factor that affects the
energy landscape and optimization performance. One ex-
treme case was studied in [13]: The local gradient search
for the over-parameterized circuit can approximate the
Hamiltonian ground state very precisely, in both cases
where the ground state entanglement entropy follows the
volume-law scaling and the area-law scaling, despite the
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high expressibility of the circuit ansatz.1 Note that while
over-parametrization does not lift the flat directions in
the parameter space, it makes the convergence faster by
developing a few steep directions. See [15] for a landscape
analysis of the over-parameterized QAOA ansatz with
the MaxCut Hamiltonian. More systematically, given a
fixed amount of the average entanglement entropies, one
can vary the number of control variables by adding single-
qubit Pauli rotation gates. We will quantify how it affects
the flatness of the energy landscape and the optimization
performance.

Our study will be conducted by investigating the Hes-
sian matrix of the energy function, Hab(θ) = ∇a∇bL(θ),
where a, b denote the circuit parameter indices. The Hes-
sian will be evaluated at random initial points [14], final
convergence points [13], and multiple intermediate points
chosen from the optimization trajectory [16]. The Hes-
sian eigenvalue spectrum reveals the information about
the shape of the quantum energy landscape and how the
local parameter search works. We will characterize an
important relationship between its eigenvalues and the
entangling capability of the circuit: For high-entangling
circuits, the Hessian spectrum shows an overall high con-
centration near 0, while low-entangling circuits develop
a few large outliers among a massive bulk of zero eigen-
values. Such spectral pattern is also observed in classical
deep neural networks with over-parameterization [17–19].
We will indeed observe the close similarity between the
spectral evolution caused by adding more circuit param-
eters and by reducing the circuit entangling capability.

The rest of the paper is organized as follows: Section II
introduces the basic form of the variational circuit used
in this paper and analyzes correlation functions of the
circuit density matrices. Section III systematically stud-
ies how stochastic dropout of two-qubit entangling gates
affects the VQA performance of the variational circuit
and the quantum energy landscape through the numeri-
cal evaluation of the Hessian matrix. It includes theorems
on the top Hessian eigenvalue as well as the optimization
rate. The impact of the control parameters on the VQA
performance and the shape of the quantum energy land-
scape is studied by adding single-qubit rotation gates in
Section IV. Finally, Section V summarizes and provides
suggestions for future research.

II. CIRCUIT ANSATZ

A. Circuit Architecture

The parametrized quantum circuit used in this paper
for various numerical experiments is a hardware-efficient

1 As discussed in many literatures [8–11, 14], it is very challenging,
if not impossible, to train highly expressible/entangling circuits
without overparameterization.
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(b)

Figure 1. The variational quantum circuit used in this paper.
(a) circuit architecture, (b) structure of the two-qubit gate.

ansatz [5], made of 1-qubit Pauli-Y rotations and 2-qubit
CZ entanglers acting on qubit pairs,

Ry,i(ϕ) =
[
eiσyϕ

]
i
,

CZi,j = diag(1, 1, 1,−1)i,j .
(1)

The basic building block of our unitary circuit in its pri-
mary form is the 2-qubit unitary operator of Figure 1b,

Ui,j(ϕa, ϕb) = CZi,j · (Ry,i(ϕa)⊗Ry,j(ϕb)) , (2)

acting on the 4-dimensional hyperplane spanned for the
(i, j) qubit pair, embedded in the n-qubit Hilbert space.

The operators (2) acting on consecutive (i, i+1) qubits
compose together the following layer unitary operators:

U` =

{⊗bn/2c
m=1 U2m−1,2m(ϕ`,2m−1, ϕ`,2m) odd `⊗bn/2c
m=1 U2m,2m+1(ϕ`,2m, ϕ`,2m+1) even `

(3)

where the periodic boundary condition i ' i + n is im-
posed on the n-qubit lattice. It is convenient to use the
collective notation U`(ϕ`) where ϕ` denotes all {ϕ`,i}ni=1.
The variational circuit states (see Figure 1a for an illus-
tration of the circuit architecture) are then generated by
sequentially acting L instances of the layer unitary oper-
ators on the initial product state |0〉⊗n, i.e.,

|ψ(θ)〉 = UL(ϕL) · · ·U1(ϕ1)|0〉⊗n = U(θ)|0〉⊗n, (4)

where θ = {ϕ`}L`=1. We will index the nL components
of the circuit parameter θ by 1 ≤ a, b, · · · ≤ nL.

B. Circuit Density Matrix

The variational circuit generates a pure quantum state
(4) whose corresponding density matrix is given by
ραβ(θ) = Uα1(θ)U∗β1(θ) for all 1 ≤ α, β ≤ 2n. In par-

ticular, the circuit unitary matrix Uαβ(θ) of Figure 1 is
real-valued and orthogonal, being parameterized by nL
circular variables {θa}nLa=1 that have the period of π [20].
The associated parameter space is therefore the compact
torus TnL. We find that the density matrix ραβ(θ) can
be written as follows in its Fourier expansion form:

ραβ =
δαβ
2n

+
∑
q

cqαβ

nL∏
a=1

(sin (2θa))
q2a−1 (cos (2θa))

q2a

(5)
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where the sum is taken over the set of (2nL)-dimensional
discrete vectors, q ∈ {0, 1}2nL, except the zero {02nL}.

The expectation value of the density matrix ραβ(θ)
with respect to the uniform measure on θ ∈ TnL reads:

Eθ[ραβ(θ)] = δαβ/2
n , (6)

where we used the orthogonality of the sine and cosine
functions. Consequently, the expectation values of the
energy function L(θ) and its derivatives are given by:

Eθ[L(θ)] = Tr(H)/2n , (7)

Eθ[∇aL(θ)] = Eθ[∇a∇bL(θ)] = · · · = 0 . (8)

Computation of the second-order correlation functions
of the energy function L(θ) and its derivatives requires
the knowledge of two-point functions, Eθ[ραβ(θ)ρρσ(θ)],
of the density matrices.

Theorem 1. The two-point correlation function of the
density matrix ραβ(θ) takes the following structural form:

Eθ[ραβ(θ)ρρσ(θ)] = Aαβ(δαρδβσ + δασδβρ) +

+ Aαρδαβδρσ . (9)

There is no summation over repeated indices in (9).

Proof. For real symmetric matrices ραβ , the general form
of the two-point functions reads:

Eθ[ραβ(θ)ρρσ(θ)] = Aαβ(δαρδβσ + δασδβρ) +Bαρδαβδρσ,
(10)

where the values of the matrices A and B depend on the
distribution of θ. It should satisfy the following relations:

Eθ[ραα(θ)ρββ(θ)] = Eθ[ραβ(θ)ρβα(θ)]

= Eθ[ραβ(θ)ραβ(θ)],
(11)∑2n

β=1 Eθ[ραβ(θ)ρβσ(θ)] = Eθ[ρασ(θ)] (12)

where the second equality (12) reflects the purity of the
density matrix. By substituting (10) into (11), we ob-
tain the relation Aαβ = Bαβ for α 6= β. There is a
redundancy in keeping both Aαα and Bαα, because only
the combination 2Aαα + Bαα appears independently for
α = β. Without loss of generality, we can rewrite (10) as
(9) for which (12) becomes equivalent to

(3Aαα +
∑
β 6=αAαβ)δασ = 2−n δασ . (13)

One can analytically derive the coefficients Aαβ in two
limiting cases. When two-qubit entanglers are completely
omitted from the circuit ansatz (4), the coefficients are

Aαβ =

{
3c0(α2∨β2)+c1(α2∧β2)/23n for α 6= β

3n−1/23n for α = β ,
(14)

where the subscripts 2 in α2 and β2 indicate that α and β
are in their binary representation. The function c0/1(s2)
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Figure 2. (a) Varθ[∇aL], (b) Eθ[ραβ(θ)ραβ(θ)] with 56 circuit
layers, estimated from 1500 samples over different probability
p ∈ {0.0, 0.1, · · · , 0.9} that removes the two-qubit entanglers.

gives the number of 0/1’s in the input binary string s2.
We also have checked that (14) satisfies (13) by manipu-
lating symbolic expressions in Mathematica.

Another case that allows the exact analysis is when
the circuit distribution is the Haar orthogonal ensemble,
for which one can replace the integration over TnL with
the Haar integral over the orthogonal group O(2n). The
one-point and two-point functions are obtained by the
Weingarten calculus [21] as:

Eρ∈O(2n)[ραβ ] = 2−nδαβ , (15)

Eρ∈O(2n)[ραβρρσ] =
δαβδρσ + δαρδβσ + δασδβρ

2n(2n + 2)
. (16)

Note that (16) implies the existence of the barren plateau
problem [11] for the orthogonal 2-design ensemble. When
the variational circuit (4) behaves as an approximate or-
thogonal 2-design, the variance of random energy gradi-
ents decays exponentially with the system size n as:

Varρ∈O(2n)[∇aL] ∼ Tr(H2)

4n
∼ O(2−n) , (17)

assuming the scaling behavior Tr(H2) ∼ O(2n) of various
1d spin-chain Hamiltonian systems.

In Section III, we will explore systematic reduction of
the average entanglement entropy in the circuit states (4)
by randomly and repeatedly removing the CZ entanglers
with the probability p. Given sufficient circuit depth, the
case with p = 0 corresponds to (16) that follows the Haar
orthogonal ensemble, while the case with p = 1 leads to
the n-qubit product state for which we find (14). We can
interpolate these two extreme cases through numerical
estimation of Varθ[∇aL] and Eθ[ραβ(θ)ραβ(θ)] for 0 ≤
p < 1. Specifically in the L = 56 case, the results are
summarized in Figure 2.

III. ENTANGLEMENT, ENERGY LANDSCAPE
AND OPTIMIZATION

This section will explore how the shape of the quantum
energy landscape varies with different levels of entangling
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Figure 3. Collections of 50 VQA instances to approximate the n = 12 Ising ground state with the circuits with L = 56 layers,
for each probability p of omitting the CZ gates. The VQA optimizations are successful for p ∈ [0.2, 0.8]. Each subplot displays:

(a) energy difference ∆E, (b) Renyi-2 entropy R(2), (3) % that reaches ∆E < 0.1, (4) number of updates τ to reach ∆E < 0.1.

capability for a fixed circuit architecture. We will con-
sider the average geometry at random generic parame-
ters [11, 14] as well as the local geometry around opti-
mization trajectories [16]. We will fix the number of the
circuit control parameters and systematically vary the
entangling capability of the circuit. That can be done
by dropping out the CZ entanglers contained in the two-
qubit operator (2) with probability p. Dialing the drop-
out probability p allows us to reach a desired level of the
circuit entanglement, by retaining on average

m = 1
2nL(1− p) (18)

entanglers in the circuit ansatz of depth L in Figure 1.
The p = 1 limit gives a non-entangling circuit that maps
an initial product state to another product state, while
the circuit at p = 0 maximally entangles the qubits for a
sufficient number L of layers.

A. Circuit State Entanglement

We define the entangling capability of the variational
circuit as the average entanglement entropy over the cir-
cuit state ensemble, {|ψ(θ)〉 : θ ∈ [0, 2π)⊗nL}, estimated
through the sample average over M circuit states:

1

M

M∑
q=1

R(k)(|ψ(θq)〉) where θq ∼ U(0, 2π)⊗nL . (19)

As typical quantum states that comprise an exceedingly
large portion of the Hilbert space are highly-entangled, it
represents how expressible the variational ansatz is, i.e.,
how various quantum states |Φ〉 can be closely approxi-
mated by the circuit ansatz within tolerance ε,

‖|Φ〉 − |ψ(θ∗)〉‖ < ε, (20)

at a certain parameter θ∗ ∈ [0, 2π)⊗nL.
It was shown in [9] that the average entanglement en-

tropy of the dense circuit at p = 0 grows linearly for an
increasing circuit depth L, then saturates to a maximum

possible value nA − ck beyond a critical depth Ls < L.
nA denotes the size of subsystem A, ck is a non-negative
constant that varies with the circuit architecture and the
order k of the Renyi entropy,

R(k) ≡ 1

1− k
log Tr

(
ρkA
)
. (21)

Since the saturation depth Ls itself scales linearly with
the system size n [9], the number of two-qubit CZ gates
introduced to reach the entanglement saturation scales as
ms ∼ nLs = O(n2) for the circuit ansatz in Figure 1. For
numerical simulations, we will choose the depth L∗ such
that the mean number of the CZ gates in the stochastic
circuit, i.e., the integral part of m = 1

2nL
∗(1−p), can be{

m & ms for p→ 0

m < ms for p→ 1 .
(22)

Specifically, L∗ = 56 will be sufficient for our purposes.

B. Optimization Accuracy and Speed

To reveal the connection between the entangling ca-
pability and VQA performance of the variational circuit,
we consider solving the ground state of the most proto-
typical system, i.e., the 1d transverse-field Ising model:

H = J
∑
〈i,j〉

ZiZj + g
∑
i

Xi with J = 1, g = 1, (23)

and measure the deviation of the circuit energy from the
exact ground-level energy,

∆E ≡ 〈ψ(θ)|H|ψ(θ)〉 − Eg . (24)

Figure 3 is the collection of 50 independent optimization
results for the L = 56 circuits with p ∈ {0, 0.1, · · · , 0.9}.

The curves in Figures 3a and 3b are respectively the
energy gap ∆E and Renyi-2 entanglement entropy R(2)

evaluated under an equal partitioning of n = 12 qubits.
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The blue/orange colors (up/down) indicate whether the
displayed values are before/after applying the gradient
descent (29) to circuit parameters τ = 5000 times. When
the average entanglement entropy of the pre-optimization
states saturates to the maximum possible value, as the
cases for p ≤ 0.1, Figure 3a exhibits the formulation of
orange dot clusters (on the curve below) around ∆E ∼ 9.
It means the failure of many circuit instances in reducing
∆E via the local gradient search (29). The gradient de-
scent fails to make a trajectory towards the Ising ground
state, while stopping at a suboptimal extremum in the
quantum energy landscape. It happens because for the
circuit with maximum entangling capability, finding the
desired parameter θ∗ such that |ψ(θ∗)〉 ' |Ψ〉 is roughly
as hard as searching the Ising ground state |Ψ〉 over the
entire Hilbert space. In contrast, the circuit with less en-
tangling capability limits the local search to a subregion
of the Hilbert space consisting of low-entangled states,
which may still include the ground state, thereby facili-
tating its discovery [9, 22].

Figures 3c and 3d display two complementary metrics
about the circuit performance with respect to the VQA
optimization, representing how difficult the local gradi-
ent descent is to find the circuit parameter θ∗. When
the entangling capability of the circuit is too low or too
high, the VQA optimization may fail to approximate the
ground state, and ∆E does not fall within a tolerance
range. Figure 3c shows the sample success rate of VQA
trials lying within an acceptable error margin ∆E < 0.1.
It not only confirms the failure of maximally entangling
circuits in finding the ground state, but also displays the
dropping VQA performance of the low-entangling circuits
with p > 0.8. Also consistent is the minimum number
of parameter updates for each successful circuit instance
to satisfy ∆E < 0.1, as summarized in Figure 3d. Its
mean and variance are minimized at p = 0.7, while being
larger as p approaches the boundary value of 0.1 or 0.9.
These results highlight that the VQA optimization works
most efficiently with variational circuits in an intermedi-
ate range of the entangling capability [9].

A specific value of the optimal p may vary for a differ-
ent choice of the depth L or target state |Ψ〉 that follows
the area-law entanglement. Nevertheless, we believe the
basic shape of the curves will remain the same, and the
circuit with medium expressibility will be most outper-
forming to approximate low-entangled target states.

C. Hessian Eigenspectrum and Landscape
Geometry

We recall from (16) that high entangling capability in-
curs the barren plateau phenomenon [11, 14, 23] that any
partial derivative of the energy function L(θ) becomes
statistically zero (8) on average over θ ∈ TnL with an ex-
ponentially decaying variance (17) as to the system size n.
Since an initial gradient at arbitrarily chosen θ vanishes
with exponentially large probability, the gradient-based

100 50 0 50 100

(a)

0 50 100 150 200

(b)

p = 0.0
p = 0.5

p = 0.1
p = 0.6

p = 0.2
p = 0.7

p = 0.3
p = 0.8

p = 0.4
p = 0.9

Figure 4. A collection of 500 sample Hessian eigenspectra at
L = 56 with different probabilities p of omitting CZ-gates,
after τ parameter updates. (a) τ = 0, (b) τ = 5× 103.

optimization typically cannot even start moving towards
local minima in the large n limit.

However, the systematic control of p can make the cir-
cuit ansatz move from the high entangling limit and dra-
matically improve the VQA performance, as evident in
Figure 3. Thus we want to further characterize the geo-
metric implication of entangling capability, i.e., how ex-
actly it eases the barren plateau problem and makes a
large impact on the VQA performance. We will compare
side-by-side the Hessian eigenspectra of the circuits with
a fixed number of parameters and different values of p.

The repeated application of the parameter-shift rule
allows us to express a higher-order derivative of the en-
ergy function as a combination of the first-order gradi-
ents. As a result, [14] found a probabilistic inequality for
the second-order derivatives, which in turn leads to the
following probabilistic bound on the Hessian eigenvalues.

Theorem 2. The largest absolute eigenvalue of the Hes-
sian, Hab = ∇a∇bL(θ), is probabilistically bounded as

Pr(|hmax| ≥ c) ≤
2n2L2 Varθ(∇aL(θ))

c2
. (25)

Proof. Let us denote the Hessian eigenvalues by ha where
1 ≤ a ≤ nL. Since Tr(H2) =

∑
a,bH

2
ab =

∑
a h

2
a,

|hmax| ≤
(∑

a h
2
a

)1/2
=
(∑

a,bH
2
ab

)1/2
≤ nL max

a,b
(|Hab|) , (26)

where maxa,b(|Hab|) is the largest absolute value of the
Hessian matrix elements. Using the inequality that holds
for every 1 ≤ a, b ≤ nL [14],

Pr(|Hab| ≥ c) ≤
2 Varθ(∇aL(θ))

c2
, (27)

we arrive at the probabilistic bound (25) from (26).
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Figure 5. Characteristic plots for the Hessian eigenspectrum with n = 12 qubits and L = 56 layers, based on 50 instances for
each probability p to omit the CZ-gates, at randomly initialized circuit parameters. (a) top/bottom eigenvalues, (b) % of large
eigenvalues satisfying |λ| > 5, (c) % of small eigenvalues satisfying |λ| < 0.2, (d) gradient overlap with Psmall.

Figure 4a visualizes a collection of Hessian eigenspectra
evaluated at 50 independent random circuit parameters
for each p. Its horizontal axis denotes the eigenvalues,
and the vertical axis extends across 500 sample Hessians
distinguished by colors according to their p values. Their
top/bottom eigenvalues are also depicted in Figure 5a as
a function of p. The consequence of the inequality (25)
is apparent in both Figures 4a and 5a: While the largest
absolute eigenvalues rapidly grow as p → 1, all absolute
eigenvalues at p = 0 are bounded above as |hi| < 5. Such
robust concentration of the Hessian spectrum towards 0
by moving p closer to 0 shows that enhanced entangling
capability causes a geometric crossover that smooths all
the steepest directions in the quantum energy landscape.

Notably, the tighter concentration of Hessian eigenval-
ues as p→ 0 does not indicate higher degeneracy at zero
eigenvalues. Let us count the number of stringent flat di-
rections whose corresponding Hessian eigenvalues satisfy
|ha| < 0.2 and denote by Psmall the flat subspace spanned
by them. Figure 5c summarizes, for each different p, the
average percentage between the dimensionality of Psmall

and that of the entire parameter space. Initially at p = 0,
the flat subspace Psmall makes up only 20% of the full di-
mensionality of the circuit parameter θ. This percentage
steadily increases as p moves towards 1, i.e., reducing the
entangling capability of the circuit. It shows that the en-
ergy landscape of low-entangling circuits is surprisingly
similar to that of over-parameterized systems where most
of the variables are used up to parameterize the flat di-
rections. We will observe this geometric resemblance also
in the local geometry of intermediate points on the VQA
parameter trajectory, serving as the ground for the opti-
mization efficiency of low-entangling circuits. See [24] for
how efficiently the gradient descent performs the energy
optimization in over-parameterized systems.

It is also informative to examine how aligned an initial
gradient vector∇L(θ) is with Psmall. For each different p,
we estimate the overlap by projecting the normalized gra-
dient onto the subspace Psmall and computing the norm,

written as

1

‖∇L(θ)‖

√∑
v∈Psmall

(
v · ∇L(θ)

)2
, (28)

where the sum is over the orthonormal basis v of Psmall.
Figure 5d exhibits that the lower the entangling capabil-
ity of the circuit, the smaller the overlap between ∇L(θ)
and Psmall despite higher dimensionality of Psmall. It
is another characteristic of the low-entangling circuits,
which is also found in over-parameterized classical deep
learning systems [19, 25], contributing to the fast conver-
gence of the gradient descent minimization of the energy.

D. Optimization Trajectory

Initial circuit states generated at random parameters,
θ0 ∼ U(0, 2π)⊗nL, can typically be well described by the
average characteristics of the quantum energy landscape
studied so far. We now turn to investigate the properties
of those intermediate circuit states |ψ(θτ )〉 obtained after
τ steps of the gradient descent update.

Unlike the initial circuit energy L(θ0) that cannot dif-
fer much from the ensemble average (7), the energy L(θτ )
at an intermediate time τ should significantly deviate al-
most by definition (29) of the steepest descent method. It
indicates how distinctive the intermediate states |ψ(θτ )〉
are from initial states, thus requiring independent explo-
ration of their geometric properties.

1. Optimization Rate

The gradient descent aims to solve the task of minimiz-
ing the energy function by reaching θ∗ = arg minθ L(θ)
through the iterative and discrete parameter updates,

vτ+1 = βvτ + η∇L(θτ ) ,

θτ+1 = θτ + vτ+1 ,
. (29)

where we set the learning rate η and momentum coeffi-
cient β to be (η, β) = (0.9, 0.01) throughout all numerical



7

0 0.2 0.4 0.6 0.8

0

25

50

75

100

125

150

175

200

(a)

0 0.2 0.4 0.6 0.8

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

(b)

0 0.2 0.4 0.6 0.8
0%

20%

40%

60%

80%

100%

(c)

0 0.2 0.4 0.6 0.8

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(d)

Figure 6. Characteristic plots for the Hessian eigenspectrum with n = 12 qubits and L = 56 layers, based on 50 VQA instances
for each probability p to omit the CZ-gates, after 5000 steps of the parameter update. (a) top/bottom eigenvalues, (b) % of
large eigenvalues satisfying |λ| > 25, (c) % of small eigenvalues satisfying |λ| < 0.2, (d) gradient overlap with Psmall.

experiments in the paper. Taking the continuum limit,
(29) turns into the gradient flow equation, written as [26]

(1− β)
dθa
dτ

= −∇aL(θ) . (30)

Any operator in the system shows no explicit dependence
on τ . Therefore, the chain rule implies that

(1− β)
d

dτ
= (1− β)

nL∑
a=1

dθa
dτ

∂

∂θa
= −(∇L(θ) · ∇) . (31)

As a consequence, the average rate of an operatorO along
the optimization trajectory is

Eθ

[
dO
dτ

]
= Eθ

[
∇L(θ) · ∇O

β − 1

]
= Eθ

[
O∇2L(θ)

1− β

]
. (32)

Note that the last equality is obtained after the integra-
tion by parts, where the averaging integral over the com-
pact space θ ∼ TnL cannot produce a boundary term.

Theorem 3. The following statements hold along the
optimization trajectory {θτ}τ parameterized by discrete
integer steps τ :

(i) The optimization rate satisfies:

Pr

(∣∣∣∣dθdτ
∣∣∣∣ ≥ c) ≤ Varθ(∇L(θ))

c2(1− β)2
(33)

(ii) The average rate of the energy function is:

Eθ

[
dL(θ)

dτ

]
= − 1

1− β

nL∑
a=1

Varθ(∇aL(θ)) . (34)

(iii) The average rate of the energy gradient vanishes:

Eθ

(
d∇L(θ)

dτ

)
= 0 . (35)

(iv) The average rates of the Hessian and the higher-order
energy derivatives Ta1···ak(θ) = ∇a1 · · · ∇akL(θ) are:

Eθ

[
dHab(θ)

dτ

]
= Eθ

[∑nL
c=1Hac(θ)Hcb(θ)

1− β

]
(36)

Eθ

[
dTa1···ak(θ)

dτ

]
= Eθ

[∑nL
c=1 Ta1···ak−1c(θ)Hcak(θ)

1− β

]
(37)

Proof. (i) The inequality follows from the gradient flow
equation (30) inserted into the Chebyshev inequality:

Pr(|∇aL(θ)| ≥ c) ≤ Varθ(∇aL(θ))

c2
. (38)

(ii) Along the optimization curve,

dL(θ)

dτ
=
∇L(θ) · ∇L(θ)

β − 1
. (39)

By taking the expectation value Eθ on both sides of (39),
we arrive at (34) thanks to (8) that Eθ[∇aL(θ)] = 0.
(iii) Along the optimization curve,

d∇aL(θ)

dτ
=

1

2
∇a (∇L(θ) · ∇L(θ)) . (40)

The RHS of (40) vanishes upon taking the expectation
value Eθ, as it is a total derivative on the compact torus.
(iv) Along the optimization curve,

dHab

dτ
=
∇Hab · ∇L
β − 1

dTa1···ak
dτ

=
∇Ta1···ak · ∇L

β − 1
,

(41)

where we apply the chain rule to (39) and use the com-
mutativity of derivatives. After taking the expectation
value Eθ on (41) and doing the integration by parts, we
find (36) and (37), of which the integral over the torus
θ ∼ TnL does not make a boundary contribution.
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Alongside the exponential decay (17) of Varθ[∇aL(θ)]
in highly expressible circuits [11] and the consequent sup-
pression (27) of the Hessian elements [14], these theorems
(34), (36), and (37) highlight the issue of trainability at
initial steps τ when circuit-generated states {|ψ(θτ )〉}τ
are similar to the average Haar-random states.

2. Geometry at Endpoints

We now characterize the local geometry near the opti-
mization endpoint θ5000 by collecting 260 sample Hessian
eigenspectra evaluated after 5000 steps of the parameter
update (29). They are visualized in Figure 4b at a glance,
whose horizontal and vertical directions extend across the
spectral values and circuit instances, being distinguished
by 10 different colors according to the p values. Besides,
their top/bottom eigenvalues are also plotted in Figure 6a
as a function of p. Having inspected these spectral data,
we make the following observations:

First, all negative eigenvalues in the Hessian spectrum
are, if not zero, negligible in their absolute values. This
illustrates that the local geometry around θ5000 no longer
contains a concave direction because the gradient descent
has already converged to a local extremum.

Second, the Hessian spectrum at θ5000 distributes more
widely as the circuit entangling capability decreases, i.e.,
p→ 1. All the top eigenvalues at p = 0 are upper bound
by 25, while the top eigenvalues for p ≥ 0.1 are frequently
greater than 100. Such widespread/concentration of the
Hessian spectrum correlated to the entangling capability
was also observable at the initial points θ0.

Third, the top Hessian eigenvalues across all 0 ≤ p < 1
can be roughly classified into two clusters, i.e., htop ∼ 20
and htop & 100, connected to the success/failure of the
VQA optimization in approximating the ground state. It
is a notable distinction from the initial Hessian spectrum
where the top eigenvalues gradually increase from htop ∼
5 to htop & 70 as p approaches to 1.

One can also infer the geometric structure of the tra-
jectory endpoint θ5000 by examining the percentages of
small and large eigenvalues in the Hessian eigenspectrum.
We regard a Hessian eigenvalue ha as small if |ha| < 0.2
and large if |ha| > 25, such that no eigenvalue at p = 0
can be classified as large. The corresponding fractions of
large/small eigenvalues are depicted in Figures 6b and 6c.
We again find two clusters therein according to the suc-
cess/failure of VQA samples.

Some circuit instances with high entangling capability,
i.e., p ≤ 0.1, converge to non-optimal extrema, whose
local Hessian spectrum contains no large and only a few
small values. Hence, the shape of non-optimal extrema is
mildly convex and nearly isolated, as there are no steep
directions and only a handful of flat directions.

In contrast, the local geometry at the endpoints, θ5000,
close to the ground-level energy E(θ5000) ' Eg exhibits
the dominance of the flat directions, increasing from 70%
to 95% of the total dimension of circuit parameters as p

grows. Then the subspace spanned by the large or in-
termediate eigenvectors makes only up a smaller portion
of the parameter space dimensions. Accordingly, the op-
timal minima should resemble a steep-sided valley with
exceedingly high-dimensional flat directions.

We notice the similarity in the geometric structure near
the optimization endpoints between the quantum energy
landscape with low-entangling capability, i.e., p→ 1, and
classical over-parameterized systems such as deep neural
networks [17]. It is tempting to speculate that the varia-
tional circuit with lower entanglement capability can ef-
fectively enter the over-parameterized regime with fewer
parameters, which explains why the local gradient search
can quickly reach the optimal parameter θ∗ that corre-
sponds to the Hamiltonian ground state |ψ(θ∗)〉 ' |Ψ〉
[13, 24]. Somewhat tangentially, the effect of adding more
circuit parameters while keeping the same amount of the
entangling capability will be considered in Section IV.

3. Evolution of the Geometry

We extend the investigation on the Hessian spectrum
to various intermediate points along the optimization tra-
jectory {θτ}5000τ=1 at different steps τ . Figure 7 illustrates
the evolution of the local geometry shown through a sam-
ple collection of 26 Hessian eigenspectra for each 0 ≤ p <
1 at τ ∈ {a× 10b : a× 10b ≤ 5000 and 0 ≤ a, b ≤ 9}. Be-
sides reconfirming how the entangling capability affects
the local energy landscape around initial/final points, we
also make the following new observations from that:

First, Figures 7a and 7b exhibits the abrupt rise of top
eigenvalues followed by the slow adjustment and also the
regular convergence of bottom eigenvalues to 0, especially
for those successful VQA instances with L(θ5000) ' Eg.
It corresponds to the rapid movement of θτ rolling down
into an attractor basin and then fine-tuning itself to min-
imize the energy L(θτ ) inside the basin.

Second, Figures 7a shows that the surge of top eigen-
values occurs sooner with the lower entangling capability.
For example, the average number of steps τ until the rise
of htop reduces from a few hundreds down to a few tens as
p grows from 0.2 to 0.7. We remark that the rapid conver-
gence of the gradient descent is another resemblance be-
tween the low-entangling circuits and over-parametrized
systems [24].

Third, Figures 7c and 7d show the gradual crossover
of the landscape geometry into either a steep canyon or a
convex bowl along the optimization trajectory, depending
on whether the energy at the convergence point L(θ5000)
is sufficiently close to or far from the ground energy Eg.

Fourth, Figures 7e and 7f display a sharp transition
in the alignment of the gradient vector ∇L(θτ ) through
the norm of the unit gradient projected onto Psmall/large

spanned by the small/large Hessian eigenvectors v

1

‖∇L(θ)‖

√∑
v∈Psmall/large

(
v · ∇L(θ)

)2
. (42)
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Figure 7. The evolution of the Hessian eigenvalues, the overlap of the energy gradient with the small/large curvature subspaces,
the energy gap from the ground state, and the Renyi-2 entropy. (a) top eigenvalue λmax, (b) bottom eigenvalue λmin, (c) % of
large eigenvalues (|λ| > 25), (d) % of small eigenvalues (|λ| < 0.2), (e) gradient overlap with Psmall, (f) gradient overlap with

Plarge, (g) energy difference ∆E, (h) Renyi-2 entropy R(2). Their estimation is based on a collection of 26 Hessian samples for
every 0 ≤ p < 1 and τ ∈ {a× 10b : a× 10b ≤ 5000 and 0 ≤ a, b ≤ 9}.
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Figure 8. Collections of 50 VQA instances to approximate the n = 12 Ising ground state for each circuit depth L that counts
both 56 entangling and (L−56) rotation layers. Adding control parameters with a fixed amount of the entanglement capability

improves the optimization performance. Each subplot displays: (a) energy difference ∆E, (b) Renyi-2 entropy R(2), (3) % that
reaches ∆E < 0.1, (4) number of parameter updates τ to reach ∆E < 0.1.

The parameter update only makes ∇L(θτ ) more aligned
with Plarge during the initial stage. Afterwards, the
gradient overlap with Psmall/large surges/drops suddenly
around the transition point τt ' 100, indicating the ini-
tial phase of the gradient descent is over, and the pa-
rameter θτ≥τt has been already confined to an attractor

basin. We note that such existence of two phases means
the gradient descent is not always aligned with the sub-
space Plarge, not as for the deep neural networks [25].
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IV. CONTROL PARAMETERS

This section studies the effect of the number of con-
trol parameters on the quantum energy landscape and
VQA performance. To run controlled experiments with
a fixed degree of the entangling capability, we will always
start with the L∗ = 56 circuits in Figure 1 and introduce
extra parameters by randomly sandwiching between the
L∗ layers n copies of the Pauli-y rotation gate acting on
every qubit (L− L∗) times. The total number of circuit
parameters is therefore nL = nL∗ + n(L − L∗). Notice
that the additional parameters are redundant as Pauli-y
rotations can commute, i.e.,

Ry,i(ϕ1)Ry,i(ϕ2) = Ry,i(ϕ2)Ry,i(ϕ1)

= Ry,i(ϕ1 + ϕ2)
(43)

To see if the enlarged parameter space significantly im-
pacts the VQA performance, we start with 50 random cir-
cuit instances and minimize the mean energy L(θ) of the
Ising Hamiltonian (23) by the gradient descent method.
All the VQA optimization results for n = 12 qubits are
summarized in Figure 8 as a function of the total number
of layers L. We check that more control parameters, de-
spite their redundancy (43), can still facilitate the local
gradient search of the optimal parameters: A cluster of
orange dots (on the curve below) near ∆E ∼ 9, which
represents unsuccessful attempts in reaching the ground-
level energy Eg, becomes less populated as L increases.
Getting deeper not only increases the rate of optimiza-
tion success, defined by ∆E < 0.1, but also reduces the
parameter update steps τ required for it. Moreover, with
exceedingly many parameters, such as L & 200, the vari-
ational circuit can often achieve a high precision approx-
imation that even satisfies ∆E . 10−2 and ∆R(2) ∼ 0
[13].

Having found the redundant parameters can positively
impact the VQA optimization performance, we look into
the geometric changes of the quantum energy landscape
driven by increasing the parameter space dimension. Let
us compute sample collections of 26 Hessian eigenspectra
for each L ∈ {56, 64, · · · , 112, 120, 144, 168} before/after
5000 steps of the gradient descent update. Figure 9 show
all the Hessian spectra at a glance, whose horizontal and
vertical axes extend over the values and circuit instances,
colored differently according to their L values. Some sup-
plementary characteristic curves on the sample Hessian
spectra are also presented in Figures 10 and 11, where the
upper bounds 5 and 25 of absolute eigenvalues at L = 56
are respectively referred to distinguish large eigenvalues
before and after the optimization.

Our key observation is that the overall patterns of Fig-
ures 4–6 and Figures 9–11 are analogous, demonstrating
the qualitative similarity between reducing entanglement
capability and adding control parameters: In general, the
energy gradient of highly entangling circuits exhibits an
exponentially decaying variance. The landscape’s flat-
ness manifests in the Hessian eigenspectrum that shows

20 10 0 10 20

(a)

0 100 200 300

(b)

L = 56
L = 104

L = 64
L = 112

L = 72
L = 120

L = 80
L = 144

L = 88
L = 168

L = 96

Figure 9. A visualization of 286 sample Hessian eigenspectra,
after τ gradient descent updates, for each circuit depth L that
counts 56 entangling and (L− 56) rotation layers. (a) τ = 0,
(b) τ = 5× 103. It looks qualitatively similar to Figure 4.

a strong concentration near 0. However, as we increase
the parameter space dimension, the gap between the top
and bottom Hessian eigenvalues broadens, and the per-
centage of small or large eigenvalues enlarges. Such evo-
lution in the geometric structure, in turn, improves the
optimization performance of the variational circuit. The
resemblance that we observe between the energy land-
scapes of over-parameterized circuits and low-entangling
circuits is therefore consistent and somewhat inevitable;
One expects the optimization performance to enhance as
well by limiting the search scope to a small subset of
low entangled states rather than the entire Hilbert space
[9]. The low-entangling circuits behave under the gradi-
ent descent as if they are over-parameterized since they
represent only a limited subset in the Hilbert space.

That implies the following design principle for varia-
tional circuits: to avoid reaching both the high entangling
capability and over-parameterization if the VQA task in-
volves low-entangled target states. One should rely on
highly expressible over-parameterized circuits otherwise.

V. DISCUSSION

Throughout this work, we addressed the design princi-
ples for quantum variational circuits by proving several
theorems and conducting systematic experiments. We
demonstrated how the circuit entanglement and the pa-
rameter space dimension affect the local geometry of the
energy landscape and thus the VQA optimization perfor-
mance. Our central object of study was the Hessian of
the energy function in the parameter space, which shows
the curvature eigenspectrum, evaluated at a random ini-
tial point and along the optimization trajectory.

Several analyses on the landscape geometry illustrated
that the efficiency of the low-entangling circuits under
the VQA optimization is related to their resemblance
with an over-parameterized system, despite having a rel-
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atively small number of variables. Fewer parameters than
2n may be sufficient to parameterize a subset of Hilbert
space that the circuit with limited expressibility can rep-
resent. This leaves us with the following question: How
many circuit parameters are optimal for a given amount
of entangling capability under the gradient descent.2

A study of over-parametrization was carried out in [30],
where it was defined as having more circuit parameters
than the critical number needed to explore the relevant
directions in the state space. The emphasis of [30] was on
deriving a bound on the critical dimension, which holds
without a particular assumption on the entangling ca-
pability of the variational circuit. While our analysis
is consistent with that, considering the opposite effect
between the enhanced entangling capability and the in-
creased parameter space dimension, we expect finding an
optimal point in the trade-off relationship will be a crit-
ical task. It includes examining the critical dimension
like [30] for non-maximally entangling circuits that can
efficiently approximate low-entangled VQA target states.

Another important question unexplored in this paper is
the effect of the Hamiltonian on the energy landscape and
optimization accuracy. We recall that the low-entangling
circuits are not successful in simulating volume-law en-
tangled ground states [9], whose entanglement scaling is
actually determined by the Hamiltonian. Generally, we
would like to characterize how certain defining properties
of the Hamiltonian, e.g., locality or degree of spin interac-
tions, can steepen/flatten the energy landscape and thus
influence the VQA performance.

Although all numerical computations in the main text
were carried out specifically with the Ising Hamiltonian,

we expect the above theorems and empirical observations
to hold for generic Hamiltonian systems. The specialty
of individual Hamiltonians should appear only in the nu-
merical values of constants. While finding conclusive
evidence of Hamiltonian independency will require sub-
stantial additional computation beyond the scope of this
work, we know there are several supporting evidence that
agrees well with the general picture given in this paper:
the VQA optimization curve that shows energy vs. gra-
dient descent iteration [7, 9], the demonstration of the
attractor basin that shows energy vs. distance in pa-
rameter space along the optimization trajectory [13], for
both non-local spin-chain model and Sachdev-Ye-Kitaev
model of interacting fermions.

Finally, we would like to understand how various
types of noise can change the quantum energy landscape
[20, 31, 32], which may lead to suitable error mitigation
schemes for noisy VQA optimization.
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Figure 10. Characteristic plots for the Hessian eigenspectrum with 56 entangling and (L − 56) rotation layers, based on 26
instances for each L ∈ {56, 64, · · · , 112, 120, 144, 168}, at randomly initialized circuit parameters. Adding control parameters
with a fixed amount of the entanglement capability has qualitatively the same effect as fixing the number of control parameters
and reducing the entanglement capability. (a) top/bottom eigenvalues, (b) % of large eigenvalues satisfying |λ| > 5, (c) % of
small eigenvalues satisfying |λ| < 0.2, (d) gradient overlap with Psmall. See Figure 5 that looks qualitatively analogous.
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Figure 11. Characteristic plots for the Hessian eigenspectrum with 56 entangling and (L−56) rotation layers, based on 26 VQA
instances for each L ∈ {56, 64, · · · , 112, 120, 144, 168}, after 5000 steps of the parameter update. (a) top/bottom eigenvalues,
(b) % of large eigenvalues satisfying |λ| > 25, (c) % of small eigenvalues satisfying |λ| < 0.2, (d) gradient overlap with Psmall.
They are qualitatively similar to Figure 6.
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