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We study nonclassical correlations in propagating two-mode squeezed microwave states in the
presence of noise. We focus on two different types of correlations, namely, quantum entanglement
and quantum discord. Quantum discord has various intriguing fundamental properties which require
experimental verification, such as the asymptotic robustness to environmental noise. Here, we
experimentally investigate quantum discord in propagating two-mode squeezed microwave states
generated via superconducting Josephson parametric amplifiers. By exploiting an asymmetric noise
injection into these entangled states, we demonstrate the robustness of quantum discord against
thermal noise while verifying the sudden death of entanglement. Furthermore, we investigate the
difference between quantum discord and entanglement of formation, which can be directly related
to the flow of locally inaccessible information between the environment and the bipartite subsystem.
We observe a crossover behavior between quantum discord and entanglement for low noise photon
numbers, which is a result of the tripartite nature of noise injection. We demonstrate that the
difference between entanglement and quantum discord can be related to the security of certain
quantum key distribution protocols.
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I. INTRODUCTION

Quantum communication and quantum computing
protocols often employ entanglement as a nonclassical
resource to provide improvement of information transfer
and achieve a quantum speed-up in processing [1]. In this
regard, entanglement plays a key role in realizing quan-
tum error correction [2], efficient quantum simulation [3],
as well as in achieving quantum supremacy [4]. Promi-
nent examples of quantum communication protocols are
quantum key distribution [5], dense coding [6], or quan-
tum teleportation [7, 8], where entanglement is exploited
for an efficient and unconditionally secure state transfer.
However, entanglement represents only one particular
quantum resource and does not capture all nonclassical
correlations. In particular, quantum discord (QD) pro-
vides a more general measure of nonclassical correlations
including entanglement [9]. Quantum discord may serve
as a resource in multiple quantum information processing
protocols such as deterministic quantum computing with
one qubit (DQC1) [10, 11], quantum sensing [12], and
quantum illumination [13]. Furthermore, theoretical in-
vestigations imply that QD has multiple intriguing phys-
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ical properties which still lack experimental verification,
such as the asymptotic robustness against environmental
noise and its relation to entanglement in mixed tripartite
systems [14]. These two properties are the key focus of
our experimental study. In particular, our experiments
reveal that the process of noise injection into a bipartite
quantum system necessarily creates multipartite quan-
tum correlations with the environment. As a result, the
noise suppresses quantum correlations in the bipartite
system and simultaneously increases the correlations be-
tween one of the subsystems and the environment. We
measure this effect by extracting a flow of locally inac-
cessible information (LII) [15]. This LII flow behaves
fundamentally different as a function of noise for differ-
ent subsystems. The more detailed investigation of the
LII flow may be relevant for testing ideas related to quan-
tum Darwinism [16, 17], where correlations with different
fragments of the environment eventually lead to an ob-
jective reality [18]. In addition, we demonstrate that LII
is related to the unconditional security of the Gaussian
quantum key distribution (QKD) protocol, described in
Ref. [19].

The potential robustness of QD versus noise is ex-
tremely useful for various quantum communication pro-
tocols. In particular, unavoidable external fluctuations
cause loss of quantum correlations, and thereby lower,
the efficiency of these protocols. Protocols based on
quantum entanglement are particularly vulnerable to
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noise, since entanglement cannot survive significant noise
levels, leading to the so-called sudden death of entan-
glement [20]. This is especially important for quantum
communication protocols in the microwave regime, as
room temperature is associated with thousands of ther-
mal noise photons with characteristic frequencies of sev-
eral GHz [21]. Here, the expected asymptotic robust-
ness of QD [22] against noise offers a natural path for
quantum communication and sensing. An actual chal-
lenge is to find protocols capable of exploiting QD as a
quantum resource. As such, the remote state preparation
(RSP) protocol stands out as one of the prominent exam-
ples. RSP aims at the generation of a desired and known
quantum state at a remote location with the assistance
of classical communication and complementary nonclas-
sical correlations [23]. A particular quantum advantage
provided by RSP is associated with the smaller amount
of classical information required to prepare a quantum
state, as compared to a fully classical communication
protocol. Another benefit of the quantum RSP scheme is
the unconditional security of the feedforward signal [24].
In some scenarios, the RSP protocol appears to exploit
QD as its nonclassical resource [9, 25]. Finally, there
is a class of quantum sensing protocols known as quan-
tum illumination, where entangled light is used to detect
the presence of a low-reflectivity object in a bright noisy
background. Naturally, entanglement vanishes in this
scenario, yet residual non-classical correlations, captured
by QD, persist. The latter seems to be connected to the
quantum advantage of these quantum sensing schemes
[13, 26].

II. EXPERIMENT

In this paper, we experimentally study the effect of
noise injection into one mode of a propagating two-mode
squeezed (TMS) state which is distributed along two
paths, A and B. A schematic illustration of this scenario
is shown in Fig. 1(a). The TMS state is generated by su-
perimposing two orthogonally squeezed microwave states
at a symmetric microwave beam splitter. Then, we inject
an uncorrelated broadband noise into path B. Finally, we
perform a joint quantum state tomography, which allows
us to extract full information about the two-mode quan-
tum state [27, 28]. We use the entanglement of forma-
tion (EoF), EF, as a measure for bipartite entanglement
between parties A and B. We choose this specific entan-
glement measure since it exactly coincides with QD for
pure states [29]. Simultaneously, EoF is directly related
to QD via various monogamy relations, which eventually
enables the connection of both quantities to LII [15, 30].
For continuous-variable quantum systems, EoF quanti-
fies the minimal amount of two-mode squeezing needed
to prepare an entangled state, starting from a classical
one by using local operations and classical communica-
tion [31]. In addition, we extract an asymmetric bipartite
QD, DA (DB), between the two subsystems A and B. It
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Figure 1. (a) Scheme of two-mode squeezing and noise injec-
tion. Nonlocal correlations are generated by superposing two
orthogonally squeezed states on a symmetric beam splitter to
generate a path-entangled frequency-degenerate TMS state.
The asymmetric noise injection couples the environment to
one of the TMS subsystems. (b) Equivalent experimental
setup consisting of two JPAs for squeezed state generation,
a microwave hybrid ring, and a directional coupler for injec-
tion of white Gaussian noise generated at room temperature
by an arbitrary function generator (AFG). The two-mode sig-
nal is detected with a heterodyne receiver setup and digitally
processed to extract the statistical signal moments and recon-
struct the corresponding covariance matrix.

is defined as the difference between their quantum mu-
tual information IAB and a one-way classical correlation
JA|B (JB|A),

DA = IAB − JA|B, DB = IAB − JB|A, (1)

and quantifies the non-local fraction of IAB [32].
Figure 1(b) illustrates our experimental setup. We use

two superconducting flux-driven Josephson parametric
amplifiers (JPAs) operated at the frequency ω0/2π =
5.323 GHz for squeezed state generation. Each of the
JPAs performs a squeezing operation on the incident
weak thermal state [33]. By sending the respective
squeezed states to a hybrid ring (symmetric microwave
beam splitter), we generate a TMS microwave state.
Here, entanglement is expressed in strong correlations
between two nonlocal field quadratures [34–37]. Our fi-
nal state tomography is based on heterodyne measure-
ments of paths A and B. After digital down-conversion
and filtering, we extract the statistical field quadrature
moments using a reference state reconstruction method
[34, 38]. Under the assumption that the reconstructed
states are Gaussian, a local phase space distribution is de-
scribed by the resulting two-mode covariance matrix [34–
36]. The photon number calibration of the experimental
setup is obtained by using Planck spectroscopy [39]. In
order to test the robustness of the nonclassical correla-
tions against noise, we perform a controlled noise injec-
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Figure 2. Theoretical prediction of quantum correlations as a function of squeezing level S and noise photon number n.
Panel (a) shows the quantum discord DB, thereby demonstrating the asymptotic robustness, DB > 0, for any finite level of
noise and squeezing. Panel (b) shows the analytical lower bound EF for EoF. At n = 1, as indicated by the vertical dashed
line, we observe EF = 0, independent of S, which demonstrates the sudden death of entanglement. In panel (c), EF and DB

are plotted in the regime of n� 1, revealing a crossover region. Here, for low n, EoF is larger than QD. For increasing n, QD
becomes larger than EoF. The crossover noise photon number nc is depicted by the solid line, dividing the blue (dark gray)
and orange (light gray) plane.

tion into one of the entangled paths [34–36]. The noise
signal is generated using an arbitrary function generator
(AFG) which produces a low-frequency white Gaussian
noise with a specified bandwidth of 160 MHz. This noise
signal is upconverted to the carrier frequency ω0/2π and
guided into the cryogenic setup. We implement the ac-
tual noise injection in one of the entangled paths with a
directional coupler with coupling β = −20 dB. By vary-
ing the noise power emitted from the AFG, we probe
both EoF and QD as a function of the injected noise
photon number n for different JPA squeezing levels. The
latter is defined as S = −10 log10(vs/0.25), where vs is
the variance of the squeezed quadrature and the chosen
vacuum reference is vvac = 0.25. More details about the
experimental setup are provided in Appendix A.

III. ENTANGLEMENT OF FORMATION AND
QUANTUM DISCORD

Under the assumption that the state is Gaussian, EoF
and QD can be extracted from the reconstructed two-
mode covariance matrix VAB [28, 40]. In Ref. 27, it has
been shown that a lower bound, EF, for Gaussian EoF
can be expressed as

EF = sγ
[
cosh2γ ln(cosh2γ)− sinh2γ ln(sinh2γ)

]
≤ EF,

(2)
where γ represents the minimally required amount of
two-mode squeezing to disentangle the respective bipar-
tite quantum state and sγ = sign(γ). For our analysis,
we use an approximation EF ' EF, which becomes ex-
act in the case of symmetric local states A and B. The
asymmetric Gaussian QD, DA, corresponds to the cor-
relation left after we perform a local measurement on

subsystem B. It can be calculated as

DA = f
(√

I2

)
− f(ν+)− f(ν−) + f

(√
Emin

A|B

)
, (3)

where I2 denotes the second symplectic invariant of VAB

and ν± are the corresponsing symplectic eigenvalues [29].

The quantity
√
Emin

A|B describes the minimized conditional

entropy and f is defined as f(x) =
(
2x+ 1

2

)
ln
(
2x+ 1

2

)
−(

2x− 1
2

)
ln
(
2x− 1

2

)
. A similar expression can be written

for the quantum discord DB, where the measurement is
performed on system A. It can be shown that for pure
quantum systems, i.e., in the limit of n→ 0, EoF and QD
coincide [29]. Nevertheless, for mixed states, these quan-
tities behave fundamentally different, as theory predicts
asymptotic stability of QD, in contrast to EoF.

Figure 2 shows theoretically expected results for an
idealized experiment with zero losses and noiseless JPAs.
In Fig. 2(a) [Fig. 2(b)], we plot DB (EF) as a function
of the average noise photon number n, injected to the
TMS state, and the squeezing level S. We observe the
expected asymptotic stability of QD, DB > 0, and the
sudden death of entanglement, EF < 0, for n > 1. The
latter effect can be understood by expressing γ in Eq. 2
analytically as

γ(r, n) =
1

2
ln

[
e2r + n

1 + e2rn

]
, (4)

where r is the squeezing factor, which can be calculated
by r = S/(20 log10 e) for noiseless amplification by both
JPAs. We observe that γ(r, 1) = 0, independent of r, in-
dicating the sudden death of entanglement. In Fig. 2(c),
we plot the theory values of EF and DB for low noise pho-
ton numbers and observe a crossover between EoF and
QD. We denote the crossover point in terms of a corre-
sponding noise photon number, nc. This crossover point,
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nc > 0, exists for any positive squeezing level S. This ef-
fect has been predicted in Refs. 41 and 42, and is a direct
result of a tripartite nature of the noise injection. The
latter implies that a correct quantum mechanical descrip-
tion of noise necessarily requires to take into account the
environment E as a third interacting quantum system.
For the tripartite system, it can be shown that EoF and
QD are monogamous, i.e., that bipartite QD can only
be increased by the simultaneous consumption of bipar-
tite EoF and vice versa [30]. From this monogamic con-
servation relation, it has been shown that the difference
between EoF and QD can be expressed as [15]

∆A ≡ DA − EF =
1

2
(LB→A→E − LE→A→B) , (5)

∆B ≡ DB − EF =
1

2
(LA→B→E − LE→B→A) , (6)

∆AB ≡
DA +DB

2
− EF =

1

2

(
L(A

B)→E − LE→(A
B)

)
, (7)

where LX→Y→Z denotes the flow of LII from the system
X over Y to Z and L(X

Y )→Z (LZ→(X
Y )) is the LII flow

from (to) the bipartite system XY to (from) Z. As a
result, if ∆AB > 0, more LII flows from the bipartite
system AB to the environment E than vice versa.

IV. RESULTS AND DISCUSSION

The experimentally determined QD values, DA and
DB, are provided in Fig. 3(a) and Fig. 3(b) and the quan-
tum entanglement measure EF is shown in Fig. 3(c). The
line plots correspond to a fit according to Eq. 3 for the
QD and Eq. 2 for the EoF, where we take the finite JPA
noise into account. The gain-dependent noise, added
by the JPAs, is modelled by a power law dependence,
nj = χ1(G − 1)χ2 , where G represents the degenerate
gain [43]. The coefficients χ1 and χ2 are treated as fit
parameters. We find χ1 = 0.05 and χ2 = 0.56. In
Fig. 3(a), we additionally show the experimentally deter-
mined squeezing level Se, as well as the respective the-
oretical squeezing level St and fitted JPA noise nj. We
observe that the fits reliably reproduce the experimental
data. More information about the fitting routine is given
in Appendix C.

Furthermore, we find that the experimentally deter-
mined QD is always positive and converges towards zero
for n → ∞, thereby, proving the asymptotic robust-
ness against noise. In contrast to that, we find that EF

becomes zero already at a finite noise photon number
nsd ' 1, experimentally verifying the sudden death of
entanglement. This value is an important fundamental
noise threshold for two-mode squeezed light. The respec-
tive experimental values for nsd as a function of squeezing
are shown in the inset of Fig. 3(c). They have been ex-
tracted from the experimental data using cubic Hermite
spline interpolation. We find that nsd is independent of
the squeezing level, as expected from theory. Note that

the experimentally determined noise level for the sudden
death of entanglement is lower than the theoretically pre-
dicted noise photon number of unity. This is a result
from the finite noise added by the JPAs themselves. In
addition to that, further deviations from ideal theory are
caused by path losses and a pump crosstalk between the
JPAs. However, these imperfections are not taken into
account in the current fit model. The deviation of nsd
from constant behavior at S = 6.5 dB is a result from
imperfect balancing of the TMS state due to pump leak-
age.

For most of the observed states, EoF appears to be
smaller than QD. This can be understood by the fact
that, by definition, QD describes more general nonlocal
correlations than EoF. However, this simple relation is
only true in the bipartite limit. When one considers the
environment as a third party, the relation between bi-
partite QD and EoF may change. In order to experimen-
tally investigate the latter we investigate the regime of
n � 1 in more detail. Here, theory predicts a crossover
between EoF and QD, according to Fig. 2(c). To ex-
perimentally study this crossover region, we replot the
measured DB and EF for noise photon numbers n ≤ 0.2
in Fig. 3(d), revealing the intersection between EoF and
QD, especially well observable for Se = 6.5 dB. The solid
(dashed) lines correspond to a cubic Hermite spline inter-
polation for DB (EF). From this interpolation, we deter-
mine the crossover noise photon number nc as a function
of squeezing. The same procedure is repeated for DA

and DAB ≡ (DA +DB)/2. The corresponding results are
plotted in Fig. 4(a), and the predictions based on an ideal
(lossless and noiseless) model are depicted in Fig. 4(b). In
the limit S → ∞, we observe that nc → n∗ ' 0.26 for
DA as well as for DB. Furthermore, we find a qualita-
tive agreement between experiment and theory for the
dependence of nc on the squeezing level S. Nevertheless,
we observe that for DA the experimentally determined
values are lower than those predicted by theory. This de-
viation can be explained by the finite noise, losses, and
crosstalk between the JPAs, since these effects are not
taken into account in the ideal theory model. Further-
more, we note that we cannot experimentally investigate
the whole range shown in Fig. 4(b), as larger squeezing
levels are not experimentally achievable due to the gain-
dependent noise added by the JPAs. As shown by the
red dotted-dashed line in Fig. 4(b), the corresponding nc
for (DA + DB)/2 has a minimum at nmin ' 0.23, corre-
sponding to Smin = 5.7 dB. Thus, when one attempts to
maximize nc in the bipartite system AB, it is not always
beneficial to increase the squeezing level. Experimental
data in Fig. 4(a) qualitatively reproduces this result.

Next, we investigate the asymmetric differences be-
tween EoF and QD, ∆A, ∆B, and ∆AB, as a function
of the noise photon number n. Figure 4(c) [(d)] shows
the theoretically expected noise dependence of ∆A (∆B)
for various squeezing levels S. We observe that the quan-
tities ∆A and ∆B behave fundamentally different in the
limit of low noise. In particular, the crossover noise pho-
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Figure 3. (a) Experimentally obtained values of quantum discord DA as a function of the injected noise photon number n for
various squeezing levels S. Symbols indicate the measured data and lines are fits according to a realistic model, described in
Appendix C, which takes a finite JPA noise into account. The quantity Se denotes the experimentally determined squeezing
level and St is the corresponding squeezing level, obtained by fitting the data by the theory prediction. The JPA noise nj is
extracted from the fit and is a function of gain. Although only shown for DA, the fitted values for Se and nj are the same for DB

and EF. (b) Experimentally obtained values of quantum discord DB as a function of the injected noise photon number, n, for
various squeezing levels. The inset shows the same data in a log-log plot. (c) Experimental EoF (symbols) and corresponding
fits (lines) for various squeezing levels. We observe the sudden death of entanglement at nsd ' 1. The inset shows that nsd

is independent of S, where nsd is obtained from the experimental data using cubic Hermite spline interpolation. Error bars
are obtained from the statistical measurement error and are only plotted if the error exceeds the symbol size. (d) Zoom-in of
experimental results for DB and EF for low noise photon numbers n and various squeezing levels Se. Solid (dashed) lines are
the result from a cubic Hermite spline interpolation between the measured values for DB (EoF). Here, we observe the crossover
behavior of QD and EoF, as predicted by the theory.

ton number nc decreases monotonically with increasing
S in the case of ∆A, as can also be seen in Fig. 4(b). On
the contrary, nc shows a monotonic increase as a function
of S for increasing ∆B. This fundamental deviation can
be understood by the fact that noise injection in B is a
local process and directly leads to bipartite correlations
between party B and environment E. In contrast, this lo-
cal process only indirectly correlates A and E. Thus, the
bipartite correlations between B and E increase mono-
tonically with n. Furthermore, the correlation between
A and B monotonically decreases as a function of n. In
contrast to that, correlations between A and E can only
result from an interplay between squeezing S and noise
n, and are not necessarily required to be monotonic in

these quantities. The scenario is schematically depicted
in Fig. 5(a), where solid black arrows, connecting to sys-
tems X and Y with X,Y ∈ {A,B,E}, indicate a mono-
tonic increase of correlations. The direction of the LII
flow, described by ∆A (∆B) according to Eq. 5 (Eq. 6), is
shown by the curved solid purple (dashed green) arrow.
Note that ∆A describes the net LII flow B → A → E
and ∆B describes the respective net flow A → B → E.
Therefore, the fundamentally different behavior of these
quantities as a function of n, as shown in Figs. 4(c) and
(d), can be explained by the fact that in the case of ∆B

no direct bipartite correlations between A and E are re-
quired to establish an LII flow, in contrast to the case
described by ∆A.
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and DB. In the limit S →∞, nc converges to the same constant n∗ ' 0.26 for DA and DB. The gray shaded region indicates
the experimentally obtained squeezing levels, corresponding to panel (a). (c) Theoretical difference ∆A between DA and EF as
a function of the noise photon number n for various squeezing levels S. (d) Theoretical difference ∆B between DB and EF as
a function of the noise n for various squeezing levels S.

Furthermore, the quantities ∆A, ∆B, and ∆AB can be-
come of practical interest for entanglement-based quan-
tum key distribution (QKD) protocols [44], where an
eavesdropper attempts to extract LII from a bipartite
quantum system. In such a scenario, the subsystems A
and B exploit quantum correlations to securely share a
common secret key and the subsystem E can be related to
an eavesdropper controlling the environment [45]. Then,
the noise injection can be interpreted as the result of
an entangling cloner attack performed by the eavesdrop-
per [46]. It directly follows from Eq. 7 that the eavesdrop-
per needs to add at least nc noise photons to the system
AB to get a positive net flow of LII. Numerically, we find
that in the limit S →∞, we have nc → n∗ ' 0.26 for ∆A,
∆B, and ∆AB. In order to investigate this interrelation,

we consider a Gaussian CV-QKD scheme described in
Refs. 19 and 47 under the assumption of reverse reconcil-
iation [48]. We consider a scenario, where A and B share
a TMS resource state, and assume that the eavesdropper
performs an entangling cloner attack via the directional
coupler. The resulting secret key which quantifies the
amount of exchanged secure information can be calcu-
lated as

K = Is(A : B)− χE, (8)

where Is(A : B) denotes the Shannon mutual informa-
tion between A and B, and χE represents the eaves-
dropper’s Holevo quantity [48, 49]. Figure 5(b) shows
the theoretically expected K as a function of the re-
source state squeezing level S and noise photon number
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Figure 5. (a) Schematic dependence of bipartite correlations
between subsystems A, B, and E. Solid (dotted) black arrows
indicate a monotonic increase (decrease) of bipartite corre-
lations with a respective quantity. The dotted-dashed arrow,
connecting A and E, indicates that correlations between these
subsystems are not necessarily monotonic in S or n. The solid
curved purple (dashed green) arrow indicates the LII flow
B→A→E (A→B→E), described by ∆A (∆B). (b) Theoreti-
cal secret key K as a function of the resource state squeezing
level S and injected noise photon number nq in the detected
quadrature. Here, we assume a continuous-variable QKD pro-
tocol between A and B [19], where the environment acts as an
eavesdropper. The black dashed line indicates the threshold
separating the areas of positive secret keys (secure), K > 0,
and negative keys (insecure), K < 0. The orange (light gray)
dashed line shows the corresponding nc for DB as a function
of S, which offers an intuitive explanation for the security of
the QKD protocol on the language of the LII flow between
the subsystems.

nq in the detected quadrature for the case when B per-
forms a homodyne detection on his part of the entangled
state. Note that, in contrast to the full noise, n, we only
consider noise nq, added to the detected quadrature, q.
This is because the homodyne detection is equivalent to
phase-sensitive amplification and measurement of a cer-
tain quadrature which inherently deamplifies the other
quadrature [29]. Consequently, only the noise in the am-
plified quadrature has an effect on the measurement re-
sult. We observe that, similarly to the quantities ∆A,
∆B, and ∆AB, the threshold value for nq, when we ob-

tain a positive secret key, converges towards nq ' 0.26
for S → ∞. We numerically find that this asymptotic
value approximately coincides with n∗. Thus, we can
only obtain a positive secret key in the high squeezing
limit if the noise, added to the detected quadrature, is
lower than the threshold n∗, required for a positive LII
flow to the eavesdropper. As a result, the difference be-
tween QD and EoF can act as an indicator whether it is
possible to obtain a positive secret key or not. More de-
tails about the calculation of K are provided in Appendix
B.

In summary, we have investigated the influence of lo-
cal noise injection in propagating TMS microwave states
on quantum discord correlations and quantum entangle-
ment quantified via the entanglement of formation mea-
sure. We have experimentally verified the sudden death
of entanglement around theoretically predicted values of
approximately one injected noise photon, independent of
the squeezing level. Furthermore, we have experimentally
demonstrated that in strong contrast to entanglement,
QD is asymptotically robust against noise. In addition,
we have measured the theoretically predicted crossover
between EoF and QD for small noise photon numbers,
which is a result of the tripartite nature of mixed TMS
states. Since the difference between QD and EoF can
be related to the net flow of LII, it may be used to
assess the security of certain QKD protocols based on
squeezed states. We have demonstrated that the locality
of noise injection implies a fundamental difference be-
tween the LII flows A→B→E and B→A→E. Finally,
the demonstrated results on the robustness of QD against
noise are relevant for the DQC1 quantum computation
approach and quantum illumination protocols. These ap-
plications can be viewed as a motivation to intensify the
search for quantum information processing, communica-
tion, and sensing protocols exploiting QD as a quantum
resource. Such protocols would be inherently resistant
to noise in contrast to entanglement-based approaches
which suffer from the sudden death of entanglement.

We acknowledge support by the German Research
Foundation via Germany‘s Excellence Strategy (EXC-
2111-390814868), the Elite Network of Bavaria through
the program ExQM, the EU Flagship project QMiCS
(Grant No. 820505), and the German Federal Min-
istry of Education and Research via the project
QUARATE (Grant No. 13N15380), the project QuaM-
ToMe (Grant No. 16KISQ036), JSPS KAKENHI (Grant
No. 22H04937), and JST ERATO (Grant No. JPM-
JER1601). This research is part of the Munich Quantum
Valley, which is supported by the Bavarian state govern-
ment with funds from the Hightech Agenda Bayern Plus.



8

APPENDIX

A. Experimental setup

The JPAs are thermally stabilized at 50 mK to guaran-
tee steady squeezing and noise properties. We pump the
JPAs using Rohde&Schwarz SGS100A microwave sources
and pulse the pump signal using a data timing generator
(DTG) [24, 34, 50, 51]. Here, the TMS state is generated
by superimposing two orthogonally squeezed states with
equal squeezing levels using a cryogenic hybrid ring, act-
ing as a 50:50 beam splitter. The resulting TMS state
at the hybrid ring output then locally looks like thermal
noise but shows strong nonlocal correlations in the covari-
ances. The photon number in the TMS state is calibrated
using the Planck spectroscopy [39], which is realized by
sweeping the temperature of a heatable 30 dB attenuator
in the temperature range of 40 mK − 600 mK. By us-
ing this heatable attenuator as a self-calibrated cryogenic
photon source, we can directly map the detected voltage
in the output signal to the photon number in the cryo-
genic quantum signal [39]. One part of the TMS state
is transmitted to a directional coupler (CPL-4000-8000-
20-C, Miteq/Sirius) with coupling β = −20 dB. The
coupled port of the directional coupler is used to inject
white broadband noise into the system, which is gener-
ated using a Keysight 81160A arbitrary waveform gen-
erator (AFG). The generated noise has a bandwidth of
160 MHz and is upconverted to the signal reconstruction
frequency of ω0/2π = 5.323 GHz using a local oscillator
(LO). Due to the low signal level, the output signal needs
to go through multiple amplification stages consisting
of a cryogenic high-electron-mobility transistor (HEMT)
amplifier and additional room temperature amplifiers,
which are stabilized in temperature by a Peltier cooler.
The overall noise of the detection chain is determined by
the HEMT, which results from its high gain (∼ 40 dB).
Frequency-resolved measurements are performed using a
vector network analyzer (VNA) and the reconstruction
of quantum microwave states as well as quantum corre-
lation measurements are performed using a heterodyne
receiver setup. This heterodyne detection setup is sim-
ilar to the setups described in Refs. 24, 35, 36, 51. The
signal is down-converted to 11 MHz and digitized by an
Acqiris card with a sampling frequency of 400 MHz. The
digitized data is transmitted to a computer and down
converted to a dc-signal. The resulting signal is filtered
using a digital finite-impulse-response (FIR) filter with
a full bandwidth of 400 kHz. Subsequently, the quadra-
ture moments 〈In1Qm1 Ik2Ql2〉, n,m, k, l ∈ N0 are deter-
mined and averaged. In each measurement, the data is
averaged over 210 cycles, where each cycle corresponds
to 5.76 × 106 averages. The squeezing angles are stabi-
lized using a phase-locked loop, where in each measure-
ment cycle, the squeezing angle γexpi is extracted from
the quadrature moments corresponding to the ith JPA,
where i ∈ {1, 2}. Following this approach, the difference

δγi = γexpi − γtargeti from the desired target angle γtargeti

is calculated and the respective phase of the JPA pump
source is corrected by 2δγi. The JPA pump sources are
daisy-chained with a reference frequency of 1 GHz to the
LO source. The LO, the DTG, the VNA, the AFG, as
well as the Acqiris card are synchronized with a 10 MHz
rubidium frequency clock (Stanford Research Systems,
FS725). In our experiment, we assume that all recon-
structed states are Gaussian and can be described by
signal moments up to the second order. This assumption
of Gaussianity is verified by calculating the cumulants
κmn [52]. Since it is theoretically expected that κmn = 0
for m+ n > 2 for Gaussian states, we conclude that the
Gaussian approximation of our quantum states is well
justified if the experimentally reconstructed cumulants
of third and fourth order are much smaller than the first
and second order cumulants.

B. Quantum key distribution with Gaussian states

In order to investigate the relation between the LII
flow and QKD, we consider that Alice and Bob share an
ideal TMS state with the squeezing factor r, described
by the covariance matrix

VAB =
1

4

(
cosh2r 12 sinh2r σ̂z
sinh2r σ̂z cosh2r 12

)
, (9)

where 12 denotes the 2 × 2 identity matrix and σ̂z is
the Pauli z-matrix. For the entangling cloner attack, the
eavesdropper prepares a second TMS state [48]

VE1E2
=

1

4

(
W12

√
W 2 − 1 σ̂z√

W 2 − 1 σ̂z W12

)
. (10)

As a result, the full covariance matrix

VABE1E2
= VAB ⊕ VE1E2

(11)

describes a pure state. The eavesdropper then couples
the mode E1 to B by an asymmetric beam splitter oper-
ation

C =

(√
1− β 12

√
β 12

−
√
β 12

√
1− β 12

)
. (12)

The resulting covariance matrix is given by

V ′ABE1E2
= (12 ⊕ C ⊕ 12)VABE1E2

(12 ⊕ C ⊕ 12)†, (13)

which can be analytically expressed as

V ′ABE1E2
=

1

4


V ′11 V ′12 V ′13 02

V ′12
T

V ′22 V ′23 V ′24
V ′13

T
V ′23

T
V ′33 V ′34

02 V ′24
T
V ′34

T
V ′44

 , (14)
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where

V ′11 = cosh2r12

V ′12 =
√

1− β sinh2r σ̂z

V ′13 = −
√
β sinh2r σ̂z

V ′22 = (1− β) cosh2r12 + βW12

V ′23 =
√
β(1− β) (W − cosh2r)12

V ′24 =
√
β
√
W 2 − 1 σ̂z

V ′33 = β cosh2r12 + (1− β)W12

V ′34 =
√

1− β
√
W 2 − 1 σ̂z

V ′44 = W12. (15)

Since the matrix V ′22/4 corresponds to the local noisy
TMS state in system B, we demand

1

4
(cosh2r + 2n)12 =

1

4
[(1− β) cosh2r 12 + βW12]. (16)

In the limit β � 1, we find the relation βW = 2n. Since
we perform a homodyne detection on B in the next step,
it is practical to define the number of noise photons,
added to the measured quadrature, as nq = n/2. For
the final state of the eavesdropper, we have

V ′E =
1

4

(
V ′33 V ′34
V ′34

T
V ′44

)
. (17)

We consider reverse reconciliation and hence perform a
measurement of B [46]. After a homodyne measurement
of the q quadrature, the conditioned covariance matrix
for E reads

V ′E|B = V ′E −
1

4
√

detV ′22
V ′CΠqV

′
C
T
, (18)

where VC = (V ′23, V
′
24)T and Πq denotes the phase-

space projector on the q-quadrature. The corresponding
Holevo quantity χE is then obtained as

χE = SE − SE|B, (19)

where SE (SE|B) denotes the von Neumann entropy, cor-
responding to V ′E (V ′E|B) [48, 49]. For a two-mode Gaus-

sian state, described by a covariance matrix V , the von
Neumann entropy is given by

S = f(ν+) + f(ν−), (20)

where ν+ and ν− are the symplectic eigenvalues of V
[53]. For a codebook of input states with variance σ2,
the Shannon mutual information is obtained to be [48]

Is(A : B) =
1

2
log2 (1 + SNR)

=
1

2
log2

(
1 +

4(1− β)σ2

(1− β)e−2r + 4nq

)
' 1

2
log2

(
1 +

σ2

nq

)
, (21)

where the last expression is valid in the limit r � 1
and β � 1. For the calculation of the signal-to-noise
ratio (SNR) in the detected quadrature, we have consid-
ered the protocol described in Ref. 19, implying a noise
of e−2r/4 + nq per quadrature and σ2 = sinh(2r)/2. To
obtain Fig. 3, we have fixed β = 10−4.

C. Fitting the experimental data

In this section, we provide details about the model
used to fit the experimental data. By taking finite cou-
pling and amplifier noise into account, the final covari-
ance matrix can be expressed as

VAB =
1 + 2nj(G)

4

(
α γ
γT β

)
, (22)

where

α = cosh2r 12, (23)

β = [(1− β) cosh2r + β(1 + 2n̄)] 12, (24)

γ =
√

1− β sinh2r σ̂z. (25)

Furthermore, nj(G) represents the noise added by the
JPAs, which depends on the degenerate gain G. In ad-
dition, n̄ is the number of noise photons at the input
of the coupled port of the directional coupler. The en-
vironmental noise n̄ is related to n via n = βn̄ under
the assumption that n̄ � 1. The realistic squeezing fac-
tor r can be extracted from the reconstructed squeezed
(antisqueezed) variance vs (va) via e4r = va/vs. The
degenerate gain can then be expressed as G = e2r. Fur-
thermore, we model the gain-dependent JPA noise by a
power law dependence nj(G) = χ1(G − 1)χ2 , where we
treat χ1 and χ2 as the only fit parameters. For the fit, we
use χ ≡ (χ1, χ2)T and define a corresponding weighted
least-square cost function

T (χ) =
∑
S,n

(
w1

∣∣∣∣DA(S, n,χ)− D̃A(S, n)

∣∣∣∣2 (26)

+w2

∣∣∣∣DB(S, n,χ)− D̃B(S, n)

∣∣∣∣2 (27)

+w3

∣∣∣∣EF(S, n,χ)− ẼF(S, n)

∣∣∣∣2
)
, (28)

where the sum is evaluated over all experimentally cho-
sen squeezing levels S and noise photon numbers n. The
quantities wi are the weights, accounting for the respec-
tive contribution. The quantities D̃A(S, n), D̃B(S, n),

and ẼF(S, n) are the experimentally determined data
points for A-discord, B-discord, and EoF, respectively,
corresponding to S and n. The functions DA(S, n,χ),
DB(S, n,χ) and EF(S, n,χ) are obtained by inserting
Eq. 22 into the theoretical expressions for QD and EoF.
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The fit parameters χ1 = 0.05 and χ2 = 0.56 are then
given by

(
χ1

χ2

)
= arg min

χ
T (χ), (29)

where we start with the initial conditions χ = (0, 1)T.
To balance the contributions of QD and EoF in the cost
function, we choose the weights w1 = w2 = 1/2 and

w3 = 1 for the fit. To extract the noise photon num-
bers corresponding to the sudden death of entanglement
as well as the experimental crossover points between QD
and EoF, we do not make use of the fit curves. Instead,
we determine these values directly from the experimen-
tal data using cubic Hermite spline interpolation as we
expect this method to be more accurate than the fit. We
use cubic Hermite spline interpolation instead of conven-
tional cubic splines to increase the precision by avoiding
overshoots.
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