
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Impact of time-correlated noise on zero-noise extrapolation
Kevin Schultz, Ryan LaRose, Andrea Mari, Gregory Quiroz, Nathan Shammah, B. David

Clader, and William J. Zeng
Phys. Rev. A 106, 052406 — Published  3 November 2022

DOI: 10.1103/PhysRevA.106.052406

https://dx.doi.org/10.1103/PhysRevA.106.052406


Analyzing the impact of time-correlated noise on zero-noise extrapolation

Kevin Schultz,1, ∗ Ryan LaRose,2, 3 Andrea Mari,3 Gregory Quiroz,1

Nathan Shammah,3 B. David Clader,1, † and William J. Zeng3, 4

1Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
2Department of Computational Mathematics, Science, and Engineering,

Michigan State University, East Lansing, MI, 48823, USA
3Unitary Fund

4Goldman, Sachs & Co, New York, NY
(Dated: September 9, 2022)

Zero-noise extrapolation is a quantum error mitigation technique that has typically been studied
under the ideal approximation that the noise acting on a quantum device is not time-correlated. In
this work, we investigate the feasibility and performance of zero-noise extrapolation in the presence
of time-correlated noise. We show that, in contrast to white noise, time-correlated noise is harder
to mitigate via zero-noise extrapolation because it is difficult to scale the noise level without also
modifying its spectral distribution. This limitation is particularly strong if “local” gate-level methods
are applied for noise scaling. However, we find that “global” noise scaling methods, e.g., global
unitary folding, can be sufficiently reliable even in the presence of time-correlated noise. We also
introduce gate Trotterization as a new noise scaling technique that may be of independent interest.

I. INTRODUCTION

The theory of fault-tolerant error-corrected quantum
computation may result in speed-ups in a number of com-
putations, most notably the factoring of numbers using
Shor’s algorithm [1–3], but also in quantum simulation
and chemistry [4–8], linear systems [9–12], and other ar-
eas [13–18]. While ongoing progress has improved the
performance of individual qubits and has allowed quan-
tum computers to scale to larger number of qubits, cur-
rent systems are not sufficiently performant for useful
fault-tolerant operations. Despite this apparent limita-
tion, we are in or rapidly nearing a regime where quan-
tum systems could perform useful computations with-
out (or with less) error correction, the so called noisy
intermediate-scale quantum (NISQ) era [19].

In this regime of NISQ computations, it is imperative
that any potential errors be reduced or mitigated in or-
der to maximize the utility from these imperfect devices
and/or small distance codes. A number of potential tech-
niques have been proposed to mitigate errors in the NISQ
regime including quantum control [20–31], decoherence-
free subspaces [32–34], readout error mitigation [35–38],
Pauli frame randomization [39–41], and optimal compila-
tion [42–47]. One recently-proposed technique motivated
by NISQ limitations is zero-noise extrapolation (ZNE)
[48–53]. This aims to mitigate the impacts of any errors
on a computation by performing a series of computations
with scaled error levels then post-processing to interpo-
late to the zero-noise limit of the computation.

ZNE techniques have been primarily investigated un-
der the assumption that the errors to be mitigated are
uncorrelated in time. On the other hand, time-correlated
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noise (in particular 1/fα noise) has been widely observed
in physical systems including superconducting devices
[54–58], quantum dots [59, 60], and spin qubits [61]. In
NISQ devices, such as those offered by the IBM Quan-
tum Experience, evidence of correlated noise has been ob-
served both indirectly through the use of dynamical error
suppression [62, 63] and directly through quantum noise
spectroscopy (QNS) estimation of the noise [64]. This has
been further substantiated by recent studies that have
suggested the dynamics of such devices are more accu-
rately captured by non-Markovian models [65, 66].

To estimate the noise present in these real physical sys-
tems, one can use QNS [67–69] wherein the outcomes of
a set of distinct control pulses or circuits are analyzed.
Key to this approach is that while these different probe
sequences may in fact represent identical circuits under
ideal conditions, they interact with any noise present in
different ways. This can be understood through the fil-
ter function formalism [70, 71] which describes the “fre-
quency response” of a given probe sequence. Broadly
speaking, the impacts of noise (in terms of fidelity) are
approximately proportional to the integral of the prod-
uct of the power spectrum of the noise with the filter
function of the control, called an overlap integral. In
what follows, we will show how this intuition can also
be applied to different ZNE schemes in the presence of
temporally correlated dephasing noise.

The recently developed [72] and experimentally vali-
dated [64] Schrödinger wave autoregressive moving aver-
age (SchWARMA) technique provides a natural mecha-
nism for the exploration of so-called digital ZNE tech-
niques [51, 52, 73] that operate at the gate level in a
quantum circuit. Building on techniques from classical
time-series modeling in statistics and signal processing,
SchWARMA was conceived as a highly flexible mech-
anism for simulating a wide-range of spatiotemporally
correlated errors in quantum circuits.

In the following, we first review the SchWARMA
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modeling and simulation formalism as well as a concise
overview of ZNE and discuss different methods for scal-
ing noise. Next, we show how these different schemes are
impacted by time-correlated dephasing noise despite the
fact that they behave equivalently for uncorrelated noise.
We then interpret these noise scaling schemes using the
language of filter functions and show that these results
are well described by the intuition provided by the filter
functions. Our findings indicate that, for time-correlated
noise, the noise scaling method known as global unitary
folding [51, 74] produces more accurate noise-scaled ex-
pectation values and ZNE results.

II. BACKGROUND

A. Time-correlated noise: The SchWARMA model

Consider a single-qubit Hamiltonian

H(t) = Hz(t) +Hc(t) (1)

consisting of a semiclassical dephasing noise component
Hz(t) along with a deterministic idealized control com-
ponent Hc(t) corresponding, for example, to the exter-
nal driving induced by laser pulses. If we further define
Hz(t) = η(t)σz with η(t) a wide-sense stationary Gaus-
sian stochastic process, we can say that this noise process
is not time-correlated if E[η(t)η(t′)] = E[η(|t− t′|)η(0)] =
0 for all t 6= t′, where E(·) represents the average over
many statistical realizations. σi, i = x, y, z are the Pauli
matrices. Equivalently, we can say that the noise process
is time-correlated if the power spectrum

Sη(ω) =

∫ ∞
0

dtE[η(t)η(0)]e−iωt (2)

is not constant as a function of ω (i.e., not a “white” pro-
cess). This semiclassical noise setting is the standard set-
ting for QNS [67–69] and is an alternative to general open
quantum systems approaches that consider couplings to
quantum baths. The semiclassical noise approximation
assumes that the bath is in thermal equilibrium and at
infinite temperature, yielding regimes with no back ac-
tion on the environment from the qubits, as well as equal
populations of qubit states after long term decay [75–81].

In the SchWARMA modeling approach [72], the im-
pact of the continuous time Hamiltonian in (1) is modeled
in a quantum circuit formalism by inserting correlated
Z-error operators after each “gate” determined by the
control Hc. This is accomplished by generating a time-
correlated sequence of rotation angles yk defined from
independent Gaussian inputs xk using an autoregressive
moving average (ARMA) model [82, 83],

yk =

p∑
i=1

aiyk−i︸ ︷︷ ︸
AR

+

q∑
j=0

bjxk−j︸ ︷︷ ︸
MA

, (3)
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FIG. 1. Noise power spectrum of four different dephasing
SchWARMA noise models corresponding to white noise, low-
pass noise, 1/f noise and 1/f2 noise. These noise models are
used in Sec. III to test the effect of time-correlated noise on
zero-noise extrapolation.

where the set {ai} defines the autoregressive portion of
the model, and {bj} the moving average portion with p
and q + 1 elements of each set respectively. The time
correlations are defined via the resulting power spectrum

Sy(ω) =
|∑q

k=0 bk exp(−ikω)|2

|1 +
∑p
k=1 ak exp(−ikω)|2

, (4)

and ARMA models can approximate any discrete-time
power spectrum to arbitrary accuracy [84]. For the scope
of this work we focus on the four paradigmatic noise spec-
tra shown in Fig. 1, namely: white noise, low-pass noise,
1/f noise and 1/f2 noise.

Dividing the circuit trajectory defined by Hc(t) into
consecutive gates Gk, the SchWARMA approach mod-
els the impact of correlated noise Hz(t) by adding in a
random Z(θk) = exp(iykσ

z) after each gate, which can
then be Monte Carlo averaged to produce an expecta-
tion value. This model can be extended to multi-qubit
Hamiltonians

H(t) =

n∑
j=1

ηj(t)σ
z
j +Hc(t) , (5)

by generating independent, yet identically defined,
SchWARMA-generated errors on each qubit. In princi-
ple, these could of course be heterogeneous and correlated
between qubits.

B. Zero-noise extrapolation with colored noise

Zero-noise extrapolation (ZNE) is an error mitigation
technique which relies on the ability to increase the noise
in a quantum circuit [48, 49, 85]. Like other error mitiga-
tion techniques, the target is to estimate an expectation
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value

E(λ) := Tr[ρ(λ)O] (6)

at zero noise. The noise scale factor λ dictates how much
the base noise level λ = 1 is scaled in the quantum circuit
which prepares the system density matrix ρ, and O is a
problem-dependent observable. The key insight of ZNE
is to (i) evaluate E(λ) at several noise scale factors λ ≥ 1,
then (ii) fit a statistical model to the collected data and
infer the zero-noise value E(λ → 0). We refer to these
two steps as noise scaling and inference, respectively.

Compared to other error mitigation techniques, zero-
noise extrapolation requires very few additional quan-
tum resources. Correspondingly, it has received some
attention in recent literature; e.g., it was implemented
in Refs. [50, 51, 73, 74, 86, 87] and in [53] on twenty
six superconducting qubits to produce results compet-
itive with classical approximation techniques. Refer-
ences [51, 52, 73] formally introduced digital noise scal-
ing, in which noise is scaled at a gate-level without pulse-
level control.

While ZNE is straightforward to implement and re-
quires relatively few additional quantum resources, the
quality of the solution depends critically on both the in-
ference and noise-scaling method and can be improved
by a correct characterization of the hardware noise. In
this work, we fix the inference method by assuming a
particular noise model and focus on the effects of the
noise-scaling method.

1. Noise scaling methods

a. Ideal noise scaling In a purely theoretical setting,
the ideal way of scaling the noise would be to multiply
the Hamiltonian Hz in Eq. (1) by a constant

√
λ:

H ′(t) =
√
λHz(t) +Hc(t). (7)

Equivalently, the scale factor can be absorbed into a
redefinition of the stochastic noise amplitude: η′(t) =√
λη(t). From Eq. (4), it is evident that the noise power

spectrum gets scaled by λ,

Sη′(ω) = S√λη(ω) = λSη(ω). (8)

If one could directly control the noise, this would be
the ideal way of scaling its power and, therefore, the ideal
way of applying zero-noise extrapolation. In simulations
using SchWARMA, noise can be scaled by transforming
the numerator coefficients bk →

√
λbk. In a typical exper-

imental scenario, of course, one cannot directly control
the noise of a quantum device. Even in instances where
it is possible to scale the noise spectrum through e.g.,
manipulating the master clock [64] or flux lines, precise
characterization of the native noise spectrum and cali-
bration of the noise injection would be required. Due
to these difficulties in directly scaling noise, several in-
direct noise scaling techniques have been proposed and

(b)

(c)

(a)

FIG. 2. A sample three-qubit circuit with four gates under
the action of three digital noise scaling methods we consider
in this work. (a) Local folding, in which each gate G gets
mapped to G 7→ G

(
G†G

)n
for scale factor λ = 2n − 1. (b)

Global folding, in which the entire circuit C gets mapped
to C 7→ C

(
C†C

)n
. In (a) and (b), grey shading shows the

“virtual gates” which logically compile to identity. (c) Gate

Trotterization, in which G 7→
(
G1/λ

)λ
for each gate G.

applied in recent literature. We define several of these
in the following subsections (see Fig. 2 for an overview)
in order to analyze their performance in the presence of
time-correlated noise in Sec. III.
b. Pulse stretching The intent of pulse stretching

is to scale the impacts of the noise on the system by
“stretching” the underlying control Hamiltonian, replac-
ing (1) with

H(t) = Hz(t) +
1

λ
Hc(t/λ) , (9)

for some dimensionless time-scaling factor λ. In princi-
ple, this scales the impacts of the noise by increasing the
overall time duration of the circuit. More precisely, if we
define t′ = t/λ, the density operator ρ(t′) of the system
evolves with respect to the effective Hamiltonian:

H ′(t′) = λHz(λt
′) +Hc(t

′) . (10)

The corresponding noise power spectrum is:

Sη′(ω) = λ2
∫ ∞
0

dt′ E[η(λt′)η(0)]e−iωt
′

= λ

∫ ∞
0

dtE[η(t)η(0)]e−iωt/λ = λSη(ω/λ). (11)

From the equation above, it is evident that for a white
(constant) spectrum, pulse stretching can be used to ef-
fectively scale the noise power by λ as in the ideal case
defined in Eq. (8). In fact, the equivalence between the
ideal noise scaling and the pulse-stretching technique was
already shown in Ref. [48], under the hypothesis of a
quantum state ρ evolving according to a master equation
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with a time-independent noise operator acting as L(ρ)
(more details about the consistency between our find-
ings with the results of Ref. [48] are given in Appendix
A). On the other hand, Eq. (11) shows that, for a col-
ored spectrum, pulse-stretching does not exactly repro-
duce the ideal noise scaling defined in (8). Indeed, on the
r.h.s. of Eq. (11) we observe that the original spectrum
is also stretched with respect to the frequency variable
ω. This fact is a manifestation of the intuitive idea that
slowing down the dynamics the system corresponds to ef-
fectively speeding up the time scale of the environment.
Such frequency stretching, while irrelevant in the white
noise limit, becomes relevant for time-correlated noise.

In the SchWARMA formalism, there is not a mecha-
nism for stretching pulses per se as it operates at the gate
level in a circuit (without pulse-level control on Hc(t)).
However, as discussed in the supplement to [72], it is
possible to manipulate and stretch the spectrum of a
SchWARMA model. So, for the task of numerically simu-
lating pulse stretching, instead of implementing equation
Eq. (10) one can simply implement Eq. (11) by directly
transforming the spectrum of the SchWARMA model.

c. Local unitary folding A possible way of effectively
increasing the noise of a circuit is to insert after each
noisy CNOT gate, the product of two additional CNOT
gates [52, 73]. In this way the ideal unitary is not
changed, but the real dynamics are more noisy. More
generally, Ref. [51] introduced several digital noise scal-
ing methods that are based on the unitary folding re-
placement rule

G→ G(G†G)n, n = 0, 1, 2, . . . , (12)

whereG is a unitary operation associated to an individual
gate. If noise is absent, the replacement rule leaves the
operation unchanged since G†G is equal to the identity.
On the contrary, if some base noise is associated to G, the
unitary folding operation approximately scales the noise
by an odd integer factor λ = 1 + 2n.

More precisely, by applying the unitary folding replace-
ment to all the gates of an input circuit

U = GdGd−1 . . . G1 (13)

which is composed of d gates Gj , we obtain new circuit
U ′ of depth d′ = (1 + 2n)d given by

U ′ = Gd(G
†
dGd)

nGd−1(G†d−1Gd−1)n . . . G1(G†1G1)n.
(14)

The depth of the new circuit U ′ is scaled by λ = d′/d =
1+2n and, similarly, any type of noise which depends on
the total number of gates will be effectively scaled by the
same constant λ. In Ref. [51], partial folding methods
were proposed to obtain arbitrary real values of λ, but
for simplicity in this work we only consider odd-integer
scale factors. We refer to (14) as local unitary folding.

d. Global unitary folding Instead of locally folding
all the gates, we can apply Eq. (12) to the entire circuit.
In this way, the circuit U defined in Eq. (13) is simply

mapped to

U ′ = U(U†U)n. (15)

Also in this case the total number of gates of the new cir-
cuit U ′ is multiplied by λ = d′/d = 1 + 2n corresponding
to an effective scaling of the noise.
e. Gate Trotterization In this work we also intro-

duce another local noise-scaling method, acting at the
level of individual gates, that we call gate Trotterization
since it can be considered as a discretization of the contin-
uous pulse-stretching technique. According to the gate
Trotterization technique, each gate of the circuit is re-
placed as follows:

G→
(
G1/λ

)λ
, λ = 0, 1, 2, . . . . (16)

For example, a Pauli X rotation gate RX(θ) is replaced
by λ applications of RX(θ/λ). Eq. (16) is similar to the
local version of the unitary folding rule (12) and, indeed,
both methods replace a single gate with the product of
λ gates. Compared to Eq. (12), the Trotter-like decom-
position used in Eq. (16) is more uniform since equal
elementary gates are used. On the other hand, a possi-
ble drawback of the gate Trotterization method is that
G1/λ may be compiled by the hardware in different ways
depending on λ and, therefore, the circuit depth may not
get scaled as expected.

III. RESULTS

In the previous section, we defined several noise-scaling
methods that can be used in zero-noise extrapolation.
In this section, we study how these different methods
affect the performance of ZNE in the presence of time-
correlated noise. For all the simulations presented in this
section we used the following Python libraries: Mezze [88]
for modeling SchWARMA noise, Mezze’s TensorFlow
Quantum [89] interface for simulating quantum circuits
and Mitiq [74] for applying unitary folding and zero-noise
extrapolation. Code for specifying the circuits and the
dephasing noise spectra used is also available at [88].

A. Zero-noise extrapolation with colored noise

In this section we numerically simulate a simple ZNE
experiment with different noise scaling methods and with
different noise spectra. The results are reported in Fig. 3
and demonstrate the detrimental effect of time-correlated
noise on ZNE. In Fig. 3(a) the noise spectrum is white
and all noise scaling methods produce nearly identical
expectation values. Correspondingly, the zero-noise lim-
its (marked with stars in the plot) are nearly identical.
On the other hand, in Fig. 3(b), the noise is colored (a
1/f “pink” spectrum) and different noise-scaling meth-
ods produce different expectation values. Correspond-
ingly, the zero-noise limits (marked with stars in the plot)
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FIG. 3. Comparison of different zero-noise extrapolations
obtained with different noise scaling methods. We consider
a representative (randomly generated) single-qubit random-
ized benchmarking circuit affected by dephasing noise of fixed
integrated power. The two subfigures correspond to dif-
ferent noise spectra: (a) white noise, (b) 1/f pink noise.
Both spectra are shown in Fig. 1. The expectation value
E(λ) = Tr[Oρ(λ)] is associated to the observable O = |0〉〈0|
measured with respect to the noise-scaled quantum state ρ(λ).
The colored triangles represent the noise-scaled expectation
values; the dashed-dotted lines represent the associated ex-
ponential fitting curves; the colored stars represent the corre-
sponding zero-noise extrapolations. The figure shows that the
zero-noise limit obtained with global unitary folding (green
star) is relatively close to the ideal result (gray star) even in
the presence of strong time correlations in the noise. The
“true” points (gray circles) are obtained by assuming the ide-
ally scaled noise spectrum of Eq. (8), the associated fitting
curve (solid gray line) produces the ideal zero-noise extrapo-
lation (gray star).

are also different. This is the main qualitative result that
this work aims to highlight: compared to white noise,
time-correlated noise can be much harder to mitigate via
zero-noise extrapolation.

In the rest of this section, we study this aspect in a
more quantitative way. In particular we study the per-
formances of different noise-scaling methods for different
types of noise spectra and different types of circuits.

FIG. 4. Average relative errors in noise scaling two-qubit
randomized benchmarking circuits with (a) white noise, (b)
lowpass noise, (c) 1/f noise, and (d) 1/f2 noise. Panel (a)
shows no significant difference in scaling methods under white
noise (no time correlations). Panels (b)-(d) show that global
scaling is the lowest-error digital scaling method. The two-
qubit randomized benchmarking circuits used here have, on
average, 27 single-qubit gates and five two-qubit gates. For
each circuit execution, 3000 samples were taken to estimate
the probability of the ground state as the observable. Points
show the average results over fifty such circuits and error bars
show one standard deviation.

B. Comparing noise scaling methods

Observing Fig. 3(b) we notice that, at least for the
particular circuit considered in the example, some noise
scaling methods perform better than others in the pres-
ence of time-correlated noise. In particular the extrapo-
lation based on the global folding technique produces a
relatively good approximation of the ideal result even in
the presence of time-correlated noise.

To better investigate this phenomenon, we consider the
relative noise-scaling error

∆(λ) :=

∣∣∣∣E(λ)− E∗(λ)

E∗(λ)

∣∣∣∣ , (17)

as a figure of merit. Here, E(λ) is the expectation value
of interest evaluated with some particular noise scaling
method and scale factor λ, and E∗(λ) is the expectation
value simulated with a noise spectrum ideally scaled ac-
cording to Eq. (8). In Fig. 4 we plot the relative error
defined in Eq. (17) for each noise-scaling method, after
averaging the results over multiple instances of two-qubit
randomized-benchmarking circuits. Here the expectation
value of the observable O = |00〉〈00| is considered. The
results of Fig. 4 are consistent with those of Fig. 3 dis-
cussed in the previous subsection. In fact, even after
averaging over multiple random circuits, we observe that
in the presence of white noise all noise scaling methods
are practically equivalent to each other and are character-
ized by a small relative noise-scaling error. However, for
all colored noise spectra, global folding is optimal when
compared to other noise scaling methods.

We repeat the same experiments using mirror cir-
cuits [90] and QAOA-like circuits instead of RB circuits.
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The former provides another type of randomized circuit
structure used for benchmarking, and the latter provides
a structured circuit. Fig. 5 shows the results using two-
qubit mirror circuits. These circuits have 26 single-qubit
gates and eight two-qubit gates on average. As with the
randomized benchmarking circuits, 3000 samples were
taken when executing each circuit to estimate the prob-
ability of sampling the correct bitstring. As shown in
Fig. 5, the conclusion that global unitary folding most
closely matches true noise scaling holds on average for
mirror circuits as well. These results were averaged over
fifty random mirror circuits.

Fig. 6 shows the same experiment using QAOA cir-
cuits. These n = 2 qubit circuits have p = 2 QAOA
rounds using the standard mixer Hamiltonian HM =∑n
i=1 σ

x
i and driver Hamiltonian HC =

∑
ij σ

z
i σ

z
j . De-

noting this circuit as U , we append U† such that the final
noiseless state is |00〉 independent of the randomly cho-
sen angles β and γ. A total of fifty circuits with random
angles were simulated for the final results, again using
3000 samples to estimate the ground state probability
for each circuit execution. The results in Fig. 6 have the
highest variance of the three circuit types, but on average
we still see that global unitary folding is closest to true
noise scaling out of all scaling methods considered.

The conclusions of this subsection suggest that, even
for different types of circuits, the effect of time-correlated
noise on noise scaling methods is qualitatively similar.
This intuition is consistent with the theoretical discussion
presented in the next section, in which the performances
of noise scaling methods are linked to their effective fre-
quency modulation effects.

We emphasize that the comparison considered in this
work is focused on one particular figure of merit: the ro-
bustness of a noise scaling method with respect to time-
correlated noise. Our results suggest that global folding
outperforms the other methods considered with respect
to this specific figure of merit. In a real-world scenario,
the optimal noise-scaling method should be determined
according to a more general cost-benefit analysis, e.g.,
taking into account the sampling cost, coherence time,
and other hardware limitations. For instance, it may not
be possible to use global noise scaling if the circuit length
is comparable to the coherence time of the computer; in
such circumstances, pulse stretching can amplify errors
via small scale factors [53], although potentially inaccu-
rately in the presence of time-correlated noise as we have
shown in this section.

IV. DISCUSSION AND PHYSICAL
INTERPRETATION

In classical signal processing and control theory, the
frequency response of a linear circuit or filter is used to
understand how a circuit interacts with its input in the
frequency domain. Using frequency domain techniques,
one can understand and design filters that amplify (or

FIG. 5. Relative errors in noise scaling two-qubit mirror cir-
cuits with (a) white noise, (b) lowpass noise, (c) 1/f noise,
and (d) 1/f2 noise. Panel (a) shows no significant differ-
ence in scaling methods under white noise (no time correla-
tions). Panels (b), (c) and (d) show global scaling is optimal
with time-correlated noise. The two-qubit mirror benchmark-
ing circuits used here have, on average, 26 single-qubit gates
and eight two-qubit gates. For each circuit execution, 3000
samples were taken to estimate the probability of the correct
bitstring (defined by the particular mirror circuit instance) as
the observable. Points show the average results over fifty such
circuits and error bars show one standard deviation.

FIG. 6. Relative errors in noise scaling two-qubit p = 2
QAOA circuits with (a) white noise, (b) lowpass noise, (c)
1/f noise, and (d) 1/f2 noise. Panel (a) shows no significant
difference in scaling methods under white noise (no time cor-
relations). Panels (b), (c) and (d) show global scaling is opti-
mal with time-correlated noise. The two-qubit p = 2 QAOA
circuits used here have eight single-qubit gates and four two-
qubit gates. For each circuit execution, 3000 samples were
taken to estimate the probability of the ground state as the
observable. (Note that the QAOA circuit U is echoed such
that the total circuit is UU† = I without noise.) Points show
the average results over fifty such circuits and error bars show
one standard deviation.

pass through) frequencies that have signal content while
attenuating frequencies that contain only noise. In what
follows, we introduce an analogous concept for quantum
circuits that allows us to approximate the fidelity of a
circuit subjected to dephasing noise. This circuit fre-
quency response indicates where a given circuit is partic-
ularly sensitive or insensitive to noise in a given frequency
range. We then analyze the impact of the various noise
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scaling techniques on this circuit frequency response to
interpret the results of the previous section.

A. Frequency response of a circuit

The natural extension of the frequency response of a
circuit to the quantum context is the so-called filter func-
tion formalism [70, 71]. Details of the specific approach
used here for multi-qubit, spatiotemporally correlated de-
phasing noise can be found in Appendix B, but the gist
of the technique is that a circuit on n qubits of time du-
ration T defines a set of real-valued switching functions

fαβ(t) =
1

N
Tr
[
U0(T, t)AαU

>
0 (T, t)Aβ

]
, (18)

defined by the action of a circuit’s reverse-time propaga-
tor U0 (see Eq. (B2)) on a set of traceless, Hermitian op-
erators {Aα} that satisfy 〈Aα, Aβ〉 = 1

N Tr[AαAβ ] = δα,β
where N = 2n (typically, the Aα are multi-qubit Pauli
matrices).

The Fourier transforms Fαβ(ω, T ) =
∫ T
0
dt fαβ(t)eiωt

of these switching functions are used to define filter func-
tions

Fαβ,α′β′(ω, T ) = Re [Fαβ(ω, T )Fα′β′(−ω, T )] . (19)

Similar to classical frequency domain analysis, these fil-
ter functions interact with the dephasing noise spectra
Sα,α′(ω) in a multiplicative fashion. Their product forms
the integrand of the so-called overlap integral which is a

key component of the second cumulant C
(2)
O :

C(2)O (T )

2
=

∑
α,β,α′,β′

∫ ∞
0

dω

2π
Sα,α′(ω)Fαβ,α′β′(ω, T )Aββ′ .

(20)

The overlaps between the noise power spectrum and
filter functions scale operators Aββ′ that are depen-
dent on the observable O, see Eq. (B9). The magni-

tude of C
(2)
O (and thus the overlaps) can then be used

to approximate the expectation of the noisy observable

〈O〉 ≈ Tr[exp(−C(2)
0 /2)ρS,0(T )O], where ρS,0(T ) is the

final state of the ideal noiseless circuit, see discussion
around Eq. (B5) in Appendix B.

The expression in Eq. (20) captures potential cross cor-
relations in noise, but here since we consider independent
σz-dephasing noise on each qubit, Sα,α′ = 0 when α 6= α′

and α is not a σz operator on a given qubit. Further-
more, for the examples below we compute the filter func-
tions using instantaneous gates as specified by a circuit,
but these expressions hold for piecewise constant controls
to accommodate pulse shaping. In the context of noise
scaling experiments, Eq. (20) provides a mechanism for
understanding how the different noise scaling techniques
perturb the filter functions to impact the resulting scaled
expectations and thus the extrapolation process.
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FIG. 7. Filter function analysis of a CPMG circuit. Top:
CPMG circuit with a delay of 2 gate times. Bottom: Plots of
switching functions and filter functions of the CPMG circuit
and its various scaled versions.

The calculations for the multi-qubit case are quite in-
volved, so in order to build better intuition we will also
consider the simpler case of a single qubit subject to
dephasing noise and single-axis σx control, i.e., H(t) =
η(t)σz + Ω(t)σx. For this case, the filter function formal-
ism can be recast in terms of a single complex switching

function fz(t) = exp
(
−i
∫ t
0
dτ Ω(τ)

)
with Fourier trans-

form Fz(ω). The filter function Fzz(ω) = |Fz(ω)|2 and
power spectrum Sz,z(ω) = Sη(ω) define the overlap inte-
gral

χ =

∫ ∞
−∞

dω

2π
Sη(ω)|Fz(ω)|2 . (21)

The overlap integral can be used to derive an approxima-
tion to the expectation of the noisy circuit states ρ and
an observable O, via

E[Tr[ρO]] ≈ A+B exp(−χ) , (22)

where A and B are functions of the ideal final state and
observable O. An example Carr-Purcell-Meiboom-Gill
(CPMG) [91, 92] circuit and its corresponding fz and
|Fz(ω)|2 are shown in Fig. 7.

B. Spectral analysis of noise scaling methods

First, we will consider the simpler case of a single qubit
subject to dephasing noise and single-axis σx control,
with the CPMG circuit in Fig. 7 serving as our canon-
ical example. Using the filter function prediction from
Eq. (22) we have that direct noise scaling produces states
ρdir(λ) with expectation

E[Tr[ρdir(λ)O]] ≈ A+B exp(−λχ) , (23)
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where χ is the overlap integral of the base circuit. Note
that direct noise scaling does not affect the circuit itself,
and thus its switching and filter functions are unchanged.
Similarly, following Eq. (10), we have that pulse stretch-
ing produces the expectation

E[Tr[ρpul(λ)O]] ≈

A+B exp

(
−λ
∫ ∞
−∞

dω

2π
Sz,z(ω/λ)|Fz(ω)|2

)
, (24)

with similar expressions for Eq. (20), which is clearly not
equal to Eq. (23) in general. Equivalently, stretching the
pulse amounts to stretching the switching functions and
thus “compressing” a filter function response by a factor
of λ. This shifts the filter function to lower frequencies,
and thus the overlap with low-frequency noise will likely
increase by a factor greater than λ. An example of the
impact of pulse stretching on a CPMG circuit is shown
in Fig. 7, showing that the switching function is perfectly
scaled in time, resulting in the corresponding frequency
compression.

Gate Trotterization is similar in spirit to pulse stretch-
ing, but performed “digitally.” However, repeating a
gate’s control waveform λ times with amplitude 1/λ is in
general different from stretching a gate’s control wave-
form (except in the case of rectangular pulses). Fig. 7
shows a similar qualitative impact of gate Trotterization
on the filter function as pulse stretching, in that the fil-
ter function is compressed to the low frequencies. Since,
unlike pulse stretching, the switching function now has
intermediate values between ±1 the filter function is dis-
torted and not a “perfect” compression.

Like pulse stretching and gate Trotterization, local
folding also increases the proportion of the filter func-
tion that overlaps with low frequency noise. However
unlike pulse stretching and gate Trotterization, local fold-
ing also appears to generate response at high frequency.
Qualitatively, local folding “pulls” the filter function to
the extreme frequencies from the middle of the spec-
trum. This behavior can be interpreted from the switch-
ing function, which now has (brief) oscillations whenever
the original switching function had a change, and oth-
erwise remains constant, see Fig. 7. These oscillations
increase the high-frequency content of the filter function,
whereas the longer duration of constant values increase
the low-frequency content. Explicit filter function cal-
culations for local folding can be found in Appendix D
that generalize these observations to the multi-qubit case.
With these general trends, we would again expect that
the overlap integrals produced would not be particularly
close to direct noise scaling.

Of the noise scaling methods studied, it appears that
global folding preserves the most structure from the un-
scaled filter function. The circuit response shown in
Fig. 7 shows that scaling preserves the qualitative shape
of the base circuit’s filter function, but in accordance
with well known results about CPMG sequences, the fre-
quency response is sharpened as it is repeated. Quali-

tatively, it looks like the impact of global folding serves
to “resolve” a coarse frequency response of the base cir-
cuit. Explicit calculations of the filter function (see Ap-
pendix C) show that the scaled portion of the circuit
dominates the filter function response and approach a
common, nontrivial limit. Thus, scaling in this case pre-
serves some structure and produces overlap integrals that
are somewhat close to direct noise scaling.

The CPMG sequence considered in the above discus-
sion was chosen as an intuitive example for its well-
studied frequency response [67], as well as clarity of expo-
sition. However, the ZNE simulations considered here use
multi-qubit random circuits whose frequency response is
less well studied. For these more complex circuits, we
continue to see the same general trends in the filter func-
tion responses, as shown in Fig. 8. These circuits are
longer and have greater gate density than the CPMG
example, and as such produce switching functions with
many transitions that in turn leads to filter functions
with many peaks and valleys. The spectral trends for the
pulse stretching, local folding, and gate Trotterization
methods in Fig. 8 are quite clearly consistent with the
CPMG example, and in particular all exhibit increasing
low frequency concentration as λ increases (in addition
to high frequency concentration for local folding). On
the other hand, global folding appears to be approaching
some limit that at least somewhat resembles the initial
distribution of the frequency response (and can be as-
sessed analytically – see Appendix C). We interpret this
as generalization of the sharpening of the spectral fea-
tures well known for CPMG sequence, and multiple peaks
are resolved from initially broad peaks as λ increases.

These observations in the different noise scaling strate-
gies explain the trends in Figs. 3 and 4. As global fold-
ing produces scaled filter functions that best preserve
the general balance across different frequency ranges, the
overlap integrals of the globally folded circuits are the
closest to the ideal scaling produced by direct noise scal-
ing. The remaining three scaling approaches all produce
some level of concentration at low frequencies, and thus
tend to have much greater overlap with the low-frequency
noise here. As the pulse stretching and gate Trotteriza-
tion approaches are very similar in spirit, they produce
similar extrapolations. Furthermore, unlike local folding,
these two approaches have all their concentration at low
frequency, thus producing the most overlap leading to the
worst extrapolation error. Local folding, which includes
some high frequency content (based on the proportion
of the original circuit’s frequency response above π/2),
produces overlaps that lie between the global folding and
the stretching/Trotterization approaches.

We note that the trends observed above and the intu-
ition behind them is a direct consequence of the corre-
lated noise classes considered, all of which are fundamen-
tally low frequency. Thus, pulse stretching, gate Trotter-
ization, and local folding produce larger overlaps with the
low-frequency noise and drastically bias the noise extrap-
olation process. In contrast, if the noise was band limited
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FIG. 8. Largest magnitude filter function of a two-qubit
randomized benchmarking circuit of Clifford depth 2 (actual
depth 17) for different scale factors λ. All filter functions are
normalized by their maximum values (otherwise the integral
of the filter function scales by λ). Different subplots corre-
spond to different noise scaling methods. All noise scaling
methods change the frequency response of the circuit, how-
ever, global folding tends to preserve the qualitative shape of
response function and, for this reason, it gives better perfor-
mances for zero-noise extrapolation with colored noise.

(say between π/4 and 3π/4 in normalized frequency) we
would expect that global folding would continue to track
direct noise scaling the best. However, analysis of the
other three techniques would be challenging as the over-
lap integral with these would essentially vanish as the
scaling increased. Without knowing the true expectation
and the underlying noise spectra, it would be unclear if
the leveling out of the scaled expectation values would
be due to the overlap integral approaching infinity (i.e.,
too much noise) or vanishing (i.e., decoupling from the
noise). Similarly, if the noise were purely high frequency,
we would expect the pulse stretching and gate Trotteriza-
tion approaches to be insensitive, local folding method to
be more sensitive, and global folding between them. Fi-
nally, extremely narrow band noise could potentially lie
in a “valley” in the scaled response (obviously this is cir-
cuit dependent), and thus overlap integrals would vanish
for all the noise scaling approaches considered here.

V. CONCLUSION

In this work, we have demonstrated the effect of time-
correlated noise on zero-noise extrapolation. Using the
SchWARMA technique to model time-correlated dephas-
ing noise, we presented the results of several numerical
experiments showing that global unitary folding produces
the lowest error relative to direct noise scaling. We ana-
lyzed our observed results and provided a physical inter-
pretation in terms of the spectral analysis of the consid-
ered noise scaling methods.

Noise injection as a method for noise scaling is a theo-
retically ideal mechanism for noise scaling, but given the
limitations on estimating, emulating, and injecting the
native spectra and noise mechanism(s), this is not likely
feasible in most situations. On the other hand, global
noise folding is broadly applicable and our work suggests
its use in global noise scaling for zero-noise extrapola-
tion, if possible, whenever noise may be time-correlated.
An obviously important consideration is which quantum
computer architectures may have time-correlated noise,
a question we do not explicitly consider in this paper,
but do note that time-correlated noise has been widely
observed in both research-grade qubit experiments and
cloud-based NISQ systems, in a variety of platforms [54–
66]. We note that global folding is not the only possible
noise scaling method suitable for time-correlated noise:
other methods could be defined and analyzed, e.g., fold-
ing the first half and second half of the gates in a unitary
separately. Our work provides the theoretical and prac-
tical tools to analyze the performance of such methods
under a wide variety of noise models.
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able at https://github.com/mezze-team/mezze.
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[28] A. M. Souza, G. A. Álvarez, and D. Suter, Robust dy-
namical decoupling, Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineer-
ing Sciences 370, 4748 (2012).
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Appendix A: Consistency between different theories
of pulse-stretching

Our work is based on a semiclassical theory of time-
correlated noise, according to which, the pulse-stretching
technique induces two effective changes on the noise spec-
trum: (i) it scales the noise level by a constant λ, (ii) it
also stretches the noise spectrum on the frequency axis by
the same constant. Both effects are formally summarized
in Eq. (11) derived in the main text.

In Ref. [48], a different formalism, based on a mas-
ter equation with a time-independent noise operator, was
used to study the pulse-stretching technique. More pre-
cisely, a system evolving according to the following mas-
ter equation was considered:

∂

∂t
ρ(t) = −[K(t), ρ(t)] + L(ρ(t)), (A1)

where K(t) is the system Hamiltonian and L is a time-
independent noise super-operator. As shown in Ref. [48],
the effect of pulse stretching (i.e., K(t) −→ 1/λK(t/λ))
is equivalent to an effective master equation:

∂

∂t′
ρ(t′) = −[K(t′), ρ(t′)] + λL(ρ(t′)), (A2)

where t′ = λt. In practice pulse-stretching induces a
multiplicative scaling of the noise operator L −→ λL.

The master equation Eq. (A1) is typically used to
model Markovian noise (no time-correlations). In this
case, the Hilbert space of the environment can be traced
out such that ρ represents the reduced state of the system
evolving according to the master equation Eq. (A1). In
this white-noise regime, also our semiclassical theory of
pulse-stretching predicts a simple multiplicative scaling
of noise power and this is indeed consistent with Eq. (A2).

What happens for a non-Markovian environment with
a colored noise spectrum? In this case, our semiclassical
theory suggests that pulse-stretching induces, in addition
to a multiplicative scaling, also a scaling of the frequency
axis of the noise spectrum (see Eq. (11)). This may seem
to contradict the simple multiplicative scaling of the noise
L −→ λL derived in Ref. [48] and reported in Eq. (A2).
However, as explained below, both theoretical derivations
are actually consistent with each other.

In principle, the master equation (A1) can be used to
model a non-Markovian bath by representing with ρ the

https://doi.org/10.1103/PhysRevResearch.3.033229
https://doi.org/10.1103/PhysRevResearch.3.033229
https://doi.org/10.1103/PhysRevLett.120.210501
https://doi.org/10.48550/arxiv.2009.04417
https://aip.scitation.org/doi/abs/10.1063/1.1703941
https://aip.scitation.org/doi/abs/10.1063/1.1703941
https://doi.org/10.1214/09-SS060
https://doi.org/10.1214/09-SS060
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevResearch.3.033098
https://doi.org/10.1103/PhysRevResearch.3.033098
https://doi.org/10.1103/PhysRevA.104.052607
https://github.com/mezze-team/mezze
https://arxiv.org/abs/2003.02989
http://arxiv.org/abs/2008.11294
https://journals.aps.org/pr/abstract/10.1103/PhysRev.94.630


13

global quantum state (system + bath) instead of the re-
duced state of the system. In this global picture, a non-
Markovian bath can be modeled by a time-independent
noise operator L(ρ) that includes an interaction Hamil-
tonian term HSB and the bare Hamiltonian HB acting on
the bath only (see Supplemental Material of Ref. [48])

L(ρ(t)) = −i[HSB +HB, ρ(t)], (A3)

which we can split as the sum of two terms L = LSB+LB,
where LSB(ρ) = −i[HSB, ρ] and LB(ρ) = −i[HB, ρ]. In
this case, the simple multiplicative scaling L −→ λL
induced by the pulse-stretching technique according to
Eq. (A2) has actually two physically different effects: (i)
LSB −→ λLSB corresponding to a scaling of the noise
power and (ii) LB −→ λLB corresponding to an effec-
tive scaling of the all the characteristic frequencies of the
bath and, therefore, to a frequency stretching of the noise
spectrum. These two effects are consistent with the semi-
classical theory of pulse-stretching presented in this work
and, in particular, with Eq. (11).

Appendix B: Filter function formalism for quantum
circuits

Consider an n-qubit system governed by a Hamiltonian

H(t) = H0(t) +HE(t), (B1)

where H0(t) defines a sequence of control operations ap-
plied to the quantum system and HE(t) defines the error
Hamiltonian. We will assume piecewise-constant evolu-
tion such that H0(t) =

∑
i si(t)Hi, where si(t) = 1 when

t ∈ [ti−1, ti) and si(t) = 0 otherwise. The resulting pure
control evolution is

U0(T, 0) = T+e−i
∫ T
0
H0(s)ds

= UKUK−1 · · ·U1

= UK:1, (B2)

with Uj = e−i(tj−tj−1)Hj and T designating the total cir-
cuit runtime. The last equality is defined in anticipation
of the subsequent switching function calculations.

The error Hamiltonian can include anything from sys-
tematic control noise to interactions between the system
and its environment. Here, we focus on semiclassical,
spatiotemporally correlated noise: HE(t) =

∑
α bα(t)Aα.

The operators Aα are Hermitian, traceless and form
an operator basis on the system Hilbert space with re-
spect to the Hilbert-Schmidt norm, i.e., 〈Aα, Aβ〉 =
1/N Tr[AαAβ ] = δα,β , with N = 2n denoting the Hilbert
space dimension. The noise couples to the system via
bα(t), which are defined as classical wide-sense station-
ary, Gaussian variables. Hence, the statistical properties
of bα(t) are characterized by the mean bα(t) and the two-

point correlation functions Cαβ(t1 − t2) = bα(t1)bβ(t2).

Note that this model can be used to represent both addi-
tive control noise and interactions between the quantum
system and a classical environment.

Assuming the weak noise limit, i.e., ‖HE(t)‖T � 1,
we can examine the dynamics generated by H(t) per-
turbatively by moving into an interaction picture with
respect to H0(t). This is performed by representing

the full dynamics operator U(T ) = T+e−i
∫ T
0
H(s)ds as

U(T ) = ŨE(T )U0(T ), where ŨE(T ) = e−i
∫ T
0
H̃E(s)ds with

H̃E(t) = U0(T, t)HE(t)U†0 (T, t)

=
∑
α

U0(T, t)AαU
†
0 (T, t)Bα(t)

=
∑
α,β

fαβ(t)Aβbα(t). (B3)

Note that the rotated error Hamiltonian is expressed in
terms of a “reverse” interaction picture with respect to
the pure control evolution. The functions fαβ(t) are
known as the switching functions and are defined by

fαβ(t) =
1

N
Tr
[
U0(T, t)AαU

†
0 (T, t)Aβ

]
. (B4)

As we will see, the switching functions are an integral
part of the filter function formalism.

The dynamics of an observable with respect to U(T )
can be written as

〈O〉 = Tr[ρS(T )O]

= Tr[ŨE(T )U0(T )ρS(0)U†0 (T )Ũ†E(T )O]

= Tr[Λ(T )ρS,0(T )O], (B5)

where the last equality conveniently illustrates the utility
of the particular rotated frame chosen above. The term

Λ(T ) = O−1ŨE(T )OŨE(T ) constitutes the error opera-

tor, while ρS,0(T ) = U0(T )ρS(0)U†0 (T ) defines the time-
evolved state resulting from the noiseless circuit imple-
mentation. The error operator can be expressed as a cu-

mulant expansion Λ(T ) = exp
(∑∞

n=1(−i)nC(n)O (T )/n!
)

that can be truncated to second order if the noise is suf-
ficiently weak and the time is sufficiently short [69].

We will focus on zero-mean noise, and thus, bα(t) = 0

and C(1)O (T ) = 0. As a result, the first non-zero term is

C(2)O (T ), which can be written as

C(2)O (T )

2
=

∑
α,β,α′,β′

∫ ∞
0

dω

2π
Sα,α′(ω)Fαβ,α′β′(ω, T )Aββ′ ,

(B6)

The noise power spectral density Sαα′(ω) is defined via

Cαα′(t1 − t2) =
1

2π

∫ ∞
−∞

Sαα′(ω) eiω(t1−t2)dω, (B7)

while the filter functions are

Fαβ,α′β′(ω, T ) = Re [Fαβ(ω, T )Fα′β′(−ω, T )] . (B8)
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with Fαβ(ω, T ) =
∫ T
0
dt fαβ(t)eiωt. The operator Aββ′ is

defined as

Aββ′ = AβAβ′ −O−1AβOAβ′ −AβO−1Aβ′O
+O−1AβAβ′O (B9)

We will now use this representation to derive analytical
expressions for the filter functions resulting from various
unitary folding techniques.

Appendix C: Filter function perspective on global
folding

Consider a global folding protocol defined as

UGF [(2M + 1)T, 0] = U0(T )
[
U†0 (T )U0(T )

]M
, where

U0(t) is the unitary representing the desired quantum
algorithm and M is the number of folding repetitions to
be performed. The total time required to implement the
algorithm is denoted by T .

1. Switching functions

The switching functions resulting from the global fold-
ing protocol are given by

fαβ(t) =

{
f
(1)
αβ (t) : t ∈ [0, 2MT )

f
(2)
αβ (t) : t ∈ [2MT, (2M + 1)T )

. (C1)

We partition them into two terms: the first, denoted with
superscript (1), is defined during the global folding as

f
(1)
αβ (t) =

1

N
Tr
[
U0(T )Γ(2MT, t)AαΓ†(2MT, t)U†0 (T )Aβ

]
.

(C2)
The operator Γ(2MT, t) captures the partial (reverse)

unitary dynamics of [U†0 (T )U0(T )]M . By again expand-
ing into the operator basis of Aα, we define an additional

switching function

yαγ(t) =
1

N
Tr
[
Γ(2MT, t)AαΓ†(2MT, t)Aγ

]
, (C3)

such that

Γ(2MT, t)AαΓ†(2MT, t) =
∑
γ

yαγ(t)Aγ . (C4)

As a result, we can express f
(1)
αβ (t) as

f
(1)
αβ (t) =

1

N

∑
γ

yαγ(t) Tr
[
U0(T )AγU

†
0 (T )Aβ

]
. (C5)

The advantage of this representation is that we have now

defined the switching function f
(1)
αβ (t) in terms of a mirror

symmetric switching function yαγ(t). Mirror symmetric
switching functions satisfy the property

yαγ(t) = yαγ(2T − t), (C6)
which we will find useful when examining the filter func-
tions of global folding. Lastly, the second term of the
switching function fαβ(t) is defined after the global fold-
ing and given by

f
(2)
αβ (t) =

1

N

∑
j

gj(t)×

Tr
[
UK:j+1e

−i(tj−t)HjAαe
i(tj−t)HjU†K:j+1Aβ

]
,

(C7)

with gj(t) = Θ(t − tj−1) − Θ(t − tj), and Θ(t) denoting
the Heaviside function.

2. Filter functions

The filter functions are defined via products of Fourier
transforms of switching functions. Since the switching
functions can be partitioned into two terms, the filter
functions can be partitioned into four terms:

Fαβ,α′β′(ω, T ) =

2∑
i,j=1

G
(i,j)
αβ,α′β′(ω, T ) (C8)

where

G
(1,1)
αβ,α′β′(ω, T ) =

sin2(MωT )

sin2(ωT )
F

(1)
αβ (−ω, T )F

(1)
α′β′(ω, T ) (C9)

G
(1,2)
αβ,α′β′(ω, T ) = ei(3M+1)ωT sin(MωT )

sin(ωT )
F

(1)
αβ (−ω, T )F

(2)
α′β′(−ω, T ) (C10)

G
(2,1)
αβ,α′β′(ω, T ) = [G

(1,2)
αβ,α′β′(ω, T )]∗ (C11)

G
(2,2)
αβ,α′β′(ω, T ) = F

(2)
αβ (ω, T )F

(2)
α′β′(−ω, T ). (C12)
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The component filter functions are determined by

F
(1)
αβ (ω, T ) =

∫ 2T

0

dt f
(1)
αβ (t)eiωt, (C13)

F
(2)
αβ (ω, T ) =

∫ T

0

dt f
(2)
αβ (t)eiωt. (C14)

Note that G
(1,1)
αβ,α′β′(ω, T ) and G

(1,2)
αβ,α′β′(ω, T ) exhibit

“comb-like” behavior conveyed by the presence of the
quotient of sinusoidal functions. These factors appear
from the M repetitions of global folding, and they are
responsible for the more distinct features in the filter
function as M increases.

Appendix D: Filter function perspective on local
folding

Local folding is generically described by the total uni-
tary

ULF (T, 0) = UK

(
U†KUK

)M
· · ·U1

(
U†1U1

)M
= UK ΓK(TK) · · ·U1 Γ1(T1), (D1)

where each gate is subject to a folding interval. Each
local folding is equivalent in repetition, occurring M total
times for each of the gates Uj . It is assumed that each
gate takes an equivalent amount of time τ , and therefore
the timing of each gate is given by

t
(j)
k = [(2M + 1)(j − 1) + k]τ, (D2)

for j = 1, . . . ,K and k = 1, . . . , 2M + 1. We define the

local folding unitary Γj(Tj) = (U†jUj)
M , where the total

time Tj = t
(j)
2M , for convenience and in anticipation of

the subsequent calculations. At intermediate times, the
folding operator is given by

Γj(Tj , t) =

{
(U†jUj)

M−kei(t
(k)
k −t)Hj : k odd

(U†jUj)
M−kU†j e

−i(t(j)k −t)Hj : k even
.

(D3)
Note that we have defined the local folding operator with
respect to the total time as this will naturally appear
from the “reverse” propagator U0(T, t); see Eq. (B3).
Furthermore, note that for brevity we will use the no-
tation Γj(t) = Γj(Tj , t).

1. Switching functions

While local folding utilizes a more complex folding
procedure than global folding, the switching functions
can still be partitioned into folding and post-folding

terms. Specifically, the folding terms reside in the do-

main t ∈ [t
(j−1)
2M+1, t

(j)
2M ) and the post-folding terms can

be defined within t ∈ [t
(j)
2M , t

(j)
2M+1). This construc-

tion allows for the switching function to be expressed

as fαβ(t) = f
(1)
αβ (t) + f

(2)
αβ (t), where

f
(µ)
αβ (t) =

∑
j

g
(µ)
j (t)f

(µ,j)
αβ (t). (D4)

The indices µ = 1, 2 characterize the folding and post-

folding terms, respectively. The functions g
(1)
j (t) = Θ[t−

t
(j−1)
2M+1]−Θ[t−t(j)2M ] and g

(2)
j (t) = Θ[t−t(j)2M ]−Θ[t−t(j)2M+1]

capture the piecewise features of the gate folding periods
and their final implementation.

During a local folding period, the switching function is
defined by

f
(1,j)
αβ (t) =

1

N

∑
γ

y(j)αγ (t) Tr
[
QK:jΓ

†
j(Tj)AγΓj(Tj)Q

†
K:jAβ

]
,

(D5)
where Qk:j = UkΓk(Tk) · · ·UjΓj(Tj). As in the global
folding case, we introduce an additional switching func-
tion

y(j)αγ (t) =
1

N
Tr[Γj(t)AαΓ†j(t)Aβ ] (D6)

which satisfies the mirror symmetric condition described
in Eq. (C6) for the jth local folding interval. Once again,
this property will prove useful during the calculation of
the filter functions.

Local folding operations are followed by the implemen-
tation of the folded gate. The switching function describ-
ing this post-folding period is

f
(2,j)
αβ (t) =

1

N
Tr
[
QK:j+1e

−i(t(j)2M+1−t)HjAα×

Q†K:j+1e
i(t

(j)
2M+1−t)HjAβ

]
. (D7)

Partial time evolution during t ∈ [t, t
(j)
2M+1) captures the

switching function dynamics during the gate. Note that
this contribution disappears if the gates are assumed to
be instantaneous.

2. Filter functions

There are four primary filter function that characterize
the self-interference and cross-interference between local
folding and post-folding intervals. While this is a sim-
ilar construction to the global folding case in that the

filter function F
(i,j)
αβ,α′β′(ω, τ) is equivalent to Eq. (C8)

with T = τ , the distinction lies within the definition

of G
(i,j)
αβ,α′β′(ω, τ). Each of the four terms are composed

of K2 terms, where each constituent term captures the
interactions between the jth and kth interval. More con-

cretely, the G
(i,j)
αβ,α′β′(ω, τ) filter functions are given by
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G
(1,1)
αβ,α′β′(ω, τ) =

sin2(Mωτ)

sin2(ωτ)

K∑
j,k=1

eiω[t
(k−1)
2M+1−t

(j−1)
2M+1]F

(1,j)
αβ (−ω, τ)F

(1,k)
α′β′ (ω, τ) (D8)

G
(1,2)
αβ,α′β′(ω, τ) = ei(M+1)ωτ sin(Mωτ)

sin(ωτ)

K∑
j,k=1

eiω[t
(k)
2M−t

(j−1)
2M+1]F

(1,j)
αβ (−ω, τ)F

(2,k)
α′β′ (−ω, τ) (D9)

G
(2,1)
αβ,α′β′(ω, τ) = [G

(1,2)
αβ,α′β′(ω, τ)]∗ (D10)

G
(2,2)
αβ,α′β′(ω, τ) =

K∑
j,k=1

eiω[t
(k)
2M−t

(j)
2M ]F

(2,j)
αβ (ω, τ)F

(2,k)
α′β′ (−ω, τ). (D11)

Each component filter function

F
(1,j)
αβ (ω, τ) =

∫ 2τ

0

dt f
(1,j)
αβ (t)eiωt, (D12)

F
(2,j)
αβ (ω, τ) =

∫ τ

0

dt f
(2,j)
αβ (t)eiωt. (D13)

denotes the Fourier Transform of the folding and post-
folding switching functions, respectively. As in the
global folding case, the pure folding filter function

G
(1,1)
αβ,α′β′(ω, τ) is proportional to a quotient of sinusoidal

functions; thus, exhibiting comb-like behavior with in-
creasing folding repetition M . Despite this similarity,
and many others, local folding produces a very distinct
folding filter function.

In particular, local folding leads to low and high fre-
quency localization in the filter function as M grows.
This behavior can be attributed to the local folding pe-
riods, with the contribution of the self-interference term

G
(1,1)
αβ,α′β′(ω, τ) being most influential. This term captures

two distinct types of interactions between the jth and
kth folding periods that are dependent upon the mod-
ulation properties of the switching functions. Products
of relatively static switching functions will lead to com-
ponent filter functions that have greatest support at low
frequencies, while those that demonstrate rapid fluctua-
tions will produce filter functions that tend towards high
frequencies. This effect is exacerbated by the sinusoidal
(frequency comb-like) expression as the number of folding
repetitions increases.
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