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We present a theory of magnon-polaritons in quantum Ising materials, and develop a formalism
describing the coupling between light and matter as an Ising system is tuned through its quantum
critical point. The theory is applied to Ising materials having multilevel single-site Hamiltonians,
in which multiple magnon modes are present, such as the insulating Ising magnet LiHoF4. We
find that the magnon-photon coupling strengths may be tuned by the applied transverse field,
with the coupling between the soft mode present in the quantum Ising material and a photonic
resonator mode diverging at the quantum critical point of the material. A fixed system of spins
will not exhibit the diamagnetic response expected when light is coupled to mobile spins or atoms.
Without the diamagnetic response, one expects a divergent magnon-photon coupling strength to
lead to a superradiant quantum phase transition. However, this neglects the effects of damping and
decoherence present in any real system. We show that damping and decoherence may block the
superradiant quantum phase transition, and lead to weak coupling between the soft magnon mode
and the resonator mode. The results of the theory are applied to experimental data on the model
system LiHoF4 in a microwave resonator.

PACS numbers:

I. INTRODUCTION

Although light-matter interactions were central to the
development of quantum field theory, it is only recently
that the interactions between microwave photons and
magnetic materials have been explored in detail. Indeed,
it was in 2009 that Imamoğlu pointed out that strong
coupling is achieved between resonant cavity photons and
a spin ensemble in a coupled spin-photon system1. A
short time later, interactions between a nanomagnet and
microwave photons in a spherical resonator were investi-
gated by Soykal and Flatté2,3. Since 2010, developments
in microwave resonator technology have pushed forward
our ability to explore fundamental aspects of quantum
physics4, and have led to the rapid development of the
new field of quantum magnonics, and associated hybrid
quantum technologies5–7.

In this paper, we develop a general, finite temperature,
quantum field theory that may be used to study light-
matter interactions, including interactions between a
quantum system and an oscillator bath environment8–13.
The formalism is applicable to materials having strong
Ising interactions between their constituent atoms, or
spins, and materials with complicated, multilevel, single-
site Hamiltonians, such as the quantum Ising magnet
LiHoF4

14–16, which undergoes a ferromagnetic to para-
magnetic quantum phase transition in an applied trans-
verse field.

We analyze the transverse-field Ising model (TFIM) in
the presence of an applied ac magnetic field along the

easy axis of the material

H = HTFIM +Bz cos (ωt)
∑
i

Jzi (1)

HTFIM = −1

2

∑
i 6=j

VijJ
z
i J

z
j −Bx

∑
i

Jxi . (2)

This simple model of a quantum material in a microwave
resonator can be quantized to obtain a quantum optics
model in which the spins couple to an effective photon
momentum operator (p ∼ i(a† − a))

H = HTFIM − iα(a† − a)
1√
N

∑
i

Jzi . (3)

The magnetic insulating crystal LiHoF4 is often con-
sidered an archetypical quantum Ising material, al-
beit with a strong hyperfine interaction between each
holmium spin and its nucleus, and with the domi-
nant coupling between spins being long range dipolar
interactions14. The results of our theory are applied
to LiHoF4, and they accommodate the low energy elec-
tronuclear modes present in the material. The coupling
between light and matter depends on the atomic density
of the matter. We note that the spin density of LiHoF4

is more than three times that of YIG, which has been a
primary focus of quantum magnonics.

Coupled light and matter modes will hybridize, form-
ing polariton modes. The theory of polaritons, named
as such, stemmed from Hopfield’s work9, although ear-
lier work on coupled light-matter modes is present in
the literature17,18. The quantum optics model, given by
equation (3) shares similarities with the Hopfield model9,
as well as the Dicke model8, and quantum environment
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models such as the Caldeira-Leggett and spin boson
Hamiltonians12,13 (see Appendix A for more details). A
primary difference between the model given by equation
(3) and the models introduced by Dicke and Hopfield is
that in equation (3) we are considering a fixed system of
spins, and no diamagnetic term is present in the Hamil-
tonian. A system comprised by mobile spins or atoms,
as in the Dicke and Hopfield models, will exhibit a dia-
magnetic response. As discussed below, the diamagnetic
term in light-matter Hamiltonians has important conse-
quences, so equation (3) should be considered a distinct
model.

The diamagnetic term has been the source of consid-
erable controversy. In the absence of the diamagnetic
term, as one increases the light matter coupling strength,
a superradiant quantum phase transition is expected to
occur, in which photons spontaneously appear in the
ground state of the system19,20. The presence of the dia-
magnetic term forestalls this transition21. Furthermore,
with the diamagnetic term present, it was shown by De
Liberato that as one increases the light-matter coupling,
the light and matter modes will in fact decouple10. The
source of this light-matter decoupling is the diamagnetic
response which localizes the photon modes away from
the matter, and shifts the resonant frequency of the light
mode. As the coupling strength is increased, one finds
the polaritonic modes have a predominately light or mat-
ter character.

The spin-photon Hamiltonian given in equation (3)
leads to an effective magnon-photon Hamiltonian in
which the diamagnetic term is absent. As the quantum
Ising material is tuned through its critical point, the spec-
tral weight of the soft mode, and hence the magnon- pho-
ton coupling strength, diverges. As no diamagnetic term
is present, this ought to lead to a superradiant quantum
phase transition. However, we show that including the ef-
fects of dissipation and decoherence of the magnon modes
leads to a very different outcome. When environmental
degrees of freedom are taken into account, the resulting
dissipation and decoherence couple to the divergence of
the soft mode, providing a new means to prevent super-
radiance. We substantiate this theoretical prediction in
experiments on a model quantum Ising magnet.

The remainder of this paper is structured as follows:
To begin, in Section II, we provide a brief discussion
of the magnon-polariton propagator and the resonator
transmission function. This provides a primary connec-
tion between theoretical work and experimental results.
The magnon-polariton theory is then developed in Sec-
tion III. Starting with equations (1) and (2), we derive
the magnon-polariton propagator for the coupled light-
matter system, and an effective bosonic Hamiltonian de-
scribing the system. The calculation is lengthy, so we
begin Section III with a detailed summary of the steps
involved.

Having obtained the magnon-polariton propagator, we
discuss its application to calculating mode energies and
spectral weights in Section IV, first in the absence of

damping and then with frequency-independent (ohmic)
damping of the magnon modes. This concludes the the-
oretical portion of this paper.

In Section V, we compare the theory with experimen-
tal data on LiHoF4 in a microwave resonator4,22. An
ansatz is used to account for decoherence of the spins
comprising the collective magnon modes. With dissipa-
tion and decoherence accounted for, we are able to make
quantitative comparisons between results of this model
and experimental measurements.

II. RESONATOR PHYSICS

In a resonator experiment, one measures transmission
of photons through the resonator, which is determined
theoretically by the magnon-polariton propagator. Our
quantum optics model is analyzed making use of the
imaginary time ordered magnon-polariton propagator of
the coupled system23

Dmp(τ) =
〈
Tτ
(
a†(τ) + a(τ)

)(
a† + a

)〉
, (4)

where 〈Tτ · · · 〉 is an imaginary time ordered thermal av-
erage taken over the light and matter degrees of freedom.
The results of this theory are applied to the quantum
Ising magnet LiHoF4 in a microwave resonator.

In a two-port microwave resonator experiment, one
may measure transmission of photons through the res-
onator. The resonator transmission function is given
by24,25

S21 =
xOUT2

xIN1

∣∣∣∣
xIN2 =0

, (5)

where x
IN/OUT
1,2 is a measure of the incoming and outgo-

ing light at the resonator ports 1 and 2. The transmission
function is the ratio of the outgoing photons at port 2 to
the incoming photons at port 1 when no light is incident
at port 2. We assume the resonator transmission function
is related to the magnon-polariton propagator by26

|S21(ω)|2 ∝ Im[Dret
mp(ω)], (6)

where the proportionality constant depends on details of
the resonator. The retarded magnon-polariton propaga-
tor Dret

mp(ω), or photon response function, is defined by

Dret
mp(ω) = βDmp(iωn → ω + i0+), with

Dmp(iωn) =
1

β

∫ β

0

dτ eiωnτDmp(τ), (7)

where ωn = 2πn/β are Bose-Matsubara frequencies23.
The imaginary component of Dret

mp(ω) corresponds to the
energy absorbed by the resonator photons. The trans-
mission data varies over many orders of magnitude, and
will be presented on a logarithmic scale

10 log |S21|2 = 10 log
(
AIm[Dret

mp]
)
. (8)
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The proportionality constant A can be adjusted so that
the scale of the experimental data matches that of the
theoretical results. In what follows we set A = 1, leav-
ing a more quantitative comparison of the experimental
resonator transmission and the theoretical results as a
subject for future work.

The magnon-polariton propagator is defined in terms
of photon position operators, x ∼ a† + a, whereas in
equation (3) the spins couple to a photon momentum
operator p ∼ i(a† − a). One can show that a canoni-
cal transformation that swaps the photon position and
momentum operators leads to an equivalent formulation
of the model in which the spins couple to an effective
position operator27 (see Appendix B)

H = HTFIM − α(a† + a)
1√
N

∑
i

Jzi . (9)

This canonical transformation facilitates the calculation
of the magnon-polariton propagator for the interacting
spin-photon system.

The cooperativity of a light-matter system is de-
fined by C ≡ 4g2m/(ΓmΓr), where Γr and Γm are the
linewidths (or dampings) of the light and matter modes,
respectively28. In this expression, the coupling, g2m =
α2Am, is between a magnon mode and a light mode,
where α is the spin-photon coupling given in equation
(9), and Am is the spectral weight of the relevant magnon
mode. This expression for the magnon-photon coupling
is derived in Section III E. When the coupling strength
exceeds the damping of the system (C > 1), the modes
are said to be strongly coupled, and there will be coher-
ent energy oscillations between the matter and the light.
Regardless of whether or not the modes are strongly
coupled, the use of perturbation theory and the rotat-
ing wave approximation requires η = g/ω << 1. If
η > 0.1 the system is said to be in the ultrastrong cou-
pling regime, and if η > 1 the system is in the deep
strong coupling regime29. Somewhat confusingly, a sys-
tem in the ultrastrong, or deep strong, coupling regime
may be weakly coupled if C < 1.

We have provided a brief description of the magnon-
polariton propagator, the resonator transmission func-
tion, and a discussion of the cooperativity of a light mat-
ter system. We will make use of this material in the de-
velopment of the magnon-polariton theory, and the com-
parison between the theory and experimental results for
LiHoF4 in a microwave resonator. In the next section,
we provide a detailed derivation of the magnon-polariton
propagator beginning with the basic model given by
equations (1) and (2).

III. MAGNON-POLARITON THEORY

Our goal in this section is a detailed derivation of the
magnon-polariton propagator, beginning with the basic
spin model given by equations (1) and (2). Prior to delv-
ing into the calculation, we provide a brief summary of

the required steps, and the terms which appear as the
theory develops.

In Section III A, we quantize the longitudinal ac mag-
netic field present in our basic model, assuming a plane
wave basis for the photons, and we divide the spin Hamil-
tonian into its mean field part, and interactions between
fluctuations about the mean field. The photon part of
the resulting spin-photon Hamiltonian contains a term
describing the instantaneous Zeeman energy of the spins
in the ac field. The spin-photon interaction is given by an
effective photon momentum operator (p ∼ i(a†−a)) cou-
pled to fluctuations of the spins about their mean field.
A canonical transformation is used to swap the photon
momentum operator for a photon position operator in
the interaction. A phenomenological filling factor is in-
troduced to account for the coupling between spins and
photons in a resonator where the plane wave assumption
may break down.

In Section III B, we discuss the dynamic susceptibility
of a quantum Ising system having a multilevel single site
Hamiltonian. The dynamic susceptibility is discussed in
both the mean field (MF) and the random phase approx-
imations (RPA). To go beyond the RPA, phenomenolog-
ical damping parameters are introduced to account for
damping of the magnon modes due to interactions be-
tween magnetic fluctuations, phonons, or any other envi-
ronmental degrees of freedom. The dynamic susceptibil-
ity is central to the calculation of the magnon-polariton
propagator.

In Section III C, we return to the spin-photon Hamilto-
nian derived in Section III A. An auxiliary field is intro-
duced to account for the interactions between magnetic
fluctuations in the spin component of the Hamiltonian. A
shift in the auxiliary field allows a trace to be performed
over the microscopic spin degrees of freedom, resulting in
an effective field theory which describes photons coupled
to collective spin excitations, or magnons, present in the
quantum Ising material. An expression for the propaga-
tor of the free auxiliary field is developed. The shift in the
auxiliary field leads to a diamagnetic term in the photon
component of the Hamiltonian, HDγ = D(a†+ a)2, which
shifts the frequency of the resonator mode. Although
this diamagnetic term is present in an intermediate stage
of the development of the theory, we find that the free
auxiliary field propagator contains a term which restores
the photon frequency to its original value in the final ex-
pression for the magnon-polariton propagator, given in
Section III E, so the diamagnetic response term arising
from the shift in the auxiliary field plays no role in the
final theory.

In Section III D, we consider the photon component
of the magnon-photon Hamiltonian and derive the free
photon propagator. Finally, in Section III E, we con-
sider the full magnon-photon Hamiltonian and derive
the magnon-polariton propagator for the coupled light-
matter system in terms of the dynamic susceptibility of
the quantum Ising material. The spectral representation
of the dynamic susceptibility is used to derive an equiv-
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alent bosonic Hamiltonian for the light-matter system.
This completes the derivation of the magnon-polariton
propagator.

A. Spin-Photon Hamiltonian

We consider the transverse field Ising model (TFIM) in
a longitudinal ac field, H = Hγ +HTFIM +Hint, where
Hγ is the photon Hamiltonian, the TFIM Hamiltonian is
given in (1), and the interaction between the spins and
the magnetic field is

Hint = Bz cos(ωt)
∑
i

Jzi . (10)

The TFIM may be treated in mean field (MF) theory,
HTFIM = HMF +Hfl, where the MF Hamiltonian is

HMF = Egs −Hz

∑
i

Jzi −Bx
∑
i

Jxi , (11)

with Hz = V0〈Jz〉MF , where the zero wavevector com-
ponent of the interaction between spins is V0 =

∑
j Vij .

The constant contribution to the ground state energy,
Egs = V0〈Jz〉2MF /2, will be dropped from the subsequent
analysis. The MF spin polarization 〈Jz〉MF is deter-
mined self consistently from the MF Hamiltonian30,31.
The energy of the interactions between fluctuations in
the longitudinal MF spin polarization are given by

Hfl = −1

2

∑
i 6=j

VijδJ
z
i δJ

z
j , (12)

where the fluctuation operator is defined by δJzi = Jzi −
〈Jz〉MF .

We consider a single electromagnetic field mode, in
which case

Hγ = ~ωr
(
a†a+

1

2

)
. (13)

Assuming the magnetic field is generated by a plane
wave, the quantized ac magnetic field in a volume Vres
may be written

Bz cos(ωt)→ B̂z = −igLµB
c

√
~ωr

2Vresε0
(a† − a), (14)

where, on the right-hand side, the time dependence is
implicit in the photon operators and the amplitude of the
field depends on the photon density. The Landé g-factor
and Bohr magneton written explicitly in the quantized
expression were previously included in the definition of
Bz. We assume photons with a wavelength much larger
than the sample size so that eiq·r ≈ 1, with ωr = qc.

Transforming the spin operators to momentum space

Jzk =
1√
N

∑
i

eik·riJzi , (15)

we find that the interaction is Hint = −iα(a† − a)δJz0 ,
with

α = gLµB

√
µ0~ωrN

2Vres
. (16)

The interaction is between spin fluctuations and an ef-
fective momentum operator, p ∼ i(a† − a). In Appendix
B we show that a canonical transformation that swaps
the photon position and momentum operators leads to
an equivalent formulation of the problem in which

Hint = −α(a† + a)δJz0 . (17)

We have dropped a term linear in the photon operators

from the interaction, B̂zN〈Jz〉0 = −α(a† + a)
√
N〈Jz〉0.

This is the (instantaneous) MF Zeeman energy of the
spins in the longitudinal ac magnetic field. We will rein-
troduce this term as part of the photon Hamiltonian in
Section III D. In a system with n atoms per unit cell,
the total number of atoms is N = nVsample/Vcell. The
interaction strength may then be written

α = η
√

2π
√
~ωr

√
ρJD with JD =

µ0(gLµB)2

4π
, (18)

where in our plane-wave approximation the filling factor
is η =

√
Vsample/Vres, and the spin density is ρ = n/Vcell.

In YIG we have ρ = 4.22× 1027m−3, whereas in LiHoF4

the value is ρ = 1.39 × 1028m−3, which is about 3.3
times the value in YIG. The dipolar energy scale of the
LiHoF4 system is given by ρJD = 13.52mK. For a dis-
cussion of the magnon-photon coupling strength in YIG,
see references28,32.

Our result for the filling factor was based on a
plane-wave assumption. In a realistic model of a mi-
crowave resonator2,3, the plane-wave assumption may
break down, and the filling factor will depend on de-
tails of the resonator. One may express the filling factor
as28,32

η =

√√√√ (∫
Vsample

B(r) · ẑ dr
)2

Vsample
∫
Vres

(
B(r)

)2
dr
, (19)

where B(r) is the magnitude of the ac resonator field. In
this work, we will treat the filling factor as a phenomeno-
logical parameter. The results of our theory are applied
to experimental data on LiHoF4 in a loop gap microwave
resonator33.

B. Dynamic Susceptibility

The dynamic susceptibility of a quantum Ising mate-
rial is central to the development of the magnon-polariton
theory. We will make frequent use of the dynamic sus-
ceptibility and its spectral decomposition. We proceed to
review the dynamic susceptibility in both the mean field
and the random phase approximations (MF and RPA).
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For a more detailed discussion of the dynamic suscepti-
bility of magnetic materials, see Rare Earth Magnetism
by Jensen and MacKintosh34.

The MF Hamiltonian for each spin, and the matrix
elements of the longitudinal spin operator, may be ex-
pressed in terms of eigenstates and energies of the single
site MF Hamiltonian given by equation (11)

HMFi =
∑
m

Em|m〉〈m| and cmn = 〈m|Jz|n〉MF ,

(20)

where {Em} are the single site energy levels of the sys-
tem, and {|m〉} are the associated eigenstates. We drop
the constant shift in the ground state energy, Egs, from
subsequent analysis.

The modes of the spin system, and their associated
spectral weights, follow from the connected imaginary
time correlation function, or Green function, g(τ) =
−〈TτδJz(τ)δJz〉MF , where Tτ is the imaginary time or-
dering operator. In MF theory, transforming the Green
function to Matsubara frequency space (ωn = 2πn/β),
we may write the MF Green function as34,35

g(iωn) =
1

β

∫ β

0

eiωnτg(τ)dτ = g̃(iωn)− gelδiωn,0, (21)

where in the final expression the Green function is di-
vided into an inelastic component, and the quasi-elastic
diffusive pole of the system. The longitudinal MF dy-
namic susceptibility and the Green function are related
by χ0(ω) = −βg(iωr → ω + i0+) = χ̃0(ω) + χ0

elδω,0. In
terms of the MF energy levels and matrix elements of the
longitudinal spin operator, one may write the dynamic
susceptibility as

χ̃0(z) =
∑
n>m

|cmn|2pmn
2Enm

E2
nm − z2

(22)

βχ0
el =

∑
m

c2mmpm−
[∑

m

cmmpm

]2
.

The pmn = pm − pn are differences between population
factors pm = e−βEm/ZMF , where ZMF = Tr[e−βHMFi ].
The poles of χ̃0(z), Enm = En − Em, are the MF
modes of the system, and their spectral weights are
amn = |cmn|2pmn. The elastic contribution to the dy-
namic susceptibility, χ0

el, vanishes in the paramagnetic
phase of the system (cmm = 0), and decays exponentially
with temperature

(
χ0
el ∼ Te(−E1/T )

)
.

In the random phase approximation (RPA), the result
for the dynamic susceptibility is χ(k, z) = χ0(z)/(1 −
Vkχ0(z)). One may solve for the poles of this function,
and their residues, in order to obtain its spectral repre-
sentation

χ(k, z) =
∑
m

[
Amk 2Emk

(Emk )2 − z2

]
+ χelk δz,0, (23)

where Amk is the spectral weight of the mth RPA mode
Emk .

In the magnon-polariton theory, the wavelengths of
the microwave photons are much larger than the size
of the sample, so we are interested in the k = 0 limit
of the dynamic susceptibility. In this limit we write
χ(z) = χ(k = 0, z), and we define {ωm} = {Emk=0},
and {Am} = {Amk=0}, as the zero wavevector compo-
nent of the magnon modes and their spectral weights.
The spectral weights of the magnon modes are inversely
proportional to the mode frequencies Am ∼ 1/ωm (see
Appendix C), with the spectral weight of the soft mode
diverging at the critical point of the system.

The RPA expression for the dynamic susceptibility ne-
glects any damping of the magnon modes. In reality,
the modes are damped by interactions between the mag-
netic fluctuations, and environmental degrees of freedom
such as phonons, and extraneous photons inside a res-
onator. If the modes are assumed to behave as damped
harmonic oscillators, the dynamic susceptibility may be
written (χel = 0)

χ(ω) =
∑
m

Am2ωm
ω2
m − ω2 − iωΓm

. (24)

We have analytically continued to real frequencies z →
ω + i0+, and introduced the phenomenological damp-
ing parameters {Γm}. As will be shown, the magnon-
polariton propagator may be written in the same way. In
terms of its reactive and absorptive parts (χ = χ′+ iχ′′),
the dynamic susceptibility is

χ′(ω) =
∑
m

Am2ωm(ω2
m − ω2)

(ω2
m − ω2)2 + (ωΓm)2

+
(Γ0/2)2χel
ω2 + (Γ0/2)2

(25)

and

χ′′(ω) =
∑
m

Am2ωmωΓm
(ω2
m − ω2)2 + (ωΓm)2

+
ωΓ0/2χel

ω2 + (Γ0/2)2
,

(26)

where we have included the contribution from χel to il-
lustrate its role in the theory.

The damping parameter will downshift the resonant
frequency of the mode, ωm → ω̃m =

√
ω2
m − (Γm/2)2,

and if the damping exceeds the mode energy, Γm/2 >
ωm, the mode becomes overdamped. The shift in the
mode energy may be eliminated by introducing a coun-
terterm to the theory. This is accomplished by setting
z = ω + iΓm/2 for each mode in equation (23). The
dynamic susceptibility is then
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χ′(ω) =
∑
m

[
Am(ω + ωm)

(ω + ωm)2 + (Γm/2)2
− Am(ω − ωm)

(ω − ωm)2 + (Γm/2)2

]
+

χel(Γ0/2)2

ω2 + (Γ0/2)2
, (27)

and

χ′′(ω) =
∑
m

[
AmΓm/2

(ω − ωm)2 + (Γm/2)2
− AmΓm/2

(ω + ωm)2 + (Γm/2)2

]
+

χelωΓ0/2

ω2 + (Γ0/2)2
. (28)

With the counterterm present, the effect of the damp-
ing is to broaden the delta function peaks associated
with absorption and emission by the magnon modes into
Lorentzians. Damping also broadens the quasielastic dif-
fusive pole into an additional peak in the absorption
spectrum, albeit with a different lineshape. The elas-
tic contribution to the dynamic susceptibility vanishes in
the paramagnetic phase of the system, and decays ex-
ponentially with temperature. In the time domain, the
Lorentzian function describes exponentially decaying os-
cillations at a fixed frequency, rather than the strictly
exponential decay of excitations seen in an overdamped
harmonic oscillator.

We make use of the spectral representation of the dy-
namic susceptibility to calculate the magnon-photon cou-
pling strengths in the magnon-polariton theory.

C. Auxiliary Field Theory

To derive the magnon-photon Hamiltonian, we make
use of the partition function as a means to renormal-
ize the system. The interactions between spins are de-
coupled via the introduction of an auxiliary Hubbard-
Stratonovich field, which allows us to average out the
microscopic spin degrees of freedom. The resulting the-
ory describes photons coupled to the collective spin exci-
tations, or magnons, present in the material.

We divide the total Hamiltonian of the spin-photon
system into two terms H = H0 +H′, where H′ contains
the spin fluctuations

H′ = −1

2

∑
i 6=j

VijδJ
z
i δJ

z
j − α(a† + a)

1√
N

∑
i

δJzi (29)

and H0 = HMF +Hγ . The photon Hamiltonian contains
a contribution from the instantaneous Zeeman energy of
the spins in the ac field as discussed following equation
(17).

The partition function, written in the Matsubara for-
malism, is given by23

Z = ZH0

〈
Tτ exp

[
−
∫
τ

βH′(τ)

]〉
0

, (30)

where
∫
τ
≡
∫ β
0
dτ/β. The interactions between spin fluc-

tuations may be decoupled via the introduction of an

auxiliary Hubbard-Stratonovich field16

Z

ZH0

=

∫
Dφ exp

(
− 1

2

∫
τ

∑
k

|φk(τ)|2
)

(31)

×
〈
Tτ exp

(∫
τ

V (τ)

)〉
0

,

where the integration measure is Dφ = dφk/
√

2π, and
(suppressing the τ dependence)

V =
∑
k

[
φ−k

√
βVk + βα[a† + a]δk,0

]
δJzk. (32)

We proceed by shifting the auxiliary field so that the
dependence of the interaction on the photons is in the
Gaussian prefactor

φ0 → φ0 −
βα(a† + a)√

βV0
. (33)

Multiplying out the result for the zero wavevector com-
ponent of the Gaussian prefactor, the partition function
is

Z

ZH0

=

〈〈
Tτ

∫
Dφ exp

(∫
τ

αφφ0(a† + a)

)
(34)

× exp

(
− 1

2

∫
τ

∑
k

|φk|2
)
× exp

(∫
τ

Vs

)〉
s

〉
γ

,

where the dimensionless coupling between the photon op-
erators and the magnetic fluctuations is αφ = βα/

√
βV0.

The interaction between the shifted auxiliary field and
the spin fluctuations is

Vs(τ) =
∑
k

φ−k(τ)
√
βVk δJ

z
k(τ). (35)

The thermal average over the eigenstates of H0 has been
written in terms of separate averages over the spin and
photon eigenstates, 〈· · · 〉0 = 〈〈· · · 〉s〉γ . This is possi-
ble because in H0 the Hilbert spaces for the spins and
the photons are disjoint. The square of the shifted
auxiliary field contains a term independent of the field,
HDγ = D(a† + a)2 with D = α2

φ/(2β) = α2/(2V0), which
has been shifted into the photon part of H0.

We are now in a position to trace over the spin de-
grees of freedom. This has been dealt with in detail
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elsewhere16; here we simply quote the result for the par-
tition function in the random phase approximation

Z

ZH0
Zφ

=

〈〈
Tτ exp

(
αφ

∫
τ

φ0(a† + a)

)〉
φ

〉
γ

(36)

where 〈· · · 〉φ is an average taken with respect to the free
auxiliary field.

Transforming to Matsubara frequency space

φ(iωn) =

∫
τ

eiωnτφ(τ), (37)

the partition function of the free auxiliary field is

Zφ =

∫
Dφ exp

(
− 1

2

∑
n,k

(D0
φ

(
k, iωn)

)−1|φk(iωn)|2
)
,

(38)

where the free field propagator, D0
φ

(
k, iωn) =

〈|φk(iωn)|2〉φ, is

D0
φ

(
k, iωn) =

1

1− Vkχ0(iωn)
= 1 + Vkχ(k, iωn). (39)

One may make use of the spectral decomposition of the
dynamic susceptibility (equation (23)) to determine the
spectral representation of the free field propagator.

Beginning with a microscopic spin-photon Hamilto-
nian, we have developed an effective theory describing
photons interacting with an auxiliary field which rep-
resents the collective magnetic excitations, or magnons,
present in the system. We now turn to the photon com-
ponent of the Hamiltonian, and make use of harmonic
oscillator position and momentum operators to develop
a path integral representation of the photonic degrees of
freedom.

D. Photon Hamiltonian

Considering a single photon mode, the photon Hamil-
tonian is given by

Hγ = ωr

(
a†a+

1

2

)
− λ(a† + a) +D(a† + a)2, (40)

where

λ = α
√
N〈Jz〉0 and D =

α2
φ

2β
=

α2

2V0
. (41)

As discussed following equation (16), the term linear in
the photon operators is the instantaneous mean field Zee-
man energy of the spins in the applied ac field, only now
we are considering spins coupled to an effective photon
position operator. The source of the diamagnetic term
is the shift in the auxiliary field given in equation (33).
Although the diamagnetic term is present in this interme-
diate stage of the development of the magnon-polariton

theory, we find it does not play a role in the final ex-
pression for the magnon-polariton propagator given in
Section III E.

We proceed by representing the photons with classical
harmonic oscillator variables

x =

√
~

2mω
(a† + a) p = i

√
~mω

2
(a† − a). (42)

In terms of these operators we have (~,m = 1)

Hγ =
p2

2
+

1

2
ω2
rx

2 −
√

2ωrλx+ 2Dωrx
2. (43)

The diamagnetic term shifts the oscillator frequency. In
terms of the shifted variables

ωγ = ωr

√
1 +

4D

ωr
and λγ = λ

[
1 +

4D

ωr

]− 1
4

,

(44)

the photon Hamiltonian is

Hγ =
p2

2
+

1

2
ω2
γx

2 −
√

2ωγλγx. (45)

The term linear in the position operator re-zeros the os-
cillator, and leads to a shift in its ground state energy

Hγ =
p2

2
+

1

2
ω2
γ(x− x0)2 − 1

2
ω2
γx

2
0, (46)

where x0 =
√

2ωγλγ/ω
2
γ . This linear shift of the oscil-

lator will not affect the photon propagator. In terms of
photonic quasiparticle operators which create and anni-
hilate photons with energy ωγ , the photon Hamiltonian
may be written

Hγ = ωγ

(
a†γaγ +

1

2

)
− 1

2
ω2
γx

2
0. (47)

The shift in the ground state energy may be included
with the ground state energy of the spins Egs (see the
discussion following equation (11)), and dropped from
subsequent consideration.

In imaginary time, the propagator of the shifted pho-
ton modes is

Dγ(τ) =
〈
Tτ
(
a†γ(τ) + aγ(τ)

)(
a†γ + aγ

)〉
γ
, (48)

where the average 〈· · · 〉γ is taken with respect to Hγ .
One may express the partition function of the photon
system in terms of a path integral over the harmonic
oscillator position operator36

Zγ = Tr[e−βHγ ] =

∫
Dx exp

[
−
∫ β

0

Lγ [ẋ, x]dτ

]
, (49)

where H = L in imaginary time, and the path integral
is over the shifted harmonic oscillator variables. In the
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field theory, it is convenient to work with the dimension-
less operator xγ = a†γ + aγ . In Matsubara frequency
space, the Euclidean action in terms of the dimensionless
operator xγ is given by∫ β

0

Lγ(τ)dτ =
1

2

β

2ωγ

∑
n

[
− (iωn)2 + ω2

γ

]
|xγ(iωn)|2.

(50)

It follows that the photon propagator is given by

Dγ(iωn) =
2ωγ
β

1

ω2
γ − (iωn)2

. (51)

We now have the free propagators of the magnon and
photon systems, D0

φ

(
k, iωn) and Dγ(iωn). Equipped

with these propagators, we may proceed to calculate the
magnon-polariton propagator for the coupled magnon-
photon system.

E. Magnon-Polariton Propagator

We have developed a path integral representation of
the partition function for a quantum Ising system in a
resonator. We return now to the partition function of the
full system, given by equation (36). The non-interacting
component of the partition function may be rewritten as
ZH0

= ZMFZγ , where ZMF yields the mean field free
energy of the spins, and Zγ yields the free energy of the
free photons. Although the mean field free energy of the
spins has important thermodynamic consequences, it has
no bearing on the magnon-polariton propagator and may
be dropped from subsequent analysis.

We define the magnon-polariton partition function by

Zmp
ZγZφ

=

〈〈
Tτ exp

(
αφ

∫
τ

φ0(a† + a)

)〉
φ

〉
γ

. (52)

We wish to determine the magnon-polariton propagator
of the rescaled photon operators (xγ = a†γ + aγ),

Dγ
mp(τ) =

〈
Tτ
(
a†γ(τ) + aγ(τ)

)(
a†γ + aγ

)〉
mp
, (53)

but in order to do so, we must re-express the interaction
in terms of the photon operators aγ . In terms of the
dimensionless operator xγ = a†γ + aγ , we find that

αφ

∫
τ

φ0(a† + a) = βαγ
∑
n

φ(iωn)xγ(−iωn) (54)

where

αγ =
αφ
β

[
1 +

4D

ωr

]− 1
4

. (55)

Note that if Dmp is the propagator for the original pho-
tonic operators, x = a† + a, which create and annihilate
photons with frequency ωr, we have Dγ

mp = (ωγ/ωr)Dmp.

In order to calculate the magnon-polariton propaga-
tor, one may expand the interaction in (52) and sum the
resulting Dyson series. The exact result for the magnon-
polariton propagator is

Dγ
mp(iωn) =

1

D−1γ (iωn)− β2α2
γDφ(iωn)

. (56)

Recall that the free field propagator may be written
in terms of the dynamic susceptibility as D0

φ

(
iωn) =

1 + V0χ(iωn), where χ(iωn) is the zero wavevector com-
ponent of the RPA susceptibility given by equation (23).
This leads to

Dγ
mp(iωn) = −2ωγ

β

[
1

(iωn)2 − ω2
c + (α2

c/β)χ(iωn)

]
,

(57)

where the effective frequency of the resonator and the
effective coupling strength are now

ω2
c = ω2

γ − 2βα2
γωγ and α2

c = 2β2α2
γωγV0. (58)

The resonant frequency of the resonator is shifted
by the diamagnetic response of the photons ωr → ωγ
(equation (44)). The coupling between the photons and
the auxiliary field again shifts the resonator frequency
ωγ → ωc. A short calculation shows that ωc = ωr,
so the resonant photon frequency of the system is un-
changed. This is as one might expect because the original
spin-photon Hamiltonian does not contain a diamagnetic
term.

In terms of the original parameters of the spin-photon
Hamiltonian, one may show that the rescaled coupling is
α2
c/β = α22ωr. Using the fact that Dmp = (ωr/ωγ)Dγ

mp,
we arrive at the magnon-polariton propagator of the orig-
inal resonator photons (x = a† + a)

Dmp(z) = −2ωr
β

[
1

z2 − ω2
r + α22ωrχ(z)

]
. (59)

This propagator is a central result of the magnon-
polariton theory. As discussed in Section II, it provides
a primary connection between theoretical work and the
experimentally measured resonator transmission func-
tion. Our result for the propagator includes the effects
of counter-rotating terms which become important in the
ultra-strong, or deep strong, coupling regimes29.

The dynamic susceptibility is given in equation (23).
With χel = 0, one may write down an effective bosonic
magnon-photon Hamiltonian describing the system

Hmp = ωra
†a+

∑
m

ωmb
†
mbm (60)

+ (a† + a)
∑
m

gm(b†m + bm).

In the absence of damping, the magnon-polariton prop-
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agator for the theory is given by (see appendix D)

DHmp(iωn) = −2ωr
β

 1

(iωn)2 − ω2
r −

∑
m

4g2mωmωr
(iωn)2−ω2

m

 .
(61)

Comparing with equation (59), we see that the coupling
in the effective bosonic theory is

g2m = α2Am. (62)

The propagator then satisfies DHmp(a
†, a) = Dmp(a

†, a).
Recall that the spectral weights of the magnon modes
scale like Am ∼ 1/ωm, so that the couplings will also
scale like the inverse of the mode energies. The magnon
mode energies, ωm, and the coupling strength, gm, are
temperature dependent due to the temperature depen-
dence of the mean field, and the population factors which
determine Am.

One sees that the effective bosonic magnon-photon
Hamiltonian captures the propagator of the original res-
onator photons coupled to the quantum Ising spins, apart
from the contribution from the quasielastic diffusive pole.
Therefore, when χel = 0, we are free to use the bosonic
theory to describe the magnon-photon system. Note that
there is no diamagnetic term in the effective bosonic
Hamiltonian. In the Dicke model, one is dealing with mo-
bile charged particles, and the diamagnetic term comes
from squaring the canonical momentum of the charge car-
riers. As we are dealing with a fixed system of spins, no
such term is expected.

In the development of the auxiliary field theory, we
treated the magnetic fluctuations in the quantum Ising
system in the RPA, and determined the exact magnon-
polariton propagator within this approximation. In
the rotating wave approximation (RWA), counter ro-
tating terms in the effective bosonic Hamiltonian are
dropped, leading to an approximate result for the
magnon-polariton propagator26 (assuming χel = 0, and
with Dret

mp(ω) = βDmp(z → ω + i0+))

Dret
mp(ω) =

1

ω − ω−mp + iΓ−mp/2
(63)

− 1

ω + ω+
mp + iΓ+

mp/2
.

where

ω−mp(ω) = ωr +
∑
m

g2m(ω − ωm)

(ω − ωm)2 + (Γm/2)2
(64)

ω+
mp(ω) = ωr −

∑
m

g2m(ω + ωm)

(ω + ωm)2 + (Γm/2)2
,

and

Γ−mp(ω)

2
=

Γr
2

+
∑
m

g2mΓm/2

(ω − ωm)2 + (Γm/2)2
(65)

Γ+
mp(ω)

2
=

Γr
2

+
∑
m

g2mΓm/2

(ω + ωm)2 + (Γm/2)2
.

A phenomenological damping parameter Γr has been in-
cluded to account for any intrinsic damping of the res-
onator photons. As a coherent quantum Ising system is
tuned through its critical point, the spectral weight of the
soft mode diverges, as will the coupling of the soft mode
to the resonator photons. When gm >> |ωr − ωm|, one
expects the RWA to break down, and it is necessary to
make use of the full RPA magnon-polariton propagator
to calculate resonator transmission.

IV. DISCUSSION OF RESULTS

We have developed an effective field theory, and an
equivalent bosonic Hamiltonian, describing a quantum
Ising system in a microwave resonator. The theory has
been used to calculate the magnon-polariton propagator
of the light-matter system.

In the Dicke and Hopfield models (see Appendix A),
the diamagnetic response of a light-matter system goes
like the square of the coupling strength, D ∼ α2, and
the coupling strength varies like the square root of the
atom or spin density, α ∼ ρ

1
2 , as in equations (18)

and (41). With the diamagnetic term present, the ef-
fective resonator frequency diverges with the spin den-
sity (see Appendix D). This forestalls the superradiant
quantum phase transition21, and leads to light-matter
decoupling10. The situation here is different. Impor-
tantly, the effective Hamiltonian describing the magnon-
photon system (equation (60)) does not contain a dia-
magnetic term. The magnon-photon coupling strength
depends on the spectral weight of the relevant magnon
mode (see equation (62)), and may be tuned by the ap-
plied transverse field independently of the resonator fre-
quency.

Consider a system with a single magnon mode. In the
absence of damping, the upper and lower polariton modes
follow from the poles of the magnon-polariton propagator
(equation (61))

ω2
± =

ω2
r + ω2

m

2
±

√(
ω2
r − ω2

m

2

)2

+ 4g2mωrωm. (66)

As the system is tuned through a quantum critical point,
the spectral weight of the soft mode will diverge, as will
the coupling g2m ∼ Am ∼ 1/ωm → ∞. At the degener-
acy point, ωr = ωm, there ought to be an avoided level
crossing in the magnon-polariton spectrum

ω± = ωr
√

1± 2gm/ωr if ωm = ωr, (67)

or possibly a superradiant quantum phase transition if
gm >

√
ωmωr/2. Recall from the discussion following

equation (62) that gm and Am are temperature depen-
dent, so the condition for superradiance is valid at finite
temperatures. We have neglected dissipation and deco-
herence of the soft mode. The divergent spectral weight
of the soft mode will lead to strong coupling to the res-
onator photons; it will also lead to strong coupling with
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bath degrees of freedom such as extraneous photons and
phonons.

Prior to a discussion of the damped magnon-polariton
system, we provide a brief analysis of the propagator in
the random phase approximation, and in mean field the-
ory. In the random phase approximation, we capture the
coupling between photons and collective spin excitations
in the system. At the mean field level, we capture single
ion excitations.

A. Mean Field Theory

In order to calculate the magnon-polariton propagator
in the random phase approximation, an auxiliary field
was introduced to account for the magnetic fluctuations.
The resulting theory accounts for spins coupled to col-
lective excitations in the material. In order to capture
excitations at individual sites, a mean field theory (MF)
is more appropriate. One may calculate the magnon-
polariton propagator in MF theory without introducing
the auxiliary field.

Our starting point for the MF calculation is equation
(30), where H′ is now

H′ = −α(a† + a)
1√
N

∑
i

δJzi . (68)

We have dropped the interactions between the fluctua-
tions of the spins about their MF. The photon Hamilto-
nian is given by

Hγ = ωr

(
a†a+

1

2

)
− λ(a† + a). (69)

At the MF level, there is no diamagnetic term in the
photon Hamiltonian. The diamagnetic term came from
a shift in the auxiliary field in the RPA theory.

One may introduce harmonic oscillator variables, as in
Section III D, to obtain an effective action for the pho-
tons. The result is the same as in equation (50), with
ωγ replaced with the resonator frequency ωr. Recall that
the shift in the photon frequencies (ωr → ωγ) came from
the diamagnetic term in the photon Hamiltonian, which
is not present in the MF theory.

The resulting MF magnon-polariton partition function

is (recall
∫
τ
≡
∫ β
0
dτ/β)

ZMF
mp

Zγ
=

〈〈
Tτ exp

(
βα

∫
τ

xδJz0

)〉
s

〉
γ

, (70)

where x = a†+a, and δJz0 is the zero wavevector compo-
nent of the electronic spin operators. One may perform a
cumulant expansion and trace over the microscopic spin
degrees of freedom16. The average over the spins 〈· · · 〉s
is taken with respect to the MF spin Hamiltonian. We
have dropped ZMF from ZMF

mp because the mean field
partition function of the spins plays no further role in
determining the magnon-polariton propagator.

Truncating the result of the cumulant expansion at the
RPA (or Gaussian) level, one finds

ZMF
mp

Zγ
=

〈
exp

(
βα2

2

∑
n

χ0(iωn)|x(iωn)|2
)〉

γ

, (71)

and the resulting mean field magnon-polariton propaga-
tor is

DMF
mp (z) = −2ωr

β

[
1

z2 − ω2
r + α22ωrχ0(z)

]
. (72)

This result may have easily been anticipated from equa-
tion (59). Writing the RPA susceptibility as a Born series
we have

χ = χ0 + χ0V0χ0 + χ0V0χ0V0χ0 + · · · (73)

Truncating the series after the first term leads to the
MF result involving light scattering from individual ions.
Summing the full series leads to the RPA result which
describes light coupled to collective modes of the sys-
tem. We have derived the MF result here to demonstrate
the use of the magnon-polariton theory at the MF level,
where the introduction of the auxiliary field is unneces-
sary.

Using the spectral decomposition of the MF propaga-
tor, which follows from equation (22), and neglecting the
quasielastic diffusive pole, one may write the propagator
as

DMF
mp (z) = −2ωr

β

 1

z2 − ω2
r −

∑
n>m

4g2mnEnmωr
z2−E2

nm

 .
(74)

The coupling strength is g2mn = α2amn, where amn =
|cmn|2pmn is the spectral weight of the MF transition
between states n and m.

In a resonator experiment, one expects both single
ion excitations, and collective modes. The eigenstates
of the collective modes may involve quantum coherent
superpositions of many different single ion eigenstates.
As the system is subject to decoherence, the collective
mode behavior may give way to single ion excitations.
As will be demonstrated for the LiHoF4 system, the rel-
ative strengths of the single ion excitations and the col-
lective modes can be compared by tuning their respective
spectral weights.

B. Random Phase Approximation

In the absence of damping, we obtain the magnon-
polariton propagator in the random phase approxima-
tion. A spectral decomposition of the magnon-polariton
propagator may be obtained making use of equation (61),
which we write as

βDmp(z)

∣∣∣∣
RPA

= −P (z)

Q(z)
, (75)
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where

P (z) = 2ωr
∏
m

(z2 − ω2
m), (76)

and

Q(z) = (z2 − ω2
r)
∏
m

(z2 − ω2
m) (77)

−
∑
m

4g2mωmωr
∏
m′ 6=m

(z2 − ω2
m′).

The magnon-polariton modes {ωp} follow from the zeros
of Q(z), which we may rewrite as Q(z) =

∏
p(z

2 − ω2
p).

The spectral decomposition of the propagator is then

βDmp(z)

∣∣∣∣
RPA

=
∑
p

Ap2ωp
ω2
p − z2

, (78)

with

Ap =
ωr
∏
m(ω2

p − ω2
m)

ωp
∏
q 6=p(ω

2
p − ω2

q )
. (79)

We see that the magnon-polariton spectral weights scale
like the inverse of the mode energy, Ap ∼ 1/ωp. This
RPA expression will be used to calculate the modes of
LiHoF4 in a microwave resonator.

C. Damped Magnon-Polariton Propagator

We have developed a theory of magnon-polaritons in
quantum Ising systems, and discussed the resulting prop-
agator in the random phase approximation and in mean
field theory. We find that the magnon-photon coupling
strength depends on the spectral weight of the relevant
magnon mode. As a system is tuned through its quan-
tum critical point, the divergent spectral weight of the
soft mode leads to deep strong coupling between the soft
mode and the resonator photons. As no diamagnetic
term is present in the theory, one expects this to lead
to a superradiant quantum phase transition. However,
this neglects the effects of damping and decoherence due
to the system’s coupling to its environment, which we
discuss here.

Coupled light-matter systems, and associated
quantum technologies, are generating considerable
excitement5–7,29. Of course, in any real-world scenario,
one must consider the impact of the environment on the
sytem of interest. For recent research on this topic see37

and references therein. In this work, we do not explore
the full complexity of the memory effects, dissipation,
and decoherence expected when a polaritonic system
is coupled to a bath, or baths; rather, we introduce
phenomenological parameters that may account for
damping and decoherence in the magnon-polariton
theory at a basic level. The results are then compared
to experimental data in Section V.

We assume ohmic (frequency independent) damping of
the magnon modes, in which case the damped retarded

magnon-polariton propagator may be written (Dret
mp(ω) =

βDmp(z → ω + i0+))

Dret
mp(ω) =

−2ωr
ω2 − ω2

mp + iωΓmp
, (80)

where from equation (59)

ω2
mp = ω2

r + (Γr/2)2 − 2α2ωrχ
′(ω), (81)

and

ωΓmp = ωΓr + 2α2ωrχ
′′(ω). (82)

A factor of Γr has been included to account for any in-
trinsic damping of the resonator mode. The Γr term
in the expression for ωmp is a counterterm which elimi-
nates a shift in the resonator frequency due to its damp-
ing (see the discussion in Section III B). The reactive
and absorptive components of the dynamic susceptibil-
ity are given in equations (27) and (28). The magnon
damping functions {Γm}, are assumed to be frequency
independent, although they will vary with the transverse
field. The magnon-polariton propagator can be viewed
as a damped photon propagator, but the magnon “bath”
leads to a frequency dependent damping function, and a
complex set of magnon-polariton modes that follow from
the zeros of ω2 − ω2

mp(ω), or equivalently ωmp(ωp) = ωp.
Consider a system with a single magnon mode for

which the polariton modes follow from the real part of

ω2
p = ω2

r − (ωp + iΓr/2)2 − 4g2mωrωm
ω2
m − (ωp + iΓm/2)2

. (83)

When the damping is weak, we recover the upper and
lower polariton modes given in equation (66). A superra-
diant phase transition will occur if the coupling strength
is sufficiently strong to drive the lower polariton mode to
zero. In the damped system, the condition for superra-
diance is

gm >

√
ωmωr

2

[(
1 +

Γ2
r

4ω2
r

)(
1 +

Γ2
m

4ω2
m

)] 1
2

. (84)

In the absence of damping and decoherence, if a magnon
mode softens to zero, the magnon-polariton system will
always be driven into a superradiant phase (recall gm →
∞ as ωm → 0). With damping present, the divergence
of gm may be matched by a divergence on the right hand
side of equation (84) preventing the lower polariton mode
from dropping to zero. Furthermore, if the constituent
spins making up the soft mode are subject to decoher-
ence, one expects a reduction in its spectral weight, and
hence a reduction in the coupling strength gm. This may
lead to weak coupling and prevent superradiance. We
will elaborate on this point in Section V.

In a damped system comprised by multiple magnon
modes, the magnon-polariton mode and linewidth equa-
tions are
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ω2
mp = ω2

r+

(
Γr
2

)2

+
∑
m

2g2mωr(ω − ωm)

(ω − ωm)2 + (Γm/2)2
−
∑
m

2g2mωr(ω + ωm)

(ω + ωm)2 + (Γm/2)2
− 2g20ωr

(Γ0/2)2

ω2 − (Γ0/2)2
(85)

and

ωΓmp = ωΓr +
∑
m

g2mωrΓm
(ω − ωm)2 + (Γm/2)2

−
∑
m

g2mωrΓm
(ω + ωm)2 + (Γm/2)2

+ 2g20ωr
ωΓ0/2

ω2 + (Γ0/2)2
. (86)

Note that the coupling to the zero mode, defined by
g20 ≡ α2χel, will decay exponentially with temperature,
and vanish in the paramagnetic phase of the system.
We will drop this mode from subsequent consideration.
One may compare the results for ωmp and Γmp with the
RWA results given in equations (64) and (65). As previ-
ously noted, as a coherent quantum Ising system is tuned
through its critical point, one expects the RWA results
to break down.

Assuming that gm is sufficiently weak, or Γm is suf-
ficiently strong, to prevent superradiance, one finds the
damping of the polariton mode at resonance (ωp = ωm)
to be

Γp = Γmp(ωp) ≈ Γr

[
1 + C

ωr
ωp

]
, (87)

where the cooperativity of the system is C =
4g2m/(ΓmΓr). Recall that ωp is the polariton mode en-
ergy, ωm is the magnon mode energy, and ωr is the bare
resonance frequency of the resonator. From inspection
of equation (86), we see that as the soft magnon mode
is tuned through ωp, a resonance is expected to appear
in the linewidth of the polariton mode. The form and
magnitude of the resonance will depend on how gm and
Γm vary with the transverse field.

The collective magnon modes, in particular the soft
mode, are entangled many-body eigenstates of the spin
system. The quantum coherence of the collective magnon
modes is not easily accounted for by the theory. When
the quantum coherent superposition of spins comprising
a particular magnon mode are in contact with their en-
vironment, one expects the superposition of spin states
to give way to a classical mixture of spin states. In our
analysis of the LiHoF4 system below, we account for this
decoherence by transferring spectral weight from the col-
lective RPA excitations to the single ion excitation spec-
trum. This leads to mixed single ion and collective mode
transmission in the magnon-polariton propagator.

With dissipation and decoherence present, in the limit
gm/Γm → 0, we have ωmp = ωr and Γmp = Γr. The
resonator shows no evidence of the magnon modes. We
note, however, that this is distinct from the light-matter
decoupling discussed by De Liberato10. In light-matter
decoupling, the diamagnetic response of the system lo-
calizes the photon modes away from the matter modes
and shifts the frequency of the photons, so that the po-

laritonic quasiparticle operators have a distinct light or
matter character. The diamagnetic term is absent in the
magnon-polariton theory, and the environment is an ad-
ditional feature that may prevent superradiance.

V. COMPARISON TO EXPERIMENT

So far, our analysis has been theoretical. In order to
have confidence in the results, one must compare the-
oretical work to experimental data. We do so here by
comparing the magnon-polariton theory to transmission
spectra of LiHoF4 in loop gap microwave resonators4,33.

Consider the low temperature effective Hamiltonian of
the LiHoF4 system15,16,38

Heff = −C
2
zz

2

∑
i 6=j

Vijτ
z
i τ

z
j −

∆

2

∑
i

τxi +Hhyp, (88)

where the interaction contains a dipolar component, and
a weaker antiferromagnetic component

Vij = JDD
zz
ij − Jnn. (89)

In what follows, we assume a LiHoF4 sample with zero
demagnetization field, consistent with a needle shaped
sample, or a striped domain pattern in which the de-
magnetization field in the bulk of the sample averages
to zero (see Section IIB of the supplement to reference4

for more details). The eigenstates of the J = 8 holmium
spins are mixed and split by the crystal electric field and
an applied transverse field. The {τµi } are Pauli opera-
tors describing the two lowest electronic spin states , and
Czz(Bx) is a truncation parameter which depends on the
applied transverse field, as does the effective transverse
field, ∆(Bx), which splits the energies of the two lowest
electronic spin eigenstates. The truncated longitudinal
holmium electronic spin operator is Jz = Czzτ

z. The hy-
perfine component of the Hamiltonian contains the cou-
pling of each effective spin-1/2 operator to its I = 7/2
nucleus. This splits the single ion Hamiltonian into 16
electronuclear levels, all of which can be accomodated us-
ing our formalism. Further details of the LiHoF4 system
are discussed in Appendix C.

The spin-photon interaction is assumed to be

Hint = −α(a† + a)δJz0 , (90)
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where δJz0 = Czzδτ
z
0 is the k = 0 wavevector component

of the longitudinal spin fluctuation operator (δJz0 = Jz0 −
〈Jz〉MF ) in Fourier space, and the coupling constant is
(see equation 18)

α = η
√

2π
√

~ωr
√
ρJD. (91)

In LiHoF4 we have four spins in each unit cell having
volume Vcell = 2.88 × 10−28m3, to give a total num-
ber of spins N = 4Vsample/Vcell. The spin density is
ρ = 4/Vcell = 1.39 × 1028m−3, which is about 3.3 times
the value in YIG, and the dipolar energy per unit cell
is ρJD = 13.52mK = 282MHz. The filling factor η is
left as a free parameter which depends on details of the
resonator.

Consider, as an example, an ωr/(2π) = 1GHz applied
ac field. In temperature units, we have ~ωr/kB = 48mK.
Plugging in the numbers, we find the coupling at 1GHz
to be

α
∣∣
1GHz

≈ η × 64mK = η × 1.33GHz. (92)

Using this value as a reference, the coupling for any given
frequency (in GHz) is given by

α(f) ≈ η
√
f/f0 × 1.33GHz, (93)

where f0 = 1GHz is the reference frequency.
The resonator transmission function is given by equa-

tion (6). It follows from equation (80) that

|S21|2 ∝ Im[Dret
mp] =

2ωωrΓmp
(ω2 − ω2

mp)
2 + (ωΓmp)2

. (94)

Without knowledge of the proportionality constant, one
cannot obtain Γmp from the amplitude and phase of the
transmission function; however, one may still obtain the
magnon-polariton modes, and compare qualitative fea-
tures of their linewidths with theoretical results.

If the coupling between the resonator photons and the
magnetic excitations is weak, the modes of the resonator
will differ little from the modes of LiHoF4, apart from
the appearance of an additional mode corresponding to
the resonator frequency. In Figure 1, we illustrate the
RPA transmission spectrum of a needle shaped sample of
LiHoF4 in a 1GHz resonator, at zero temperature, with
a filling factor of η = 0.01, along with the MF modes of
LiHoF4. The low energy RPA modes of the resonator dif-
fer little from the RPA modes of LiHoF4, apart from the
addition of the resonator mode. In the upper band of ex-
citations, we see the gapped electronic mode which has
been measured in neutron scattering experiments39. A
comparison of spectral weights determined by equation
(79) shows that, under weak coupling, the RPA trans-
mission spectrum of the resonator is dominated by the
resonator mode.

When the coupling between the resonator photons and
the magnetic excitations is weak, the resonator transmis-
sion spectrum does not exhibit any novel features. If the
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FIG. 1: Modes of LiHoF4, at zero temperature, in a 1GHz res-
onator with a filling factor of η = 0.01. We assume the average
demagnetization field in the sample is zero. Due to the weak
coupling, the RPA modes of the resonator are much the same
as the RPA modes of LiHoF4, with an additional mode at the
resonator frequency. The MF modes of the LiHoF4 system
are shown as dashed lines for comparison. The mode showing
significant softening in the upper band of energy levels has
dominant spectral weight. This mode has been measured in
neutron scattering experiments39. In the inset, we see the
lowest energy electronuclear mode soften to zero at the quan-
tum critical point. A similar figure showing the electronuclear
modes of LiHoF4, and their spectral weights, is provided in
reference16.

filling factor is increased to η = 0.25, we see interesting
features in the RPA transmission spectrum due to the hy-
bridization of the magnon and photon modes. In Figures
2 - 6, we show the effects of damping and decoherence on
the theoretical resonator transmission, and we compare
the results to experimental data.

In Fig. 2, we consider constant ohmic damping of the
magnon-modes. As discussed in Section IV C, we find
that strong damping of the magnon modes may prevent
the superradiant quantum phase transition expected as
the quantum Ising material is tuned through its critical
point. The theoretical results for the resonator transmis-
sion are in poor agreement with the experimental data,
shown in Fig. 3, and it is necessary to refine our treat-
ment of the damped magnon modes. In Fig. 4, we show
the single ion and collective mode resonator transmission
using a more realistic model for the damping parame-
ters. Our estimates of the magnitudes of the damping
parameters fall short of what is necessary to prevent su-
perradiance. In order to account for this discrepancy,
we introduce a phenomenological model to account for
decoherence of the collective magnon modes.

To explore the effects of decoherence, we assume spec-
tral weight is transferred from collective magnon modes
to single ion excitations in the magnon-polariton propa-
gator. This leads to a reduced coupling between the col-
lective magnon modes and the photons, and mixed single
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FIG. 2: Damped RPA transmission function of LiHoF4 in a
1.9GHZ microwave resonator at zero temperature. We con-
sider a sample of LiHoF4 in which the average demagneti-
zation field is zero, and assume a filling factor of η = 0.25.
In the upper left hand figure, the dampings of the magnon
modes and the resonator mode are Γm = 1µK = 20.837kHz
and Γr = 1nK = 20.837Hz, respectively. With this weak
damping, the system is driven into a superradiant phase. On
the right, the damping of the soft mode has been increased
to Γm=1 = 0.5K = 10.419GHz which stops the lower polari-
ton mode from softening to zero, preventing the superradiant
phase transition. The upper polariton mode is attenuated
to the point where it is no longer visible in the transmission
spectrum.

ion and collective mode transmission in the resonator. In
Fig. 5, we show the effects of tuning the decoherence rate
of the collective magnon modes in the phenomenological
model; as the decoherence rate is increased, the superra-
diant quantum phase transition gives way to an avoided
level crossing between the magnon soft mode and the
resonator mode, which, upon further increasing the de-
coherence rate, gives way to a resonance at the transverse
field values where the resonator mode is degenerate with
the soft mode. The model is then used to calculate mixed
single ion and collective mode resonator transmission at
frequencies where the resonator mode is degenerate with
the lowest single ion excitation, and the results are com-
pared to experimental data for a bimodal loop gap mi-
crowave resonator. We find good agreement between the
experimental data and the theoretical results.

Consider Fig. 2, in which we show the zero temper-
ature transmission spectrum of LiHoF4 in a ωr/(2π) =
1.9GHz resonator with constant ohmic damping of the
magnon modes. We see that when the modes are weakly
damped, the lower polariton mode softens to zero mark-
ing a superradiant quantum phase transition in the sys-
tem. As discussed following equation (84), by increas-
ing the damping of the soft mode from Γm=1 = 1µK =
20.837kHz to Γm=1 = 0.5K = 10.419GHz, the lower
polariton mode no longer softens to zero; however, the
resulting transmission function is in poor agreement with
the experimental data.

In Fig. 3 we show the experimental resonator trans-
mission and the inverse quality factor of the resonator
mode (1/Q), which is proportional to the linewidth of
the polariton mode. The inverse quality factor shows a
resonance near the phase transition that may be decom-
posed into the sum of three distinct peaks. The central
peak is due to absorption at the phase transition. As the

FIG. 3: Measured transmission function of LiHoF4 in a
1.9GHZ microwave resonator. The inverse quality factor of
the resonator mode is shown on the right. The measured
value of 1/Q (blue) has been decomposed into the sum of
three Gaussian peaks (red). The central peak corresponds
to absorption at the phase transition. The satellite peaks to
either side of the central peak occur where the soft mode is
degenerate with the resonator mode.

LiHoF4 sample is tuned through its critical point, one
expects absorption at all frequencies, similar to critical
opalescence4. The two satellite peaks correspond to reso-
nances in the transmission function where the resonator
polariton mode (ωp) is degenerate with the soft mode
(ωm). To better capture the experimental data, we con-
sider a refined model for the damping parameters, and
make use of an ansatz meant to capture the effects of
decoherence of the collective magnon modes.

In a more realistic model for the damping of the
magnon modes, the damping parameters will vary as a
function of transverse field and frequency. We neglect the
memory effects associated with the frequency dependence
of the damping parameters; however, we incorporate the
transverse field dependence of the parameters by consid-
ering damping due to an oscillator bath environment at
the frequency of the magnon mode. The damping of a
mode at frequency ωm is given by Γm = γ′(ωm), where
γ′(ω) is given in equation (131) of Appendix D. We find
that

Γm = 2π
∑
z

g2zm[δ(ωm − ωz)− δ(ωm + ωz)], (95)

where the frequency independent damping function Γm
is in agreement with what one obtains using a master
equation approach40; the transverse field dependence of
the damping function is due to the transverse field de-
pendence of the magnon mode ωm. Converting the sum
over bath modes to an integral, one obtains

Γm = 2πg2zmρb(ωm)n(ωm), (96)

where ρb(ωm) is the density of states of the bath modes at
frequency ωm = ωz > 0, and n(ωm) is the Bose-Einstein
distribution function.

Recall that the magnon-photon coupling strength in
LiHoF4 is given by g2m = α2Am (equation (62)), with
α2 = 2πη2(ρJD)ωr, as in equation (91). We assume the
coupling between magnons and bath modes has a similar
form g2zm = g20Am = ZωmAm (for light-matter coupling,
one has Z = 2πη2ρJD). Assuming a quadratic density
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of states, ρb(ωm) = ρ0ω
2
m, in the high temperature limit

(βωm � 1), the damping parameter may be written

Γm = C0Amω
2
m where C0 = 2πZ~ρ0kBT. (97)

The spectral weights of the magnon modes go like Am ∼
1/ωm, so one expects a reduction in the damping of the
soft mode as ωm → 0.

The damping of LiHoF4 due to a phonon bath has
been analyzed by Buchhold41 et al. Specific heat
measurements42 in LiYF4 and LiLuF4 indicate Debye
temperatures of θD = 560K and θD = 540K, respec-
tively. The Debye temperature of LiHoF4 is expected to
be similar. In terms of the Debye temperature and the
corresponding Debye frequency ωD = kBθD/~, and as-
suming the phonon density of states is ρph(ωm) = ρ0ω

2
m,

Buchhold et al. find the damping of a magnon mode ωm
to be

Γm ≈ γD
T

θDω2
D

ω2
m = γ̃D

T

θDω2
D

Amω
2
m, (98)

where in the final expression we have excluded Am from
the decay rate at the Debye frequency and temperature,
γD. Comparing with equation (97), we see that C0 =
γ̃DT/(θDω

2
D). Little information on phonons in LiHoF4

is available; however, for spin vacancies in diamond one
has41 γD/(θDω

2
D) = 10−6 → 10−5 (GHz K)−1. At the

experimentally relevant temperature of T = 50mK, this
leads to C0 ≈ 5×(10−8 → 10−7)GHz−1, and damping of
the magnon modes of less than a kilohertz. This is very
weak damping of the modes; however, interactions be-
tween magnetic fluctuations, and environmental degrees
of freedom other than phonons are expected to increase
the dampings.

In Fig. 4, we consider single ion and collective mode
resonator transmission, with the damping of the collec-
tive modes given in (97), and the damping of the sin-
gle ion excitations given by Γmn = C0amnE

2
nm, where

amn and Enm are discussed in Section IV A. We con-
sider a 3.2GHz resonator relevant to the experimen-
tal data shown in Fig. 6; results for a 1.9GHz res-
onator are similar. The single ion resonator transmis-
sion follows from replacing χ with χ0 in equations (85)
and (86), as discussed in Section IV A. We set C0 =
10−5 K−1 = 4.8 × 10−7 GHz−1, so the damping pa-
rameters are roughly in line with what one expects for
spin vacancies in diamond. The MF and RPA resonator
transmission is calculated at zero temperature, which ac-
curately captures the most dominant modes present at
the experimentally relevant temperature of T = 50mK.
This validates using the T = 50mK estimate for the
damping parameters in the zero temperature resonator
transmission calculations. Modes corresponding to exci-
tations between thermally excited states of the quantum
Ising material will be the subject of future work.

The damping of the collective magnon modes in Fig.
4 is insufficient to prevent a superradiant phase transi-
tion in the system, which is inconsistent with the ex-
perimental data. However, we have not accounted for

FIG. 4: Damped transmission function of LiHoF4 in a
3.2GHz microwave resonator with a filling factor of η = 0.25
in the RPA (left), and in MF theory (right). We consider
the zero temperature transmission of a LiHoF4 sample with
zero average demagnetization field. The damping parame-
ters are given by Γm ∝ Amω

2
m (similarly for the MF modes).

The proportionality constant is chosen so that the damping
parameters are roughly in line with what one expects for
spin vacancies in diamond (see text). In the RPA (left), the
damping is insufficient to prevent superradiance in the sys-
tem due to the divergent spectral weight of the magnon soft
mode. The spectral weight carried by the lowest MF mode
does not diverge, and the resultant coupling strength is not
strong enough to cause superradiance in the single ion res-
onator spectrum (right). In a system subject to decoherence,
one expects to see both single ion and collective mode trans-
mission.

the quantum coherence of the collective magnon modes.
We attempt to do so by assuming that spectral weight
is transferred from the collective magnon modes to the
single ion excitation spectrum shown on the right hand
side of Fig. 4. Indeed, for each mode in equations (85)
and (86), we assume (for example)

2g2mωr(ω − ωm)

(ω − ωm)2 + (Γm/2)2
→ (99)

2g̃2mωr(ω − ωm)

(ω − ωm)2 + (Γm/2)2
+

2g̃2mnωr(ω − Enm)

(ω − Enm)2 + (Γmn/2)2
,

where

g̃2m(ω = ωm) = α2Am

[
ω2
m

γ2dec + ω2
m

]
(100)

and

g̃2mn(ω = ωm) = α2amn

[
1− ω2

m

γ2dec + ω2
m

]
. (101)

This leads to mixed single ion and collective mode trans-
mission in the magnon-polariton propagator. Fourier
transforming g̃2m(ω), one finds that this ansatz corre-
sponds to exponential decay of the collective mode spec-
tral weight at a rate determined by γdec. We set ω = ωm
to capture decoherence at the relevant frequency scale
of the quantum Ising material. In the development of
the magnon-polariton theory, the photons couple to an
auxiliary field which describes magnetic fluctuations, and
determines the magnon modes present in the material.
The quantum coherence of the collective magnon modes
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is a tacit assumption which may not be valid if environ-
mental degrees of freedom, or higher order interactions
(beyond the RPA) between the magnetic fluctuations,
lead to decoherence on timescales faster than the rele-
vant timescales of the magnon modes.

In Fig. 5, we show the mixed single ion and collective
mode resonator transmission as one tunes the decoher-
ence rate γdec. The damping parameters are chosen to
be roughly consistent with what one expects for spin va-
cancies in diamond, as in Fig. 4. With γdec = 0.5GHz,
the reduction in the coupling strength is insufficient to
prevent the superradiant quantum phase transition. In-
creasing the decoherence rate to γdec = 15GHz, which
is larger than the relevant magnon and resonator mode
frequency, leads to an avoided level crossing in the trans-
mission spectrum, rather than a superradiant phase tran-
sition, as shown in the upper right plot in Fig. 5. Further
increasing the decoherence rate attenuates the soft mode,
and weakens the avoided level crossing in the transmis-
sion spectrum. With the coherence time set to picosec-
onds, which is shorter than the timescale set by the in-
verse of the magnon mode frequency, the magnon soft
mode will show up as a resonance in the resonator trans-
mission spectrum, as seen in the experimental data.

FIG. 5: Mixed single ion and collective mode transmission
of a LiHoF4 sample in a 1.9GHz resonator at zero temper-
ature. The filling factor is set to η = 0.25 and we assume
the average demagnetization field is zero. The damping pa-
rameters are chosen to be in line with what one might expect
for spin vacancies in diamond. In the upper left figure the
decoherence factor is set to γdec = 0.5GHz. The sharp dip in
the upper polariton mode occurs where the soft mode crosses
γdec. In the upper right figure the decoherence factor has
been increased to γdec = 15GHz, which is sufficient to pre-
vent superradiance. Further increasing the decoherence factor
attenuates the soft mode and closes the avoided level cross-
ing in the spectrum. In the experimental data, one expects a
weak avoided level crossing to show up as a resonance in the
inverse quality factor of the resonator.

We have shown the effects of ohmic damping of the
magnon modes, in conjunction with an ansatz meant to

FIG. 6: Mixed single ion and collective mode transmission of
LiHoF4 in a 3.2GHz and 3.7GHz resonator at zero tempera-
ture. The filling factor is set to η = 0.25, and the damping
parameters are chosen to be in line with what one expects for
spin vacancies in diamond. The decoherence factor is set to
γdec = 100GHz, a value for which, although faint, the soft
mode is visible in the transmission spectrum. Comparing the
avoided level crossing in the 3.2GHz resonator to the 3.7GHz
resonator in the upper pair of figures, we see a larger avoided
level crossing at the lower frequency. This is due to the in-
crease of the spectral weight of the magnon mode at 3.2GHz,
which supersedes the reduction in coupling strength due to
the lower resonator frequency. In the lower pair of figures,
we sum the calculated transmission from the 3.2GHz and the
3.7GHz resonators, and compare the results to transmission
through a bimodal loop gap resonator. In the experimental
data, interactions between the resonator modes lead to an an-
tiresonance near 3.6GHz and hybridization of the polariton
modes not accounted for in the theoretical calculation. The
lowest polariton mode in the experimental data exhibits weak
avoided level crossings consistent with the presence of the col-
lective soft mode, and Walker modes, in the material (see text
for details).

capture the impact of decoherence of the collective spin
excitations comprising the magnon modes. When deco-
herence is accounted for, we find that the superradiant
quantum phase transition, or strong avoided level cross-
ing, expected as the spectral weight of the magnon soft
mode diverges, gives way to a resonance in the resonator
transmission function. In Fig. 6, we consider resonator
frequencies of ωr/(2π) = 3.2GHz and 3.7GHz, and com-
pare the calculated transmission function to experimental
data for a bimodal loop gap resonator. At these frequen-
cies, the resonator modes are degenerate with the lowest
single ion excitation in the system. We see strong avoided
level crossings when the lowest single ion excitation is de-
generate with the resonator modes. The increased spec-
tral weight of the single ion excitation at 3.2GHz leads to
a stronger avoided level crossing than at 3.7GHZ, despite
the reduction in frequency. This is consistent with the
avoided level crossings seen in the experimental data.

The experimental data is for a bimodal resonator. In
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the theoretical calculation we assume the two resonator
modes are independent, and sum their response. This
fails to capture interactions between the resonator modes,
which lead to the antiresonance seen in the experimental
data near 3.6GHz, and mixing of the calculated polariton
modes. Nevertheless, we find good agreement between
the calculated resonator transmission and the experimen-
tal data. The lowest polariton mode exhibits a series of
weak avoided level crossings in the ferromagnetic phase
of the quantum Ising material. These avoided level cross-
ings are due to the soft mode, and Walker modes present
in the material43,44. An analysis of the Walker modes will
be the subject of future work. Previously, in reference4,
the magnon mode responsible for the avoided level cross-
ings seen in the experimental data shown in Fig. 6 was
attributed to an excited state transition; this was based
on an RPA analysis of the LiHoF4 crystal. In the cur-
rent work, assuming mixed single ion and collective mode
resonator transmission, we attribute these avoided level
crossings to the lowest single ion excitation (ground state
to first excited state) shown by the dashed line in the in-
set to Fig. 1. The structure and energy of the lowest
single ion excitation, and the first excited state in the
RPA calculation, are similar.

Accounting for, and exploring, the effects of dissipa-
tion when polariton modes are coupled to environmen-
tal degrees of freedom is an active research area37,45; in-
corporating the effects of decoherence of the collective
magnon modes comprising the magnon-polaritons in a
quantum Ising material coupled to a resonator mode is a
more difficult task. Here, we have developed a basic for-
malism amenable to investigating these problems in real
materials, with LiHoF4 being the magnetic system of pri-
mary interest. We have demonstrated the effects of ohmic
damping of the magnon modes in LiHoF4 in a microwave
resonator, and we have explored the consequences of de-
coherence of the magnon modes present in the material
via an ansatz in which spectral weight is transferred from
the collective modes to single ion excitations. Our results
are in good agreement with experimental data for LiHoF4

in a microwave resonator; we leave further refinements of
the theory, and more sophisticated numerical analysis, as
a subject for future work.

VI. CONCLUSIONS AND OUTLOOK

Beginning with a microscopic spin model for a quan-
tum Ising system in a microwave resonator, we have de-
rived an effective finite temperature quantum field theory
for the magnon-photon system, and an effective Hamil-
tonian for the coupled bosonic modes. The theory has
been used to calculate the magnon-polariton propagator,
and the results have been applied to LiHoF4, which has
a complex, multilevel, single site Hamiltonian. One may
also apply this formalism to the quantum optics mod-
els, and quantum environment models, discussed in Ap-
pendix A.

Our analysis of a quantum Ising material via the intro-
duction of an auxiliary field describing the magnetic fluc-
tuations goes beyond standard spin quantization tech-
niques. The resulting theory captures multiple magnon
modes, the quasi-elastic diffusive pole of the quantum
Ising material, and excitations between thermally excited
states of the material. Our treatment of the light in terms
of harmonic oscillator variables is basic; however, we be-
lieve it provides clarity, and we have made contact be-
tween paradigmatic quantum optics models and oscilla-
tor bath theory. One may extend and expound details of
the theory by treating the light, or the environment, in
a more sophisticated manner.

A key result of this paper is that tuning the applied
transverse field allows one to tune the magnon-photon
coupling strength. As one approaches the critical point
of the quantum Ising material, the magnon-photon cou-
pling strength will diverge. A fixed system of spins in
an ac magnetic field will not exhibit a diamagnetic re-
sponse, so deep strong coupling between the magnons
and photons is achieved without the light-matter decou-
pling inherent in the Dicke8, Dicke-Ising46, and Hopfield
models9. However, in the real-world, coupling to an envi-
ronment will lead to dissipation and decoherence, which
may lead to weak coupling between the magnon and pho-
ton modes. We have treated dissipation and decoherence
phenomenologically, and compared the results of the the-
ory to experimental data on LiHoF4 in a loop gap mi-
crowave resonator. We consider the agreement between
the experimental data and the theoretical results to be
good, although further refinement of the theory, particu-
larly more detailed modeling of the environment and the
resulting decoherence, and a more sophisticated numeri-
cal analysis, would be beneficial. We leave this a subject
for future work.

We have focused on the magnon-polariton propagator
because it may be the best way to make contact between
theoretical work and experimental results, and our treat-
ment of the light in terms of harmonic oscillator variables
is the easiest way to obtain results. Harmonic oscillator
variables, and eigenstates, have also been used to study
entanglement, and the quantum-chaotic properties, of
the Dicke model47,48. Alternatively, one may make use
of a coherent state basis of eigenstates for the light. This
was an original approach to the problem20 that allows
for a more thorough investigation of the thermodynam-
ics of the system. More recently, coherent states were
used to study entanglement between a qubit and a field
mode49. We see further investigation into the entangle-
ment properties of light-matter systems as a promising
area for research, with particular relevance to high sensi-
tivity magnon detection50, and associated quantum tech-
nologies.

This work provides a detailed microscopic theory of a
quantum optics system. Such a theory is necessary in or-
der to make progress in more topical research areas such
as the non-equilibrium phases and phase transitions51–53,
and novel dynamics54,55, present in damped-driven quan-



18

tum systems56,57. The formalism here is complemen-
tary to, and more general than, standard approaches
which make use of bosonic or fermionic representations
of the spin degrees of freedom, and the field theory is
amenable to treatment via the Keldysh functional inte-
gral approach. Finally, the burgeoning field of quantum
magnonics will require models of light-matter interac-
tions, following the lines of the present investigation.

VII. ACKNOWLEDGMENTS

The authors would like to thank Yikai Yang and Philip
Stamp for helpful discussions. Experimental work at Cal-
tech was supported by U.S. Department of Energy Basic
Energy Sciences, Award No. DE-SC0014866.

Appendix A OTHER MODELS

In the absence of spin-spin interactions, our model
shares similarities with the Dicke model8, which is a
paradigmatic model of quantum optics. The basic Dicke
model describes an atomic cloud, approximated as a set
of two level systems, coupled to a single photonic field
mode (~ = 1)

HDicke = ωra
†a+ ω0J

z +
α√
N

(a† + a)Jx +HA2 .

(102)

The collective atomic operators are given by Jµ =∑
i J

µ
i =

∑
i σ

µ
i /2, where the σµi are Pauli operators.

In this model, the atoms (or spins) are mobile charged
particles. This collective set of atomic operators couples
to a position operator of a single field mode, x ∼ a† + a.
The diamagnetic term,

HA2 = D(a† + a)2, (103)

comes from squaring the canonical momentum of the
mobile charged particles. Invoking the Thomas-Reiche-
Kuhn sum rule for a multilevel atom21,58, one finds that
in the two level approximation D > α2/ω0, so that
the magnitude of the diamagnetic term diverges like the
square of the coupling strength. If Ising interactions be-
tween the atoms in the Dicke model are included, one has
the Dicke-Ising model46. The absence of the diamagnetic
term in equation (9) distinguishes it from the Dicke-Ising
model. As the diamagnetic term has important conse-
quences, these two models should be considered distinct.

The Dicke model was introduced in 1954 to describe
an atomic system in a light field. In 1958, Hopfield de-
veloped a model for dielectric materials in an electro-
magnetic field9. Considering only a pair of modes in the
resulting exciton-polariton theory, the Hopfield model is
given by (~ = 1)

HHop. = ωra
†a+ ω0b

†b− ig(a† + a)(b† − b) +HA2 .
(104)

The coupling in the Hopfield model is between an effec-
tive position operator, x ∼ a† + a, and an effective mo-
mentum operator p ∼ i(b† − b). The diamagnetic term
is the same as for the Dicke model (equation 103), with
D = g2/ω0. As for the spin-photon model in equation
(3), one can show that the substitution i(b†− b)→ b†+ b
leads to an equivalent formulation of the model (see Ap-
pendix B). The formalism developed here encompasses
both the Dicke and Hopfield models, and generalizes the
basic Dicke model to include interactions between multi-
level spins or atoms.

The models developed by Dicke and Hopfield share
a connection with work on quantum environments. In
quantum optics, light is an intrinsic part of the sys-
tem; in the theory of quantum environments, light, other
bosonic or fermionic modes, and spin degrees of freedom,
are extrinsic to the system of interest, and lead to dis-
sipation and decoherence in the system. The quantum
optics models discussed above share strong similarities
with standard decoherence models describing a quantum
system coupled to its environment, such as the Caldeira-
Leggett model and the spin-boson model12,13. In the de-
coherence models the system is comprised by the matter
modes, and the environment is analogous to the light in
the quantum optics models.

The formalism developed in this work is applicable to
all the models discussed above. Furthermore, it can be
used to generalize the basic Dicke model and spin-boson
model to include interactions between multilevel atoms
or spins with complicated single ion Hamiltonians.

Appendix B MOMENTUM VERSES POSITION
COUPLING

The magnon-polariton theory has been derived for a
system in which the spins couple to a photon position
operator, as in equation (9). One can show that equa-
tion (3) is an equivalent formulation of the model. The
two expressions are related by a canonical transformation
that swaps photon position and momentum operators27.
Similarly, the position-momentum coupling in the Hop-
field model, given by equation (104), may be replaced
with a coupling between position operators.

Consider the Hopfield model. In terms of harmonic
oscillator variables,

x =

√
~

2mω
(a† + a) and p = i

√
~mω

2
(a† − a),

(105)

the model is written

HHop. =
P 2

2M
+

1

2
Mω2

rX
2 +

(p− cmX)2

2m
+

1

2
mω2

0x
2,

(106)

with c = 2g
√
Mωr/mω0. One may replace the position-

momentum coupling with a position coupling by making
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the change of variables x̃ = p/(mω0) and p̃ = −mω0x. In
terms of creation and annihilation operators, this canon-
ical transformation leads to

H̃Hop. = ~ωr
(
a†a+

1

2

)
+ ~ω0

(
b̃†b̃+

1

2

)
(107)

− ~g(a† + a)(̃b† + b̃) +
~g2

ω0
(a† + a)2,

where the coupling is now between position operators.
Note that this Hamiltonian is equivalent to the Caldeira-
Leggett Hamiltonian (see Appendix D) if only a single
bath mode is considered. For reference, we note that the
roles of the a and b bosons in the interaction and in the
diamagnetic term may be interchanged making use of a
gauge transformation59.

Now consider the model given by equation (3). One
may develop the magnon-polariton theory in the same
manner as for the position coupling case. The pho-
ton component of the magnon-polariton Hamiltonian,
Hmp = Hγ +Hφ +Hint, is then

Hγ = ~ωr
(
a†a+

1

2

)
− i~λ(a† − a)−D(a† − a)2,

(108)

or, in terms of harmonic oscillator variables,

Hγ =
p2

2mr
+

1

2
mrω

2
rx

2 −
√

2~
mrωr

λp+
2

mr~ωr
Dp2.

(109)

One may rescale the mass and frequency of the oscilla-
tors,

mγ = mr

[
1 +

4D

~ωr

]−1
and ωγ = ωr

√
1 +

4D

~ωr
,

(110)

to obtain

Hγ =
p2

2mγ
+

1

2
mγω

2
γx

2 −

√
2~

mγωγ
λγp, (111)

where λγ is given in equation (44).
When the spins couple to a photon momentum oper-

ator the interaction between the auxiliary field and the
photons is given by

Hint = ~αγ

√
2

~mγωγ
φ0p, (112)

with αγ given in equation (55). Combining the terms
involving photon operators, Hγφ = Hγ +Hint, we have

Hγφ =
p2

2mγ
+

1

2
mγω

2
γx

2 − 2~
mγωγ

p(λγ − αγφ0). (113)

The canonical transformation between the photon posi-
tion and momentum operators leads to

H̃γφ =
p̃2

2mγ
+

1

2
mγω

2
γ x̃

2 −
√

2~mγωγ x̃(λγ − αγφ0),

(114)

which is equivalent to the result obtained if the spins
are coupled to photon position operators in the original
Hamiltonian (the rescaled mass of the oscillator does not
affect the quantized theory).

Appendix C THE LiHoF4 SYSTEM

Consider the low temperature effective Hamiltonian of
LiHoF4 given in equation (88) of the main text. The
truncation of the LiHoF4 system, and the low energy elec-
tronuclear modes present in the system, have been dealt
with in detail elsewhere15,16,38,60; here we present details
relevant to the calculation of the magnon-polariton prop-
agator.

In the random phase approximation (RPA), the longi-
tudinal dynamic susceptibility may be written as χ(z) =
χ0(z)/(1− V0χ0(z)), where the mean field (MF) suscep-
tibility, χ0(z) = χ̃0(z) + χ0

elδz,0, is written explicitly in
terms of the MF parameters of the system in equation
(22). The inelastic component of the RPA susceptibility
is χ̃(z) = χ̃0(z)/(1 − V0χ̃0(z)), and the RPA expression
for the quasi-elastic diffusive pole is

χel =
χ̃0(0) + χ0

el

1− V0(χ̃0(0) + χ0
el)
− χ̃0(0)

1− V0χ̃0(0)
. (115)

Defining the ratio of the MF and RPA modes of the sys-
tem to be

R ≡ 1

1− V0χ̃0(0)
=

∏
n>mE

2
nm∏

m ω
2
m

, (116)

the elastic component of the RPA susceptibility may be
written

χel =
R2χ0

el

1−RV0χ0
el

. (117)

The elastic component of the dynamic susceptibility has
not been analyzed explicitly in this work; however, it is
provided here for reference.

The inelastic component of the dynamic susceptibility,
given in equation (23), determines the RPA modes of the
LiHoF4 system and their spectral weights. These spectral
weights determine the strength of the magnon-photon
coupling in the magnon-polariton theory. In terms of the
MF energy levels and matrix elements of the longitudi-
nal spin operator, the RPA expression for the inelastic
component of the longitudinal dynamic susceptibility at
zero wavevector is
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χ̃(z) =
−C2

zz

∑
n>m |cmn|2pmn2Enm

∏
t>s6=nm(E2

ts − z2)∏
n>m(E2

nm − z2)− C2
zzV0

∑
n>m |cmn|2pmn2Enm

∏
ts6=mn(E2

ts − z2)
. (118)

In a needle shaped sample of LiHoF4, with zero demag-
netization field, the zero wavevector component of the
interaction strength (equation (89)), is approximately
V0 ≈ 74mK, and, as mentioned following equation (89),
Czz is a truncation parameter, with Jz = Czzτ

z in the
truncated spin-1/2 electronic subspace. The remaining
parameters are defined in Section III B following equa-
tion (22).

The poles of the dynamic susceptibility determine the
RPA magnon modes of the system, and their residues
determine the spectral weights of the modes. The poles
and residues can be calculated as in Section IV B of the
body of the paper. One finds the spectral weights of the
RPA magnon modes to be given by

Am =
C2
zz

ωm

∑
n>m

|cmn|2pmnEnm

∏
t>s6=nm[E2

ts − ω2
m]∏

s6=m[ω2
s − ω2

m]
,

(119)

where {ωm} are the zero wavevector RPA modes of the
system. The spectral weights of the RPA modes scale like
Am ∼ 1/ωm, with the spectral weight of the soft mode
diverging at the quantum critical point.

Appendix D COUPLED HARMONIC
OSCILLATORS

Consider the Caldeira-Leggett Hamiltonian in which a
harmonic oscillator is linearly coupled to a bath of har-
monic oscillators (quantum Brownian motion)12,61,62

HCL =
P 2

2M
+

1

2
Mω2

sX
2 +

∑
z

[
p2z
2m

+
1

2
mω2

zx
2
z

]
(120)

−
∑
z

czXxz +
∑
z

c2z
2mzω2

z

X2.

The bath leads to damping and decoherence of the pri-
mary oscillator. In terms of bosonic creation and annihi-
lation operators the Caldeira-Leggett Hamiltonian may
be written

HCL =~ωs
(
b†0b0 +

1

2

)
+
∑
z

~ωz
(
a†zaz +

1

2

)
(121)

−
∑
z

~gz(a†z + az)(b
†
0 + b0) +

∑
z

Dz(b
†
0 + b0)2,

where

gz =
cz

2
√
mzωzMωs

and Dz =
~g2z
ωz

. (122)

The Caldeira-Leggett counterterm is equivalent to the
diamagnetic term present in light-matter Hamiltonians.
In order to determine the damping due to the bath, we
calculate the propagator of the primary oscillator.

The counterterm shifts the frequency of the primary
harmonic oscillator

HCL = ~ωs
(
b†b+

1

2

)
+
∑
z

~ωz
(
a†zaz +

1

2

)
(123)

−
∑
z

~gz(a†z + az)(b
† + b),

where the rescaled coupling and shifted frequencies are

gz =
cz

2
√
mzωzMωs

and ω2
s = ω2

s

[
1 +

4Dz

~ωs

]
. (124)

The propagator of the shifted oscillator modes is defined
by

Db(τ) =
〈
Tτ
(
b†(τ) + b(τ)

)(
b† + b

)〉
. (125)

Treating the interaction between oscillators perturba-
tively using the Matsubara formalism, one finds the prop-
agator of the primary oscillator in Matsubara frequency
space to be

Db(iωn) = −2ωs
β~

 1

(iωn)2 − ω2
s −

∑
z

4g2zωsωz
(iωn)2−ω2

z

 .
(126)

This is equivalent to equation (61) of the main text apart
from the fact that the counterterm has shifted the fre-
quency of the primary oscillator.

Consider a single bath mode. The poles of the po-
lariton propagator yield the upper and lower polariton
modes

ω2
± =

ω2
s + ω2

z

2
±

√(
ω2
s − ω2

z

2

)2

+ 4g2zωsωz. (127)

In the absence of the counterterm (D = 0), the
lower polariton mode reaches zero at a critical value
of gz =

√
ωsωz/2. In a light-matter system, this cou-

pling strength marks a superradiant quantum phase
transition19,20. The presence of the counterterm fore-
stalls this transition so that ω− > 0 for any value of gz.
The counterterm is also responsible for a decoupling of
the light and matter modes (or system and bath modes)
as the coupling strength is increased21. Indeed, consider
what happens as the bare coupling between oscillators
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diverges, cz →∞. The shifted frequency of the primary
oscillator diverges linearly with the coupling, ωs ∼ cz,
and the rescaled coupling between the oscillators goes
like gz ∼ cz/

√
ws ∼

√
cz. Comparing the rescaled cou-

pling strength to the shifted oscillator frequency we see
that η ≡ gz/ωs ∼ 1/

√
cz → 0. As the bare coupling be-

tween oscillators is increased, the bath mode will become
an increasingly weak perturbation to the system.

We return now to the oscillator bath environment. In
order to make contact with standard results, we express
the propagator for the shifted system modes in terms
of the propagator of the original modes of the system
Db = ωsDb0/ωs. Analytically continuing to real fre-
quencies (Dret

b0
(ω) = βDb0(iωn → ω + i0+), the retarded

propagator of the original bosonic system modes may be
written

Dret
b0 (ω) = −2ωs

~

[
1

ω2 + iγω − ω2
s

]
, (128)

where the damping function is

γ(ω) =
i

ω

[∑
z

4g2zωs
ωz

+ lim
ε→0

∑
z

4g2zωsωz
ω2 + iωε− ω2

z

]
. (129)

The real and imaginary parts of the damping function,
γ = γ′ + iγ′′, are given by

ωγ′′(ω) =
∑
z

4g2zωs
ωz

[
−ω2

ω2
z − ω2

]
, (130)

and

ωγ′ = 2πωs
∑
z

g2z

[
δ(ω − ωz)− δ(ω + ωz)

]
. (131)

In terms of the original harmonic oscillator variables, the
spectral density of the bath is defined by

J(ω) ≡Mωγ′(ω) =
π

2

∑
z

c2z
mzωz

δ(ω − ωz), (132)

in agreement with the standard result. The countert-
erm (or equivalently, the diamagnetic term) eliminates a
zero frequency shift in γ′′. This term is absent in the
magnon-polariton theory. In the magnon-polariton the-
ory, the photons are considered to be the system, and the
magnons, which are themselves subject to dissipation and
decoherence, comprise a bath.
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