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ENS-PSL, Collège de France, 4 place Jussieu, 75005 Paris, France

2Conservatoire National des Arts et Métiers, 292 rue Saint Martin, 75003 Paris, France
(Dated: September 19, 2022)

We study the phase shift induced by atomic interactions at the output of an atom interferometer.
Due to the mutual interaction between the two overlapping Bose-Einstein condensates, the phase
exhibits a spatial profile. We evaluate the phase gradient using a perturbative method based on the
Feynman path integral approach. Our model accounts for the effects of the population imbalance
between the two arms of the interferometer and the difference between the scattering lengths of the
hyperfine levels. We also investigate these effects experimentally by measuring the interaction phase
shift for a set parameters. Our experimental results are well reproduced by our theoretical model.

I. INTRODUCTION

Matter-wave interferometry has been used to measure
with extreme accuracy several physical quantities [1] such
as gravity [2–7], inertial forces [8–11] and fundamental
constants [12–14] enabling advanced tests of general rel-
ativity [15–18] and quantum electrodynamics [13, 14]. In
addition, many experiments based on atom interferome-
try are underway or have been proposed in order to test
short-range forces [19–22] and different models of parti-
cle physics in the search for unknown forces or dark en-
ergy [23–29]. This technology, which has not yet reached
its full potential, is also at the heart of large-scale or
space instruments [30–32]. These instruments are being
built, with targeted significantly improved performances,
for testing fundamental physics with unprecedented accu-
racy, detecting gravitational waves [33–36] and mapping
the Earth’s gravitational field from satellites [37, 38].

Both the sensitivity and accuracy of the most advanced
atom interferometers are limited by the transverse mo-
tion of the atomic cloud [39], which exalts systematic
effects related to short-scale intensity fluctuations [40],
the Gouy phase, and wavefront curvature [41]. Due to
wavefront distortions, transverse motion also limits the
diffraction order of large momentum beam splitters [42–
45]. In this context, Bose-Einstein condensates (BEC)
constitute ideal atomic sources. In addition, the atomic
interactions that are inherent in such dense clouds can
generate spin squeezing, which could be exploited to sur-
pass the standard quantum limit [46–48].

However, atomic interactions also induce a detrimental
phase shift that can undermine the benefits of using Bose-
Einstein condensates for precision measurements with
atom interferometry. Effects of interactions have been
studied both theoretically and experimentally to under-
stand their impact on the phase of Bose-Einstein conden-
sates during free evolution [49–53]. Early work showed
that upon release from the trapping potential, the BEC
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expands due to repulsive interactions and develops a non-
uniform phase profile [54–56]. In ref [49], the authors
measured the functional form and time evolution of this
phase profile by combining interferometry with spatially
resolved auto-correlation. They also measured the small
velocity imparted to the two BEC wave-packets from
their mutual repulsion. More recent work has focused
on the local modification of the condensate phase due to
mutual interactions and shows that modifications occur
only in the region where the wave packets overlap [53].

This non-uniform phase profile impacts the accuracy
of measurements based on atom interferometry. In this
paper, we experimentally evaluate this effect by mea-
suring locally the phase shift at the output port of an
atom interferometer and its dependence upon the popu-
lation imbalance, the trapping potential frequencies and
the condensate release time. Furthermore, we present a
new approach to calculate the effect of interactions using
the Feynman path integral. Numerical simulation based
on this method reproduces well our experimental data.
This approach differs from that used in previous works
[50–53] where the evolution of the BEC phase is obtained
from the GP equation by considering the time evolution
of its density. In most works the expansion of the con-
densate is described by the Castin and Dum model [57]
valid in Thomas Fermi regime. Our method based on
the Feynman path integral allows to calculate the phase
shift at the output of the interferometer for any geome-
try. It also allows the contributions of the self and mutual
interactions to be evaluated separately.

The paper is organized as follows. Section II presents
the theoretical model we have developed to evaluate the
phase shift at the output of an atomic interferometer
formed by a sequence of three light pulses in the so-called
Mach-Zehnder configuration (see Fig. 1). Each pulse in-
duces a stimulated Raman transition. We use a perturba-
tion approach to derive a general formula for calculating
the effects of self-interaction and mutual interaction be-
tween the two interfering condensates. Finally, based on
Castin Dum’s description of the BEC wave function, we
obtain a formula for the phase profile, the signature of
the mutual interaction. In Sect. III we present a set of
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FIG. 1. At time t0 we release the BEC from the dipole optical
trap. During the free fall time, it expands and the interaction
energy decreases. After a falling time TF , we apply the three
pulses sequence θ − π − θ. In green, trajectory A and blue
trajectory B. Solid line state |1〉, dashed line state |2〉. Thick
line : trajectories RA/B of the center of mass of the atomic
wave packet. Thin line : trajectory rA/B used to integrate
the Lagragian for a given final position robs.

experimental results. We study the behavior of both the
phase gradient and the total interaction phase shift by
varying different experimental parameters.

II. THEORETICAL EVALUATION OF THE
INTERACTION PHASE SHIFT

The goal of this section is to calculate the phase at
the output of an atom interferometer in the mean field
approximation using the Feynman path integral method
[58]. Here, we apply this approach, which is commonly
used in atom interferometry to calculate the phase in-
duced by external potential, to the case of the mean field.
The Feynman path integral method states that, given an
initial wave packet with phase φ(r(t0), t0) at time t0, the
phase at time t can be calculated by integrating the La-
grangian L along the classical trajectory r(t) that makes
the action extremal:

φ(r(t), t)− φ(r(t0), t0) =
1

~

∫ t

t0

L (ṙ(t), r(t), t) dt (1)

with

L (ṙ(t), r(t), t) =
1

2
mṙ2(t)− V (r, t) (2)

V being the potential experienced by an atom of mass
m. The trajectory should match the initial velocity of
the cloud (ṙ(t0) = −i(~∇φ/m)).

In the mean-field approximation, the interaction po-
tential is proportional to the cloud density ρ(r, t). To
calculate the phase in our interferometer, we have to
consider the internal states and the effect of the Raman
transition. The Raman transition couples two internal

states, namely |1〉 and |2〉. The total mean field experi-
enced by an atom in state |i〉 is the sum of the mean field
induced by the atoms in state |i〉 from its own atomic
cloud (the so-called self-interaction) and the one induced
by the atoms from the other cloud (the so-called mutual
interaction) (see Figure 1). It can be written as:

VMF(r, t, i) =
∑
j

Ngijρ(r, t, j) (3)

with gij = 4π~2aij/m, where aij are the scattering
lengths. The interaction potential depends on the nor-
malized density ρ(r, t, j) of the atoms in the internal
states |j〉.

Raman transitions are performed with two counter-
propagating laser beams (k1, ω1 and k2, ω2), leading to
an effective momentum keff = k1 − k2 and pulsation
ω = ω1−ω2 [59]. To use the Lagrangian formalism, one
can take into account the effect of the Raman transitions
with an effective potential. For the three pulses interfer-
ometer in Figure 1, this potential is given for each path
A and B by [60]:

WA(r, t) = ~ (keff · r(t)− ωt) (δ(t− ti)− δ(t− t1)) (4)

WB(r, t) = ~ (keff · r(t)− ωt) (δ(t− t1)− δ(t− tf)) (5)

Indeed, when an atom performs a Raman transition and
is transferred from |1〉 to |2〉, the effective phase of the
laser is added to the phase of its wave function. It is
subtracted when the atom is transferred from state |2〉
to state |1〉. With this effective potential, the trajec-
tory that extremizes the action, accounts for the recoil
induced by each Raman transition.

To compute the phase difference at a given observation
position robs and time tobs (see figure1), we consider two
trajectories rA(t) and rB(t) which start with the initial
velocity v0 of the cloud and satisfy rA(tobs) = rB(tobs) =
robs (note that they may not start at the same position).
The spatially dependent phase difference between the two
waves is given by :

∆φ(robs) = φ(rA(t0), t0)− φ(rB(t0), t0)+

1

~

∫ tobs

t0

(LA(ṙA, rA, t)− LB(ṙB , rB , t)) dt (6)

In typical experiments, the Thomas-Fermi approxima-
tion is applicable and the Castin-Dum description of the
BEC density [57] is commonly used. However, due to the
mutual interaction, it is not possible to compute analyt-
ically the density in each branch of the interferometer
and therefore the classical trajectories which depend on
the interaction potential. We propose here to treat the
mutual interaction as a perturbation.

Let us now consider a reference configuration where:
i) there is no interaction between the two clouds, and ii)
the mean field is the same on both arms of the interfer-
ometer (same scattering length g11 = g22 and a 50/50
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atomic beam splitter). In this situation, the two clouds
are identical with respect to their center of mass and have
the same density ρref(r, t). The reference potential used
to calculate the classical trajectories is

Vref,A/B(RA/B(t) + r, t) = cref(t)Ng11ρref(r, t) (7)

where RA/B are the trajectories of the centers of mass

(thick lines of Fig. 1) and

cref(t) =

{
1 t < ti
1
2 ti ≤ t ≤ tobs

(8)

Assuming that the shape of the cloud is given by this
reference density, the potential due to the atomic interac-
tions felt by the atoms in the cloud along the trajectory
A, for ti < t < tf , is:

VA(RA(t) + r, t) = N
g11

2
ρref(r, t) +N

(
cA(t)gξA(t),ξA(t) −

g11

2

)
ρref(r, t) +NcB(t)gξA(t),ξB(t)ρref(r + ∆R, t) (9)

where ξA/B(t) represents the internal state of the atom
(1 or 2), cA/B(t) is the proportion of atoms in the path
A or B and ∆R(t) = RA(t) − RB(t). The first term
corresponds to the reference potential, the second to the
correction of the self-interaction due to the difference in
the scattering lengths a11 and a22, and the last term to
the mutual interaction. For trajectory B, there is a sim-
ilar equation, exchanging A and B and replacing ∆R(t)
by −∆R(t).

For rubidium, |(a22 − a11)/a11| is around 6% and in
a typical experiment, the population imbalance is a few
percent. Moreover, the mutual interaction term is non
negligible only when the two clouds overlap. Our ap-
proximation consists in considering the last two terms
of equation 9 as perturbations when we derive the equa-
tions of motion for the classical trajectories. This means
that only the first term of equation 9 is responsible for

the repulsive force. We denote by V pert
A/B the interaction

potential that accounts for the last two terms.
We now consider an atom after the first Raman pulse.

It is in a superposition of two wave packets that propa-
gate along the reference trajectories rA and rB . These
trajectories are determined from the reference configu-
ration. Due to symmetry, the relative trajectories with
respect to the motion of the center of mass are the same:
we can write rA/B(t) = RA/B(t)+rref(t). In the absence
of any perturbation, the two trajectories are symmetric,
and the total phase shift at the output of the interferom-
eter is zero. At first order, the total phase shift could be
calculated by integrating the perturbation along the un-
perturbed trajectories [58]. These trajectories overlap for
t < ti and t > tf and the potential is the same (atoms are
in the same state), we can therefore restrict the integral
to ti < t < tf and

∆φ(robs) =
1

~

∫ tf

ti

(
V pert
A (RA(t) + rref(t), t)− V pert

B (RB(t) + rref(t), t)
)
dt (10)

By separating contributions from mutual and self-interaction, we obtain

∆Φsef(robs) =
1

~
Nα (g11 + g22)

∫ tf

ti

ρref(r, t) dt+
1

~
N

2
δg

[∫ t1

ti

ρref(r, t) dt−
∫ tf

t1

ρref(r, t) dt

]
(11)

∆Φmut(robs) =
1

~
Ng21

(
1

2
− α

)[∫ tAs

ti

ρref(r + ∆R(t), t) dt+

∫ tf

tAc

ρref(r + ∆R(t), t) dt

]

− 1

~
Ng12

(
1

2
+ α

)[∫ tBs

ti

ρref(r −∆R(t), t) dt+

∫ tf

tBc

ρref(r −∆R(t), t) dt

]
(12)

where α = |cA(t) − cB(t)|/2 is the population imbal-
ance between the two arms of the interferometer and
δg = g22 − g11. The boundaries of the integrals (11)
and (12) account for the finite extension of the two inter-
fering clouds: tAs (resp. tBs ) is the separation time when
the atom on trajectory A (resp. B) leaves the overlap

zone and tAc (resp. tBc ) is the recombination time when
the atom on trajectory A (resp. B) enters the overlap
zone. They depend on the expansion and the separation
velocities of the two interfering condensates.

The Castin-Dum model [57] provides a good descrip-
tion of the BEC dynamics in time-dependent traps when
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FIG. 2. Evolution of the quantity f(∆ZR)µ(t) during the
interferometer sequence for different values of the release time
TF and trapping frequencies.

the Thomas Fermi approximation is satisfied. It gives
the following formula for the BEC density at time t,

ρ(r, t) =
µ

g11λx(t)λy(t)λz(t)

×

(
1−

∑
s=x,y,z

(rs(t)/rslλs(t))
2

)
(13)

when the last term is positive and ρ(r, t) = 0 otherwise.
µ denotes the chemical potential of the initial state, i.e.,
of the system before the application of the first Raman
light pulse.

µ =
~ω̄
2

(
15Na

√
mω̄

~

) 2
5

with ω̄ = (ωxωyωz)
1
3 ,

(14)
ωs is the optical trap frequency along the s axis,

rsl =
√

2µ/mω2
s is the Thomas-Fermi radius and the

scaling factor λs(t) is governed by differential equations
derived by Castin and Dum from the scaling ansatz for
a single component BEC [57]:

d2λs(t)

dt2
=

ω2
s

λs(t)λx(t)λy(t)λz(t)
(15)

In our experiment, the Raman beams propagate along
the z-axis. The two clouds hence separate along this
direction leading to a phase gradient from the mutual
interaction. We obtain the spatial profile of the phase
shift ∆Φmut(z) by averaging equation 12 over transverse
coordinates (x, y).

For α = 0 (perfect π/2 Raman pulses), we show that
the phase ∆Φmut can be written in first order in z, as

∆Φmut(zobs) =
2

~
a12

2a11

zobs

λz(tobs)

∫ tf

ti

µ(t)f(∆ZR)dt (16)

with

µ(t) =
µ

λx(t)λy(t)λz(t)
, ∆ZR =

∆Z

zlλz(t)
, (17)

and the function f is defined by

f(x) =

{
x
(
x4 − 1

)
if x < 1

0 otherwise
(18)

The form of equation 16 is interesting as it dissociates the
effects of the chemical potential µ(t) and of the separation
of the two condensates f(∆ZR). The temporal evolution
of these two terms depends on the expansion dynamics
of the condensate, which is set by the trap frequencies.
In figure 2 we plot µ(t)f(∆ZR) for two sets of trapping
frequencies and two different release times TF. We clearly
observe that the mutual interaction is significant at the
beginning of the interferometer and that it declines as
the condensates dilute.

III. EXPERIMENT

We produce a rubidium-87 Bose-Einstein condensate
by evaporative cooling in an all-optical trap which con-
sists of three Gaussian laser beams at a wavelength of
1070 nm. Two relatively wide beams of 170 µm waist
cross under a shallow angle and provide a large trapping
volume, the so-called reservoir, which is loaded from an
optical molasse. A tightly focused third beam of 25 µm
waist, the so-called dimple beam, crosses the reservoir at
an angle of 65◦. This geometry provides the high confine-
ment necessary for an efficient evaporation. The maxi-
mum laser power in the reservoir and in the dimple is
24 W and 0.5 W, respectively. To produce a BEC in
a pure Zeeman state, we use the spin distillation tech-
nique [61] where we apply a magnetic field gradient dur-
ing evaporation that selectively reduces the depth of the
trap for magnetically sensitive states. We produce about
220 000 atoms in |F = 1,mF = 0〉 after 1.7 s of evapo-
ration. The trapping frequencies (νx, νy, νz) at the end
of the evaporation were measured to be (50(2), 115(10),
115(10)) Hz. At time t0, the BEC is released by turning

FIG. 3. An overview of the experimental setup. The bottom
insert shows the detection timing sequence.

off the trapping potential and falls freely for a duration
TF prior we apply the light pulses sequence θ−π−θ (fig-
ure 1). Each light pulse consists of two vertically counter-
propagating laser beams, which drive Raman transitions
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between the two hyperfine levels |F = 1,mF = 0〉 (state
|1〉) and |F = 2,mF = 0〉 (state |2〉) of the 5S1/2 elec-
tronic ground state. The two Raman lasers are phase-
locked. A detailed description of the electronic system
for controlling their frequencies and their phase difference
is given in the supplementary material of reference [14].
The first light pulse splits the initial Bose-Einstein con-
densate into two wave packets. The relative atom number
between the two arms (i.e the parameter α) is controlled
by adjusting the duration of the first light pulse. The
figure 3 gives an overview of the experimental setup. To
measure the number of atoms in F = 2 and F = 1, we use
a sequence of three probe laser pulses, each resonant with
the cycling transition (5S1/2 F = 2 −→ 5P3/2 F

′ = 3 ).
The first pulse measures the number of atoms in F = 2,
which are then pushed away (pusher beam). The atoms
in F = 1 are first pumped to F = 2, then detected by
the second probe pulse. The third pulse shines on the
camera without atoms to get a reference picture of the
laser beam intensity.

To probe the atomic phase, we scan the phase differ-
ence of the Raman lasers ∆φL at the third light pulse. We
measure by absorption imaging and for different values
of ∆φL, the number of atoms in each of the two hyperfine
states F = 1 and F = 2 at the end of the interferometer
sequence. The top of figure 4 shows the absorption im-
ages (yz plane) of the atomic cloud in F = 1 taken 33 ms

after release from the trap, for a set of ∆φL values. We
clearly observe a shift in the center position of the im-
aged cloud which reveals that the phase is not spatially
uniform. To obtain the phase at the z position, we in-
tegrate the 2D absorption image, along the y dimension.
Then, for each position z, which corresponds to a cam-
era pixel, we calculate the number of atoms as a function
of the laser phase ∆ΦL and fit those data with a cosine
function to extract the atomic phase. This phase is plot-
ted in the bottom of figure 4 for different values of the
pulse area θ. For θ = π/2, we measure a phase gradient
of 3.6 mrad/µm after 7 ms of a fall time of a BEC with
an initial atomic density of 4.3× 1014 atoms/cm3.

The simulation based on our model fits the experi-
mental data without any adjustment. These theoretical
curves were obtained as follows: we first consider an atom
at an initial position r(t0) and calculate, for all times t
between t0 and tobs, the expansion parameters λs(t) by
numerically solving the equation (15) and subsequently
the coordinates rs(t) = rs(0)λs(t) (s = x, y, z). We then
determine the reference trajectories A and B that ac-
count for the effect of the Raman transitions. Finally, we
calculate the accumulated phase shift ∆Φat using equa-
tions (11) and (12).

At time t after the overlap of the wave packets, the
probability P (F = 1) of detecting the atom in |F = 1〉
at position r is

P (F = 1) =
µ− 1

2

∑
mω2

sr
2
s(0)

g11Nλx(t)λy(t)λz(t)

(
1

4
− α2

) ∣∣∣1 + ej(∆Φat+∆φL)
∣∣∣2 (19)

We repeat this calculation for initial positions on a 3D
grid to construct the image of the atomic cloud at the
detection time tobs. Subsequently, we integrate over the
xy dimensions to obtain the total number of atoms at
position z. To extract the atomic phase shift, we add
a laser phase ∆φL in equation (19) to probe the atomic
phase and analyze the simulated images the exact same
way we do with the experimental ones.

To evaluate the contribution of the mutual interaction
we measured the interaction phase shift as a function
of the condensate release time, the trapping frequency
νz and the population imbalance α. Figure 5 shows the
variation of the phase gradient as a function of the re-
lease time TF. We see that the phase gradient decreases
with the release time and becomes almost undetectable
after 20 ms. As expected, this is also the case of the
total phase shift that accounts for both the mutual and
self interaction, even if the population imbalance between
the two branches of the interferometer is significant (see
figure 6). We measure a total interaction phase shift of
(0.49± 0.03) rad for an atomic density in an initial BEC
of 4.3× 1014atoms/cm3, when TF = 4 ms and θ = 0.3 π.

Finally, we looked at the behavior of the phase shift

due to atomic interactions when varying the vertical trap-
ping frequency νz. As shown in Figure 7, the phase first
increases with the trapping frequency, passes a maxi-
mum, and then decreases. This behaviour results from
the dependence of the chemical potential, BEC size and
expansion rate on trapping frequencies.

The mean field µ scales as ω̄7/5, it increases faster than
the size of the condensate, which varies almost linearly
with the trapping frequency. Therefore, considering the
overlap duration of the two condensates, the contribution
of the self-interaction is larger than the mutual interac-
tion.

For a low trapping frequency, the expansion of the
atomic cloud is slow and the two BECs rapidly sepa-
rate after the first Raman pulse (with relative velocity
2vr). The main contribution to the total phase shift ∆φ
comes from the self-interaction which increases rapidly
as the trapping frequency increases. At a high trapping
frequency, the expansion of the cloud dominates due to
the repulsive potential and therefore the self-interaction
decreases since both BECs are diluted.
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FIG. 4. Top: absorption pictures obtained by scanning from −π to π, the phase difference ∆ΦL between the two Raman
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different Raman pulse area θ. The shaded area accounts for the fluctuation of the pulse area and trapping frequencies.
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IV. CONCLUSION

In this paper, we have investigated in detail both theo-
retically and experimentally the phase shift due to atomic
interactions in an atom interferometer. Our theoretical
model relies on the Feynman integral approach which is
used to derive general formulas for phase shifts related
to self-interaction and mutual interaction. Our model is
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FIG. 6. Total phase shift accounting for both mutual and self
interactions as a function of the release time TF, for different
values of the Raman pulse area θ (from 0.3π to 0.7π), with
TR = 6ms. Square points are experimental data. The shaded
curve is the range of calculated total interaction phase shift,
accounting for uncertainty on the pulse area and the trapping
frequencies.

general and accounts for the effect of a population imbal-
ance between the two arms of the interferometer as well
as of the difference in scattering lengths of the hyper-
fine states. It allows to evaluate precisely the interaction
phase shifts knowing the time evolution of the spatial
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FIG. 7. Variation of interaction phase shift with the vertical
trapping frequency νz. Parameters are TF = 3 ms, TR = 6
ms and θ = 0.35 π. The shaded orange curve is the range of
calculated total interaction phase shift, accounting for uncer-
tainty on the number of atoms and the trapping frequencies.
The experimental data set satisfies the Thomas Fermi approx-
imation.

density of the Bose-Einstein condensate. Relying on the
Castin-Dum model, which describes the temporal evolu-
tion of the BEC spatial density in the Thomas-Fermi
regime, we calculated the phase shift induced by the
atomic interactions and in particular the phase gradient
resulting from the mutual interaction. We measured ex-
perimentally the phase gradient and the total phase shift
(accounting for mutual and self interactions) by varying

the experimental parameters (BEC release time, trapping
frequencies and Raman coupling). The theoretical curves
reproduce well the experimental data without any ad-
justment of the parameters. In particular, the work pre-
sented in this paper has enabled us to evaluate the phase
gradient due to the mutual interactions between the two
interfering condensates. It also provides theoretical tools,
validated by the experiment, to evaluate the phase shifts
induced by atomic interactions. The treatment of the in-
teraction effect by the Feynman path integral approach
can be generalized to other atom interferometer configu-
rations and offers a simple way to accurately evaluate the
related systematic effect that could affect high-precision
measurements with atom interferometry.
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