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We use the molecular convergent close-coupling (MCCC) method to perform calculations of
10–1000 eV electron scattering on the ground state of HeH+. Cross sections are presented
for excitation of the n = 2–3 singlet and triplet states (where n is the united-atoms-limit
principle quantum number), as well as ionization. We also present cross sections for He+

and H+ ion production following dissociative excitation and ionization. The He+ production
cross section is compared with the measurements of Lecointre, Jureta, Urbain, and Defrance
[J. Phys. B At. Mol. Opt. Phys. 47, 015203 (2014)]. We find that the MCCC results are up to 30%
higher than experiment. This deserves further investigation to identify the source of the discrepancy.
The results presented here can be downloaded from the MCCC database (mccc-db.org).

I. INTRODUCTION

The helium hydride molecular ion HeH+ is comprised
of the two most universally abundant elements, namely
hydrogen and helium. While the neutral HeH molecule
has a repulsive electronic ground state [1], the HeH+ ion
and its isotopologues have an electronic ground state and
several excited states which support a number of bound
vibrational levels [2]. Along with the hydrogen molecule,
HeH+ is expected to form in the cooler edge and divertor
regions of fusion reactors [3], where it is well-known that
electron collisions with molecular species play an impor-
tant role in governing the plasma dynamics [4].
The HeH+ molecule was the first molecule to form in

the early stages of the universe [5], and is thought to
be present in significant quantities in helium-rich stars,
nebulae, and molecular clouds [6, 7]. Collisional reactions
with the early-forming molecules such as HeH+, H+

2 , H2,
LiH+, and LiH would have had a significant effect on
the gravitational collapse of interstellar clouds during the
formation of the first stars [6].
Understanding the important influence of electron col-

lisions with molecules in plasmas requires accurate cross-
section data for many reactions over a broad range of col-
lision energies. Previously, we have applied the molecular
convergent close-coupling (MCCC) method [8] to studies
of electron and positron scattering on H+

2 and H2 [9–14],
and produced a comprehensive set of cross sections for
vibrationally-resolved electronic excitation of H2 and its
isotopologues [15–17]. The accuracy and scope of the
MCCC e−-H2 collision data set has allowed it to be im-
plemented in plasma models in fusion and astrophysical
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applications [18–20]. We now take the first step in the
production of a similarly-accurate data set for the helium
hydride ion, by applying the MCCC method to studies
of electronic excitation and ionization from the ground
(electronic and vibrational) state of HeH+.

Previous calculations of electron scattering on HeH+

have been predominantly focused on low incident ener-
gies. Early complex Kohn calculations by Orel et al. [21]
studied dissociation of the molecule via electronic exci-
tation of the repulsive a 3Σ+ state in the 21–26 eV re-
gion, and subsequent work produced data for resonance-
enhanced dissociation through the vibrational continuum
of the ground electronic state [22, 23]. More recent Kohn
calculations by Ertan et al. [24] revisited the dissociative
excitation process, also including excitation of the A 1Σ+

state and considering incident energies up to 40 eV. Nu-
merous calculations have been performed of dissociative
recombination of electrons with the HeH+ ion [25, 26],
as well as rotational and vibrational excitation below the
first electronically-inelastic threshold [27–30].

Measurements for this collision complex are limited.
Strömholm et al. [31] took measurements of dissociative
recombination and dissociative excitation below 40 eV,
while Lecointre et al. [32] measured cross sections for pro-
duction of He+ and He2+ fragments following dissocia-
tive excitation and ionization from threshold to 3000 eV.
In both cases, the measurements do not differentiate
between individual transitions, instead having contribu-
tions from a number of different dissociative processes.

In this paper, we present cross sections for electronic
excitation of the first 18 excited electronic states of
HeH+, corresponding to those states which converge to
the n=2 and 3 states of Li+ in the united-atoms limit,
as well as ionization and an estimate of dissociative ex-
citation for comparison with experiment. The electronic
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TABLE I. List of HeH+ states corresponding to the n = 1,
2, and 3 states of Li+ in the united-atoms limit. States are
ordered in terms of increasing energy at the equilibrium in-
ternuclear separation.

United atoms Molecular state Separated atoms

n=1

Li+
[

1S(1s2)
]

X 1Σ+ He
[

1S(1s2)
]

+H+

n=2

Li+
[

3S(1s2s)
]

a 3Σ+ He+(1s) + H(1s)

Li+
[

1S(1s2s)
]

A 1Σ+ He+(1s) + H(1s)

Li+
[

3P (1s2pπ)
]

c 3Π He
[

3P (1s2p)
]

+H+

Li+
[

3P (1s2pσ)
]

b 3Σ+ He
[

3S(1s2s)
]

+H+

Li+
[

1S(1s2pπ)
]

C 1Π He+(1s) + H(2ℓ)

Li+
[

1P (1s2pσ)
]

B 1Σ+ He
[

1S(1s2s)
]

+H+

n=3

Li+
[

3S(1s3s)
]

d 3Σ+ He
[

3P (1s2p)
]

+H+

Li+
[

1S(1s3s)
]

D 1Σ+ He+(1s) + H(2ℓ)

Li+
[

3P (1s3pσ)
]

f 3Σ+ He+(1s) + H(2ℓ)

Li+
[

1D(1s3dσ)
]

E 1Σ+ He+(1s) + H(2ℓ)

Li+
[

3P (1s3pπ)
]

e 3Π He+(1s) + H(2ℓ)

Li+
[

1D(1s3dπ)
]

F 1Π He
[

1P (1s2p)
]

+H+

Li+
[

3D(1s3dδ)
]

i 3∆ He
[

3D(1s3d)
]

+H+

Li+
[

1D(1s3dδ)
]

I 1∆ He
[

1D(1s3d)
]

+H+

Li+
[

3D(1s3dπ)
]

h 3Π He
[

3P (1s3p)
]

+H+

Li+
[

3P (1s3pπ)
]

H 1Π He
[

1D(1s3d)
]

+H+

Li+
[

3D(1s3dσ)
]

g 3Σ+ He+(1s) + H(2ℓ)

Li+
[

1P (1s3pσ)
]

G 1Σ+ He
[

1P (1s2p)
]

+H+

states considered in the present work are listed in Table I,
along with their corresponding united-atoms Li+ states
and separated-atoms dissociation fragments. The Latin
letters prepended to the molecular state labels cannot be
uniquely assigned based on energy ordering since there
are a number of states whose potential-energy curves
cross. We have adopted the HeH+ state labels as de-
fined by Michels [33], who assigned them based on en-
ergy ordering in the separated-atoms limit. The states
we have labeled i 3∆, I 1∆, h 3Π, and H 1Π were not
studied by Michels [33], however we have assigned these
labels based on the same rule. In Fig. 1 we show the
potential-energy curves of the HeH+ states under con-
sideration in the present work, as well as the ground
state of the HeH2+ ion. Although some of the excited
electronic states have minima in their potential-energy
curves, they are well outside the Franck-Condon region
of the X 1Σ+(v = 0) state. Therefore all excitations, as
well as ionization, from the ground electronic and vibra-
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FIG. 1. Potential-energy curves of the n = 1–3 electronic
states of HeH+, taken from Loreau et al. [2], and the HeH2+

ground state, taken from Jungen and Jungen [34]. Also shown
is the v=0 vibrational wave function in the ground electronic
state of HeH+, and its associated Franck-Condon region.

tional state can be considered dissociative. Whenever
the effects of nuclear motion are discussed in the present
work we refer only to the 4HeH+ isotopologue; the effects
of isotopic substitution can be explored in future work.

II. THEORY

The MCCC method has been developed in both the
spherical and prolate-spheroidal coordinate systems, each
with different strengths depending on the range of inter-
nuclear separations which are relevant to the calculations.
In the present work, where we are concerned only with
scattering on the ground vibrational level, we have found
that a spherical coordinate system with the origin cen-
tered on the helium atom is the most appropriate. The
spherical MCCC method and its application to H2 have
been discussed in detail in previous publications [8, 12].
Here, only a brief overview is given, with particular fo-
cus on those aspects which are different for scattering on
heteronuclear diatomics such as HeH+. Atomic units are
used throughout, unless specified otherwise.

A. Molecular structure

The target is represented in a body-fixed spherical co-
ordinate system, with the z axis aligned with the inter-
nuclear axis. In previous MCCC calculations for H+

2 and
H2, the origin was placed at the geometric center of the
nuclei [8], however for heteronuclear molecules it is ben-
eficial to allow the flexibility of placing the origin at any
point along the z axis between the two nuclei. This is
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illustrated in Fig. 2.

z
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r2

Z1 Z2

e−1
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O R2R1

FIG. 2. Representation of a two-electron heteronuclear di-
atomic molecule in a spherical coordinate system with the
origin positioned at an arbitrary point between the two nu-
clei.

We represent the molecular wave functions within the
Born-Oppenheimer approximation, and neglect the ro-
tational motion, defining the vibronic (vibrational and
electronic) wave function by

Φnv(r1, r2, R) = Φn(r1, r2;R)νnv(R), (1)

where r1 and r2 are the electronic coordinates,
R = R1 +R2 is the internuclear separation, Φn is an elec-
tronic wave function (with R treated as a parameter), νnv
is a vibrational wave function, n indexes the electronic
states, and v is the vibrational quantum number. The
electronic states are eigenstates of the electronic Hamil-
tonian

Ĥ12 = K̂1 + V̂1 + K̂2 + V2 + V12 +
1

R
. (2)

Here, K̂i is the one-electron kinetic-energy operator, Vi
is the electron-nuclei potential, and V12 is the electron-
electron potential:

K̂i = −
1

2
∇2

i (3)

Vi =
ziZ1

|ri −R1|
+

ziZ2

|ri −R2|
(4)

Vij =
zizj

|ri − rj |
. (5)

The potentials are expanded in spherical harmonics:

Vi(ri) = zi

∞
∑

λ=0

√

4π

2λ+ 1
Y 0
λ (r̂i) (6)

×
[

Z1vλ(ri, R1) + (−1)λZ2vλ(ri, R2)
]

Vij(ri, rj) (7)

= zizj

∞
∑

λ=0

λ
∑

µ=−λ

4π

2λ+ 1
vλ(ri, rj)Y

−µ
λ (r̂i)Y

µ
λ (r̂j),

where

vλ(ri, rj) =
[min(ri, rj)]

λ

[max(ri, rj)]
λ+1

. (8)

At each fixed value ofR, the target space is represented
by a set of pseudostates obtained from a configuration-
interaction (CI) calculation using Sturmian basis func-
tions. In the spherical-coordinate MCCC method we
utilize the following basis for the one-electron coordinate
and spin space:

〈r|kℓmσ〉 =
1

r
ϕkℓ(r)Y

m
ℓ (r̂)χ(σ), k = 1, 2, . . . (9)

where χ(σ) is the one-electron spin wave function for spin
projection σ, Y m

ℓ are the spherical Harmonics, and ϕkℓ

are the following radial Laguerre basis functions:

ϕkℓ(r) =

√

αℓ(k − 1)!

(k + ℓ)(k + 2ℓ)!
(2αℓr)

ℓ+1e−αℓrL2ℓ+1
k−1 (2αℓr).

(10)

Here, L2ℓ+1
k−1 are the associated Laguerre polynomials, and

αℓ are tunable exponential falloff parameters.
For each target symmetry (m, s) we construct a set of

antisymmetrized two-electron configurations:

|k1ℓ1m1k2ℓ2m2 : ms〉 =
1

√

2(1 + δk1k2
δℓ1ℓ2δm1m2

)

×
∑

σ1σ2

Csms

1
2σ1,

1
2σ2

A|k1ℓ1m1σ1〉|k2ℓ2m2σ2〉, (11)

where A is the antisymmetrization operator, Csms
s1σ1,s2σ2

are the Clebsch-Gordan coefficients, and we require that
m1 +m2 = m due to axial symmetry. The two-electron
pseudostates obtained from the CI calculation are given
by

|Φn : ms〉 =
∑

γ

C(n)
γ |γ : ms〉, (12)

and satisfy

〈ms : Φn′ |Ĥ12|Φn : ms〉 = ǫnδn′n, (13)

where γ=(k1ℓ1m1k2ℓ2m2), C
(n)
γ are the CI coefficients,

and ǫn is the pseudostate energy.

B. Projectile wave functions

For scattering on an ionic target the projectile is
asymptotically described by a Coulomb wave function.
Additionally, a short-ranged distorting potential U0 can
be incorporated into the scattering calculations for rea-
sons of numerical stability and computational perfor-

mance. Hence we define projectile distorted waves |k(±)〉
with energy ǫk by

(ǫ
(±)
k − K̂0 − z0Zasym/r0 − U0)|k

(±)〉 = 0, (14)

where Zasym is the asymptotic target charge (Zasym=+1
for HeH+). The distorted waves are expanded in partial
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waves:

|k(±)〉 =
1

k

∞
∑

L=0

L
∑

M=−L

iLe±i(σL+δL)|kLM〉YM∗
L (k̂), (15)

where σL and δL are the Coulomb and distorting phase
shifts, respectively.
The asymptotic Coulomb potential supports an infi-

nite number of bound projectile states, while the distort-
ing potential supports a finite number of bound states.
We combine these two potentials and define the one-
dimensional projectile Hamiltonian:

Ĥ0 = −
1

2

d2

dr20
+
L(L+ 1)

2r20
+
z0Zasym

r0
+ U0(r0), (16)

which we diagonalize in the single-particle Laguerre basis
given in Eq. (9) to obtain bound projectile states for each
angular momentum L. After suitable normalization these
states can then be included in the scattering equations
in addition to the distorted continuum waves |kLM〉.

C. Scattering equations

Following Ref. [8], we solve the Schrödinger equation
with outgoing spherical-wave boundary conditions (indi-
cated by the (+) superscript):

(E(+) − Ĥasym)|ψ
S(+)
i 〉 = V̂U |ψ

S(+)
i 〉, (17)

where E, S, and ψ are respectively the total scattering-
system energy, spin, and wave function for initial target
state i,

Ĥasym = Ĥ12 + K̂0 +
z0Zasym

r0
+ U0 (18)

is the asymptotic Hamiltonian, and the interaction po-
tential is

V̂U = V0 + V01 + V02 −
z0Zasym

r0
− U0 + (E − Ĥ)

2
∑

j=1

P̂0j .

(19)
The final term in VU is the exchange potential operator
(P0j is the electron permutation operator), which appears
as a result of enforcing the antisymmetry of the total
scattering wave function.
Following standard procedure in the MCCC

method [8], the total scattering wave function is
expanded in the basis formed by the target electronic
states. After substituting this expansion into Eq. (17)
and applying the projectile partial-wave expansion (15)
we obtain the partial-wave Lippmann-Schwinger equa-
tion:

TMS
fLfMf ,iLiMi

(kf , ki) = VMS
fLfMf ,iLiMi

(kf , ki)

+
∑

nLM

∑

∫

dk
VMS
fLfMf ,nLM (kf , k)T

MS
nLM,iLiMi

(k, ki)

E(+) − ǫk − ǫn
,

(20)

where the partial-wave V -matrix elements are defined by

VMS
fLfMf ,iLiMi

(kf , ki)

≡ 〈MS : kfLfMfΦf |V̂U |ΦikiLiMi : MS〉. (21)

Eq. (20) is solved per total scattering-system angular-
momentum projection M and spin S, using techniques
described in Ref. [8]. The sum/integral over k indicates
the presence of bound projectile states, which are in-
cluded in the calculations until convergence is reached.
Once the distorted-wave partial T -matrix elements are
computed, the physical matrix elements are obtained us-
ing [35]

TMS
fLfMf ,iLiMi

(qf , qi) = TMS
fLfMf ,iLiMi

(kf , ki)e
i(δLi

+δLf
)

− δf,iδLf ,Li
δMf ,Mi

qi
π
eiδLi sin(δLi

), (22)

where q is used to indicate projectile waves calcu-
lated without the presence of the distorting potential
(Coulomb waves in the present case). When solving
Eq. (20), we check for convergence with respect to the
number of target states and maximum projectile partial-
wave angular momentum Lmax. We perform calculations
for all |M| ≤ Lmax.

D. Distorting potential

The short-ranged distorting potential U0 is chosen to
cancel the spherical part of the V0, V01, and V02 poten-
tials, and is given in Ref. [8] for the case where the spher-
ical coordinate-system origin is placed at the geometric
center of the nuclei. For the more general case with the
origin placed at an arbitrary point along the internuclear
axis, it is given by

U0(r0) = z0Z1v0(r0, R1) + z0Z2v0(r0, R2)−
z0Zasym

r0

− 2z0

∫∫

|Φ1(r1, r2)|
2
v0(r0, r1) dr1dr2, (23)

where Φ1 is the target ground-state wave function.

E. Fixed-nuclei cross sections and Born completion

At each fixed internuclear separation R, we define the
partial-wave scattering amplitudes:

FMS
fLfMf ,iLiMi

(R) =
−4π2

qfqi
iLi−Lf ei(σLi

+σLf
)

× TMS
fLfMf ,iLiMi

(qf , qi;R), (24)

which are used to calculate the partial-wave integrated
cross sections (ICS)

σMS
f,i (R) =

1

4π

qf
qi

∑

LfMf

∑

LiMi

∣

∣

∣
FMS
fLfMf ,iLiMi

(R)
∣

∣

∣

2

, (25)
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and, in turn, the spin-resolved ICS

σS
f,i(R) =

∑

M

σMS
f,i (R). (26)

For scattering on the ground state of HeH+ (spin zero),
only S = 1

2 is possible, so from here on we drop the de-
pendence on S.
When performing calculations for neutral targets we

accelerate the convergence with respect to Lmax by a
straight-forward application of the analytic Born com-
pletion technique, which is described in Ref. [14]. This
technique assumes that for higher partial waves the par-
tial cross sections converge to the plane-wave Born par-
tial cross sections, however for scattering on ionic targets
they converge to the Coulomb-wave Born partial cross
sections. Hence, we adopt the following approach. First,
T -matrix elements are obtained from the close-coupling
calculation for partial waves up to Lmax. These are then
supplemented by partial-wave (Coulomb) V -matrix ele-
ments up to a much larger L̄ (in the present work we
have found L̄= 40 to be more than sufficient). Finally,
the standard plane-wave Born completion technique is
applied to account for partial waves above L̄.

F. Adiabatic-nuclei cross sections

We apply the adiabatic-nuclei (AN) approxima-
tion, and since we are not concerned with the fully
vibrationally-resolved processes at present, we utilize the
completeness of the vibrational spectrum to calculate the
total electronic excitation cross sections (summed over fi-
nal rovibrational states):

σf,ivi = 〈νivi |σf,i(R)|νivi〉, (27)

where the bra-kets imply integration over the internu-
clear separation R. The vibrational wave functions
νivi(R) are obtained from a diagonalization procedure
similar to what is used in the electronic structure cal-
culations. More specific details of the vibrational struc-
ture calculation and AN approximation can be found in
Ref. [14]. At energies sufficiently far away from the exci-
tation threshold, Eq. (27) can be well approximated by
the fixed-nuclei (FN) cross section evaluated at the mean
internuclear separation of the ground vibrational wave
function. In the present work, we utilize both the FN
and AN approximations, with the latter applied at near-
threshold energies where the FN approximation breaks
down. This will be discussed further in Sec. IV.

III. CALCULATION DETAILS

A. Target structure

It is necessary to find a balance between target-
structure accuracy and tractability of the scattering cal-
culations, since increasing the size of the basis for the

CI calculation leads to more pseudostates which must be
included in the close-coupling expansion. As in previous
work [12, 14, 36], we adopt a hybrid-basis approach which
is optimized to yield sufficiently accurate low-lying target
states without the computational expense of the scatter-
ing calculations becoming prohibitive. The main set of
basis orbitals is comprised of Laguerre functions (9) with
k ≤ Nℓ and exponential falloffs αℓ=1.4 for each ℓ ≤ ℓmax.
A number of models with different Nℓ and ℓmax will be
utilized in the convergence studies discussed later. The
1s and 2p Laguerre functions are replaced by an accu-
rate HeH2+ ground state (1sσ) and first excited state
(2pσ) obtained from a preliminary one-electron diago-
nalization with Nℓ=15− ℓ, ℓmax=8, and αℓ=5.0. The
2s, 3p, and 3d orbitals are then replaced with Laguerre
functions with exponential falloffs

αℓ =







2.22, ℓ = 0
1.92, ℓ = 1
2.58, ℓ = 2

, (28)

which are chosen to optimize the low-lying target-state
energies. To reduce computational expense, we use a re-
stricted CI calculation with the set of two-electron con-
figurations (11) consisting of all “frozen-core” configu-
rations (1s, nℓ), and correlation configurations (nℓ, n′ℓ′)
with both electrons allowed to occupy the 1s, 2s, 2p, 3p,
and 3d orbitals.
The equilibrium separation of the X 1Σ+-state

potential-energy curve is at R=1.463 [37], and we have
calculated the mean separation of the v = 0 vibrational
wave function to be R = 1.518. In Fig. 3 we show the
HeH+ ground-state potential-energy curve calculated by
Loreau et al. [2], along with our calculated vibrational
wave function. The equilibrium and mean internuclear
separations are indicated on the figure.
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n
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FIG. 3. Potential-energy curve of the HeH+ X 1Σ+ state
calculated by Loreau et al. [2], and the v=0 vibrational wave
function.
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TABLE II. Two-electron energies and vertical excitation en-
ergies for the n=1–3 states of HeH+ calculated at an internu-
clear separation of R=1.5 a0. Comparison is made between
the MCCC energies and the accurate calculations of Jungen
and Jungen [34]. In the final row the same is shown for the
ground state of HeH2+.

Energy (Ha) ∆E (eV)

State MCCC Ref. [34] MCCC Ref. [34] Error

n=1

X 1Σ+
−2.9677 −2.9780 — — —

n=2

a 3Σ+
−2.1905 −2.2036 21.056 21.072 −0.016 (0.08%)

A 1Σ+
−2.0248 −2.0357 25.673 25.641 0.032 (0.12%)

c 3Π −1.8408 −1.8451 30.739 30.827 −0.088 (0.29%)

b 3Σ+
−1.8014 −1.8056 31.844 31.901 −0.057 (0.18%)

C 1Π −1.8000 −1.8042 31.874 31.940 −0.066 (0.21%)

B 1Σ+
−1.7616 −1.7652 32.916 33.000 −0.084 (0.25%)

n=3

d 3Σ+
−1.6476 −1.6501 36.078 36.132 −0.054 (0.15%)

D 1Σ+
−1.6226 −1.6254 36.775 36.806 −0.031 (0.08%)

f 3Σ+
−1.5918 −1.5954 37.636 37.621 0.015 (0.04%)

E 1Σ+
−1.5901 −1.5929 37.682 37.690 −0.008 (0.02%)

e 3Π −1.5901 −1.5904 37.686 37.757 −0.071 (0.19%)

F 1Π −1.5873 −1.5881 37.751 37.819 −0.068 (0.18%)

i 3∆ −1.5791 −1.5788 37.998 38.073 −0.075 (0.20%)

I 1∆ −1.5788 −1.5784 38.009 38.083 −0.074 (0.19%)

h 3Π −1.5809 −1.5781 38.059 38.091 −0.032 (0.08%)

H 1Π −1.5737 −1.5672 38.398 38.389 0.009 (0.02%)

g 3Σ+
−1.5742 −1.5650 38.460 38.448 0.012 (0.03%)

G 1Σ+
−1.5681 −1.5534 38.846 38.765 0.081 (0.21%)

HeH2+
−1.3606 −1.3621 43.731 43.971 −0.240 (0.55%)

In the convergence studies discussed later in Sec. III B
we use a target basis with ℓmax = 4 and Nℓ=Nmax − ℓ,
with Nmax=10, 12, and 14. The energies for the n=1–3
states in the Nmax=12 and 14 models are in agreement
up to the third decimal place (in Hartrees). The absolute
energies and excitation energies calculated at R=1.5 are
presented in Table II and compared with accurate calcu-
lations from Jungen and Jungen [34]. The agreement is
very good, with the errors in the excitation energies all
being less than 0.1 eV (less than 0.3%). The static dipole
polarizability of the ground state, and dipole moments
for a selection of transitions are presented in Table III
and compared with available results from the literature.
The present dipole moments compare favorably with the
accurate calculations with all errors being less than 5%
and several less than 1%. Compared to our previous cal-
culations of electron scattering on H2 [12], this level of
accuracy in the target structure is very good, and when
it comes to estimating the uncertainty in the calculated
cross sections later we expect that the small errors here
will be negligible compared to the uncertainty due to the

TABLE III. Static dipole polarizability of the HeH+ X 1Σ+

state, and dipole moments for a selection of electronic transi-
tions. Comparison is made between the present MCCC struc-
ture calculation and the accurate calculations of Michels [33]
and Bishop and Cheung [38]. The internuclear separation R

at which each quantity is calculated varies depending on the
data available in Refs. [33, 38], and is indicated in the table.

Quantity R MCCC Ref. Error

Parallel polarizability 1.46 1.542 1.542a 0.0%

Perpendicular polarizability 1.46 0.857 0.851a 0.6%

Total polarizability 1.46 1.086 1.081a 0.5%

X 1Σ+
→ A 1Σ+dipole moment 1.5 0.810 0.798b 1.2%

X 1Σ+
→ C 1Π dipole moment 1.5 0.576 0.579b 0.3%

X 1Σ+
→ A 1Σ+dipole moment 2.0 0.856 0.870b 1.4%

X 1Σ+
→ C 1Π dipole moment 2.0 0.597 0.586b 1.1%

A 1Σ+
→ C 1Π dipole moment 2.0 0.415 0.384b 3.1%

a 3Σ+
→ c 3Π dipole moment 2.0 0.546 0.589b 4.3%

aBishop and Cheung [38]
bMichels [33]

level of convergence in the scattering calculations, and
hence can be neglected.

B. Scattering models and target-state convergence

We first verify convergence with respect to the number
of target states included in the calculations, while keep-
ing the partial-wave expansion fixed with Lmax = 6. In
Table IV we describe a number of models with increasing
numbers of target states. The models are labeled in the
format MCC(N) or MCCC(N), where N is the number
of states (counting degeneracy), and the MCC label in-
dicates that only bound states are included while MCCC
indicates that continuum pseudostates are also present
to model coupling to ionization channels. To ensure con-
vergence in both the discrete and ionization cross sec-
tions, we include all states generated from the structure
calculation in the close-coupling expansion, with two ex-
ceptions. Firstly, states with orbital angular-momentum
projection m > 3 are not included in any of the mod-
els. Secondly, we exclude all states with a 1s core-orbital
spectroscopic factor less than 0.1. The definition of the
spectroscopic factor and further discussion of the proce-
dure for removing states based on this quantity is given
in Ref. [39]. We have verified that all states we exclude
make an insignificant contribution to the ionization cross
section in the Born approximation and hence it is rea-
sonable to exclude them from the close-coupling calcula-
tions. Although excluding states from the close-coupling
expansion significantly reduces the use of computational
resources, it comes at the cost of not being able to re-
solve the problem of non-uniqueness in the scattering
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TABLE IV. Description of the various target models used in
the present MCCC calculations. The number in parentheses
after the MCC/MCCC labels indicates the number of tar-
get states, counting degeneracy. The united-atoms principle
quantum number is denoted by n, while m refers to the or-
bital angular-momentum projection, and S refers to the spec-
troscopic factor discussed in the text.

Model Laguerre basis States included

MCC(9) Nℓ=10− ℓ, ℓ ≤ 4 All n=1–2 states

MCC(27) Nℓ=10− ℓ, ℓ ≤ 4 All n=1–3 states

MCC(98) Nℓ=10− ℓ, ℓ ≤ 4 All bound m ≤ 3 states

MCCC(357) Nℓ=10− ℓ, ℓ ≤ 4 All m ≤ 3 states with S ≥ 0.1

MCCC(448) Nℓ=12− ℓ, ℓ ≤ 4 All m ≤ 3 states with S ≥ 0.1

MCCC(546) Nℓ=14− ℓ, ℓ ≤ 4 All m ≤ 3 states with S ≥ 0.1

calculations. This issue, which has been discussed pre-
viously [8], can lead to some numerical instability in the
calculated cross sections, and at present our only solution
is an algebraic technique which requires the inclusion of
all pseudostates generated from the Laguerre basis (for
two-electron targets). We have found previously that the
instabilities in the integrated cross sections are generally
minor and predominantly affect transitions with small
cross sections. The particular non-unique off-shell so-
lution one obtains when solving Eq. (20) numerically is
determined by the choice of Gaussian quadrature knots
used to represent the integral over k. A given integration
mesh will generally lead to unstable results at a few dif-
ferent incident energies, and hence it is straightforward to
repeat those affected calculations with a different choice
of knots in order to force a different off-shell solution and
obtain cross sections which are smooth functions of en-
ergy.

The convergence studies have been performed at the
mean internuclear separation of R = 1.518. Fig. 4
compares the ionization cross section calculated with
the MCCC(357), MCCC(448), and MCCC(546) mod-
els (the three which include continuum pseudostates),
along with the Coulomb-Born approximation applied us-
ing the MCCC(546) pseudostates. The cross section
is sufficiently converged over the entire energy range
with the MCCC(546) model, and the limit in which
the Coulomb-Born approximation is valid is reached at
around 1000 eV. Although it is normally expected that
Born or Coulomb-Born cross sections should be larger
than the result of close-coupling, the present Coulomb-
Born ionization cross section is smaller than the MCCC
calculation for energies around 150 eV and above. The
reason for this is that the contribution to the ionization
cross section from exchange transitions (which are not
accounted for in the Coulomb-Born calculation) is suf-
ficiently large for this target as to exceed the difference
between Coulomb-Born and MCCC for the direct tran-
sitions. Hence, the total MCCC ionization cross section
can become larger than the Coulomb-Born cross section.
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FIG. 4. Convergence studies, for ionization of the X 1Σ+ of
HeH+ at R=1.518 a0. Convergence is tested with respect to
the number of target states included in the close-coupling ex-
pansion. See the text for a description of the different scatter-
ing models. CB(546) refers to the Coulomb-Born approxima-
tion applied using the same continuum pseudostates present
in the MCCC(546) model.

This point is illustrated in Fig. 5, where the MCCC(546)
ionization cross section is decomposed into contributions
from excitation of singlet and triplet pseudostates, for
internuclear separations R=0 and 1.518. For R=0 we
compare with CCC calculations for ionization of atomic
Li+ [40], which is the united-atoms limit of HeH+, to ver-
ify the validity of the MCCC calculations. In the atomic
case, the exchange contribution reaches a peak at twice
the ionization threshold and then decays and becomes
negligible by 10 times the ionization threshold. However,
in the molecular case the decay is slower, and exchange
effects must still be accounted for at energies up to 20
times the ionization threshold (approximately 1000 eV).
The reason for the flatter peak in the exchange contri-
bution at R = 1.518 is that higher-energy triplet pseu-
dostates with excitation energies up to 4 times the ion-
ization threshold are still important, which is not the case
at R=0. Since the HeH+ electrons are less tightly bound
than the Li+ electrons, it is expected that the exchange
interaction will be more important.

In Fig. 6 we present convergence studies for excitation
of the n = 2 states (a 3Σ+, A 1Σ+, c 3Π, b 3Σ+, C 1Π,
and B 1Σ+). Since the excitation cross sections for a
charged target are generally non-zero at threshold, the
threshold energies for all FN calculations presented in
this paper are indicated by vertical lines on the figures.
The MCC(9) and MCC(27) models have been run on a
finer energy grid to show the presence of a large number
of resonances below the ionization threshold (≈ 44 eV),
as well as pseudoresonances at higher energies. A more
detailed view of the resonance structures in the MCC(27)
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FIG. 5. Electron-impact ionization cross section for HeH+,
comparing the contribution from direct and exchange transi-
tions (excitation of singlet and triplet pseudostates, respec-
tively). In the top panel, the MCCC(546) model is run at
zero internuclear separation and compared with the CCC cal-
culations for electron scattering on atomic Li+ [40]. In the
bottom panel, the MCCC(546) model is run at the HeH+

mean internuclear separation of R=1.518 a0. The cross sec-
tions are presented as a function of the incident energy in
threshold units (the ionization threshold is 74.8 eV for R=0
and 43.5 eV for R=1.518 a0).

X 1Σ+ → a 3Σ+ cross section is given in Fig. 7. To
allow comparison with the FN complex Kohn calcula-
tions of Orel et al. [21], the cross section presented in
Fig. 7 is calculated at the equilibrium internuclear sep-
aration (R= 1.455) rather than the mean. We have in-
dicated three features in the figure that are present in
both the MCC(27) and Kohn cross sections. Feature
number one is not a resonance, but simply the sharp
rise in the cross section at threshold characteristic of ex-
change transitions, followed by a rapid decay. The lo-
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FIG. 6. Convergence studies for excitation of the n=2 elec-
tronic states from the X 1Σ+ state of HeH+ at R=1.518 a0.
Convergence is tested with respect to the number of tar-
get states included in the close-coupling expansion. The
Coulomb-Born (CB) cross sections are also shown for the sin-
glet states. See the text for a description of the different
scattering models.

cation of this feature differs by about 0.4 eV between
the two calculations since the target wave functions in
the present calculations are slightly more accurate (the
key difference is likely a lower ground-state energy in the
MCCC structure model leading to higher excitation en-
ergies compared to Ref. [21]). Feature number three was
identified in Ref. [21] as a Feschbach resonance, and it is
reproduced in the present calculations, also at a slightly
higher energy. The remaining resonances above 24 eV
are all Feschbach resonances, and aside from some which
are missing in the Kohn calculations due to insufficient
energy resolution, the two calculations appear to pre-
dict the same structures in the cross section (once the
shift in energy is taken into account). Feature number
two was identified in Ref. [21] as a shape resonance, and
we find that there is essentially perfect agreement be-
tween the two calculations here. It is unclear why the
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FIG. 7. Resonances in the fixed-nuclei X 1Σ+
→ a 3Σ+ exci-

tation cross section calculated at the equilibrium internuclear
separation (R=1.455 a0). Comparison is between the present
MCC(27) model and the complex Kohn calculations of Orel
et al. [21]. Circled numbers indicate features which are dis-
cussed in the text.

systematic energy shift is not present for this feature. We
have performed test calculations with less accurate tar-
get structure and found that the position of feature two
is just as sensitive to changes in the target energies as the
other features, so it appears that the agreement between
the MCCC and Kohn calculations here is a coincidence.
Overall, the similar magnitude of the background scat-
tering cross section and appearance of similar resonance
structures in the two calculations is a useful verification
that the MCCC method has been correctly implemented
for HeH+.
The larger models in Fig. 6 are run on a courser en-

ergy grid and hence the apparent numerical instability
near threshold is in fact a result of slight changes in reso-
nance energies between the models (e.g. the three MCCC
models differ at the first energy point after threshold for
the C 1Π excitation, but are otherwise in perfect agree-
ment). Since the adiabatic-nuclei and fixed-nuclei ap-
proximations break down near resonances, the positions
and magnitudes of the resonances in these cross sections
are not physically significant. A proper study of these
resonances would require a different technique, such as
the electronic and vibrational close-coupling method of
Scarlett et al. [41], the R-matrix approach of Schneider
et al. [42, 43], or one of several methods based on Fes-
chbach’s projection-operator formalism [44]. In Ref. [41],
we showed that for the case of e−-H2 scattering the true
resonances are much smaller than those in the fixed-
nuclei cross sections. Taking these facts into consider-
ation, we make no attempt to map out resonances in
our converged results. For most transitions the models
which neglect the target continuum [MCC(9), MCC(27),
and MCC(98)] differ substantially from those which in-
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FIG. 8. Convergence studies for ionization of the ground elec-
tronic state of HeH+ at R=1.518 a0. Convergence is tested
with respect to the size of the projectile partial-wave expan-
sion Lmax used with the MCCC(546) model.

clude it, demonstrating the importance of coupling to
ionization channels. The MCCC(546) model yields suf-
ficiently converged cross sections over the entire energy
range. The rates of convergence for the n=3 excitations
are similar, and we find that the MCCC(546) model is ap-
propriate for all transitions of interest. For completeness,
convergence studies for the n=3 states are presented in
the appendix.

C. Partial-wave convergence

With convergence established with respect to the num-
ber of target states included in the close-coupling ex-
pansion, we now verify convergence with respect to the
projectile partial-wave expansion. The calculations in
Sec. III B had Lmax = 6 (with Coulomb-Born comple-
tion applied on top of this), and we now repeat the
MCCC(546) calculations with Lmax=4 and 8.
In Fig. 8 we present partial-wave convergence studies

for ionization of the X 1Σ+ state. The Lmax=4 calcula-
tion is clearly not converged, while the Lmax = 6 and 8
calculations are in agreement except for a small (≈ 5%)
discrepancy at the cross-section maximum, indicating the
that Lmax=8 model is sufficient. In Fig. 9, partial-wave
convergence studies are presented for excitation of the
n = 2 electronic states. The exchange transitions are
clearly converged with Lmax = 8, however for excitation
of the singlet states there is still a small discrepancy be-
tween the Lmax = 6 and 8 results at the cross-section
peak. As with the ionization cross section the differ-
ence is only around 5% and we expect the error in the
Lmax=8 cross section compared to a fully-converged re-
sult to be smaller than that. Therefore, we conclude that
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FIG. 9. Convergence studies for excitation of the n=2 states
from the ground electronic state of HeH+ at R = 1.518 a0.
Convergence is tested with respect to the size of the projec-
tile partial-wave expansion Lmax used with the MCCC(546)
model. The Coulomb-Born (CB) cross sections are also shown
for the singlet states.

the Lmax = 8 model is satisfactory, and will account for
an uncertainty of 5% in the final results. We have also
found the Lmax=8 model to yield sufficiently converged
cross sections for excitation of the n=3 electronic states,
as shown in the appendix.

D. Adiabatic-nuclei calculations

Performing AN calculations is much more computa-
tionally expensive than in the FN approximation since
each energy requires the electronic scattering problem to
be solved at a number of different internuclear separa-
tions. At present, we have conducted AN calculations
using the MCC(27) model at low energies in order to
extend the excitation cross sections down to the correct
threshold.
AN calculations were performed up to 40 eV using a

fine R mesh (steps of 0.01 between 1 and 2) to ensure
the accuracy of the integration over R in Eq. (27). This
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vibrational wave function (on an arbitrary scale).

range covers the extent of the v = 0 vibrational wave
function (see Fig. 3). In Fig. 10 we compare the FN and
AN cross sections for the X 1Σ+ → a 3Σ+ transition in
the MCC(27) model, and in Fig. 11 we give examples
of the R-dependent cross section at 20 and 25 eV inci-
dent energies. There are a large number of resonances
in both the FN and R-dependent cross sections, and the
AN cross section we have calculated shows that the res-
onances are reduced in magnitude substantially, but do
not disappear altogether. It is likely that the remain-
ing spikes in the AN cross section are numerical artifacts
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which would be further reduced by the use of a denser R
grid. Since the AN approximation is not accurate near
resonances we must accept that the cross section in this
region is inherently uncertain, and hence there is little
to be gained from attempting to improve on these cal-
culations. Instead, in Fig. 10 we have drawn a smooth
cross section which best represents the raw AN calcula-
tion without any jagged behavior. The small shoulder in
the cross section around 21 eV is likely a result of averag-
ing over the broader shape resonance near the threshold
of the fixed-nuclei calculation. It is interesting to note
that while the FN cross section is non-zero at threshold,
the AN cross section is zero at threshold and rises slowly
as the incident energy increases. This behavior is a result
of the vibrational dynamics and is characteristic of cross
sections for excitation of states with repulsive potential-
energy curves (see the same for H2 in Ref. [45]).
Orel et al. [21] performed FN and AN calculations of

the X 1Σ+ → a 3Σ+ transition between 21 and 26 eV,
and reported similar resonance structures in the FN cross
section (as discussed above and shown in Fig 7). How-
ever, rather than accounting for the R-dependence of the
cross sections (as seen in Fig. 11), Orel et al. [21] took
the FN cross section (in their case calculated at an inter-
nuclear separation of 1.455), and shifted it to reflect the
R dependence of the excitation thresholds:

σ(Ei, R) ≈ σ(Ei − ǫ(R0) + ǫ(R), R0), (29)

where Ei is the incident energy, R0 is the equilibrium
separation, and ǫ is the (R-dependent) vertical excita-
tion energy. This shifted cross section was then used in
place of the R-dependent cross section in Eq. (27). The
effect of this approach was to produce a cross section rep-
resenting the smooth background scattering contribution
without the presence of resonances. The later complex
Kohn calculations of Ertan et al. [24] applied the AN ap-
proximation with a proper account of the R dependence
of σ(Ei, R), and produced cross sections for excitation
of the a 3Σ+ and A 1Σ+ states up to 40 eV. In Fig. 12
we compare the AN MCC(27) calculations for the a 3Σ+

and A 1Σ+ excitations with the two sets of Kohn calcu-
lations. Ertan et al. [24] also found resonance structures
in their AN cross sections and produced a smooth curve
with the resonances removed, which is what we compare
with here. The MCC(27) calculation for the a 3Σ+ state
is in agreement with the 1991 calculation of Orel et al.
[21] at 20 eV, but is larger at the cross-section peak.
Since the two calculations have a similar magnitude of
the FN cross section at all energies, the difference here is
a result of different ways in which the AN approximation
was applied. Although the 2016 Kohn calculations of Er-
tan et al. [24] apply the AN approximation in the same
way that we have, their cross section for the a 3Σ+ state
is much lower than ours at nearly all energies, and also
lower than the 1991 Kohn calculations. The FN cross
section for this transition in the 2016 calculations (see
Fig. 2 of Ref. [24]) is about 30% smaller than what was
obtained in the 1991 calculations, which explains the dif-
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FIG. 12. Comparison of the adiabatic-nuclei MCC(27) calcu-
lations with the complex Kohn calculations of Orel et al. [21]
and Ertan et al. [24] for excitation of the a 3Σ+ and A 1Σ+

states.

ference. The reason for the discrepancy between the two
FN Kohn calculations is unclear, and is not discussed in
Ref. [24]. For the A 1Σ+ excitation, the MCC(27) and
2016 Kohn calculations are in good agreement from 20
to 27 eV, with differences in shape but similar overall
magnitude between 27 and 40 eV.

IV. RESULTS AND DISCUSSION

In Figs. 13 and 14 we present the MCCC cross sections
for excitation of the n=2–3 electronic states and ioniza-
tion of HeH+ from the X 1Σ+(v=0) state. The final re-
sults for the discrete excitations have been produced by
merging the AN MCC(27) Lmax=6 and FN MCCC(546)
Lmax = 8 models to improve the accuracy at low ener-
gies and enforce the correct excitation thresholds. The
two models are joined between 30 and 40 eV, depend-
ing on the transition, at a point where both MCC(27)
and MCCC(546) produce a similar FN cross section. For
transitions where the MCC(27) model is not fully con-
verged in this region (several of the n = 3 excitations)
the AN MCC(27) cross section is simply scaled to match
the converged MCCC(546) cross section at the match-
ing point. While this is not perfect, it is only a small
energy region which is affected, and this approach al-
lows us to produce cross sections for all excitations which
smoothly approach the correct threshold. As mentioned
in Sec. III D, although this is a charged target the AN
cross sections for these dissociative transitions are all zero
at threshold, due to the vibrational dynamics. The ion-
ization cross section is less accurate near threshold since
it is obtained only from the FN calculation, but with con-
vergence now established in the FN cross section it will
be possible to perform larger-scale AN calculations in the
future should the need arise. This would also allow the
study of scattering on excited vibrational levels, as we
have done recently for the e−-H2 system [15, 16].
In Fig. 15 we present a selection of differential cross
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FIG. 13. Electron-impact cross sections for excitation of the
n=2–3 singlet states, and ionization of HeH+.

sections (DCS), for excitation of the n=2 states at five
different incident energies between 30 and 90 eV. No pre-
vious calculations or measurements of DCS exist for this
system. If required, DCS for additional transitions or
incident energies can be calculated and made available
upon request.

There are very few measurements available for compar-
ison, and aside from the calculations of the a 3Σ+ excita-
tion from Orel et al. [21] and the a 3Σ+ and A 1Σ+ excita-
tions from Ertan et al. [24], there are no previous calcula-
tions of electronic excitation or ionization of HeH+ (that
we are aware of). Lecointre et al. [32] and Strömholm
et al. [31] have both measured cross sections for electron-
impact dissociation of HeH+ leading to He+ fragments,
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FIG. 14. Electron-impact cross sections for excitation of the
n=2–3 triplet states of HeH+.

and hence we now utilize the calculated cross sections to
estimate the cross section for He+ production. Referring
to Table I, the electronic states under present investiga-
tion which produce He+ fragments upon dissociation are
a 3Σ+, A 1Σ+, D 1Σ+, f 3Σ+, E 1Σ+, e 3Π, and g 3Σ+.
Additionally, the ground electronic state of HeH2+ is re-
pulsive and produces He+ fragments. Since all electronic
excitations and ionization from the X 1Σ+(v = 0) state
lead to dissociation (see Fig. 1), the dissociation cross sec-
tion for particular atomic fragments is obtained simply by
summing the cross sections for the relevant transitions.
Lecointre et al. [32] also measured He2+ fragment result-
ing from the ionization-with-excitation process producing
HeH2+ in its first electronically-excited state, however
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energies.

their cross section for this process is two orders of mag-
nitude smaller than it is for ionization producing He+

and can be neglected.
In Fig. 16 we present our estimates for dissocia-

tive excitation (DE) and ionization (DI) leading to
He+ fragments, as well as the total He+ production
cross section (DE+DI). The threshold in the measure-
ments of Lecointre et al. [32] is lower than the first
electronically-inelastic threshold due to the contribu-
tion from resonance-enhanced dissociation through the
X 1Σ+ vibrational continuum, a process which has been
studied by Orel and Kulander [23]. Strömholm et al. [31]
presented their measurements of the direct and indirect
processes separately, and it is only the former which we
present in the figure. The first three experimental points
of Strömholm et al. [31] above threshold are somewhat
larger than the MCCC calculation, then between 20 and
24 eV there is good agreement between the two, and at
the peak of the DE cross section the MCCC calculation
is about 20% larger than the highest experimental point.
The 1991 Kohn calculations are considerably lower than
the Strömholm et al. [31] measurements and somewhat
lower than the measurements of Lecointre et al. [32]. Al-
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FIG. 16. Cross sections for production of He+ from electron-
impact dissociative excitation (DE) and ionization (DI) of
HeH+. Comparison is made between the MCCC calculations,
the complex Kohn calculations of Orel et al. [21] and Ertan
et al. [24], and the measurements of Lecointre et al. [32] and
Strömholm et al. [31].

though the 2016 Kohn calculation for the a 3Σ+ state
is lower than the 1991 Kohn cross section (see Fig. 12),
their inclusion of the A 1Σ+ state increases the DE cross
section to be in better agreement with the measurements.
Since there is reasonable agreement between the MCCC
calculations and the 2016 Kohn calculations for the a 3Σ+

and A 1Σ+ states at 40 eV, the slightly higher DE cross
section obtained in the present work for this energy is
due to our inclusion of higher electronic states. How-
ever, the much larger discrepancy around 25 eV is due
entirely to the much smaller a 3Σ+ cross section obtained
by Ertan et al. [24]. Given the discrepancy between the
two experiments around 25 eV, and the unsatisfactory
agreement between the three calculations, there is insuf-
ficient information to draw any meaningful conclusions
here other than more experimental and theoretical inves-
tigation would be most welcome.

From the peak of the DE cross section to high energies
the MCCC calculation is systematically larger than the
measured DE cross section of Lecointre et al. [32]. It is
worth noting that the ion source used in the experiment
of Ref. [32] produced HeH+ in various vibrational levels,
with populations ranging from 0.52 for v=0 to 0.01 for
v ≥ 5. However, we have shown previously [9, 10, 46] that
cross sections for dissociation of vibrationally-excited H2

and H+
2 are larger than for scattering on the ground vi-

brational level, and if the same is true for HeH+ then
the presence of excited vibrational states cannot explain
the present discrepancy between theory and experiment.
This of course should be explored further in future work.
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The agreement between MCCC and experiment is bet-
ter for DI, though there is still some deviation at the peak
and at high energies. The MCCC DI cross section is not
correct at near-threshold energies since it is calculated in
the FN approximation, but this does not account for the
much lower threshold in the measured ionization cross
sections. It can, however, be explained by the presence
of vibrationally-excited ions in the experiment since their
ionization energy is smaller. Due to the discrepancy be-
tween the measured and calculated DE cross sections, the
total MCCC He+ production cross section (sum of DE
and DI) is larger than the results of Lecointre et al. [32],
with the difference being as large as 30% at the cross-
section maximum.
In Fig. 17 we present the cross sections for production

of He+ and H+ ions. Referring again to Table I, the
cross section for production of H+ via DE is obtained by
summing cross sections for excitation of the c 3Π, b 3Σ+,
B 1Σ+, d 3Σ+, F 1Π, i 3∆, I 1∆ h 3Π, H 1Π, and G 1Σ+

states (we expect the contribution from direct dissocia-
tion of the X 1Σ+ continuum to be negligible). The DI
process leads to production of both He+ and H+ ions.
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FIG. 17. Cross sections for production of He+ and H+ from
electron-impact dissociation of HeH+, as well as total disso-
ciation (sum of He+ and H+ production).

V. CONCLUSIONS

We have presented calculations of 10–1000 eV electron
scattering on the X 1Σ+(v=0) state of HeH+ using the
molecular convergent close-coupling (MCCC) method.
Cross sections were calculated for ionization, as well as
excitation of the a 3Σ+, A 1Σ+, c 3Π, b 3Σ+, C 1Π, B 1Σ+,
d 3Σ+, D 1Σ+, f 3Σ+, E 1Σ+, e 3Π, F 1Π, i 3∆, I 1∆,
h 3Π, H 1Π, g 3Σ+, and G 1Σ+ electronic states, repre-
senting all states which converge to the n=2 and 3 states
of Li+ in the united-atoms limit.

Detailed convergence studies were performed, with
the largest calculation having 549 electronic states in
the close-coupling expansion and a maximum projectile
partial-wave angular momentum of 8. Higher partial
waves were accounted for using the Coulomb-Born ap-
proximation to ensure the calculated cross sections are
accurate over the entire incident energy range. Conver-
gence was verified within 5% with respect to both the
number of target states and projectile partial waves in-
cluded in the close-coupling expansion. Together, we
estimate an uncertainty of 10% in the calculated cross
sections. The MCCC target excitation energies are ac-
curate to within 1%, as verified by comparison with the
calculations of Jungen and Jungen [34].
Calculations were performed in the fixed-nuclei ap-

proximation, however the adiabatic-nuclei approximation
was applied to the excitation cross sections at low ener-
gies where the fixed-nuclei approximation breaks down.
Although the fixed-nuclei excitation cross sections are
non-zero at the fixed-nuclei threshold, as is characteristic
of charged targets, the adiabatic-nuclei cross sections all
approach zero at threshold due to the effects of vibra-
tional motion. We found that the relative contribution
of exchange scattering to the ionization cross section is
much larger for HeH+ than for the corresponding atomic
system (e−-Li+), and must be included for incident en-
ergies up to 20 times the ionization threshold. Conse-
quently, the Coulomb-Born approximation does not be-
come valid for ionization of HeH+ until 1000 eV.
Cross sections for H+ and He+ ion production follow-

ing dissociative excitation and ionization were also pro-
duced, and comparison with measurements of the latter
by Lecointre et al. [32] showed a discrepancy of up to 30%
between theory and experiment. Further theoretical and
experimental investigation is required to understand the
source of the disagreement and produce recommended
cross sections.
With convergence now established in the ionization

and n= 2–3 excitation cross sections in the fixed-nuclei
approximation, future work can be directed towards
studies of scattering on vibrationally excited HeH+ and
its isotopologues using the adiabatic-nuclei approxima-
tion. This would also allow kinetic-energy-release distri-
butions to be calculated for the atomic fragments follow-
ing dissociation, as we have done previously for H+

2 [47].
The results presented here can be downloaded from the

MCCC database [48].

Appendix: ADDITIONAL CONVERGENCE

STUDIES

Convergence studies for excitation of the n = 3 elec-
tronic states of HeH+ are presented in Figs. 18 and 19.
Refer to Secs. III B and III C for discussion. Note that
the MCC(9) model does not contain the n=3 states so
it is not included here.
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