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The non-additive kinetic potential vNAD is a key quantity in density-functional theory (DFT)
embedding methods, such as frozen density embedding theory and partition DFT. vNAD is a bi-
functional of electron densities ρB and ρtot = ρA + ρB. It can be evaluated using approximate
kinetic-energy functionals, but accurate approximations are challenging. The behavior of vNAD in
the vicinity of the nuclei has long been questioned, and singularities were seen in some approximate
calculations. In this article, the existence of singularities in vNAD is analyzed analytically for various
choices of ρB and ρtot, using the nuclear cusp conditions for the density and Kohn-Sham potential.
It is shown that no singularities arise from smoothly partitioned ground-state Kohn-Sham densities.
We confirm this result by numerical calculations on diatomic test systems HeHe, HeLi+, and H2,
using analytical inversion to obtain a numerically exact vNAD for the local density approximation.
We examine features of vNAD which can be used for development and testing of approximations to
vNAD[ρB, ρtot] and kinetic-energy functionals.

I. INTRODUCTION

When the precise description of large and complex sys-
tems is not affordable computationally, they can be parti-
tioned into smaller subsystems to make the calculations
feasible. The main quantities of interest often pertain
only to a localized region of the whole system. Such
a region can be solved separately, with a higher level
of theory that is more computationally costly, while the
the rest of the system can be solved with computation-
ally cheaper methods [1, 2]. Examples of this embedding
strategy include chromophores in protein environments
or aqueous solution [3], electrolyte molecules in solvents
[4], organic molecules in aggregates [5], quantum defects
in solids [6], or ions in a plasma with an average-atom
model [7].

Two appealing methods for calculating the electronic
structure of complex molecular systems in the framework
of density-functional theory (DFT) are frozen-density
embedding theory (FDET) [8–11] and partition DFT
[12, 13]. They allow the total electronic density to be
divided into subsystem densities that can be separately
calculated, in a formally exact framework.

In calculations based on system-fragmenting methods
within the Kohn-Sham DFT framework or QM/MM ap-
proaches, the relation between the potential of two sub-
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systems is investigated via the so-called non-additive ki-
netic potential functional vNAD[ρB, ρtot] [14]. This quan-
tity plays a critical role in calculating the correct ground-
state density. In the overlap regions between partitioned
densities, vNAD takes into account the orthogonality of
the wavefunctions of the full system (but not between
subsystems [15]).

vNAD can be evaluated through a kinetic-energy func-
tional [8, 11], as a “decomposable approximation”; the
semi-local one most commonly used for vNAD was in-
troduced in [16] and tested comprehensively in [17]. The
simple Thomas-Fermi and von Weizsäcker functionals are
found to perform very poorly [15]. In general kinetic-
energy functionals [18, 19] are at a much cruder state of
development than exchange-correlation functionals, and
perform poorly for vNAD. They can be used for orbital-
free DFT [20] but continue to be an area of active in-
vestigation [21–23]. To go beyond semi-local approxima-
tions, vNAD can be evaluated for real systems through
somewhat problematic numerical inversion [15, 24–26],
or “non-decomposable” approximations specifically for
vNAD [27, 28].

DFT approximations are evaluated by their capacity to
provide well-known properties of the ground-state with
high accuracy. The cusp relation (or cusp condition)
states that for Coulomb potentials, the electron density
has a cusp at the position of the nuclei. In DFT-related
approaches, the cusp relations [29–33] are an important
property of an accurately calculated ground-state den-
sity, and have corresponding singularities in the Kohn-
Sham potential. Whether vNAD[ρB, ρtot] should have
such singularities due to nuclear cusps, and whether any
approximations produce them, has been unclear. A pre-
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liminary investigation with analytic inversion suggested
that there were singularities in vNAD[ρB, ρtot] for di-
atomic systems [14]. However, the following questions
remain open: Does vNAD[ρB, ρtot] contain singularities
at the nuclei for any admissible [14] pair of densities ρB
and ρtot in any Coulomb system? Does vNAD[ρB, ρtot]
present any other discontinuities? If yes, how are they
related to the ground-state charge density? The presence
of singularities is important as a test for vNAD approxi-
mations, and potentially to know whether such features
pose a numerical challenge in using vNAD for embedding
calculations. Correct reproduction of the kinetic-energy
density or vNAD features around nuclei can be essential
to avoid artificial charge leaks from the nuclei to the envi-
ronment [27], and for calculations of properties involving
core electrons, including light elements, X-ray spectra,
or warm dense matter in which core orbitals overlap be-
tween atoms at high pressure [34, 35].

In this article, we theoretically prove the nonexistence
at the vicinity of the nuclei of singularities in analyti-
cally inverted vNAD[ρB, ρtot] from a class of densities that
weakly overlap in space, and we show consistent numer-
ical results for model systems. Section II reviews the
non-additive potential bi-functional and how it can be
constructed from analytical inversion. The setup for a
specific class of densities for which the inverted poten-
tial is free of cusp-like singularities is explained, and we
conclude the cases for which singularities at the vicin-
ity of the nuclei are expected. Section III gives details
of how numerical calculations of analytically inverted
vNAD[ρB, ρtot] were carried out for various partitionings
of ground-state Kohn-Sham densities. In Sec. IV we
present results for the diatomic model systems HeHe,
HeLi+, and H2 with comparison to calculations from the
von Weizsäcker kinetic functional [36]. We examine the
features found in the analytically inverted vNAD. Two
appendices provide more detailed mathematical analysis
of the smooth parts of densities and potentials, and the
relation of cusps in densities and singularities in poten-
tials.

II. THEORY

We assume finite molecular systems throughout this
work. Consider a system described by the DFT Kohn-
Sham equations (in atomic units):[

− 1

2
∇2 + vKS[ρ](r)

]
φi(r) = εiφi(r), (1)

where ρ is the electronic charge density, φi is a Kohn-
Sham orbital, and εi is the corresponding Kohn-Sham
eigenvalue. The Kohn-Sham potential is

vKS[ρ](r) := vext(r) + vHxc[ρ](r), (2)

where vHxc[ρ](r) := δEHxc

δρ is the Hartree, exchange and
correlation (Hxc) potential obtained exactly or via an
approximation.

The density is given by

ρ(r) :=
∑
i

fi|φi(r)|2 (3)

where fi is the occupation factor of orbital φi. In frozen-
density embedding theory [1], we regard the system as
divided into subsystems j. The ground-state solution for
each is obtained by Kohn-Sham equations for its orbitals
i: [

− 1

2
∇2 + vKS[ρj ](r) + vemb[ρ, ρj ](r)

]
φij(r)

= εijφij(r)

(4)

where the embedding potential is
vemb[ρ, ρj ](r) = vKS[ρ](r)− vKS[ρj ](r)

+
δTs[ρ]

δρ(r)
− δTs[ρj ]

δρj(r)
.

(5)

This formulation relies on the assumption that the po-
tential vKS[ρj ] exists for each ρj . In the case of integer fi,
this silent assumption is known as the condition of “non-
interacting vs-representability” [37]. It means that there
exists a Kohn-Sham system for which ρj is its ground
state. This is an admissibility criterion for ρB and ρtot in
vNAD[ρB, ρtot] [14], namely there exist Kohn-Sham sys-
tems for which each of them is a ground state.

Evaluation of the differences of Kohn-Sham potentials
(external, Hartree, and exchange-correlation) is straight-
forward. The last two terms at the right-hand side of
Eq. (5), based on a kinetic-energy functional Ts [ρ] =
− 1

2

∑
i fi
〈
φi[ρ]

∣∣∇2
∣∣φi[ρ]

〉
, constitute the non-additive

kinetic potential bi-functional vNAD[ρB, ρtot]. φi[ρ] in-
dicates that the expectation value of the kinetic energy
operator is evaluated for optimal orbitals obtained in the
constrained search.

The total kinetic energy of a system (Ts[ρ]) is the sum
over the kinetic energy of all subsystems (Ts[ρj ]) plus
an additional “non-additive” term (TNAD[ρA, ρB] in the
case of two subsystems) which is due to fermion statis-
tics for electrons and the constrained search definition of
the functional Ts[ρ] [38]. The non-additive kinetic po-
tential bi-functional is defined by the pair of densities
provided by total ground-state density ρtot(r), and is de-
noted by vNAD[ρB, ρtot](r) where ρB(r) is one of the pos-
sible partitions of the total density. vNAD in fact is the
functional derivative of the non-additive kinetic-energy
bi-functional:

vNAD[ρB, ρtot](r) =
δTNAD

s [ρ, ρtot](r)

δρ(r)

∣∣∣∣∣
ρ=ρB

=
δTs[ρtot](r)

δρtot(r)
− δTs[ρB](r)

δρB(r)

(6)

where ρB and ρA = ρtot − ρB could be partitioned in
different ways, as discussed in Sec. II.2. We note that
an alternate notation convention is used in other work
such as Ref. [14], in which the roles of ρA and ρB are
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swapped; i.e. ρA is the density of the embedded system,
and vNAD[ρA, ρtot](r) is the quantity of interest.

The exact form of δTs[ρ]/δρ is not known (except for
the von Weizsäcker formula [36] for the case of one or
two electrons, as discussed later), so it needs to be ap-
proximated in general. Explicit semilocal approxima-
tions to the kinetic-energy functional [18] Ts[ρ](r) in nu-
merical simulations have proven useful for applications
such as orbital-free DFT [20], but are quite deficient
for vNAD[ρB, ρtot] [14, 24]. Such failures prompted in-
terest in implicit functionals for vNAD, constructed by
means of numerical inversion procedures for the Kohn-
Sham equation. Unfortunately, this numerical inversion
is an ill-defined problem if finite basis sets are used, which
results in numerical instabilities and multiple solutions.
While approaches have been developed to handle this
non-uniqueness [39], the instabilities remain a problem
that plagues Kohn-Sham inversion with finite basis sets
[40]. Details of the possible inversion procedures and
approximations for construction of vNAD, and their dif-
ficulties, were reviewed by Banafsheh and Wesolowski,
with numerical examples [14]. The Kohn-Sham equa-
tions must be inverted twice to obtain vNAD[ρB, ρtot] for
a given pair of densities, which exacerbates the numeri-
cal problems of inversion. Only for some model systems,
and particular partitionings of the total density ensuring
that ρtot > ρB, can vNAD[ρB, ρtot] be expressed analyti-
cally [15], and so few results for vNAD from the exact KS
potential have been presented in the literature.

II.1. One-Orbital Formula

For a Kohn-Sham system described by Eq. (1) with a
density as in Eq. (3), we shall consider the special case
in which only one orbital is occupied. In this situation,
we are able to analytically invert the Kohn-Sham equa-
tion [14] and avoid the problems of numerical inversion, a
strategy that has been employed in many other studies of
the exact Kohn-Sham potential [41]. This is the situation
for a system of one electron, or two spin-compensated
electrons.

If this one occupied orbital is real and positive, as is typ-
ically the case for the lowest-energy state of a molecule,
then φ1(r) =

√
ρ1(r). Eq. (1) can then be rearranged

as:

vKS(r) =
∇2φ1(r)

2φ1(r)
+ ε1 (7)

=
∇2
√
ρ1(r)

2
√
ρ1(r)

+ ε1 (8)

We define analytical inversion of the density as:

vinv[ρ1](r) :=
∇2
√
ρ1(r)

2
√
ρ1(r)

, (9)

which is numerically equivalent to the von Weizsäcker
formula, Eq. (16), as discussed below. Here, vinv[ρ]

is the effective potential which reproduces the density
ρ, which always exists. (By contrast, the effective po-
tential vs[ρ], for which ρ is the ground state for the
non-interacting electron system, exists only if ρ is v-
representable.) vinv[ρ] differs from vKS[ρ], which is an
approximate potential using ρ as an ingredient. In the
one-orbital formula case,

vinv[ρ1](r) = vKS(r)− ε1. (10)

If we multiply both sides of Eq. (1) by f1φ∗1(r) we obtain:

−1

2

〈
φ1
∣∣∇2

∣∣φ1〉 = ε1|φ1(r)|2 − vKS(r)|φ1(r)|2 (11)

Replacing |φ1(r)|2 by ρ(r) while identifying the left term
in Eq. (11) as Ts[ρ](r), from a functional derivative we
obtain:

vt[ρ](r) :=
δTs[ρ]

δρ(r)
= −vKS[ρ](r) + ε1 = −vinv[ρ](r)(12)

If the exact Ts[ρ](r) is known (in Eq. (6)), then
vinv[ρ](r) = −δTs(r)/δρ(r).

II.2. Cusps, singularities, and the non-additive
potential

Let us consider very generally the relationship between
cusps in densities and singularities in potentials – we shall
define both below. Before beginning, we impose two re-
strictions on densities and potentials that are assumed
throughout the remainder of this work: 1) densities will
be obtained from and yield singularity-free Hxc poten-
tials; 2) the states considered always have at least one
1s orbital at each nucleus, which dominates the density
near each nucleus. Both restrictions apply to the exact
ground-state density and potentials. They ensure (see
conclusions of [42]) that cusp conditions [31–33, 42, 43]
hold for cusps in densities and for singularities in both
external potentials and approximated Kohn-Sham poten-
tials.

Our goal in this section is to explore how cusps in den-
sities manifest as singularities in non-additive potentials.
Since this varies depending on the nature of densities, we
first derive a general rule and then apply it to examples
from the literature and to the work done here.

A nuclear cusp means that the angularly averaged den-
sity obeys limr→RN

|∇ρ| = 2ZNρ; a nuclear singular-
ity means that the potential obeys limr→RN

rNv → Z,
where rN = r − RN . We use a short-hand notation
to describe cusps via e−2ZN |r−RN | and singularities via
− ZN

|r−RN | . Each cusp and singularity is uniquely de-
scribed by (RN , ZN ) for nuclei N in some set, N ∈ N .
Sums over N without extra clarification imply N ∈ N .

Note that the notation above addresses behavior near
each nucleus, but does not describe every aspect of the
system. The true density and potentials may be written



4

as

ρ(r) :=
∑
N

ρ0,Ne
−2ZN |r−RN | + ρsmooth(r) , (13)

v(r) :=−
∑
N

ZN
|r−RN |

+ vnon-sing(r) . (14)

where ρ0,N is the density value at RN . Here, ρsmooth(r)
has no cusps and is zero at each nucleus. vnon-sing(r)
has no singularities, but needs few other restrictions.
Both functions are discussed in some more depth in Ap-
pendix A.

All subsequent results follow from three theorems below.
The densities involved may be ground-state densities, or
other densities which have a mapping of the density to
the non-interacting potential (Appendix B).

Theorem 1: The density of any electronic system has
a cusp of the form ρ(r) ≈ ρ0,Ne

−2ZN |r−RN | near ev-
ery singularity in the external or KS potential, where
vext(r) ≈ vs(r) ≈ − ZN

|r−RN | .

Proof: A more general case is a long-known result [31,
42]. Here, we used that ρ0,N is non-zero, consistent with
our second restriction of having a 1s orbital, to narrow
it down to systems of relevance. Our first restriction
extends it to approximate Kohn-Sham systems.

Theorem 2: If the density of an electronic system has
a cusp of the form ρ(r) ≈ ρ0,Ne

−2ZN |r−RN |, then the
external and Kohn-Sham potentials have singularities,
vext(r) ≈ vs(r) ≈ − ZN

|r−RN | .

Proof: The result for interacting systems follows from
Theorem 1 and the Hohenberg-Kohn theorem [44, 45].
The KS result is easily shown for up to two electrons, by
using the von Weizsäcker potential [36]

vvW[ρ](r) :=
∇2
√
ρ(r)

2
√
ρ(r)

(15)

=
∇2ρ(r)

4ρ(r)
− |∇ρ(r)|2

8ρ2(r)
, (16)

and properties of the Laplacian and gradient. Note that
while Eq. (16) is the standard form of vvW, it is analyt-
ically equal to the first form in Eq. (15) via the identity

∇2
√
ρ(r) =

2ρ(r)∇2ρ(r)− (∇ρ(r))
2

4 (ρ(r))
3/2

. (17)

Since vs(r) = vvW[ρ](r) + C, for some constant C, the
singularities are inherited by vs. For more than two elec-
trons one may use the results of Appendix B. This ex-
tends the known result for exact potentials [42] to well-
behaved approximations consistent with our restrictions.

Theorem 3: There is thus a one-to-one mapping be-
tween cusps in the density and singularities in the exter-

nal and Kohn-Sham potentials. That is,

ρ(r) ≈
∑
N

ρ0,Ne
−2ZN |r−RN | ←→ −

∑
N

ZN

|r−RN | ≈ v

(18)

up to smooth terms. This includes the important special
case of no singularities leading to no cusps, which relies
on restriction 1 for approximations to DFT.

Proof: This follows directly from the previous two theo-
rems and a recognition that singularities and cusps near
a nucleus at RN are smooth functions near a different
nucleus at RM 6= RN .

These theorems let us understand how the non-additive
potential in Eq. (6) behaves in the vicinity of a nucleus.
We use an alternate form vNAD

A,B based on ρA and ρB here
rather than ρB and ρtot as in Eq. (6) to define clearly
the nature of the total density. The most general result
is that the set of singularities in

vNAD
A,B [ρA, ρB] = vs[ρB]− vs[ρA + ρB] (19)

(from Eq. (6) and vs = −δTs/δρ) is equal to the set of
singularities from ρB with subtracted the set of singular-
ities from ρtot = ρA + ρB, which follows from Theorem
3. The form vNAD

A,B [ρA, ρB] has a set of admissible den-
sities which is different from vNAD[ρB, ρtot], but the two
forms are equivalent in the case that ρtot = ρA + ρB and
there exist Kohn-Sham systems for which ρA, ρB, and
ρtot are the respective ground states, so the densities are
all admissible.

More precisely, if ρA has a set of cusps CA :=
{(RA

N , Z
A
N )}N∈NA , ρB has a set of cusps CB :=

{(RB
N , Z

B
N )}N∈NB , and ρtot = ρA + ρB has a set of cusps

C := {(RN , ZN )}N∈N , then the singular part of the non-
additive potential in Eq. (19) is

vNAD
sing (r) =

∑
N∈NB

−ZB
N

|r−RB
N |

+
∑
N∈N

ZN
|r−RN |

, (20)

Although we treated C as independent above, it follows
from ρtot = ρA + ρB that C can be obtained from CA
and CB by the following rules: i) if R = RA

N = RB
M for

some N ∈ NA and M ∈ NB then C has a combined cusp
(R, ρA(R)ZA

N+ρB(R)ZB
M

ρtot(R) ); ii) other cusps in A and B are
included unmodified. Either set can be empty (although
this would be very strange for C), leading to zero for the
corresponding sum.

Applying these rules depends on precise details of the
embedding or partitioning scheme. The next sections
therefore apply Eq. (20) to the case of smooth partition-
ing of densities studied here, as well as to some cases from
the literature.
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II.2.1. Smooth partitioning of densities

The remainder of the manuscript deals with densities
that are partitioned according to ρA(r) = w(r)ρtot(r)
and ρB = (1 − w(r))ρtot(r) where 0 < w(r) < 1 is a
smooth, cusp-free and positive function. 1− w therefore
has the same qualities as w. In this case, the non-additive
potential has no cusps.

To show this, we recognize that ρA, ρB and ρtot all have
the same cusps, which follows from the definition of the
density, and from w and 1− w being smooth and finite,
so that they only contribute to smooth terms. Therefore,
CA = CB = C and we obtain,

vNAD,part
sing (r) =0 (21)

In Sec. III, we numerically apply a smooth cusp-less
function to partition the ground-state density of some
model diatomic systems of two and four electrons and
we show that the corresponding non-additive potential
indeed has no singularities at the nuclei, consistent with
theory.

II.2.2. Embedding with a cusp-free density ρB

In some cases, one obtains a density ρB that is cusp-
free in some region of interest, but otherwise has the
same cusps as ρtot, as implicitly assumed in Appendix
A of García-Lastra et al. [27]. This situation happens
for (e.g.) embedding calculations where some molecules
(with cusps at nuclei) are treated at one level of the-
ory and an additional molecule (with existing cusps and
new cusps at the additional nuclei) is embedded in the
pre-computed set. This is the typical setup for FDET
combining different levels of electronic structure theory
[1]. Such situations can also arise via a non-smooth par-
titioning in which w (r) has a constant value of 0 in some
region. In such a case, the difference between effective
potentials vs[ρtot] and vs[ρB] is not uniquely defined [46].

As a result, all cusps of ρB appear in ρA and ρtot, but not
vice versa. All cusps appear with the same value and at
the same nuclear positions, when they are present, giving
CA = C. We use NA/∈B to denote nuclei yielding cusps in
A and A+B that are not in B. It follows that

vNAD,emb
sing (r) =

∑
N∈NA/∈B

ZN
|r−RN |

. (22)

In accordance with this analysis, a nuclear singularity
was found in Appendix A of Ref. [27]. This situation
also arises when the density is partitioned not in space
but by orbital, so that ρA, ρB, and ρtot all have the same
cusps. An exactly solvable atom-like model system was
studied in this way in Ref. [15], and a nuclear singularity
was also found, as expected from our reasoning.

II.2.3. Use of a finite basis to represent densities

Another interesting case is one where densities are ob-
tained using a finite basis set. We first consider a Slater-
type orbital (STO) basis set, which is able to repro-
duce cusps, but where the resulting cusps are imper-
fect [24]. In a finite STO basis one obtains ρ(r→ RN ) ≈
ρ(RN )e−Z̃N |r−RN | where Z̃N is the finite basis approx-
imation for ZN . Z̃N ≈ ZN varies with choice of basis,
choice of density functional approximation, and other de-
tails of the calculation.

For convenience we assume that all densities contain all
cusps, as in Sec. II.2.1. This leads to ρA, ρB and ρtot de-
fined by cusp sets CA = {(Z̃A

N ,RN )}, CB = {(Z̃B
N ,RN )}

and C = {(Z̃N ,RN )}, respectively. Importantly, RN is
the same in all cases but Z̃A

N ≈ Z̃B
N ≈ Z̃N are not the

same (but are similar) because of errors introduced by
the finite basis. The singular part of the non-additive
potential is therefore

vNAD,STO
sing =

∑
N∈N

Z̃N − Z̃B
N

|r−RN |
(23)

where the terms Z̃N−Z̃B
N in the numerator are effectively

random artefacts, defined by the basis set and other com-
putational and methodological choices. These artefacts
also apply to embedding, per Sec. II.2.2. Eq. (23) then
acts in addition to the “exact” cusps from Eq. (22).

Gaussian-type orbitals (GTOs), used in many quantum
chemistry calculations, cannot reproduce cusps at all, un-
like STOs, as they are analytic near nuclei. Nevertheless,
they have an effective analogue to Eq. (23) for small but
finite rN in the vicinity of a nucleus.

Of greatest relevance to the present work is that calcula-
tions on a finite grid (adapted to the description of nu-
clear cusps and singularities, as discussed in Sec. III) can
eliminate these errors entirely. This involves effective use
of numerical methods, chosen such that derived poten-
tials are as consistent as possible with the routines used
to solve effective Hamiltonians. Especially, one should
use ∇

2√ρ
2
√
ρ (Eq. (16)) rather than the mathematically

equivalent ∇
2ρ
4ρ −

|∇ρ|2
8ρ2 (Eq. (16)) when computing po-

tentials.

III. NUMERICAL CALCULATIONS

To confirm the validity of the analyses above in a case
of smooth partitioning of densities, we perform numerical
calculations with the all-electron DFT package DARSEC
[47], which is designed for high-precision calculations on
diatomic molecules, including Kohn-Sham inversions [48].
In DARSEC, the Kohn-Sham equations are solved self-
consistently using a high-order finite difference approach
[49, 50]. A real-space grid based on prolate-spherical co-
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ordinates is used to describe a system with two atomic
centers. The grid is dense near the atoms and increas-
ingly sparse farther away. This atom-adapted grid pro-
vides precise information at the vicinity of the nuclei to
enable exploration of the density and potential at these
points. It also enables treatment of the singular Coulomb
potential at the nuclei, unlike the usual Cartesian grids
used in real-space codes which are not designed for all-
electron calculations [51]. Due to the cylindrical symme-
try of diatomic molecules, the three-dimensional prob-
lem is reduced to a two–dimensional one in DARSEC.
In this work, the systems are defined within an ellipse
with semiminor radius of 15 Bohr, and use a 115 × 121
set of grid points for coordinates µ and ν. DFT calcula-
tions were performed using the local density approxima-
tion (LDA) [52, 53].

We have carefully examined the numerical precision of
our calculations, given the difficulty of describing cusps
and singularities numerically, and the possibility of nu-
merical artefacts being mistaken for cusps or singulari-
ties. We find robust results in our tests on stencil size
and dividing by denominators close to zero [54]. Tests
show a high degree of mirror symmetry within the re-
gion of interest z ∈ [−4,+4] Bohr, in vNAD[ρB, ρtot](r)
or vNAD[ρA, ρtot](r) for homonuclear diatomic systems,
which is enabled by the symmetry of our weighting func-
tion. As seen below, nuclear cusps for the density and
singularities for vKS are well reproduced. The only hint
of a singularity in vNAD came from using a clearly inad-
equate stencil size of 2, or an extremely sharp cutoff in
w (r) for partitioning, clearly numerical in both cases [54].
For all calculations in this article, the finite-difference
stencil size was set to 12, as per standard recommenda-
tions for DARSEC. We additionally demonstrate below
excellent agreement between analytically inverted vinv[ρ]
and vKS[ρ], and between vNAD[ρB, ρtot] from analytical
inversion and from the von Weizsäcker potential.

Based on Eq.(9), we implemented in our modified version
of DARSEC the equation

vNAD/INV[ρB, ρtot](r) = vinv[ρB](r)− vinv[ρ1](r) (24)

where ρ1(r) = 2 |φ1(r)|2 and φ1(r) is the lowest-energy
orbital. This analytical inversion is appropriate when the
conditions for the one-orbital formula are satisfied (Sec.
II.1).

III.1. Von Weizsäcker potential

Because the von Weizsäcker potential vvW is mathemati-
cally equivalent to vinv for densities based on one orbital,
we can also obtain correct results for vNAD when using
vvW in place of vinv for calculating subsystems of either
one or two electrons, as follows:

vNAD/vW[ρB, ρtot](r) = vvW[ρB](r)− vvW[ρ1](r)(25)

using vvW[ρ(r)] as given in Eq. (16). While, as argued
in Sec. II.2.3, such results are expected to give less pre-
cise results than the approach with Eq. (15) (namely
vNAD/INV, Eq. (24)), we demonstrate good agreement
between the two formulations which proves the numeri-
cal precision of our calculations. It is important to note
the difference between this equation and Eq. (6): the
second term uses ρ1 not ρtot, as we would have if we
were to take von Weizsäcker as simply an approximation
to δTs/δρ, as was considered in Ref. [14]. Such a formula
would be exact only when both ρB and ρtot are one or
two electrons, i.e. in the case of H2 but not of HeHe or
HeLi+. However, by using instead a two-electron density
from the orbital φ1 we can have a correct formula also
for HeHe and HeLi+. Such a formula is equivalent, up
to a constant, to using vKS instead of vvW[ρ1]; we tested
this option as well and found very close agreement, con-
sistently with Fig. 1 below.

We compare our vNAD with vNAD/vW as a benchmark
to help examine whether there are any artefacts due to
numerical differences from evaluation using the Lapla-
cian or the gradient. In Sec. IV, we show the very close
agreement of vNAD/vW and vNAD for our three test sys-
tems, demonstrating the numerical precision of our cal-
culations.

III.2. Localization of one or two electrons

For partitioning the ground-state density numerically, we
use a smooth distribution function 0 ≤ F (z) ≤ 1 that
has no cusps and respects the smoothness of the function
explained in Sec. II.2.1. Specifically we use the Fermi-
Dirac distribution function

F (z − z0) =
1

eα(z−z0) + 1
(26)

where z0 is the cutoff that sets the z at which F = 0.5,
and α is the curve-smoothing parameter. Other similar
sigmoid functions could also be used for this purpose.
By partitioning the total density of the diatomic system
aligned along the z-axis into two sub-densities we obtain:
ρB(r) = F (z − z0)ρtot(r) and ρA(r) = ρtot(r)− ρB(r).

In a diatomic system of N = 2 + 2M (for integer M)
electrons where two spin-compensated electrons can be
localized around one nucleus, we choose z0 to satisfy the
following condition:∫

ρB(r)dr =

∫
F (z − z0)ρtot(r)dr = 2 (27)

For the case of one-electron localization, z0 can be chosen
so that the integral of Eq. (27) is instead 1. We find z0 via
a binary-search algorithm, with tolerance 10−15 for the
difference of the integral from 2 (or 1). For homonuclear
systems, z0 should be exactly zero by symmetry. We
quantify the density overlap in these systems as∫

ρA(r)ρB(r)dr. (28)
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System total
Ne

in ρB
Ne

z0 (Bohr)
Cutoff

(e2/Bohr3)
Density overlap

HeHe 4 2 0 3.81× 10−6

HeLi+ 4 2 −0.29 2.51× 10−3

H2 2 1 0 1.75× 10−5

TABLE I: Summary of key properties for diatomic
systems used in this work. The density overlap is

defined in Eq. (28).

In the present calculations α = 20 Bohr−1 was chosen
after testing different values [54]. Too small a value does
not constitute localization on one nucleus, and too large
a value (for a given grid) leads to numerical discontinu-
ities and artefacts at z0. Unlike the grid spacing, α is
not a numerical parameter to be converged, but rather
defines the way which we choose to partition the density.
The main effect of changing α within a range 15 − 50
Bohr−1 is that the plateau of vNAD becomes narrower
and taller with larger α (a smaller transition region be-
tween 0 and 1). This behavior gives an indication of how
the width of the transition in other sigmoidal functions
would affect vNAD. Such effects are simply a feature that
must be taken into account consistently with the density
partitioned using a given partitioning function.

IV. RESULTS AND DISCUSSION

Two classes of diatomic model systems were chosen for
this study. One class contains two electrons in total, and
one electron was localized around one nucleus; we use the
homonuclear H2. In the second class, there are four elec-
trons in total, and two electrons were localized around
one nucleus; we use the homonuclear HeHe and the het-
eronuclear HeLi+. Key properties of these systems for
our studies are summarized in Table I. For each sys-
tem, we compare the analytically inverted potential with
vNAD/vW from Eq. (25).

We study systems with weakly overlapping subsystem
densities, in part to enable direct comparison with Ref.
[14], in which singularities were previously reported in
vNAD. All calculations are done for a stretched inter-
atomic distance of 6 Bohr, centered on z = 0. For
homonuclear systems, the maximum density overlap be-
tween the sub-densities occurs at z = 0 by symmetry,
while for the heteronuclear systems the location of max-
imum overlap occurs closer to the nucleus with smaller
atomic number.

The graphical representations of the results are provided
in 1D and 2D. The 1D plot is the contour along the min-
imum value of µ used, which is closest to the interatomic
z-axis, since there are no grid points at x = 0, y = 0.

IV.1. Two-electron localization

IV.1.1. Homonuclear model system: HeHe

We begin the study of this system by demonstrating the
numerical precision of our analytical inversion from Eq.
(8) for ρ1 = 2|φ1(r)|2 and for the eigenvalue ε1, by com-
paring to the Kohn-Sham potential from the SCF calcu-
lation. We find that indeed ∆v = vKS − vinv[ρ1] ≈ 0, as
shown in Fig. 1. The difference between the two is ap-
proximately 10 orders of magnitude less than the values
of the potential, showing excellent precision. The reduc-
tion of precision by the square root function is the main
contributor to the residual difference. ∆v is smooth and
in particular well-behaved around the nuclei. The singu-
larities at the nuclei are well-reproduced for vKS, as per
Eq. (14).

FIG. 1: Difference between the analytically inverted
vinv[ρ1](r) and vKS(r) for HeHe, showing agreement to

1 part in 1010. Blue: vKS(r). Red:
∆v = vKS(r)− vinv[ρ1](r).

The charge density for HeHe including its partitioning
is depicted in two dimensions in Fig. 2. The nuclear
cusps are clearly seen, as in Eq. (13). The system is
symmetrical about the z = 0 plane, and therefore the
cutoff z0 from Eq. (26) is exactly at z = 0. Consequently,
ρA and ρB both integrate to 2, each localized around a
different nucleus with close to zero charge density in the
vicinity of the opposite nucleus, as shown in 1D in Fig.
3(a).

We now proceed to analyze vNAD, as shown in 1D in com-
parison to the input densities in Fig. 3. For ρB localized
on the left, we see a shape which starts with a small pos-
itive value, and has a small attractive well at the overlap
region of z = 0, a barrier, and another small attractive
well at the right nucleus. This surprising attractive well
at the other nucleus can be attributed to the feature dis-
cussed in Sec. II.2.1, in which ρB must have a cusp at
both nuclei; the well induces the extra density for the
cusp at the other nucleus. There is a wall at the location
of the right nucleus with a plateau afterward, preventing
ρB from entering that region. The wall/plateau is similar
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FIG. 2: Ground-state charge density distribution of
HeHe in 2D. The vertical line indicates the cutoff plane
where z = z0, dividing the two localized densities which

integrate to two electrons.

to results found with finite basis sets [24], though in that
case the wall was not exactly at the nucleus but displaced
slightly in the direction of the other nucleus. While the
wall is a sharp feature, it is smooth with several points
along it, and there is no sign of any cusps or singular-
ities. We compare vNAD/INV to vNAD/vW in Fig. 3(b)
and find excellent agreement with differences around 1
part in 105, found mainly in the overlap region, where
the division by small ρ is most ill-conditioned.

We further examine vNAD in the 2D representation to see
the behavior away from the z-axis (Fig. 4). We see that
vNAD is essentially constant in the z < 0 region. The well
around z = 0 becomes increasingly attractive away from
the z-axis, but the well at the right nucleus is located only
near the z-axis. The plateau falls away slowly from the
z-axis. The steep wall at the right nucleus can be clearly
seen, but no cusps or singularities are visible here either.
We again compare vNAD/INV and vNAD/vW, now in 2D,
and see no perceptible difference except small deviations
around x = 6 Bohr near the cutoff, where the density is
very small (Fig. 4).

IV.1.2. Heteronuclear model system: HeLi+

Next we consider a heteronuclear system, again with 4
electrons: HeLi+. We localize 2 electrons on the Li atom
side, which has z < 0 and is on the left in our plots. We
find a cutoff z0 = −0.29 Bohr, which is slightly closer to
the nucleus with the larger atomic number, since it has
a more steeply decaying density according to Eq. (13)
(Fig. 5(a)). The density overlap is larger than for HeHe
(Table I).

(a)

(b)

FIG. 3: Non-additive kinetic potential for HeHe, in a
1D representation. Purple dashed lines mark the

location of the nuclei and a black solid line marks the
cutoff z0.(a) Total and partitioned densities. (b)

Analytically inverted kinetic potential
vNAD/INV[ρB, ρtot](r) (from Eq. (24)), where the

localized density ρB is on the left, compared to the same
from von Weizsäcker theory (from Eq. (25)). Blue:
vNAD/INV; Red curve: ∆v = vNAD/vW − vNAD/INV.

In this case, we can actually calculate two distinct
quantities, vNAD/INV[ρB, ρtot](r) (localized on Li) and
vNAD/INV[ρB, ρtot](r) (localized on He), as shown in
Fig. 5(b). For HeHe, the corresponding quantities are
identical by symmetry. The shape and magnitude of
vNAD[ρB, ρtot](r) is similar to that of HeHe, with a small
positive value on the left and a wall and plateau on the
right. In the overlap region, however, there is not a step
but rather a small peak just to the left of z0, and then a
small slightly attractive well just on the left side of the
He nucleus, next to the steep wall. This well again can
be related to the need to induce a cusp. vNAD[ρA, ρtot](r)
has a similar shape, albeit flipped horizontally, and with
a smaller peak, two attractive wells, and a higher wall.
The fact that there are two attractive wells is in common
with He localized in HeHe.

We compare vNAD/INV[ρB, ρtot](r) and
vNAD/vW[ρB, ρtot](r) and find again excellent agree-



9

(a)

(b)

FIG. 4: Non-additive kinetic potential for HeHe in a 2D
representation, comparing (a) vNAD/INV with (b)

vNAD/vW, both in Ry. The density is localized on the
left nucleus. Black dots mark the nuclei, and a black

line marks the cutoff z0.

ment with differences ∆v around 1 part in 104, largest
around the peak next to the overlap region. The 2D plots
in Fig. 6 also show no perceptible difference between
vNAD/INV and vNAD/vW, except small deviations around
x = 6 Bohr near the cutoff. The shapes are similar to
HeHe, except that vNAD is not constant on the left,
and decreases away from the z-axis. The positive peak
just to the left of z = 0 becomes an attractive well like
HeHe, centered about 5 Bohr from z-axis. No cusps or
singularities are seen in the 1D or 2D plots.

(a)

(b)

FIG. 5: Non-additive kinetic potential for HeLi+ (with
Li on the left side), in a 1D representation. Purple

dashed lines mark the location of the nuclei and a black
solid line marks the cutoff z0. (a) Total and partitioned
densities, with a taller peak for Li. (b) Analytically
inverted kinetic potential vNAD/INV[ρB, ρtot](r) (from
Eq. (24)) which is localized on the Li side (blue),
compared to the same from von Weizsäcker theory
(from Eq. (25)), with ∆v = vNAD/vW − vNAD/INV in
red. Also shown is vNAD/INV[ρA, ρtot](r) which is

localized on the He side (purple).

IV.2. One-electron localization for H2

Our third test system is the stretched H2 system in which
one electron is localized around the left nucleus. The cut-
off is z0 = 0 by symmetry. The vNAD (Fig. 7) shows mag-
nitude and features similar to those of HeHe and HeLi+.
There is a small attractive well at the overlap region,
and then a step and a small well at 5 Ry just to the
left of the right nucleus. vNAD/vW and vNAD/INV agree
well with differences again mainly in the overlap region.
The 2D view of vNAD (Fig. 8) is very similar to HeHe,
but with little variation in the attractive well away from
the z-axis. The only differences between vNAD/INV and
vNAD/vW are small deviations in x > 4 Bohr, in a larger
region than for HeHe or HeLi+. No cusps or singularities
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(a)

(b)

FIG. 6: Non-additive kinetic potential for HeLi+ in a
2D representation, comparing (a) vNAD/INV[ρB, ρtot](r)
with (b) vNAD/vW[ρB, ρtot](r), both in Ry. The density
is localized on Li, on the left. Black dots mark the

nuclei, and a black line marks the cutoff z0.

are seen in the 1D or 2D plots.

V. CONCLUSION

In this work, we have investigated analytically and nu-
merically the presence of singularities in the non-additive
kinetic potential vNAD, and resolved the uncertainty that
has surrounded this question, for a variety of important
cases of relevance to partitioning schemes. For two par-
titioned sub-densities that overlap smoothly and have
cusps at all nuclei (Sec. II.2.1), the inverted potential
of each has singularities at the vicinity of both nuclei,

(a)

(b)

FIG. 7: Non-additive kinetic potential for H2, in a 1D
representation, where one electron is localized. Purple
dashed lines mark the location of the nuclei and a black
solid line marks the cutoff z0. (a) Total and partitioned
densities. (b) Analytically inverted kinetic potential
vNAD/INV[ρB, ρtot](r) (from Eq. (24)), where the

localized density ρB is on the left, compared to the same
from von Weizsäcker theory (from Eq. (25)). Blue:
vNAD/INV; Red curve: ∆v = vNAD/vW − vNAD/INV.

which then cancel. vNAD[ρB, ρtot](r) has no singularities
at the nuclei, and must be smooth everywhere. This situ-
ation is convenient for approximations since the singular-
ities are difficult to capture, and a smooth vNAD is easier
to use in practical calculations. By contrast, in the usual
embedding-theory situation where the sub-density is zero
at some nuclei and lacks cusps there (Sec. II.2.2), there
are singularities in vNAD. Singularities can also arise due
to the use of Slater-type orbitals or other basis sets that
do not perfectly describe cusps (Sec. II.2.3). Our anal-
ysis applies to both the exact KS potential under some
physically likely assumptions; and to all approximated
forms known to the authors.

We confirmed these analytic results and demonstrate
that they are achievable numerically with the LDA by
performing grid-based all-electron calculations for di-
atomic systems HeHe, HeLi+, and H2, and by computing
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(a)

(b)

FIG. 8: Non-additive kinetic potential for H2 in a 2D
representation, comparing (a) vNAD/INV with (b)

vNAD/vW, both in Ry. Black dots mark the nuclei, and
a black line marks the cutoff z0.

vNAD[ρB, ρtot] from analytic inversion. Examination of
vNAD[ρB, ρtot] in 1D and 2D demonstrated smooth be-
havior and no cusps or singularities, unlike in Ref. [14].
We established that the analytically inverted vinv from
an orbital and eigenvalue agrees closely with the Kohn-
Sham potential used to evaluate the density. We showed
a way of calculating vNAD[ρB, ρtot] exactly using the von
Weizsäcker potential for these systems, since it is ex-
act for one orbital. We benchmarked our calculations
from analytic inversion against vNAD/vW[ρB, ρtot] and
confirmed the close equality of these potentials through-
out space for all 3 diatomic systems, ensuring that the
analytically inverted potential is numerically precise and
does not suffer from numerical artefacts.

Using our reliable results for vNAD[ρB, ρtot], we were able
to learn about its exact features (for LDA). The poten-
tials shown in Figs. 3, 5, and 7(b) feature a step and a
barrier between the two nuclei. These are desired and ex-
pected features of vNAD[ρB, ρtot](r) evaluated for a pair of
densities ρB(r) and ρtot(r) for which ρtot−ρB disappears
near the nucleus B. From a practical perspective, any
approximation to vNAD should reproduce these features.
Practical calculations using an approximated vNAD that
does not reproduce these features are prone to an artifi-
cial leak of electrons onto the nucleus B (for a detailed
discussion of this issue see [27]).

This work has demonstrated exact features of vNAD

which can be used to develop and test numerical in-
version schemes, kinetic-energy functionals, or non-
decomposable approximations that target vNAD directly.
The analytic inversion approach can be used for further
exploration of exact properties of vNAD in other systems.
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Appendix A: Smooth densities, cusps, and
non-singular potentials

Densities of electronic systems are finite, meaning that
at any point RN we can make a series expansion in small
rN = r−RN . The general formula for expansion of ρ is,

ρ(r) =ρ0,N + bρrN + Bρ · rN
+ rNC ′ρ · rN + rN ·Cρ · rN + . . . (A1)

where bρ is a scalar, Bρ and C ′ρ are vectors and Cρ is
a 3 × 3 matrix. This includes analytic and non-analytic
terms. We may rewrite this as,

ρ(r) =ρ0,Ne
−2ZrN + ρsmooth(r) (A2)

ρsmooth(r) =Bρ · rN + rNC ′ρ · rN + rN ·C′′ρ · rN + . . .

(A3)

where Z = −bρ/[2ρ0,N ] and C′′ρ = Cρ − 2Z2I. Here, we
focused on a single nucleus – the smooth density must
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have a similar expansion near every nucleus.

We therefore obtain,

∇2ρ(r)

ρ(r)
=
−4Z

rN
+

2C ′ρ
ρ0,N

· r̂N + const (A4)

where r̂ indicates a unit vector. Clearly, the first term
dominates, and the second has a radial average of zero.
This is how the cusp gives rise to singularities.

The non-singular part, vnon-sing, of the potential obeys,

lim
r→RN

rNvnon-sing(r) =0, ∀RN (A5)

and contains similar terms to Eq. (A3). It can also have a
constant term, a term BvrN , and even logarithmic singu-
larities like Lv log(rN ). Any non-singular potential obey-
ing Eq. (A5) will not alter any of the conclusions of the
main text.

Appendix B: Cusps lead to singularities

For two or few electrons it is trivial to show that singular-
ities lead to cusps. The leading terms of our density may
be described using ρ := e−2ZNrN , where rN = r−RN is
the distance from the cusp at RN . The remaining terms
begin (by definition) at O(rN ) and therefore contribute
to the potential only at a constant or higher terms.

The non-trivial part of the von Weizsäcker potential is
therefore the part involving only radial derivatives,

vvW =
∂rrρ

4ρ
+
∂rρ

2rρ
− (∂rρ)2

8ρ2
=
Z2
N

2
− ZN

r
(B1)

which is clearly dominated by the −ZN

rN
singularity. This

gives our proof for two electrons. To go beyond two elec-
trons, we show that vvW has the same singularities as the
KS potential for more than two electrons.

To begin, rewrite ρ =
∑
i fi|φi|2, (Eq. (3)) using,

ζi(r)
√
ρ(r) :=

√
fiφi(r) , (B2)

where
∑
i |ζi(r)|2 = 1∀r, by definition. The KS orbital

equations Eq. (1) yield [ĥ− εi]φi = 0, giving,

0 =
√
fi√
ρ [−∇

2

2 + vKS[ρ]− εi]φi

= 1√
ρ [−∇

2

2 + vKS[ρ]− εi]ζi
√
ρ

=[−∇
2

2 − g[ρ] · ∇+ ṽ[ρ]− δi]ζi(r) ,

(B3)

for ζi. Here, ṽ := vKS[ρ] − vvW[ρ], g[ρ] :=
∇√ρ√
ρ = ∇ρ

2ρ ,
and δi are constants.

Importantly, we recognize that |g| <∞ and is smooth in
any nuclear density. Since δi is a constant, it follows that
only differences in the location or magnitude of singular-
ities in vKS and vvW, which manifest in ṽ, can contribute
to cusps in ζi. We denote the set of effective “nuclei”
for which ṽ has singularities by C̃ = {(RN , zN )}, with
locations RN and effective charges zN 6= 0∀N ∈ C̃ (we
allow zN < 0 for repulsive effective nuclei). Only these
singularities may lead to cusps in ζi.

We next recognize that all singularities in ṽ give rise to
cusps or zero solutions in ζi, which follows from the se-
ries expansion of Eq. (B3) on rN = |r − RN | (see dis-
cussion in previous appendix). Thus, to leading orders,
we may define a set ζi∈Ic ≈ ζi,0[1 − zNrN ] with cusps
and a complementary set ζi/∈Ic ≈ 0 without cusps, that
are zero at the nuclei. However, by construction we
find 1 =

∑
i |ζi|2 ≈

∑
i∈Ic |ζi,0|

2 − 2zNrN
∑
i∈Ic |ζi,0|

2 =

CN − 2zNrNCN where CN =
∑
i∈IN |ζi,0|

2. This equa-
tion can only be simultaneously correct for leading and
sub-leading order terms if zN = 0, i.e., if there is no
singularity in the vicinity of nucleus RN .

Since zN = 0 for all nuclei N , it follows that C̃ must be
the empty set and that ṽ has no singularities. The KS
potential, vKS, therefore has the same singularities as
the von Weizsäcker potential, vvW, per Eq. (B1). This
extends results to more than two electrons and yields∑

N

ρ0,Ne
−2ZNrN −→

∑
N

−ZN
|r−RN | (B4)
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