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Quantum chemistry calculations constitute an important application of quantum annealing (QA).
For practical applications in quantum chemistry, it is essential to estimate the ground-state energy
of the Hamiltonian with chemical accuracy. However, there is no known method for guaranteeing the
accuracy of the energy estimated via QA. Here, we propose a method for guaranteeing the accuracy
of the energy estimated via QA using the Weinstein and Temple bounds. In our scheme, before
QA is performed, the energies of the ground state and first excited state must be pre-estimated
with some error bars (corresponding to the possible estimation error) via classical computation with
some approximations. We show that, if the expectation value and standard deviation of the energy
of the state after QA are lower than certain threshold values (that we can calculate from the pre-
estimation), the ground-state energy estimated by QA is closer to the ground state energy than the
pre-estimation. As the expectation value and standard deviation of the energy can be experimentally
measured via QA, our results pave the way for accurate estimation of the ground-state energy using
QA.

I. INTRODUCTION

In recent years, quantum chemistry calculations have
attracted considerable attention as a novel application of
quantum devices because of their potential use in medi-
cal fields. One of the main purposes of quantum chem-
istry is to calculate the energy of the molecular Hamil-
tonian. High accuracy of the energy of chemical mate-
rials is required, i.e., at least 1.6 × 10−3 hartree, where
1hartee = e2/4πε0a0 = 27.211eV and a0 = 1bohr =
0.529 × 10−10m. This accuracy is called chemical accu-
racy. Energy with chemical accuracy allows us to es-
timate the chemical reaction rate at room temperature
using the Eyring equation[1].

There are sophisticated techniques for mapping the
molecular Hamiltonian with the second quantized form
into a spin Hamiltonian. These techniques are impor-
tant for implementing quantum chemistry calculations
using quantum devices composed of qubits, because the
Hamiltonian for describing the molecules in the quan-
tum devices should be written using the Pauli matrices.
We can map the second-quantized many-body Hamil-
tonians onto those of qubit systems using the Bravyi–
Kitaev transformation[2–6]. In addition, there are ways
to generate effective three-body interactions using two-
body interactions[7, 8].

There is an improvement over the Jordan–Wigner
transformation in terms of the required number of qubit
operators per fermionic operator. The Jordan–Wigner
transformation maps one of n fermionic operators to
O(n) qubit operators. By contrast, the Bravyi–Kitaev
transformation maps one of n fermionic operators to
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O(log(n)) qubits. A comparison between the gate num-
bers of the Bravyi–Kitaev and Jordan–Wigner transfor-
mations to obtain the ground state and the lowest energy
with the Trotter decomposition has been reported[9].
Furthermore, Babbush et al. represented the Hamilto-
nian using only a 2-local interaction between spins[10].

Quantum algorithms have also been proposed for fault-
tolerant quantum computation in quantum chemistry
calculations[11–13]. In addition, molecular energies have
been obtained using phase-estimation algorithms[14, 15].
However, a fault-tolerant quantum computer requires
many qubits with high-fidelity gate operations beyond
the capability of a near-term quantum computer to per-
form error correction. Therefore, algorithms for quantum
chemistry have not been experimentally implemented
with a practically useful size thus far.

Recently, noisy intermediate-scale quantum (NISQ)
computing has been proposed [16–18]. A promising al-
gorithm for NISQ is the variational quantum eigensolver
(VQE) with the variational method[19, 20]. The VQE
gives the lowest eigenvalue of a Hamiltonian, such as that
of a chemical material. It is a hybrid quantum-classical
algorithm. Variational algorithms have also been used to
simulate quantum dynamics [21, 22]. The standard devi-
ation has been used to determine how close the quantum
state is to the energy eigenstate in the NISQ algorithm
[23].

Quantum annealing (QA) is also a promising method
for implementing quantum chemistry calculations. It has
traditionally been used to solve combinatorial optimiza-
tion problems[24, 25]. We map a combinatorial optimiza-
tion problem into the Ising Hamiltonian HP , and we call
this a problem Hamiltonian whose ground state corre-
sponds to the solution of the combinatorial optimiza-
tion problem. Meanwhile, we use another Hamiltonian
HD that represents transverse magnetic fields, which we
call a driver Hamiltonian. In QA, we prepare a ground
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state of HD, and the total time-dependent Hamiltonian
is changed from HD to HP within an annealing time T .
As long as then adiabatic condition is satisfied, the adi-
abatic theorem guarantees that the ground state of the
problem Hamiltonian can be obtained via QA. Impor-
tantly, by replacing HP with the molecular Hamiltonian,
QA can be used to estimate the energy of the ground
state in quantum chemistry[6, 26–29]. In addition, the
search for excited states in quantum chemistry has been
discussed [30, 31].

D-Wave Systems Inc. [32] realized QA machines com-
posed of thousands of qubits. They used superconduct-
ing flux qubits to implement QA. There have been many
experimental demonstrations of QA using the devices of
D-Wave Systems Inc. [33–36]. In particular, quantum
chemistry calculations have been demonstrated using QA
to estimate the ground-state energy for a small-sized
molecule [28]. Also, recently, a coupler to realize no-
stoquastic Hamiltonian was developed, and there were
some experimental demonstration for this[37, 38]. It is
worth mentioning that the coherence time of the qubits
with the D-wave machine is less than 100 ns [39], and
this short coherence time makes it difficult to realize sin-
gle qubit operations except computational basis measure-
ments. On the other hand, by using a recently proposed
scheme called a spin-lock QA, it is possible to use long-
lived qubits such as capacitively shunted flux qubits, and
we can perform arbitrary single qubit operations in this
architecture (see the appendix D)[40, 41].

The potential problem in using QA for practical quan-
tum chemistry calculations arises because of the intrinsic
error in QA. Non-adiabatic transitions induce a transi-
tion from the ground state to excited states. Moreover,
decoherence owing to the coupling with the environment
causes unwanted decay of the quantum states during QA.
Because of these problems, it is not clear whether chem-
ical accuracy can be achieved in quantum chemistry cal-
culations using QA. Therefore, it is essential to achieve
higher accuracy to estimate the ground-state energy in
QA.

In this paper, we propose a method for estimating the
energy of the target Hamiltonian with guaranteed accu-
racy, where we combine QA with classical computation.
The energy calculated from QA should be larger than the
true ground-state energy owing to errors, and the differ-
ence between the energy calculated from QA and the
true energy is defined as the estimation error. The upper
bound of such an estimation error is called an error bar.
To measure the error bar, we use the Weinstein bound:
if the population of the ground state is more than 1/2
after QA, the standard deviation of the energy (that we
can experimentally measure) provides us with the upper
bound of the estimation error. We present a method for
checking whether the population of the ground state is
more than 1/2 after QA by using classical computation.
We must determine the possible range of the energies of
the ground state and first excited state before QA by per-
forming classical computation with some approximation

(such as a mean-field technique). We can calculate a cer-
tain threshold by using values from the pre-estimation,
and if the energy estimated by QA is lower than the
threshold, the population of the ground state is more
than 1/2 after QA. In addition, if the classical error bars
(corresponding to the possible estimation error) given by
the pre-estimation are larger than the standard deviation
of the energy measured from QA, we can use the stan-
dard deviation of the energy as the improved error bars
for the energy estimation. The method is schematically
shown in Fig.1. Moreover, in order to reduce the error,
we employ the Temple bound. To do that, we must de-
termine the lower bound of the energy of the first excited
state via classical computation. If the ground-state en-
ergy estimated with QA is smaller than the bound, we
can obtain the error bar of the estimation. This method
is schematically shown in Fig.2. We numerically demon-
strate that this approach provides more accurate error
bars than the approach based on the Weinstein bound.
It is worth mentioning that, although we focus on QA as
a primary application of our method, our scheme is also
useful for the other schemes to find a ground state such
as a variational quantum eigensolver with NISQ devices
[19].

The remainder of this paper is organized as follows.
Section II reviews QA. Section III introduces the We-
instein and Temple bounds. Section IV describes our
approach of using the Weinstein and Temple bounds for
obtaining the error bars for the energy estimation with
QA.

Section V describes our method for estimating the
ground-state energy of the hydrogen molecule to eval-
uate the performance of our scheme. Finally, Section VI
summarizes our findings.
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FIG. 1. Flowchart showing how to estimate the ground-state
energy of the target Hamiltonian in our protocol. We must
pre-estimate the ground-state energy using a classical com-
puter with some approximation and determine Ẽ0, Ẽ1, δM0,
and δM1, where Ẽ0 (Ẽ1) is the approximated ground (first-
excited)-state energy from the pre-estimation and δM0 (δM1)
is the error bound of the pre-estimation. In addition, E0(E1)
denotes the true energy of the ground (first excited) state and
〈H〉 (〈∆E2〉) denotes the expectation (the squared standard
deviation) of the Hamiltonian of the state after QA. In our

protocol, when 〈H〉 is smaller than ( Ẽ1−Ẽ0
2
− δM0+δM1

2
), the

standard deviation of the state after QA can be the upper
bound of the estimation error.
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FIG. 2. Flowchart showing how to estimate the ground-
state energy of the target Hamiltonian in our protocol using
the Temple bound. We must pre-estimate the lower-bound

E
(low)
1 of the first-excited-state energy using a classical com-

puter. When the energy from QA satisfies E
(low)
1 > 〈H〉,

we obtain the lower bound of the ground state energy E0,

〈H〉 − ∆E2

E
(low)
1 −〈H〉

. Here, we use the same notation as that in

Fig.1.

II. QUANTUM ANNEALING

Here, we review QA for the ground state search. We
regard the driving Hamiltonian as the transverse field.
The total Hamiltonian for QA is described as follows:

H(t) =
t

T
HP +

(
1− t

T

)
HD (1)

where T is the annealing time. First, we prepare the

ground state of the transverse field HD = −
∑N

i=1 σ̂
x
i ,

|Ψ(0)〉 = |+ · · ·+〉, where the quantum state |+〉 de-
notes the eigenstate of σx with the eigenvalue +1. Sec-
ond, the driver Hamiltonian is adiabatically changed into
the problem Hamiltonian. Finally, we obtain the ground
state of the problem Hamiltonian if the dynamics is adia-
batic; hence, the measurement of an observable HP pro-
vides the ground-state energy.

Various forms of noise degrade the accuracy of QA.
The main sources of such noise are environmental deco-
herence and non-adiabatic transitions. There is a trade-
off between these two errors. We should implement QA
slowly to avoid non-adiabatic transitions; however, slow
dynamics tends to increase the error owing to decoher-
ence.

Many attempts have been made to suppress non-
adiabatic transitions and decoherence. To find a
ground state of the Ising Hamiltonian, the use of non-
stoquastic Hamiltonians has been proposed to increase
the energy gap during QA for a specific model, which
could contribute toward the suppression of non-adiabatic
transitions[42–45]. An inhomogeneous driving Hamilto-
nian for a p-spin model is known to contribute toward
accelerating QA for specific cases [46, 47]. It is shown
that the use of Ramsey type measurements can sup-
press the degradation due to the non-adiabatic transi-

tions in QA [25]. Both theoretical and experimental stud-
ies have been conducted to suppress decoherence during
QA. Error correction techniques [48], spin lock techniques
[40, 49, 50], and decoherence-free subspaces [51, 52] can
be used for the suppression of decoherence. In addition,
a method involving non-adiabatic transition and quench-
ing for efficient QA has also been investigated [53–60].
Counterdiabatic driving is considered as one of the ap-
proaches to improve the performance of the QA [61–67].

Despite previous efforts, there is no universal way
to suppress both environmental decoherence and non-
adiabatic transitions during QA, which makes it difficult
to guarantee the accuracy of the results of QA.

III. WEINSTEIN BOUND AND TEMPLE
BOUND

Here, we review the Weinstein and Temple bounds.
Let E0(E1) denote the true energy of the ground (first ex-
cited) state. First, we introduce the Weinstein bound[68].

Theorem 1. If the state 〈ψ| satisfies 〈ψ|ψ0〉 ≥ 1
2 , then

we obtain

σ ≥ 〈ψ|H |ψ〉 − E0 (2)

where σ =

√
〈ψ|H2 |ψ〉 − 〈ψ|H |ψ〉2 denotes the stan-

dard deviation of the energy and |ψ0〉 is the true ground
state.

Next, we introduce the Temple bound [69].

Theorem 2. If we know the exact first excited energy E1

and a state |ψ〉 satisfies E1 > 〈ψ|H |ψ〉, then we obtain
the following lower bound:

Elower = 〈ψ|H |ψ〉 − σ2

E1 − 〈ψ|H |ψ〉
, (3)

where σ =

√
〈ψ|H2 |ψ〉 − 〈ψ|H |ψ〉2.

This inequality requires precise knowledge of E1. How-
ever, for many practical applications, it is difficult to de-
termine the exact value of the first-excited-state energy.
Thus, we consider a case for which we know an approxi-
mate (or a lower-bounded) value of the first-excited-state
energy. In this case, we can use the following inequality.

Theorem 3. If the state |ψ〉 and the approximate first-
excited-state energy Eapp

1 satisfy E1 > Eapp
1 > 〈ψ|H |ψ〉,

then we obtain the following lower bound:

Elower = 〈ψ|H |ψ〉 − σ2

Eapp
1 − 〈ψ|H |ψ〉

, (4)

where σ =

√
〈ψ|H2 |ψ〉 − 〈ψ|H |ψ〉2.
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IV. METHOD

Here, we present our scheme for estimating a ground-
state energy with guaranteed accuracy for QA in a cer-
tain condition. We use the two inequalities presented in
the previous section to obtain the error bars for QA.

To use these inequalities, we must measure the expec-
tation value and standard deviation of the Hamiltonian
after QA. In practice, the quantum states become mixed
states because the non-diagonal terms in the density ma-
trix decay owing to decoherence. After implementing
QA, we measure only the Hamiltonian and standard de-
viation. In this case, we can show that the non-diagonal
terms in the energy basis do not affect the expectation
value and standard deviation of the Hamiltonian. Hence,
we can describe the quantum state after QA as either a
pure state or a mixed state as long as the energy popu-
lation between them is the same. For simplicity, we use
a pure state for the description.

Suppose that we obtain a state of |φ(ann)
0 〉 after QA.

We rewrite this state as follows:

|φ(ann)
0 〉 =

√
1− ε2 |φ0〉+

∑
m 6=0

εm |φm〉 (5)

where |φ0〉 denotes the ground state, |φm〉 (m > 0) de-
notes the m-th excited state, εm denotes the amplitude
of the m-th excited state, and ε denotes the amplitude
of all the states except the ground state. In other words,√

1− ε2 denotes the amplitude of the ground state. Ow-
ing to normalization, we have a condition ε2 =

∑
m6=0 ε

2
m.

As we consider the expectation value of the Hamiltonian
and the standard deviation, the relative phase between
the energy eigenstates does not affect our results. There-
fore, we can assume εm to be real values without loss of
generality throughout this paper. The squared standard
deviation ∆E2 is given by

∆E2 = 〈φ(ann)
0 |H2

P |φ
(ann)
0 〉 − 〈φ(ann)

0 |HP |φ(ann)
0 〉

2

(6)

To quantify the accuracy of the output of QA, we de-
fine two values: an estimation error and an error bar.
The estimation error is defined as

δest = 〈φ(ann)
0 |HP |φ(ann)

0 〉 − E0. (7)

It is worth mentioning that δest is always positive because
E0 provides the lowest energy. However, it is difficult to
measure the estimation error experimentally. Therefore,
we define an error bar δerror−bar as the upper bound
of the estimation error, such as δest < δerror−bar, and
the objective of our study is to present a method for
determining the error bar from experimentally observable
quantities.

A. Bounds on the error of the energy using the
Weinstein bound for QA

First, we explain how to use the Weinstein bound
to obtain the error bar from experimentally observable
quantities.

By applying the Weinstein bound to the case of QA,
we can rewrite Theorem 1 in the following form.

Theorem 4. If ε2 ≤ 1
2 is satisfied, then

∆E2 −
(
〈φ(ann)

0 |HP |φ(ann)
0 〉 − 〈φ0|HP |φ0〉

)2
≥ 0.

(8)

Thus, we regard the standard deviation as the error
bar, and the lower bound of the ground-state energy is

given by 〈φ(ann)
0 |HP |φ(ann)

0 〉−∆E. However, if we only
use experimental results with QA, it is not straightfor-
ward to judge whether the condition 1

2 ≥ ε
2 is satisfied.

We present a method for judging whether 1
2 ≥ ε2 is

satisfied. The key idea is to combine QA with classical
computation. In particular, we perform a pre-estimation
of the energies of the ground state and first excited state.
We can employ a classical computer for such a pre-
estimation by using a suitable approximation, such as
a mean-field technique or variational methods. Let Ẽ0

(Ẽ1) denote the approximate value of the ground (first-
excited)-state energy calculated from the pre-estimation.
If this pre-estimation is sufficiently accurate, the condi-
tion 1

2 ≥ ε2 is satisfied; hence, we can use the standard
deviation of the energy to obtain the upper bound of the
error estimation, as will be explained later.

There are many ways to calculate the ground-state and
excited-state energies of molecules in quantum chemistry
using a classical computer. For example, a variational
trial function gives us the upper bound of the ground-
state energy. In addition, there is a way to estimate the
lower bound of the ground-state energy [69]. Further-
more, various ways to obtain the energy gap between the
ground state and the excited states are known[70–73].
By combining these techniques, the range of the ground-
state and first-excited-state energies can be obtained.

The classical estimation error between the approxi-
mate energy Ẽn and the true energy En is denoted by
δẼn. Thus, we have the equality

Ẽn = En + δẼn. (9)

We assume that the classical estimation errors are
bounded as follows:

|δẼ0| < δM0, |δẼ1| < δM1, (10)

where δM0 and δM1 denote the classical error bars rep-
resenting the accuracy of the pre-estimation. We assume
that both δM0 and δM1 are positive. We can show that
the sufficient condition of the inequality 1

2 ≥ ε
2 is

E
(ann)
0 ≤ 1

2
(E0 + E1) (11)
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where E
(ann)
0 = 〈φ(ann)

0 |HP |φ(ann)
0 〉 is the energy of the

state |φ(ann)0 〉. Substituting (9) into (11), we obtain

(E0 <)E
(ann)
0 <

1

2
(Ẽ0 + Ẽ1)− 1

2
(δẼ0 + δẼ1) (12)

We obtain a sufficient condition for (12) as follows.

(E0 <)E
(ann)
0 <

1

2
(Ẽ0 + Ẽ1)− 1

2
(|δẼ0|+ |δẼ1|) (13)

From |δẼ0| < δM0 and |δẼ1| < δM1, a sufficient condi-
tion for (13) is

(E0 <)E
(ann)
0 <

1

2
(Ẽ0 + Ẽ1)− 1

2
(δM0 + δM1). (14)

From the approximate energy by the pre-estimation (Ẽ0

and Ẽ1) and the upper bound of the classical estimation
errors (δM0 and δM1), (14) is the sufficient condition of
(11). This means that, as long as (14) is satisfied, we can
use the standard deviation of the energy as the new error
bar (corresponding to the upper bound of the estimation
error) of the energy estimation. In particular, when the
new error bar given by the standard deviation is smaller
than δM0, the ground-state energy estimated by QA is
closer to the ground state energy than the pre-estimation.

Note that the condition given by (14) is not always
satisfied. If there are significant effects of decoherence

and/or non-adiabatic transitions, E
(ann)
0 may be large

such that the sufficient condition is not satisfied. Alter-
natively, if the estimation error (δM0 + δM1) is large,
again, it becomes more difficult to satisfy the sufficient
condition. For example, at least, (δM0 + δM1) should be
sufficiently small to satisfy the following conditions:

E0 <
1

2
(Ẽ0 + Ẽ1)− 1

2
(δM0 + δM1), (15)

Otherwise, we cannot use the Weinstein bound regard-
less of the results of QA. In these cases, we should try
other approaches, such as optimizing the QA schedule,
fabricating new samples with lower decoherence, or more
precise pre-estimation with a longer calculation time us-
ing a classical computer to satisfy the condition given by
(14).

B. Bounds on the error of the energy using the
Temple bound for QA

Second, we explain how to use the Temple bound to ob-
tain the error bar from experimentally observable quan-
tities. By applying Theorem 2 to the case of QA, we
obtain the following.

Theorem 5. If the condition E1 > 〈φ(ann)0 |H |φ(ann)0 〉 is
satisfied, then we obtain the lower bound of the ground-
state energy:

ET
lower = 〈φ(ann)|H |φ(ann)〉 − ∆E2

E1 − 〈φ(ann)|H |φ(ann)〉
(16)

where E1 is the exact energy for the first excited state.

However, to use this inequality, we need to determine
the exact value of the first-excited-state energy, which
is difficult using a classical computer. Therefore, we
consider replacing the exact first-excited-state energy E1

with an approximate value. By applying Theorem 3 to
our case, we obtain the following form:

Theorem 6. If the approximate first-excited-state en-

ergy E
(low)
1 satisfies E1 > E

(low)
1 > 〈H〉, then we obtain

the lower bound

ET ′

lower = 〈φ(ann)|H |φ(ann)〉 − ∆E2

E
(low)
1 − 〈φ(ann)|H |φ(ann)〉

.

(17)

We show how the Temple bound can be used for QA by
pre-estimation of the energy via classical computation.
We need to determine the lower bound of the excited-
state energy. Hence, similar to the case of the Weinstein
bound, we assume that Ẽ1 = E1 + δẼ1 with |δẼ1| <
δM1 from classical computation. In this case, we set

E
(low)
1 = Ẽ1 − δM1. Suppose that we obtain E

(ann)
0

after performing QA. If E
(ann)
0 < E

(low)
1 is satisfied, we

can use the Temple bound to obtain the lower bound of
the ground-state energy, which corresponds to the error
bar of the QA estimation.

C. Comparison between the Weinstein bound and
the Temple bound

Here, we explain how to compare the error bars ob-
tained from the Weinstein bound with those obtained
from the Temple bound when we perform QA. It is worth
mentioning that the performance strongly depends on the
accuracy of the pre-estimation; hence, the comparison is
not straightforward. In particular, the Weinstein bound
requires pre-estimation of both the ground state and the
first excited state, whereas the Temple bound requires
pre-estimation of only the first excited state. Moreover,
the accuracy of the Temple bound depends on how ac-
curately we can estimate the first-excited-state energy,
whereas the accuracy of the Weinstein bound does not
depend on the accuracy of the pre-estimation as long as
the condition described in (14) is satisfied.

We consider the following two extreme cases for the
comparison; the Temple bound is advantageous in one
of them and disadvantageous in the other. First, by as-
suming that we have perfect knowledge of the first ex-

cited state, we set E
(low)
1 = E1. In this case, the Temple

bound is advantageous. Second, we assume that we have
the least knowledge of the first excited state under the
constraint that (15) is satisfied. This corresponds to the
worst case of the Temple bound, while we can still employ
the Weinstein bound if we use long-lived qubits with QA.
More specifically, by substituting Ẽ0 = E0 into (15), we
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obtain δM1 < Ẽ1−E0. By assuming that Ẽ1 = E1−δM1,
we obtain the lower bound of the first-excited-state en-
ergy Ẽ1 >

E0+E1

2 . From these calculations, we choose

E
(low)
1 = E0+E1

2 . In this case, the Temple bound is disad-
vantageous. In Section V, when we compare the Temple
bound with the Weinstein bound, we consider these two
conditions.

D. Measurement of the energy and standard
deviation of the Hamiltonian

We describe how to measure the energy and standard
deviation of the Hamiltonian in QA. We assume that
we can perform any single-qubit measurements in QA.
The Hamiltonian is now written in the form H =

∑
j P̂j ,

where P̂j denotes the product of the Pauli matrices (such
as σ̂z

0 , σ̂z
1 , . . . , and σ̂x

0 σ̂
x
1 σ̂

y
2 σ̂

y
3 ). After the preparation

of the ground state with QA, we can implement single-
qubit measurements to obtain 〈P̂1〉. This means that,
by repeating the experiments (that involve the ground
state preparation and single-qubit measurements), we

can measure 〈P̂j〉 for every j and obtain 〈H〉 by sum-
ming them up. Similarly, we can measure 〈H2〉; hence,
we can also measure the standard deviation of the en-
ergy. These techniques have been used in the algorithms
of NISQ devices[74, 75].

We explain a possible experimental implementation
for measuring the energy and standard deviation of the
Hamiltonian. In conventional QA, we cannot perform ar-
bitary single-qubit operations. For example, in the cur-
rent D-Wave machine, the available operations are adi-
abatic changes of external fields and measurements of
σ̂z. In this case, it is not possible to measure the stan-
dard deviation of the energy because of the requirement
to measure σ̂x and σ̂y. However, owing to recent de-
velopments in QA from both theoretical and experimen-
tal aspects, such measurements would be available for
cutting-edge devices. A capacitively shunted flux qubit
(CSFQ) is another candidate for realizing QA with a long
coherence time [76, 77]. The CSFQ was originally devel-
oped for a gate-type quantum computer, and arbitrary
single-qubit operations can be implemented on it with
microwave pulses [76, 77]. Recently, there was a theo-
retical proposal for using this device in QA [40]; hence,
single-qubit operations are available with the CSFQ dur-
ing QA. More details about this method are described
in Appendix D. Therefore, CSFQs are suitable for our
scheme owing to the ability of the arbitrary single-qubit
operations.

V. NUMERICAL RESULTS

This section describes numerical simulations per-
formed to obtain the error of the energy estimated us-
ing our method. In particular, we consider the hydrogen

molecule. The Hamiltonian of the hydrogen molecule
can be described by the Pauli matrices. To consider the
decoherence, we simulate QA with the Lindblad master
equation and discuss the relation between the decoher-
ence rate and the accuracy of the energy estimation. In
addition, we plot the improved error bars obtained from
our methods.

We introduce the Lindblad master equation. We con-
sider the time-dependent system Hamiltonian H(t) under
a noisy environment. The Lindblad master equation that
we use in this paper is given by

dρ(t)

dt
= −i[H(t), ρ(t)] +

∑
n

γ[σ(k)
n ρ(t)σ(k)

n − ρ(t)] (18)

where σ
(k)
j (k = x, y, z) denotes the Pauli matrix act-

ing at site j, γ denotes the decoherence rate, and ρ(t)
is the density matrix of the quantum state at time t.
We solve the Lindblad master equation numerically us-
ing QuTiP [78, 79]. Throughout this paper, we choose
the decoherence type σz

j as the Lindblad operator. This
type of noise has been investigated in a previous study to
consider the effect of noise on the superconducting qubits
[80].

The Hamiltonian of the hydrogen molecule is given by

H =h0I + h1σ̂
z
0 + h2σ̂

z
1 + h3σ̂

z
2 + h4σ̂

z
1 σ̂

z
3

+ h5σ̂
z
0 σ̂

z
2 + h6σ̂

z
0 σ̂

z
1 + h7σ̂

x
0 σ̂

z
1 σ̂

x
2 + h8σ̂

y
0 σ̂

z
1 σ̂

y
2

+ h9σ̂
z
0 σ̂

z
1 σ̂

z
2 + h10σ̂

z
1 σ̂

z
2 σ̂

z
3 + h11σ̂

z
0 σ̂

z
2 σ̂

z
3

+ h12σ̂
x
0 σ̂

z
1 σ̂

x
2 σ̂

z
3 + h13σ̂

y
0 σ̂

z
1 σ̂

y
2 σ̂

z
3 + h14σ̂

z
0 σ̂

z
1 σ̂

z
2 σ̂

z
3

(19)

where we have used STO-3G basis and Bravyi–Kitaev
transformation. The coefficients of the Hamiltonian (19),
h0, . . . , h14, depend on the interatomic distance. We as-
sume that the interatomic distance is 0.74Å. The coeffi-
cient of the Hamiltonian (19) corresponding to the above-
mentioned interatomic distance is listed in Table I, and
it is calculated using OpenFermion [81].

The most promising device for QA is a superconduct-
ing qubit. We mainly consider the implementation of
superconducting qubits. The typical energy scale of the
superconducting qubit is of the order of GHz [82]. There-
fore, we adopt this energy scale to describe the Hamilto-
nian.

The relation between the measured energy and the an-
nealing time is shown in Fig.3. We can choose the anneal-
ing time to minimize the energy of the problem Hamilto-
nian after QA. Throughout this paper, we choose such an
optimized annealing time for the plots. Importantly, as
the decoherence rate increases, the minimum energy after
the optimization increases because the decoherence can
induce a transition from the ground state to the excited
states.

By applying the method described in Section IV A, we
numerically determine the conditions that satisfy 1

2 ≥ ε
2
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h0 −0.09706626816762881
h1 0.17141282644776895
h2 0.16868898170361213
h3 −0.22343153690813586
h4 0.17441287612261597
h5 0.12062523483390428
h6 0.17141282644776892
h7 0.04530261550379928
h8 0.04530261550379928
h9 0.16592785033770355
h10 −0.22343153690813589
h11 0.12062523483390428
h12 0.04530261550379928
h13 0.04530261550379928
h14 0.16592785033770355

TABLE I. Coefficient of the hydrogen molecule. The unit of
these values is GHz, as described in the main text.
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FIG. 3. Plots showing the relation between the annealing
time and the ground-state energy by QA. We consider the
hydrogen molecule with an interatomic distance of 0.74Å. The
vertical axis represents the energy, while the horizontal axis
represents the annealing time T for each decoherence rate γ.

with the pre-estimation when we estimate the ground-
state energy of the hydrogen molecule. In other words,
we show the region where we can use the Weinstein bound
so that we can use the standard deviation as the upper
bound of the estimation error. Such a region is plotted in

Fig.4 (a). Moreover, for the case of E
(low)
1 = (E0+E1)/2,

we can also use the Temple bound in this region. As the
decoherence rate increases, pre-estimation should be per-
formed more precisely to satisfy 1

2 ≥ ε
2. Meanwhile, even

when we can use the standard deviation obtained from
QA as the new error bound (owing to the satisfaction
of the condition 1

2 ≥ ε2), the pre-estimation could still
provide a closer to ground state energy that the QA if
the standard deviation is larger. We plot the condition
when the standard deviation is smaller than δM0 while
the condition 1

2 ≥ ε
2 is satisfied, as shown in Fig.4 (b).

In Fig.5 , we plot the estimation of the ground-state
energy and the lower bound obtained by the Weinstein
and Temple bounds when we use our scheme in QA. As
the decoherence rate decreases, the error bar (providing
the lower bound of the ground state) becomes smaller.

In Fig.6, we show how close the estimation error corre-
sponding to the Weinstein and Temple bounds is to the

(ii)

(i)

(ii)
(i) success
fail

FIG. 4. Plot of two types of threshold decoherence rate. One
of them is for the Weinstein bound to be applied. The other
one is for our scheme using the Weinstein bound to be more
precise than the pre-estimation using a classical computer. As
long as the decoherence rate of QA is lower than the threshold
(blue line in the plot) , we can apply the Weinstein bound;
hence, the standard deviation can be the upper bound of the
estimation error of QA. If (δM0 +δM1)/2 becomes equal to or
larger than (E1−E0)/2, our protocol always fails regardless of
the value of the decoherence rate. As long as the decoherence
rate of QA is lower than the threshold (orange line in the
plot), the standard deviation given from our scheme is more
precise upper bound than the pre-estimation error of QA. For
simplicity, we assume that 1

2
(Ẽ0 + Ẽ1) = 1

2
(E0 +E1) in these

plots. Here, we say that our scheme succeeds when we can
apply the Weinstein bound based on this prescription and the
ground-state energy estimated by QA is closer to the ground
state energy than the pre-estimation.

chemical accuracy (here, we assume that either E
(low)
1 =

E1 or E
(low)
1 = (E0 + E1)/2 when we use the Temple

bound, as explained in Section IV C). Furthermore, for
comparison, we show the chemical accuracy of the hydro-
gen molecule. When the decoherence rate is lower than
10−5, the energy measured using the Temple bound is
within the chemical accuracy.

In this section, we calculate the error bars for the en-
ergy obtained by QA for a Hamiltonian written in qubits
obtained by the Bravyi–Kitaev transformation of molec-
ular hydrogen. Meanwhile, in Appendix C, we calcu-
late the error bars for the energy obtained by QA for
the Jordan–Wigner transformation of molecular hydro-
gen and obtain similar results. In addition, we verify
that our scheme can be applied to the case of lithium
hydride, as explained in Appendix A.

VI. CONCLUSION

In this paper, we proposed a method for estimating the
energy of the target Hamiltonian with improved accuracy
by combining QA with classical computation. Based on
the Weinstein bound, if the population of the ground
state is more than 1/2 after QA, the error of the en-
ergy for the problem Hamiltonian is upper-bounded by
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FIG. 5. We plot the energy expectation value with the lower
bound (calculated from the error bars) of the ground-state
energy in our scheme. The dashed line represents the ex-
act ground-state energy. The solid line represents the en-

ergy expectation value (E
(ann)
0 ) obtained from QA. The green

dots represent the lower bound obtained from the Weinstein
bound. The red dots represent the lower bound obtained

from the Temple bound when E
(low)
1 in (17) is the exact first-

excited-state energy E1. The blue dots represent the lower

bound obtained from the Temple bound when E
(low)
1 in (17)

is (E0 + E1)/2.
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FIG. 6. We plot the estimation error and chemical accu-
racy (dotted line) against the decoherence rate. The green
dots represent the lower bound obtained from the Weinstein
bound. The red dots represent the lower bound obtained

from the Temple bound when E
(low)
1 in (17) is the exact first-

excited-state energy E1. The blue dots represent the lower

bound obtained from the Temple bound when E
(low)
1 in (17)

is (E0 + E1)/2.

the standard deviation. To check whether the popu-
lation of the ground state is more than 1/2 after QA,
we used classical computation for the pre-estimation of
the energy of the ground state and first excited state.
More precisely, we obtained the approximate energy of
the problem Hamiltonian with possible error bars for the
ground state and first excited state by performing clas-
sical computation with some approximation (such as a

mean-field technique). From the values obtained by the
pre-estimation, we can calculate a threshold; if the energy
of the state after QA is lower than the threshold, the pop-
ulation of the ground state is more than 1/2 after QA.
In addition, if the standard deviation of QA is smaller
than the error bar in the pre-estimation, we can use the
standard deviation as the improved error bar. Moreover,
to obtain a further improved error bar, we employed the
Temple bound for QA. In this case, it is necessary to
determine the lower bound of the energy of the first ex-
cited state using classical computation. If the estimation
of the ground-state energy with QA is lower than the
bound, we can obtain the error bar of the estimation.
We numerically showed that the error bar obtained from
the Temple bound provides a better bound than that
obtained from the Weinstein bound. Our methods are
useful for improving the accuracy of quantum chemistry
calculations, especially when QA with long-lived qubits
is realized experimentally.

Finally, we discuss the scope for future work. Re-
cently, variationally scheduled quantum simulation has
been proposed, where annealing scheduling has been op-
timized to minimize the expectation value of the Hamil-
tonian [83, 84]. In this case, for the optimization of the
scheduling parameters, it is necessary to iterate QA many
times. However, in this scheme, there is no information
about the estimation error of the energy. By combin-
ing this method with our proposal, the expectation value
of the Hamiltonian can be decreased and the accuracy
can be improved via measurement of the standard de-
viation, because the decrease in the expectation value of
the Hamiltonian usually decreases the energy error of the
Temple and Weinstein bounds when the system is close
to the ground state. Further research is required to quan-
tify the performance of such a hybrid strategy, and we
leave this as a topic for future study.
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Appendix A: Lithium Hydride molecule

In this section, we describe the application of our
scheme to the lithium hydride molecule. The Hamilto-
nian of the lithium hydride molecule is given by the spin
systems, where we use the STO-3G basis and Jordan–
Wigner transformation. We set the interatomic distance
to 2.04Å. The coefficients of the Hamiltonian depend on
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the interatomic distance. We obtain the coefficients using
OpenFermion [81]. As there are 12 qubits in this system,
the computational cost is too high to consider the deco-
herence by solving the Lindblad master equation. There-
fore, we use the time-dependent Schr00F6dinger equation
without decoherence in our calculations. We set the an-
nealing time from 102 [ns] to 105 [ns]. In Fig.7, we plot
the energy expectation value obtained by annealing with
error bars obtained by measuring the energy standard
deviation. Furthermore, we show the exact ground-state
energy. In Fig.8, we plot the estimation error and the
standard deviation, where the chemical accuracy is also
shown for comparison. The estimation error (the stan-
dard deviation of the energy) becomes lower than the
chemical accuracy with an annealing time longer than
1.0× 104 (5.0× 104).
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FIG. 7. Energy expectation value with the error bar in our
scheme. The solid line represents the energy expectation value

(E
(ann)
0 ) obtained from QA. The dashed line represents the

exact ground-state and first-excited-state energies. The green
dots represent the lower bound obtained from the Weinstein
bound. The red dots represent the lower bound obtained

from the Temple bound when E
(low)
1 in (17) is the exact first-

excited-state energy E1. The blue dots represent the lower

bound obtained from the Temple bound when E
(low)
1 in (17)

is (E0 + E1)/2.

Appendix B: Derivation of the Weinstein bound for
QA

In this section, we derive the Weinstein bound (Theo-
rem 4). First, we explain the estimation error and stan-
dard deviation.

The estimation error of the energy eigenvalue of the
problem Hamiltonian is given by

〈φ|HP |φ〉 − 〈φ0|HP |φ0〉 =
∑
m 6=0

ε2m(Em − E0) (B1)

where HP is the problem Hamiltonian, Em is the m-th
energy eigenvalue of the problem Hamiltonian, and |φ〉
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er

gy
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FIG. 8. We plot the estimation error and the chemical ac-
curacy (dotted line) against the decoherence rate. The green
dots represent the lower bound obtained from the Weinstein
bound. The red dots represent the lower bound obtained

from the Temple bound when E
(low)
1 in (17) is the exact first-

excited-state energy E1. The blue dots represent the lower

bound obtained from the Temple bound when E
(low)
1 in (17)

is (E0 + E1)/2.

is the state that satisfies 〈φ|φ0〉 ≥ 1
2 . Meanwhile, the

squared standard deviation ∆E2 is given by

∆E2 = 〈φ|H2
P |φ〉 − 〈φ|HP |φ〉2

=
∑
m6=0

ε2m(Em − E0)2 −
(∑
m6=0

ε2m(Em − E0)
)2
.

(B2)

We subtract the squared error of the energy from the
energy dispersion ∆E2 as follows.

∆E2 −
(
〈φ|HP |φ〉 − 〈φ0|HP |φ0〉

)2
=
∑
m 6=0

ε2m(Em − E0)2 − 2
(∑
m6=0

ε2m(Em − E0)
)2
(B3)

We consider the relation between the standard devia-
tion and the estimation error of the energy eigenvalue.
We remark that the following inequality holds from the
Cauchy–Schwarz inequality.

(∑
m6=n

ε2m(Em − En)
)2

≤
(∑
m 6=n

ε2m

)(∑
m6=n

ε2m(Em − En)2
)
. (B4)

The lower bound of the difference between the squared
standard deviation and the squared error of the energy
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(B3) is given as follows.

∆E2 −
(
〈φ|HP |φ〉 − 〈φ0|HP |φ0〉

)2
=
∑
m 6=0

ε2m(Em − E0)2 − 2
(∑
m 6=0

ε2m(Em − E0)
)2

≥
∑
m 6=0

ε2m(Em − E0)2 − 2ε2
∑
m6=0

ε2m(Em − E0)2

= (1− 2ε2)
∑
m6=0

ε2m(Em − E0)2 (B5)

where we have used (B4) to rewrite the inequality. Fi-
nally, from

∑
m 6=0 ε

2
m(Em − E0)2 ≥ 0 in the equations

above, the proof of Theorem 4 is complete.

Appendix C: Hydrogen molecule of Jordan–Wigner
transformation

In this section, we discuss the case of using the Jordan–
Wigner transformation. First, in this case, the Hamilto-
nian of the hydrogen molecule is given by

H =h0I + h1σ̂
z
0 + h2σ̂

z
1 + h3σ̂

z
2 + h4σ̂

z
3

+ h5σ̂
z
0 σ̂

z
1 + h6σ̂

z
0 σ̂

z
2 + h7σ̂

z
1 σ̂

z
2 + h8σ̂

z
0 σ̂

z
3 + h9σ̂

z
1 σ̂

z
3

+ h10σ̂
z
2 σ̂

z
3 + h11σ̂

y
0 σ̂

y
1 σ̂

x
2 σ̂

x
3 + h12σ̂

x
0 σ̂

y
1 σ̂

y
2 σ̂

x
3

+ h13σ̂
y
0 σ̂

x
1 σ̂

x
2 σ̂

y
3 + h14σ̂

x
0 σ̂

x
1 σ̂

y
2 σ̂

y
3 (C1)

where we have used the STO-3G basis. The coefficient
of this Hamiltonian is listed in Table II.

h0 −0.09706626816762881
h1 0.17141282644776895
h2 0.17141282644776892
h3 −0.22343153690813586
h4 −0.22343153690813589
h5 0.16868898170361213
h6 0.12062523483390428
h7 0.16592785033770355
h8 0.16592785033770355
h9 0.12062523483390428
h10 0.17441287612261597
h11 −0.04530261550379928
h12 0.04530261550379928
h13 0.04530261550379928
h14 −0.04530261550379928

TABLE II. Coefficient of the hydrogen molecule using the
Jordan–Wigner transformation. The unit of these values is
GHz, as described in the main text.

We plot the relation between the annealing time and
the energy after QA in Fig.9. This is nearly identical to
Fig.3.

We plot the lower bound of the energy and the error
of the energy using our method for the Jordan–Wigner
and Bravyi–Kitaev transformations in Fig.10 and Fig.11.
We can see that the results of the Jordan–Wigner trans-
formation are slightly more accurate than those of the
Bravyi–Kitaev transformation.
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FIG. 9. Plots showing the relation between the annealing
time and the ground-state energy by QA. We consider the
hydrogen molecule with an interatomic distance of 0.74Å. The
vertical axis represents the energy, while the horizontal axis
represents the annealing time T for each decoherence rate γ.
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FIG. 10. We plot the energy expectation value with the
lower bound of the ground-state energy in our scheme. The
dashed line represents the exact ground-state energy. The
green dots represent the lower bound obtained from the We-
instein bound. The red dots represent the lower bound ob-
tained from the Temple bound when a in (17) is the exact
first-excited-state energy E1. The blue dots represent the
lower bound obtained from the Temple bound when a in (17)
is (E0 +E1)/2. This case corresponds to the worst case of the
pre-estimation.

Appendix D: Possible experimental implementation
of single qubit operations in QA by using CSFQ

In this section, we show how to realize the single qubit
operation in QA by using CSFQs. It is worth mention-
ing that, by combining single-qubit measurements in the
computational basis and single-qubit rotations, it is pos-
sible to implement single-qubit measurements in an arbi-
trary basis. This section is divided into two parts. The
first one is a review of spin lock techniques for QA by us-
ing CSFQ. The second one is to explain how single-qubit
operation can be performed in QA by using the spin lock
techniques.
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FIG. 11. We plot the estimation error and chemical accu-
racy (dotted line) against the decoherence rate. The green
dots represent the lower bound obtained from the Weinstein
bound. The red dots represent the lower bound obtained from
the Temple bound when a in (17) is the exact first-excited-
state energy E1. The blue dots represent the lower bound ob-
tained from the Temple bound when a in (17) is (E0 +E1)/2.
This case corresponds to the worst case of the pre-estimation.

1. Spin-lock quantum annealing

In this subsection, we explain about the spin lock
QA[40]. This is a method to realize quantum annealing
in CSFQ with a microwave driving field. Suppose that
we drive inductively coupled CSFQs with a microwave
field. In this case, the Hamiltonian during QA (before
the readout) is given by

H(t) =
∑
j

w

2
σ̂z
j + λ(t)σ̂x

j coswt+ g(t)HP (D1)

where, λ(t) =
(
1− t

T

)
λ0 denotes a time dependent driv-

ing amplitude, g(t) = t
T denotes a scheduling of the cou-

pling strength and, HP denotes the problem Hamilto-
nian. We assume that HP commutes with

∑
j σ̂

z
j , and

actually the problem Hamiltonians adopted in our paper
satisfy this properties. By going to an rotating frame,
the Hamiltonian is rewritten as

Ĥ = UHU† − iU† dU
dt

(D2)

where U is a unitary operator to denote the rotating
frame. In this section, we choose the following

U = exp

(
−it

L∑
j=1

w

2
σ̂z
j

)
. (D3)

By using the rotating wave approximation, we obtain the
following Hamiltonian

Ĥ(t) =
∑
j

λ(t)σ̂x
j + g(t)HP (D4)

and this is the same Hamiltonian that we use in the main
text.

2. Realizing the single qubit operation

In this subsection, we explain how to realize single
qubit rotations. After the evolution with the Hamilto-
nian in the Eq. (D4), we have

H(t = T ) =
∑
j

w

2
σ̂z
j +HP (D5)

at t = T . We apply microwave pulses, and the Hamilto-
nian is given as

H(t = T + τ) =
∑
j

w

2
σ̂z
j + λ̃(t)σ̂x

j cos(w′τ + θ) +HP

(D6)

where λ̃(t) denotes the time-dependent amplitude of the
driving fields (see the Fig.12.)

λ̃(t) =

{
λ̃ T ≤ t ≤ T + ∆T
0 otherwise.

(D7)

The equation (D6) in the rotating frame is given by

Ĥ(t) =
∑
j

(
w − w′

2
σ̂z
j + λ̃(t) cos θσ̂x

j + λ̃(t) sin θσ̂y
j

)
+HP . (D8)

using the unitary operator

U ′ = exp

(
−it

L∑
j=1

w′

2
σ̂z
j

)
. (D9)

When the magnitude of the driving fields is much larger
than any coefficient of the problem Hamiltonian, we ob-
tain the following Hamiltonian in a rotating frame.

Ĥ(t) '
∑
j

(
w − w′

2
σ̂z
j + λ̃(t) cos θσ̂x

j + λ̃(t) sin θσ̂y
j

)
(D10)

This means that we can realize arbitraty single qubit ro-
tatins with the CSFQ. By combining this with a single
qubit measurement in the computational basis, we can
realize single qubit measurements in an arbitrary basis.
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FIG. 12. This figure shows a schedule of parameters λ(t) and

λ̃(t).

[1] H. Eyring, The Journal of Chemical Physics 3, 107
(1935).

[2] S. B. Bravyi and A. Y. Kitaev, Annals of Physics 298,
210 (2002).

[3] F. Verstraete and J. I. Cirac, Journal of Statistical Me-
chanics: Theory and Experiment 2005, P09012 (2005).

[4] J. T. Seeley, M. J. Richard, and P. J. Love, The Journal
of chemical physics 137, 224109 (2012).

[5] A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean,
R. Babbush, P. V. Coveney, F. Mintert, F. Wilhelm, and
P. J. Love, International Journal of Quantum Chemistry
115, 1431 (2015).

[6] R. Xia, T. Bian, and S. Kais, The Journal of Physical
Chemistry B 122, 3384 (2017).

[7] J. D. Biamonte and P. J. Love, Physical Review A 78,
012352 (2008).

[8] W. Lechner, P. Hauke, and P. Zoller, Science advances
1, e1500838 (2015).

[9] A. Tranter, P. J. Love, F. Mintert, and P. V. Coveney,
Journal of chemical theory and computation 14, 5617
(2018).

[10] R. Babbush, P. J. Love, and A. Aspuru-Guzik, Scientific
reports 4, 6603 (2014).

[11] T. Takeshita, N. C. Rubin, Z. Jiang, E. Lee, R. Babbush,
and J. R. McClean, Physical Review X 10, 011004 (2020).

[12] L. Mueck, Nature chemistry 7, 361 (2015).
[13] R. Babbush, N. Wiebe, J. McClean, J. McClain,

H. Neven, and G. K.-L. Chan, Physical Review X 8,
011044 (2018).

[14] A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-
Gordon, Science 309, 1704 (2005).

[15] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik,
Molecular Physics 109, 735 (2011).

[16] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A.

Buell, et al., Nature 574, 505 (2019).
[17] D.-B. Zhang, Z.-H. Yuan, and T. Yin, arXiv preprint

arXiv:2006.15781 (2020).
[18] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, Journal

of the Physical Society of Japan 90, 032001 (2021).
[19] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q.

Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. Obrien,
Nature communications 5, 4213 (2014).

[20] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-
Guzik, New Journal of Physics 18, 023023 (2016).

[21] Y. Li and S. C. Benjamin, Physical Review X 7, 021050
(2017).

[22] M.-C. Chen, M. Gong, X. Xu, X. Yuan, J.-W. Wang,
C. Wang, C. Ying, J. Lin, Y. Xu, Y. Wu, et al., Physical
Review Letters 125, 180501 (2020).

[23] A. Kardashin, A. Uvarov, D. Yudin, and J. Biamonte,
Physical Review A 102, 052610 (2020).

[24] T. Kadowaki and H. Nishimori, Physical Review E 58,
5355 (1998).

[25] Y. Matsuzaki, H. Hakoshima, K. Sugisaki, Y. Seki, and
S. Kawabata, Japanese Journal of Applied Physics 60,
SBBI02 (2021).

[26] J. Copenhaver, A. Wasserman, and B. Wehefritz-
Kaufmann, arXiv preprint arXiv:2009.10779 (2020).

[27] G. Mazzola, V. N. Smelyanskiy, and M. Troyer, Physical
Review B 96, 134305 (2017).

[28] S. N. Genin, I. G. Ryabinkin, and A. F. Izmaylov, arXiv
preprint arXiv:1901.04715 (2019).

[29] M. Streif, F. Neukart, and M. Leib, “Solving quantum
chemistry problems with a d-wave quantum annealer,”
Springer (2019).

[30] A. Teplukhin, B. K. Kendrick, and D. Babikov, Journal
of Chemical Theory and Computation 15, 4555 (2019).

[31] Y. Seki, Y. Matsuzaki, and S. Kawabata, Bulletin of the
American Physical Society 65 (2020).



13

[32] M. W. Johnson, M. H. Amin, S. Gildert, T. Lanting,
F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Jo-
hansson, P. Bunyk, et al., Nature 473, 194 (2011).

[33] K. Kudo, Physical Review A 98, 022301 (2018).
[34] S. H. Adachi and M. P. Henderson, arXiv preprint

arXiv:1510.06356 (2015).
[35] F. Hu, B.-N. Wang, N. Wang, and C. Wang, Quantum

Engineering 1, e12 (2019).
[36] K. Kudo, Journal of the Physical Society of Japan 89,

064001 (2020).
[37] I. Ozfidan, C. Deng, A. Smirnov, T. Lanting, R. Har-

ris, L. Swenson, J. Whittaker, F. Altomare, M. Babcock,
C. Baron, et al., Physical Review Applied 13, 034037
(2020).

[38] W. Vinci and D. A. Lidar, npj Quantum Information 3,
1 (2017).

[39] A. D. King, S. Suzuki, J. Raymond, A. Zucca, T. Lanting,
F. Altomare, A. J. Berkley, S. Ejtemaee, E. Hoskinson,
S. Huang, et al., arXiv preprint arXiv:2202.05847 (2022).

[40] Y. Matsuzaki, H. Hakoshima, Y. Seki, and S. Kawabata,
Japanese Journal of Applied Physics 59, SGGI06 (2020).

[41] T. Imoto, Y. Seki, and Y. Matsuzaki, Journal of the
Physical Society of Japan 91, 064004 (2022).

[42] Y. Seki and H. Nishimori, Physical Review E 85, 051112
(2012).

[43] Y. Seki and H. Nishimori, Journal of Physics A: Mathe-
matical and Theoretical 48, 335301 (2015).

[44] V. Choi, arXiv preprint arXiv:2105.02110 (2021).
[45] H. Nishimori and K. Takada, Frontiers in ICT 4, 2 (2017).
[46] Y. Susa, Y. Yamashiro, M. Yamamoto, and H. Nishi-

mori, Journal of the Physical Society of Japan 87, 023002
(2018).

[47] Y. Susa, Y. Yamashiro, M. Yamamoto, I. Hen, D. A.
Lidar, and H. Nishimori, Physical Review A 98, 042326
(2018).

[48] K. L. Pudenz, T. Albash, and D. A. Lidar, Nature com-
munications 5, 1 (2014).

[49] H. Chen, X. Kong, B. Chong, G. Qin, X. Zhou, X. Peng,
and J. Du, Physical Review A 83, 032314 (2011).

[50] M. Nakahara, “Lectures on quantum computing, ther-
modynamics and statistical physics,” World Scientific
(2013).

[51] T. Albash and D. A. Lidar, Physical Review A 91, 062320
(2015).

[52] T. Suzuki and H. Nakazato, arXiv preprint
arXiv:2006.13440 (2020).

[53] E. Crosson, E. Farhi, C. Y.-Y. Lin, H.-H. Lin, and
P. Shor, arXiv preprint arXiv:1401.7320 (2014).

[54] H. Goto and T. Kanao, arXiv preprint arXiv:2005.07511
(2020).

[55] L. Hormozi, E. W. Brown, G. Carleo, and M. Troyer,
Physical review B 95, 184416 (2017).

[56] S. Muthukrishnan, T. Albash, and D. A. Lidar, Physical
Review X 6, 031010 (2016).

[57] L. T. Brady and W. van Dam, Physical Review A 95,
032335 (2017).

[58] R. D. Somma, D. Nagaj, and M. Kieferová, Physical
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