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Ground states of quantum many-body systems are both entangled and possess a kind of quantum
complexity as their preparation requires universal resources that go beyond the Clifford group and
stabilizer states. These resources - sometimes described as magic - are also the crucial ingredient for
quantum advantage. We study the behavior of the stabilizer Rényi entropy in the integrable transverse
field Ising spin chain. We show that the locality of interactions results in a localized stabilizer Rényi
entropy in the gapped phase thus making this quantity computable in terms of local quantities in the
gapped phase, while measurements involving L spins are necessary at the critical point to obtain an
error scaling with O(L−1).

Introduction.— Quantum mechanics is different
from classical physics in twoways: first, composite
quantum systems can exhibit correlations stronger
than any classical correlation, i.e. entanglement.
Second, because quantum states and operations
constitute the bedrock for computation that goes
beyond the classical Turingmachinemodel and can
outperformclassical algorithms[1–6]. The resource
useful for such quantum advantage consists in
those states and operations that go beyond the
stabilizer formalism and the Clifford group[7–18].
Entanglement has been widely studied in the

context of quantummany-body systems[19]. From
its role in quantum phase transitions [20–24], to is-
sues of simulability[25–33], to the onset or thermal-
ization and chaos in closed quantum systems[34–
41], the structure of exotic quantum phases of the
matter[42–57], and black hole dynamics[34, 41, 58].
On the other hand, magic state resource theory
has only very recently been the object of investiga-
tion in the field of quantum systems with many
particles[59, 60]. This is mainly due to the dif-
ficulty of computing non-stabilizerness for high-
dimensional spaces[61]. Recently, though, the
authors of this paper have proposed the stabilizer
Rényi entropy as a more amenable way of comput-
ing non-stabilizerness based on the Rényi entropy
associated to the decomposition of a state in the
Pauli basis[62], which has also led to its experimen-
tal measurement[63–65].
In this paper, we set out to show the role that

magic state resource theory plays in the ground
state of local integrable quantum many-body sys-
tems. The model studied here is the transverse
field Ising model for a spin one-half chain with
N sites. We show how to compute the stabilizer
Rényi entropy in terms of the ground-state correla-
tion functions. In this way, we see how the decay
of correlation functions influences the many-body
non-stabilizerness. Away from the critical point,
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where the ground state is weakly entangled and
two-point correlation functions decay exponen-
tially, it is possible to estimate the stabilizer Rényi
entropy by single spin measurements reliably. At
the critical point, on the other hand, one needs to
measure an entire block of spins to obtain a reliable
estimate, with an error scaling with a character-
istic power-law O(L−1). The result is of notable
importance for experimentalmeasurements of non-
stabilizerness in a quantum many-body system, as
in a gapped phase this can be performed by few
spin measurements (even just a single spin).

As a last comment, our findings can be relevant
for the investigation of the emergence of quantum
spacetime in the context of AdS/CFT correspon-
dence: in a recent paper[61], the authors speculate
on the role of non-stabilizerness in AdS/CFT, and
argue that it is a key ingredient to fill the complex
structure of the AdS black hole interior, dual to
a CFT state. Magic state resource theory indeed
reveals itself as an important piece of information
that cannot be detected by only looking at the
entanglement. In this context, it is well known
that a quantum many-body system at the criti-
cality is described by a CFT[20, 66]. Our results
thus give insights regarding the role played by
non-stabilizerness in AdS/CFT correspondence:
this resource is delocalized in spatial degrees of
freedom as, at criticality only, it can be extracted
by a system containing L spins with an error de-
caying only polynomially in L. From this result,
it can be reasonably argued that delocalization of
non-stabilizerness is a universal property in CFT
quantum states – being the correlation functions
decaying polynomially – thus revealing fascinating
perspectives in the AdS/CFT correspondence.

Setup and model.— Let us start by briefly review-
ing the stabilizer Rényi entropy[62]. Consider aN -
qubit system and the decomposition of a state ρ in
the Pauli basis given by ρ = 1

2N

∑
P∈P(N) tr(Pρ)P

with P(N) being the Pauli group. The 2−stabilizer
Rényi entropyM2(ρ) is then defined as:

M2(ρ) := − logEP
[
tr2(Pρ)

]
(1)
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i.e., as the average of tr2(Pρ) on a state-dependent
probability distribution defined as P(ρ) :=
{2−N tr2(Pρ) tr−1(ρ2)}. It is interesting to note
that for ρ pure, M2(ρ) reduces to the 2-Rényi en-
tropy of the classical probability distribution P(ρ)
(modulo an offset of −N ).

We study the behavior of M2 in the ground
state of the transverse field Ising model for a spin
one-half N -site chain with Hamiltonian

H(λ) = −
N∑
i=1

(σxi σxi+1 + λσzi ) (2)

whereσαi , forα = x, y, z, are Paulimatrices defined
on the i-th site. The model displays a quantum
phase transition at λ = 1 between a disordered and
a symmetry-breaking phase. The critical point cor-
responds to a conformalfield theorywith c = 1

2 [67].
For λ→∞ and λ = 0 the Hamiltonian reduces to
a stabilizer Hamiltonian[68] with stabilizer groups
Z B P and X B P respectively. The model H(λ)
is integrable through standard techniques[69, 70].
First by a Jordan-Wigner transformation introduc-
ing fermionicmodes and subsequently by a Fourier
and a Bogoliubov transformations[71]. Following
these techniques, let us introduce the Majorana
operators Al and Bl:

Al :=
⊗
i<l

σzi ⊗ σxl ; Bl :=
⊗
i<l

σzi ⊗ σ
y
l . (3)

These operators obey the anti-commutation rela-
tions {Al, Al′} = {Bl, Bl′} = 2δll′ and {Al, Bl′} =
0.
The computation ofM2(λ) for the ground state

|GS(λ)〉 of such a class of Hamiltonians relies on
the fact that the ground state can be fully character-
ized by just the two-point correlation functions, by
virtue of theWick theorem: one can compute all the
correlation functions of an arbitrary product ofMa-
jorana fermions by just knowing the 2−point cor-
relation functions 〈AlAl′〉 = 〈BlBl′〉 = δll′ and[71]
〈AlBl′〉 ≡ 〈AlBl+r〉 ≡ Gr(λ), where:

Gr(λ) = − i
π

∫ π

0

sin θ sin θr − (λ− cos θ) cos θr√
sin2 θ + (λ− cos θ)2

.

(4)
Indeed, let C({i}k, {j}l) := 〈Ai1 · · ·AikBj1 · · ·Bjl

〉
be the expectation value on the ground state
|GS(λ)〉 of an arbitrary ordered product of Majo-
rana fermions, where {i}k := {i1, . . . , ik |N ≥ i1 >
. . . > ik ≥ 1} is a set of ordered indexes ranging
over all the sites. The computation of C({i}k, {j}l)
can be done through the Pfaffian technique[72]

which leads to C({i}k, {j}l) = 0 unless k = l and:

C({i}k, {j}k) =

∣∣∣∣∣∣∣∣∣
〈Ai1Bj1〉 〈Ai1Bj2〉 · · · 〈Ai1Bjk

〉
〈Ai2Bj1〉 〈Ai2Bj2〉 · · · 〈Ai2Bjk

〉
...

...
. . .

...
〈AikBj1〉 〈AikBj2〉 · · · 〈AikBjk

〉

∣∣∣∣∣∣∣∣∣
(5)

i.e. to compute the generic 2k-point correlators
of Majorana fermions, it is sufficient to compute
the determinant of a k × k matrix, which can be
efficiently done numerically by a poly(k) algorithm.
All the 2k-point correlations func-

tions, can be also obtained by consid-
ering the maximum rank 2N -point cor-
relation function of Majorana fermions
C({i}N , {j}N ) = 〈A1A2 · · ·ANB1B2 · · ·BN 〉;
indeed, it is easy to see that one can obtain any
correlation function of order 2k by considering
any minor of C({i}N , {j}N ) of lower rank k. Since
a N × N matrix contain

(
N
k

)2 minors of order
k, there are

∑N
k=0

(
N
k

)2 =
(2N
N

)
' 4N
√
N

nonzero
correlation functions of Majorana fermions.
Ground state non-stabilizerness.— In this section,

we compute M2(λ) in the ground state |GS(λ)〉
and discuss some of its properties. To this end,
we need the knowledge of all the 4N expectation
values of Pauli strings P ∈ P(N) on the ground
state |GS(λ)〉. Except for λ = 0, λ → ∞, all the
other points feature a non-trivial value for the
stabilizer Rényi entropy because the state cannot
be factorized.

It is easy to see that anyP ∈ P(N) can bewritten
(up to a global phase) as an ordered product of
Majorana fermions, as P ∝ Ai1 · · ·AikBj1 · · ·Bjl

for some {i}k, {j}l, which means that we can write
the 2-stabilizer Rényi entropy for |GS(λ)〉 as:

M2(λ) = − log 1
2N

∑
{i}k,{j}k≤N

C({i}k, {j}k)4.

(6)
As the above formula shows, the computation
of the non-stabilizerness requires ∼ 4N deter-
minants, which makes the computation expo-
nentially hard in N . Let us provide an upper
bound to the 2-stabilizer entropy given by the
0-stabilizer entropy M0(λ) ≥ M2(λ)[62], which
essentially counts the number of nonzero entries
card(|ψ〉) in the probability distribution P(|ψ〉 〈ψ|)
as M0(|ψ〉) := log card(|ψ〉) − N . As explained
above, there are

(2N
N

)
nonzero Majorana correla-

tions functions and thus we can upper bound the
2-stabilizer Rényi entropy asM2(λ) . N − 1

2 logN .
We evaluate numerically formula Eq. (6) forN =

5, . . . , 12, see Fig. 1. The calculations clearly show
a linear behavior of the stabilizer Rényi entropy
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Figure 1: Numerical simulations of the stabilizer
Rényi entropy of the ground state |GS(λ)〉 of the
Hamiltonian in Eq. (2) for λ = 0.1, 0.3, 0.6, λ = 1
and λ = 2, 2.5, 5 as a function of the length of the
chain N ∈ [5, 12]. The curves are fitted to be
straight lines for any λs, with slopes α(λ) and
intercepts β(λ) fitted in the top-left corner.

for any λ 6= 0,∞:

M2(λ) = α(λ)N + β(λ) (7)

with both the slope α(λ) and the intercept β(λ) de-
pending on the intensity λ of the external magnetic
field. In particular, we observe an increasing slope
α(λ) from λ = 0 towards the criticality at λ = 1,
where α(λ) approaches its maximum α(1) ≈ 0.44,
and then it start decreasing again in the disordered
phase, λ > 1. We thus find agreement with the
result in [13]: the ground state at the critical point,
and the corresponding 1

2 CFT, achieves the highest
value of non-stabilizerness among the λs. How-
ever, this result does not tell us the full story, as
the behavior of non-stabilizerness with λ is quite
smooth and is O(N) for every value of λ. As
we show in the following section, the locality of
the interactions together with a gap implies that
non-stabilizerness is localized, whereas at the criti-
cal point non-stabilizerness cannot be resolved by
local measurements.
Access non-stabilizerness by local measurements.—

Although more amenable than a minimization
procedure[73], computing the stabilizer entropy
is an exponentially difficult task. However, the
locality of the interactions in the Hamiltonian and
the presence of a gap results in a fast decay of
correlation functions in the ground state, while
a power-law characterizes the critical point. One
thus wonders if one can exploit this locality to ac-
cess the stabilizer Rényi entropy by local quantities.
This results both in the possibility of a realistic ex-
perimental measurement of non-stabilizerness in

the ground state of quantum many-body systems
and a computational advantage.
Let us focus on asymptotic behavior in N ,

so that M2(λ) ≈ α(λ)N . We refer to α(λ) as
the density of non-stabilizerness. In the above, ≈
stands for ’up to an order N−1’. Now, it is clear
that if one is able to measure the density α(λ),
then one accesses the non-stabilizerness of the
ground state. Can we measure the density of
non-stabilizerness α(λ), by just looking at the lo-
cal properties of the reduced density matrix of
L spins? To answer the question, we first divide
the chain of N sites into N/L sub-chains of L
first neighbor sites. Consider the following quan-
tummapL(|GS(λ)〉 〈GS(λ)|⊗N/L) =

⊗N/L−1
s=0 ρLi ,

where ρLs := trN−Ls(|GS(λ)〉 〈GS(λ)|) where
Ls = (sL + 1, . . . , (s + 1)L). To estimate the den-
sity of non-stabilizerness α(λ) of the ground state
we thus measure the density αL(λ) present in
a subsystem of size L. Thanks to the transla-
tional invariance of the Hamiltonian in Eq. (2),
all the reduced density matrices are equal to
ρL ≡ trN−L0(|GS(λ)〉 〈GS(λ)|), and thus the lo-
cal density of non-stabilizerness αL(λ) depends
on the number of sites L of the sub-chains and
not on their locations. Define the L−density of
non-stabilizerness as:

αL(λ) := 1
L
M2(ρL) (8)

where M2(ρL) is the Stabilizer Rényi entropy of
the mixed state ρL (see Eq. (1)) which in terms of
Majorana correlation functions reads:

M2(ρL) = − log
∑
{i}k,{j}k≤L C({i}k, {j}k)4∑
{i}k,{j}k≤L C({i}k, {j}k)2 . (9)

The latter equation, unlike Eq. (6), contains only
correlation functions on at most L sites, thus it
does not involve global measurements, rather it
involves just measurements on local observable
via the reduced density matrix ρL, which makes it
analytically computable for a reasonable L. First
note that for L→ N , one has αL(λ)→ α(λ). Then,
how good is the approximation for a finite L, and
how does it depend on λ? Let us look at the ac-
curacy of the measurement of the L−density of
non-stabilizerness by looking at the percent error
εL(λ) := |α(λ)−αL(λ)|

α(λ) we make by measuring the
density of non-stabilizerness via local measure-
ments. We find that, away from the criticality, i.e.
in the regions λ � 1 and λ � 1, ελ(L) < 0.001
for any L. We thus conclude that, away from the
critical point, one can access the non-stabilizerness
of the ground state by just measuring the non-
stabilizerness of the density matrix of an O(1) of
spins, in fact, even a single qubit density matrix ρ1.
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We show the agreement between the the 1−density
of non-stabilizerness α1(λ) and the density of non-
stabilizerness α(λ) in Fig. 2 for λ > 1. The region
λ < 1 features the same behavior, indicating that
the non-stabilizerness does not reveal the symme-
try of the ground state.
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Figure 2: Plot of the single spin density of
non-stabilizerness α1(λ) for λ−1 ≤ 0.6, computed
in Eq. (10), versus the density of non-stabilizerness
α(λ) extracted through the fits in Fig. 1.

The situation changes at the critical point, i.e.
λ = 1: one finds εL(λ) = O(L−1), cfr. Fig. 3.
The different behaviors of the error, i.e. O(1) vs.
O(L−1), are reminiscent of different behavior of
the entanglement entropy, displaying an area law
everywhere, but at the critical point where the
entanglement entropy of a density matrix ofL spin
scales as ∼ logL.
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L

0.02

0.03

0.04

ε L
(1

)

εL(1)

γ L−1

Figure 3: Comparison of the error εL(1) for
L ∈ {5, 11}with the fit γL−1 with
γ = 0.2034± 0.0002.

Thus, away from the critical point, the approxi-
mation works great also for L = 1, which can be
computed by hand: the single site density matrix

reads[23] ρ1(λ) = 1
2 (I + 〈σz〉σz), whose stabilizer

Rényi entropy:

M(ρ1(λ)) = log 1 + 〈σz〉2

1 + 〈σz〉4
. (10)

where | 〈σz〉 | = G0(λ), cfr. Eq. (4); see the insert in
Fig. 2 for a plot.
In the following, we lay down a theoretical ar-

gument supporting the fact that measuring the
single spin density of non-stabilizerness is already
sufficient away from the critical point λ = 1. It
is well known that[71], away from the criticality
(w.l.o.g. let us say λ� 1), the 2-point correlation
functions in Eq. (4) decay faster than exponen-
tially with r. By making the first order expan-
sion Gr(λ) ' G0(λ)δr,0, one gets a fair approxi-
mation of Gr(λ) as long as the higher terms in
r 6= 0 are exponentially suppressed. By using
the above form of the 2-correlation functions to
compute higher-order functions as in Eq. (5), one
gets |C({i}k, {jk})| = |G0(λ)|kδ{j}k

{i}k
. This means

that the only nonzero correlation functions corre-
spond to Pauli operators belonging to the subgroup
Z ≤ P(N) containing all the σz Pauli strings. The
fact that the Pauli strings that count are those
belonging to Z can be also understood by look-
ing to the Hamiltonian in Eq. (2): for λ � 1 the
dominant term is λ

∑
i σ

z
i whose eigenstates are

stabilizer states belonging to the stabilizer group
Z. In other words, we are estimating the average
in Eq. (6) by (importance) sampling the probabil-
ity distribution with Pauli strings P ∈ Z. Thus,
the estimated density of non-stabilizerness can be
computed as

α(λ) ' − 1
N

log
∑
{i}k,{j}k≤N G0(λ)4δ

{j}k

{i}k∑
{i}k,{j}k≤N G0(λ)2δ

{j}k

{i}k

(11)

where we introduced a normalization over the
sampling given by

∑
{i}k,{j}k≤N C({i}k, {j}k)2, cfr.

Eqs. (1) and (6). The straightforward compu-
tation of Eq. (11), together with the fact that
G0(λ)2 = 〈σz〉2 leads to Eq. (10). Thus, the den-
sity of non-stabilizerness estimated by importance
sampling does coincide with the L−density of
non-stabilizerness with L = 1.
The fact that one can access non-stabilizerness

from local measurements is nontrivial and in
general, is not true. We can show it by con-
sidering a simpler example: suppose to have
a bipartite system AB, a random pure state
|ΨAB〉 and consider the percent different in non-
stabilizerness εAB = (MAB − MA − MB)/MAB ;
here MAB ,MA,MB are the stabilizer Rényi en-
tropies of |ΨAB〉 and ρA = trB(|ΨAB〉 〈ΨAB |)
and ρB respectively. Thanks to the typicality of
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the stabilizer Rényi entropy[62] and the 2-Rényi
entropy[36] over the set of Haar-random states,
one gets εAB ≈ 1 (up to an exponentially small
error in dim(AB)), which means that the non-
stabilizerness cannot be accessed locally for the
majority of states in the Hilbert space. The above
argument can be straightforwardly generalized to
the case of the multipartite system A1A2 · · ·Ah.

Conclusions and Outlook.— The complex pattern
of the ground-state wave-function of a quantum
many-body system depends on the interplay be-
tween its entanglement and the non-Clifford re-
sources, or non-stabilizerness, that it contains.
Although both in the gapped phase and at the
critical point the ground state of the transverse
field Ising model contains an extensive amount
of non-stabilizerness, away from criticality this is
localized. On the other hand, at the critical point,
its non-stabilizerness is delocalized and described
by a power law.
These results raise a number of questions. First

of all, one could extend these methods to models
featuring localization through disorder or frus-
tration. One expects that any form of local-
ization would result in being able to evaluate
non-stabilizerness by few-site quantities. Second,
the same methods can be used to study the dy-
namics of a quantum many-body system after a
quench. It would be interesting to seewhether non-

stabilizerness delocalizes as the system evolves in
time and if equilibration ensues. Moreover, it
is very intriguing to study the behavior of non-
stabilizerness in such systems when integrability
is broken. The role of quantum complexity implied
in the conjunction of non-stabilizerness and entan-
glement for the onset of thermalization and non-
integrable behavior has been recently studied in
the context of doped quantum circuits[74–76] and
Hamiltonians[77, 78], but a local quantum many-
body system is its most natural setting. The main
result of this paper opens the way to the experi-
mental measurement of non-stabilizerness by local
measurements, for instance, in ultra-cold atom
gases realizing the Bose-Hubbard model. Finally,
although further investigation is necessary, we can
argue that the delocalization of non-stabilizerness
at the critical point suggests that the CFT theory,
underlying critical many body systems, enjoys
delocalization of non-stabilizerness as well.
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