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We consider the application of the entanglement criteria derived by Hillery and Zubairy [Phys.
Rev. Lett. 96, 050503 (2006)] to the detection of entanglement in N-qubit systems. For N = 2
qubits we show that with the natural choice of operators one of the criteria never detects entangle-
ment, and derive conditions for the other criterion to work, and for it to have a simple relation to
the negativity when it does. For general angular momenta we show the Hillery-Zubairy relations
can always detect the entanglement of the (pure) states of well-defined total (J, Jz) if the “test”
operators are chosen appropriately. We then show how this may be used, in particular, to develop
useful criteria to detect entanglement in a system of N two-level atoms interacting with a field
initially in a number state (Tavis-Cummings model).

PACS numbers: 03.67.Lx, 42.50.Ex, 42.50.Dv

I. INTRODUCTION AND MOTIVATION

Entanglement is a valuable quantum resource, and
hence it is useful to have ways to determine experimen-
tally whether two quantum systems are entangled, par-
ticularly if this can be done only through measurements
carried out on the separate systems. Several criteria have
been developed to this end over the years; see, e.g., [1–
13] for a partial list. Most of these only detect certain
types of entanglement, and many are only sufficient, but
not necessary conditions for entanglement. This means
in general one must resort to several different criteria in
order to get as complete a picture as possible of what is
going on in the system under study.
In this paper we focus on the two entanglement condi-

tions derived by Hillery and Zubairy in [10], initially for
two modes of the radiation field, but since then extended
to other systems [12, 14]. For a bipartite system, if A and
B are non-Hermitian operators, each acting on one of the
two subsystems, the joint state is entangled if either one
of the following conditions holds:

|
〈

AB†〉 |2 >
〈

A†AB†B
〉

(1a)

| 〈AB〉 |2 >
〈

A†A
〉 〈

B†B
〉

(1b)

Although sufficient, these conditions are in general not
necessary for entanglement. In applications to finite-
dimensional systems, it has generally been found that
(1a) is the more useful of the two criteria, and we will
show this to be the case here as well.
Generally speaking, the goal of this paper is to explore

the usefulness of the criteria (1) to detect entanglement
in systems involving a finite number of qubits. We start
by looking at the simplest case, a two-qubit system, to
develop an intuition for the way the criterion (1) detects
entanglement, and for when it fails to do so; we also
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discuss the similarities and differences with a necessary
and sufficient criterion that has been presented in [15].
We then use these insights to propose specific choices for
the operators A and B to detect different kinds of en-
tanglement in spin systems, extending the results of [14].
Finally, we illustrate their usefulness with one specific
example, namely, by looking at entanglement between
the atoms in the Tavis-Cummings model with the field
initially in a number state. Here again we compare the
results obtained with our criteria to others that have been
derived previously, in particular in [3, 7, 13].

II. TWO QUBITS

A. Density matrix parametrization

We start with the simplest case of two qubits, or spin- 1
2

particles, where we will use the standard quantum infor-
mation convention of identifying the state |0〉 with the
positive-eigenvalue eigenstate of σz. For the operators A
and B we will consider initially either σ+ = (σx + iσy)/2
or σ− = (σx − iσy)/2, and later their transformations by
local unitaries.
We will consider in this section only density operators

of the following form:

ρ =
1

4







1 + t3 0 0 t1 − t2
0 1− t3 t1 + t2 0
0 t1 + t2 1− t3 0

t1 − t2 0 0 1 + t3







= λ1
∣

∣Ψ+
〉 〈

Ψ+
∣

∣+ λ2
∣

∣Φ+
〉 〈

Φ+
∣

∣

+ λ3
∣

∣Φ−〉 〈Φ−∣
∣+ λ4

∣

∣Ψ−〉 〈Ψ−∣
∣ (2)

with λ1 = 1

4
(1 + t1 + t2 − t3), λ2 = 1

4
(1 + t1 − t2 + t3),

λ3 = 1

4
(1− t1 + t2 + t3), λ4 = 1

4
(1− t1 − t2 − t3). The

quantities ti may be assumed to be ordered so that

1 ≥ t1 ≥ t2 ≥ |t3| (3)
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and the |Φ±〉 , |Ψ±〉 are the Bell states. The condition
(3) ensures all the eigenvalues λi are nonnegative, ex-
cept possibly the last one, which requires the additional
condition

t1 + t2 ≤ 1− t3 (4)

The matrix (2) is written in the standard basis. While
not the most general form possible for a two-qubit sys-
tem, it was shown in [16] that most density matrices can
be transformed into a form essentially equivalent by local
Lorentz transformations acting on each qubit separately.
Special instances of density operators of the form (2) have
also been shown to have interesting properties, such as
maximizing entanglement for a given degree of mixedness
[17]; they are, in turn, a subset of states that were origi-
nally studied in that context by Ishizaka and Hiroshima
[18] and which came to be called later “X states” [19].
It is easy to see that the eigenvalues, λ′i of the partial

transpose matrix ρTB are λ′1 = 1

4
(1 + t1 + t2 + t3), λ

′
2 =

1

4
(1 + t1 − t2 − t3), λ

′
3 = 1

4
(1 − t1 + t2 − t3), and λ′4 =

1

4
(1 − t1 − t2 + t3). Because of the assumption (3), only

the last of these eigenvalues can be negative, which means
that the negativity [20] of the state (2) is given by

N(ρ) = ‖ρTB‖1 − 1 =
1

2
(|λ′4| − λ′4)

= max

{

0,
1

4
(t1 + t2 − 1− t3)

}

(5)

Put differently, the state (2) is entangled if and only if

t1 + t2 > 1 + t3 (6)

Note that this condition, together with (4), forces t3 to
be negative.

B. Hillery-Zubairy criteria with A, B lowering

operators

We can now check how well the Hillery-Zubairy con-
ditions do at detecting this entanglement. Starting with

the choice A = σ−,a = |1〉a 〈0| and B = σ−,b = |1〉b 〈0|,
it is easy to see that

〈

AB†〉 = Tr(ρAB†) = Tr(ρ |10〉 〈01|) = 1

4
(t1 + t2)

(7a)
〈

A†A
〉

= Tr(ρ |0〉a 〈0|) = 〈00| ρ |00〉+ 〈01| ρ |01〉

=
1

2
=
〈

B†B
〉

(7b)

〈

A†AB†B
〉

= Tr(ρ |00〉 〈00|) = 1

4
(1 + t3) (7c)

From (3), (7a) and (7b), it follows that the second con-
dition, (1b), can, in fact, never happen in the two-qubit
system. On the other hand, the first condition, (1a), is
equivalent to 1

16
(t1 + t2)

2 > 1

4
(1 + t3), or

t1 + t2 > 2
√
1 + t3 (8)

Since t3 is always a number between −1 and 1, one al-
ways has 2

√
1 + t3 ≥ 1+t3, and so Eq. (8) always implies,

but is not equivalent to, Eq. (6); that is to say, there are
entangled states (satisfying Eq. (6)) that do not satisfy
Eq. (8), and therefore are not detected by the entangle-
ment criterion (1a).

Moreover, the quadratic dependence of |
〈

AB†〉 |2 on
t1 + t2, compared to the negativity (5), means that
|
〈

AB†〉 |2 −
〈

A†AB†B
〉

is not an entanglement mono-
tone. For example, suppose you change t1 → t1 + ǫ
and t3 → t3 + 0.9ǫ. Then, if ǫ > 0 the negativity (and
hence the entanglement) increases by an amount 0.1ǫ,
but |

〈

AB†〉 |2 −
〈

A†AB†B
〉

changes as

1

16
(t1 + t2 + ǫ)2 − 1

4
(1 + t3 + 0.9ǫ) =

1

16
(t1 + t2)

2 − 1

4
(1 + t3) +

ǫ

4

[

1

2
(t1 + t2) +

ǫ

4
− 0.9

]

(9)

and the quantity in square brackets on the right-hand
side can be positive or negative depending on the actual
value of ǫ (note an overall negative value is perfectly pos-
sible, since t1+ t2 can be as small as 1.6 and still register
entanglement).

Despite this negative general result, we find there
are special situations—typically involving families of

states depending on fewer parameters, or with some
symmetries—for which the difference |

〈

AB†〉 |2 −
〈

A†AB†B
〉

is an entanglement monotone. A couple of
examples are presented in the next subsection.



3

C. Optimizing the choice of A and B via local

unitaries

The results from the previous subsection depend on
the density matrix adopting a certain form (which, in
general, can only be achieved after performing suitable
unitary, local transformations on both subsystems), and
also on special choices for the operators A and B. It is
natural to ask if some other choices of A and B, related
to σ− by local unitary transformations, could be better
at detecting the entanglement of states like (2), for given
values of the parameters ti. Specifically, we want to look
for local unitary operators Ua and Ub to apply to σ−,
so that the inequalities (1) will be satisfied for entangled
states by the transformed operators

A = U †
a |1〉a 〈0|Ua =

(

− cosψ sinψ cos2 ψ
− sin2 ψ cosψ sinψ

)

B = U †
b |1〉b 〈0|Ub =

(

− cos θ sin θ cos2 θ
− sin2 θ cos θ sin θ

)

(10)

We consider only real transformations, since the density
matrix form (2) is itself real, and therefore parametrize
them by just two angles, ψ and θ. After some algebra,
we obtain

〈

AB†〉 =
1

4
(t2 + t1 cos 2ψ cos 2θ + t3 sin 2ψ sin 2θ)

=
〈

A†B
〉

(11a)

〈

A†A
〉

=
1

2
=
〈

B†B
〉

(11b)

〈

A†AB†B
〉

=
1

4
(1 + t3 cos 2ψ cos 2θ + t1 sin 2ψ sin 2θ)

=
〈

AA†BB†〉 (11c)

Once again, it’s easy to see from Eqs. (11) that the
second criterion, inequality (1b), never holds, since
Eq. (11a) is maximized by (t1 + t2)/4, which is always
≤ 1

2
. On the other hand, it is also easy to see that

even with this rather general form of the operators A
and B, the criterion (1a) still fails to detect some of
the entangled states of the form (2). Foe a specific ex-
ample, take t1 = t2 = −t3 = 1

2
. This gives an en-

tangled state, with negativity 1

8
(according to Eq. (5)),

yet
〈

AB†〉2 = (1 + cos[2(ψ + θ)])2/64 <
〈

A†AB†B
〉

=

(1− 1

2
cos[2(ψ + θ)])/4.

On the other hand, one may indeed use the trans-
formed operators (10) to detect entanglement in states
that do not necessarily satisfy the inequality (8). A par-
ticularly interesting choice is to make sin 2ψ sin 2θ = −1,
which yields the condition for entanglement

t2 − t3 > 2
√
1− t1 (12)

Like Eq. (8), this implies Eq. (6), but is not equivalent
to it, and since it is also different from (8) it can be used

to identify a different set of entangled states. This set
includes states that are an incoherent superposition of
only two Bell states, for which, with the parametrization
(2) and the condition (3), one must have t1 = 1 and
t2 = −t3, in which case one has

〈

AB†〉2 −
〈

A†AB†B
〉

=
t22
4

= N(ρ)2 (13)

That is, in this case the quantity
〈

AB†〉2 −
〈

A†AB†B
〉

is indeed an entanglement monotone, equivalent to the
square of the negativity.
Another example of a family of states for which this

works is provided by the reduced-rank density operators
considered in [16] and given by

ρ =
1

2a







a+ c 0 0 d
0 0 0 0
0 0 b− c 0
d 0 0 a− b






(14)

which do not belong to the same equivalence class as (2)
under local Lorentz transformations, and are entangled
if and only if d 6= 0, with negativity

N(ρ) =
a

4

(

√

4d2 + (b− c)2 − (b − c)
)

(15)

Choosing A = |1〉a 〈0| and B = |0〉b 〈1|, it is easy to see
that

〈

A†AB†B
〉

= 0 and
〈

AB†〉 | = |d/2a|.

D. Building a necessary and sufficient criterion: a

physical interpretation

The reason the conditions (8) and (12) do not detect
all the entangled states of the form (2) is because they
are too strong: to have entanglement it is enough to have
t1 + t2 greater than 1+ t3, it is not necessary for it to be
also larger than 2

√
1 + t3. Equations (7) then suggest,

therefore, that a better criterion than (1) for a system of
two qubits might be simply

|
〈

AB†〉 | >
〈

A†AB†B
〉

(16)

where, for systems described by the density matrix (2),
the optimal choice of A and B is A = B = σ±. Un-
fortunately, while (16) is both a necessary and sufficient
entanglement condition for systems whose density ma-
trix is of the form (2), it is not necessary in general,
since it easy to find product states that also satisfy
it. For example, letting |ψ〉 = (cos θ |0〉 + sin θ |1〉) ⊗
(cosφ |0〉 + sinφ |1〉), and A = |1〉a 〈0|, B = |1〉b 〈0|, we
have |

〈

AB†〉 | = | cos θ sinφ sin θ cosφ| and
〈

A†AB†B
〉

=

cos2 θ cos2 φ, so the inequality (16) will be satisfied when-
ever | sinφ sin θ| > | cosφ cos θ|, which is not at all diffi-
cult to arrange.
At this point, it may be useful to consider what

the original criterion (1a) is telling us about an en-
tangled state that it can actually detect, such as
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|Ψ+〉 = 1√
2
(|10〉+ |01〉). With the choice of A and B

above, we find
〈

AB†〉 = 〈Ψ+| (|10〉 〈01|) |Ψ+〉 = 1

2
and

〈

A†AB†B
〉

= | 〈00|Ψ+〉 |2 = 0. So what we are com-
paring is the following: how much the system’s state re-
sembles the original state after we change the value of a
variable of system A from 0 to 1 and simultaneously a
variable of system B from 1 to 0 (left-hand side of the in-
equality), versus the plain probability to find the value 0
for both variables simultaneously in the separate systems
(right-hand side of the inequality).
Now this makes sense for the following reason: in a

bipartite entangled state, there must be some variable in
each system that does not have a definite value by it-
self, because it is in a correlated superposition with the
other variable in the other system. Thus, changing the
state in a way that preserves the correlation (as above,
|01〉 → |10〉) should still yield a substantial overlap with
the initial state, which we then compare to the prob-
ability of the two variables having simultaneously well-
defined values that violate this correlation (in this case,
|00〉).
In the original criterion (1a), to make sure we do not

get “false positives” as with (16), it is necessary to square
the left-hand side—that is to say, to make sure it is large
enough. Yet, as we have shown in the previous sections,
this is actually asking for too much, and the criterion
(1a) ends up missing a substantial fraction of the entan-
gled states. The above discussion, however, immediately
suggests another possibility, based on symmetry: in the
example above, we are testing the strength of the coher-
ent superposition/correlation |10〉 + |01〉 versus that of
the alternative, incoherent (“classical”) correlation |00〉.
Yet, since the states |1〉a and |1〉b are also involved in the
quantum correlation, it would make sense to include the
state |11〉 as well on the classical side of the inequality.
In other words, to try a criterion like

|〈ψ| (|10〉 〈01|) |ψ〉|2 > | 〈00|ψ〉 |2| 〈11|ψ〉 |2 (17)

With the A and B operators introduced above, this
“new” criterion can be written

|
〈

AB†〉 |2 >
〈

A†AB†B
〉 〈

AA†BB†〉 (18)

It turns out that the inclusion of the factor | 〈11|ψ〉 |2 on
the right-hand side of (17) is just enough to eliminate
the “false positives,” so (17) can only hold for entan-
gled states; moreover, as it turns out, it is now possible,
for every entangled state of two qubits (whether pure or
mixed, and not restricted to the form (2)), to find opera-
tors A and B so that (18) is satisfied, that is, the entan-
glement is detected. This can again be easily checked for
the states of the form (2) that we have considered above,
but its full generality actually follows from the results in
Ref. [15], because, in fact, our “new, improved” criterion
(18) is not new at all, just a rephrasing of a result in [15].
Indeed, in Ref. [15], Wölk, Huber and Gühne have es-

tablished that the inequality

| 〈A1A2B1B2〉 |2 >
〈

A1A
†
1B

†
2B2

〉〈

A†
2A2B1B

†
1

〉

(19)

(where Ai and Bi are arbitrary operators acting on sub-
systems A and B of a bipartite system) (i) can only be
satisfied by entangled states, (ii) is only satisfied by states
with a negative partial transpose, and (iii) will in fact
detect all the entangled states of a two-qubit system,
with the choice of operators A1 = |a1〉 〈φ|, A2 = |φ〉 〈a2|,
B1 = |b1〉 〈ξ|, B2 = |ξ〉 〈b2|, where |φ〉 and |ξ〉 are arbi-
trary pure states in A and B respectively, and {|a1〉 , |a2〉}
and {|b1〉 , |b2〉} are appropriate orthogonal (i.e., basis)
states in A and B chosen based on the Schmidt decom-
position of the eigenvector corresponding to the nega-
tive eigenvalue of ρTA (see Theorem 4 of [15]). Note
that, in terms of these operators, we just have to define
A = A1A2 = |a1〉 〈a2| and B† = B1B2 = |b1〉 〈b2| to re-
cover our criterion (18), from (19), with A and B raising
and/or lowering operators in an appropriate basis.
Additionally, according to Theorem 3 of [15], choosing

the Ai and Bi operators to have the form A1 = |a1〉 〈φ|,
A2 = |φ〉 〈a2|, B1 = |b1〉 〈ξ|, B2 = |ξ〉 〈b2| is always op-
timal for use with the criterion Eq. (19), for bipartite
systems of any dimension. In that case, (19) will again
take the form (18), with A = |a1〉 〈a2| and B† = |b1〉 〈b2|,
although the optimal choice of the |ai〉 and |bi〉 states is
not trivial in general when the systems are not qubits. If
we choose |a1〉 and |a2〉 to be mutually orthogonal, and
likewise |b1〉 and |b2〉, we can think of the ai as repre-
senting different values of some observable in system A,
and likewise for the bi. Then (18) becomes an inequal-
ity relating the density matrix elements in a basis that
includes the states |ai〉 |bj〉:

|ρa2b2,a1b1 |2 > ρa2b1,a2b1ρa1b2,a1b2 (20)

(Cf. Eq. (19) of [15], and inequality I in [21].) In this form
our previous interpretation becomes apparent: the crite-
rion compares the strength of a nonclassical correlation
(a coherent superposition, expressed by the off-diagonal
element on the left-hand side), to the strength of two
alternative, incompatible [22], classical correlations, ex-
pressed by the diagonal elements on the right-hand side.

E. Discussion

Both the Hillery-Zubairy and Wölk-Huber-Gühne cri-
teria require one to make a good choice of the operators
A and B, or equivalently, for the criterion (20), of the
basis in which to write the density operator. Note that
if the density operator ρ is known already in some basis,
there is really no point in pursuing such an “optimiza-
tion” approach, since in general it would be faster to just
compute the eigenvalues of the partial transpose ρTA , and
we know that the criterion (19) only detects states with a
negative partial transpose in the first place. (The original
Hillery-Zubairy criteria can be trivially derived from (19)
by setting some of the operators appearing in it equal to
the identity.)
These criteria, therefore, are only useful in practice

if the full density matrix is not immediately available



5

(as in an experimental situation), and, especially, if one
already has some idea of what correlations to test for,
or alternatively, what the entangled variables are likely
to be. Under those conditions, the key difference be-
tween Eq. (1) and Eq. (20) is that the former requires
one to measure some operators, whereas the latter re-
quires one to measure specific density matrix elements.
Although the latter can, in principle, be done, by ap-
propriate quantum tomographic techniques, the former
will in general be simpler (even though the operators in
(1) are non-Hermitian, one can always obtain the corre-
sponding expectation values by measuring the Hermitian
combinations A+A† and i(A−A†)).
For qubits, this distinction between between measur-

ing elements of ρ and measuring operators is pretty much
meaningless, since all the elements of the density matrix
can be written in terms of expectation values of appropri-
ate combinations of the Pauli matrices corresponding to
the spin components. For larger-dimensional systems, on
the other hand, the Hillery-Zubairy criterion, although in
general less powerful (as we have seen), may have an ad-
vantage in terms of ease of use in experiments, especially
if, as mentioned above, one has some notion of what kind
of correlations to look for in the first place. In the follow-
ing Section we present an important example in support
of this idea.

III. LARGER-DIMENSIONAL BIPARTITE

SYSTEMS

A. Qubits and angular momentum

It seems natural, when seeking to extend the crite-
ria (1) to larger-dimensional systems, to look at angular
momentum systems and use for the operators A and B
the angular momentum raising and lowering operators,
as was done for qubits in the previous section. Moreover,
groups of qubits can also be treated this way: defining a

collective raising operator Ja+ =
∑Na

i=1
σ+,i, one has an

angular momentum algebra corresponding to ja = Na/2.

In reference [14], Zheng, Trung Dung, and Hillery fol-
lowed this approach to investigate entanglement between
groups of qubits. They were able to identify situations
and special states where the second criterion, Eq. (1b)
could be used to detect entanglement; derived a more
powerful criterion starting from Eq. (1a) and requiring
invariance under local rotations of one of the subsys-
tems; and used their results to study entanglement in
spin waves. The remainder of this paper will follow a
similar pattern: first, in this section, we will look for
criteria that can be used to detect certain types of angu-
lar momentum correlations; then, in the next section, we
will apply these criteria to the study of entanglement in
a quantum-optical system of some importance, namely,
the Tavis-Cumming model.
B. Entangled states of total angular momentum

Consider two angular momentum systems, described
by Ja and Jb, and let the eigenstates of J

2
a and J

2
b

have angular momentum numbers ja and jb, respectively.
The eigenstates |j,m〉 of the total angular momentum J

2

(with J = Ja + Jb) and total Jz are always entangled,
except for the m = ±(ja + jb) cases. The property that
is in an entangled superposition is, of course, the z com-
ponent of the individual angular momenta. That is to
say, if the total Jz = m~, with ja + jb > m > 0 for def-
initeness, we can always write m = ja + jb − k for some
k > 0, and we will have

|j,m〉total =
k
∑

n=0

Cn |ja, ja − n〉a |jb, jb − k + n〉b (21)

Suppose we have a state that we suspect is close to,
but not quite, an eigenstate of the total Jz , and we want
to check to see whether it is entangled. If we could mea-
sure directly arbitrary matrix elements of the system, we
could test for entanglement using (20) in the form

| 〈ma,mb| ρ |ma + n,mb − n〉 |2 > 〈ma,mb − n| ρ |ma,mb − n〉 〈ma + n,mb| ρ |ma + n,mb〉 (22)

for appropriate ma, mb, and n.

Alternatively, we could try to use one of the Hillery-
Zubairy criteria (1), choosing operators A and B that
have nonvanishing matrix elements of the form appearing
on the left-hand side of Eq. (22). An obvious choice would
be to use powers of the raising operators, A = Ja

n
+ and

B = Jb
n
+. Additionally, note that Eq. (21) implies that

we can always make the right-hand side of Eq. (1a) equal
to zero by choosing the power of Ja+ and B = Jb+ equal

to the constant k that appears there, since

Ja
k
+ |ja, ja − n〉a = 0 except for n = k

Jb
k
+ |jb, jb − k + n〉b = 0 except for n = 0 (23)

and consequently Ja
k
+Jb

k
+ acting on the state (21) gives
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zero. On the other hand,

Ja
k
+Jb

k
−

k
∑

n=0

Cn |ja, ja − n〉a |jb, jb − k + n〉b

∝ Ck |ja, ja〉a |jb − k〉b (24)

and therefore

|
〈

Ja
k
+Jb

k
−

〉

|2 ∝ |C0Ck|2 > 0 (25)

which means the criterion (1a) is satisfied with A = Ja
k
+,

B = Jb
k
+.

For the case the total m is negative, one can write m =
−ja− jb+k, in which case an analogous reasoning shows
that now it is Ja

k
−Jb

k
− that gives zero when acting on the

state |j,m〉, whereas Jak−Jbk+ yields a nonzero result.
Equation (25) makes it clear that this choice of the ex-

ponent n in A = Ja
n
+ and B = Jb

n
+ amounts to testing the

superposition, in the state (21), of the two most distant
values of ma, and similarly for mb, and one might ask
whether this is always necessary. The tests that we have
run on small j cases suggest that this is indeed the case.
If we know the values of ja, jb, j andm, then k is uniquely
determined; on the other hand, if we do not know, say, j
or m, we can try testing for entanglement with the crite-
rion (1a), using a hierarchy of A = Ja

n
+, B = Jb

n
+, with

n = 1, 2, . . .2×min(ja, jb):

|
〈

Ja
n
+Jb

n
−
〉

|2 >
〈

Ja
n
−Ja

n
+Jb

n
−Jb

n
+

〉

(26)

For the case the total m is negative, one can write m =
−ja− jb+k, in which case an analogous reasoning shows
that now it is Ja

k
−Jb

k
− that gives zero when acting on

the state |j,m〉, whereas Jak−Jbk+ yields a nonzero result.
One then obtains the alternative set of criteria

|
〈

Ja
n
−Jb

n
+

〉

|2 >
〈

Ja
n
+Ja

n
−Jb

n
+Jb

n
−
〉

(27)

In general, we may want to use (26) when we expect
entangled states with total m > 0 to dominate, and (27)
when we expect a preponderance of m < 0.
In addition to the pure states of well-defined total an-

gular momentum considered above, many other entan-
gled states, both pure and mixed, can be detected by the
criteria (26), (27). For the left-hand side to be nonzero,
it suffices that the state have a nonvanishing coherence of
the form shown on the left-hand side of Eq. (22), whereas
the right-hand side will be zero for all the states that have
no populations (i.e., diagonal matrix elements) involving
both anma ≤ ja−n and anmb ≤ jb−n. Of course, some
entangled states that have such populations will still be
detectable, as long as they are sufficiently small.
It is straightforward to extend the approach developed

here to the detection of other types of entangled states.
Generally speaking, if we want to check for the presence
of an entangled superposition of the form

|ma,mb〉+ |ma + p,mb − q〉 (28)

with q, p positive or negative, we can use the criterion

(1a) with A = Ja
|p|
± , B = Jb

|q|
± , and the raising operator

is used on A (resp. B) if p > 0 (resp. q > 0), and the
lowering operator in the opposite case.
Finally, we note that all of the above has made use

only of the criterion (1a), as the obvious generalization
of (1b) appears to be weaker than (26) for detecting
the kind of entanglement considered here: in fact, for
the states (21) specifically, the closest one can get to
|
〈

Ja
n
+Jb

n
−
〉

|2 >
〈

Ja
n
−Ja

n
+

〉 〈

Jb
n
−Jb

n
+

〉

is equality of both
sides. This does not mean (1b) is useless, however:
as pointed out above, in Ref. [14] the authors found
| 〈Ja+Jb−〉 |2 > 〈Ja−Ja+〉 〈Jb−Jb+〉 could be used to de-
tect a different kind of entanglement among angular mo-
mentum systems. As this was well covered in [14], we
will not dwell any more on it here.

IV. APPLICATION: ENTANGLEMENT IN THE

TAVIS-CUMMINGS MODEL

In this Section we show how the criteria developed in
III.B can be used to study entanglement between the
atoms in the Tavis-Cummings model, which consists of
N two-level atoms interacting with a single-mode of the
quantized radiation field, in the rotating-wave approxi-
mation [23]. This is a system that has recently sparked
some interest in quantum information, as it could be re-
alized experimentally either in ion traps (with a phonon
instead of a photon field; see [27]) and in circuit QED
with superconducting qubits [28]. For N = 2 entangle-
ment in this system was studied using the tangle formal-
ism in [29], and it was also explored in [12] (for N = 2
in Section 3, and for large N in the Holstein-Primakoff
approximation in Section 6). This last work also used a
variation of the Hillery-Zubairy criteria, in a form that
allowed the authors to study entanglement between dif-
ferent kinds of systems, notably, in this case, the atoms
and the field. See also [30, 31] for other recent studies.
As noted in [23], the Hamiltonian for this system (on

resonance) can be written in the form

H = ~ω + ωJz + g(J+a+ a†J−) (29)

where the angular momentum operators are the sum of
N “spins”:

Jz =
~

2

N
∑

i=1

σiz , J± =
~

2

N
∑

i=1

σi± (30)

The total angular momentum J2 has j = N/2. The joint
eigenstates of Jz (eigenvalue ~m) and the photon num-
ber operator a†a (eigenvalue n), which we will write as
|m〉 |n〉, form a natural basis for the study of this system’s
dynamics, since the Hamiltonian (29) conserves the num-
ber of excitations n+m. An exact (though complicated)
solution was given by Tavis and Cummings in their orig-
inal paper [23].
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Here we will restrict ourselves to the case in which the
initial field state is a number state with |n0〉 photons, and
the initial state of the atoms is an eigenstate of Jz with
eigenvalue |m0〉. Under those circumstances, each value
of n in the total state will be associated with one and
only one value of m, and therefore the reduced density
operator of the atoms will be of the form

ρat =

N/2
∑

m=−N/2

|cm(t)|2 |m〉 〈m| (31)

At this point we may note that the atomic states |m〉
introduced above are nothing but the Dicke states [24]
for this collection of N pseudo-spin 1

2
systems. These

include states of interest for quantum information (such
as theW states) as well as metrological applications (see,
e.g., [25, 26] for relevant work and many references). Our
choice of initial state therefore ensures that the atomic
state at any later time is an evolving mixture of Dicke
states, and our purpose is to apply the criteria developed
here to investigate the entanglement of such mixtures.
In particular, if we divide the N atoms into two groups,

A and B, we can use the criteria (26) and (27) to study
the evolution of the entanglement between the two groups
for different initial conditions. Note that both the oper-
ators Ja

n
+Jb

n
− and Ja

n
−Ja

n
+Jb

n
−Jb

n
+ (as well as the corre-

sponding ones in (27)), when acting on a state |m〉, either
destroy it or preserve the total number of spins up and
down (N/2 +m and N/2−m, respectively), so their re-
strictions to the j = N/2 space are diagonal in the {|m〉}
basis. In principle, closed-form expressions for these ma-
trix elements could be obtained for arbitrary partitions
into sets ofNa andNb = N−Na atoms, using the explicit
expressions

Ja± =
~

2

Na
∑

i=1

σi±, Jb± =
~

2

N
∑

i=Na+1

σi± (32)

Here, we will only consider two types of partition: one
atom versus the rest, and (for evenN) half the atoms ver-
sus the other half. These are all the possibilities through
N = 4, which is the highest N we will treat explicitly.
Setting ~ = 1 for convenience (as we did in Section III),
we find, for the first type (Na = 1):

〈m| Ja+Jb− |m〉 = 1

N

(

N2

4
−m2

)

〈m| Ja−Ja+Jb−Jb+ |m〉 = 1

N

(

N

2
+m+ 1

)(

N

2
−m

)(

N

2
−m− 1

)

(33)

and, for the second one (Na = N/2)

〈m|Ja+Jb− |m〉 = N

4(N − 1)

(

N2

4
−m2

)

〈m|Ja−Ja+Jb−Jb+ |m〉 = 1

N !
(N/2−m)! (N/2 +m)!

N/2−m−1
∑

k=1

(m+ k + 1)2(N/2− k + 1)2

×
(

N/2

m+ k + 1

)(

N/2

N/2− k + 1

)

(34)

Although we have not been able to find a simpler
form for the last of these expressions, its evaluation
for specific cases is straightforward, and our numeri-
cal results suggest that, for given N , it is of the form
(N/2−m)(N/2−m−1) times a polynomial of order m3.
The corresponding expressions for 〈m| Ja−Jb+ |m〉 and
〈m| Ja+Ja−Jb+Jb− |m〉 (to be used with criterion (27))
are obtained from (33) and (34) by changing m to −m.
Note that Eqs. (33) and (34), and the absence of

off diagonal elements mentioned above, indicate that,

when restricted to the subspace spanned by the kets
{|m〉} for fixed j (that is, fixed N), both the operator
Ja+Jb− and Ja−Ja+Jb−Jb+ are, in effect, functions of
Jz; for instance, the first of Eqs. (33) essentially implies
Ja+Jb− = N/4 − J2

z /N . This means that the criterion
(26) becomes, for this system, an entanglement criterion
involving only the operator for the total population in-
version. For instance, explicitly, for a system of N atoms
the criterion for one of them to be entangled with the
rest becomes
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1

N

(

N2

4
−
〈

J2
z

〉

)2

>

〈(

N

2
+ 1 + Jz

)(

N

2
− Jz

)(

N

2
− 1− Jz

)〉

(35)

or, if (27) is used instead, the same expression with
Jz → −Jz. A similar explicit form for the criterion for
entanglement between two groups of N/2 atoms requires
evaluating the second of Eqs. (34) for specific values of
N , which is not hard; an explicit example is given be-
low, for the N = 4 case. In the following we show that
entanglement can, in fact, be detected by these criteria.

A. Two atoms

For N = 2 the two cases (33) and (34) coincide.
The possible values of m are −1, 0 and 1, and the only
nonzero matrix elements are 〈0| Ja+Jb− |0〉 = 1

2
and

〈−1|Ja−Ja+Jb−Jb+ |−1〉 = 1.
As mentioned above, we will assume an initial state of

the form |n0〉 |m0〉. Moreover, we will restrict ourselves to
the two most natural initial conditions: all atoms excited
with no photons present (|ψ0〉 = |N/2〉 |0〉) or all atoms in
the ground state (m0 = −N/2) with n0 photons present.
Either way, the state at any later time can be written as

|ψ(t)〉 = c1 |1〉 |p− 2〉+ c0 |0〉 |p− 1〉+ c−1 |−1〉 |p〉 (36)

where p = m0 + n0 is the initial total number of excita-
tions, and the entanglement criterion (26) (with n = 1)
can be written

1

4
|c0(t)|4 − |c−1(t)|2 > 0 (37)

whereas (27) yields the alternative

1

4
|c0(t)|4 − |c1(t)|2 > 0 (38)

The equations of motion for the coefficients ci are

ċ1 = −ig
√

2(p− 1) c0

ċ0 = −ig
√

2p c−1 − ig
√

2(p− 1) c− 1

ċ−1 = −ig
√

2p c0 (39)

They can easily be solved analytically, and the expres-
sions in (37) and (38) evaluated. Figure 1a shows the
left-hand side of (37) for four different cases: pure spon-
taneous decay (m0 = 1, n0 = 0), and evolution from
the ground state with n0 = 1, 2 and 3 photons respec-
tively, whereas Figure 1b shows the same for the left-
hand side of (38). As can be seen, the usefulness of (38)
decreases much faster than that of (37) as the number of
photons increases, and the probability to find the system
in the doubly excited state (and correspondingly 〈Jz〉)

increases: this is to be expected, since (38) was derived
from (27), which detects entanglement for states of nega-
tive total m. On the other hand, (38) is critical in estab-
lishing the important fact that the system with only one
excitation (m0 = −1, n0 = 1) is always entangled, except
at the times when c0 = 0 (see IV.C, below, for a general
proof of this result for arbitrary N).

(a)

(b)

FIG. 1: (a) The difference 1

4
|c0(t)|4−|c−1(t)|2 (positive values

indicate an entangled state of the two atoms) for four different
cases: pure spontaneous decay (m0 = 1, n0 = 0, solid line),
and evolution from the ground state with n0 = 1 (dashed
line), 2 (dotted line) and 3 (dot-dashed line) photons respec-
tively. (b) The same for 1

4
|c0(t)|4 − |c1(t)|2

.

In view of the fact that (37) and (38) are only suffi-
cient, not necessary conditions for entanglement, the fact
that no entanglement is seen for the spontaneous decay
case may appear suspect. Fortunately, as this simple case
involves only two qubits, we can verify that this is cor-
rect by calculating the negativity. In the four-state basis
{|ee〉 , |eg〉 , |ge〉 , |gg〉} (equivalent to the one used in sec-
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tion II, but here using e and g instead of 0 and 1 to avoid
confusion with the total Jz eigenstates), the reduced den-
sity matrix of the two atoms, after tracing over the field
state, is

ρ =









|c1|2 0 0 0
0 1

2
|c0|2 1

2
|c0|2 0

0 1

2
|c0|2 1

2
|c0|2 0

0 0 0 |c−1|2









(40)

and the negativity is N(ρ) = max{0,−λ′4}, with

λ′4 =
1

2

(

1− |c0|2

−
√

(1 − 2|c−1|2 + 2|c0|2(|c0|2 + 2|c−1|2 − 1)
)

(41)

Figure 2 shows −λ′4 for the same initial conditions illus-
trated in Fig. 1.

��� ��� ��� ��� ��� ��� ���

-���

-���

���

���

���

���

���

���

�	

FIG. 2: For the same initial conditions as in Figure 1, the fig-
ure shows −λ′

4 (where λ′
4 is the only eigenvalue of the partial

transpose of the matrix (40) that can become negative). The
negativity N(ρ) = max{0,−λ′

4}; a positive value of the nega-
tivity is a necessary and sufficient condition for entanglement
in this system.

As expected from the general considerations in Sec-
tion 2, the criteria (37) and (38) do miss some of the
entanglement, but in general, and taken together, they
can be used to approximately identify the times where
entanglement is largest in the two-atom system.
Note that, in this special case, the criterion (37) re-

duces to the ones we studied in Section II for two qubits,
if we just write A = |e〉a 〈g| and B = |e〉b 〈g| (and sim-
ilarly (38) if e and g are exchanged). This indicates
that, as suggested in Section III, this family of criteria
is a natural extension of the two-qubit case to higher-
dimensional systems.

B. Three atoms

For N = 3 we have j = 3

2
and m = − 3

2
,− 1

2
, 1
2
, 3
2
. The

matrix for N/2 − J2
z has two nonzero diagonal entries,

both equal to 2, corresponding to m = ± 1

2
, whereas the

matrix for the operator on the right-hand side of (35) has
only nonvanishing entries equal to 4, for m = − 1

2
, and 6

for m = − 3

2
. The criterion (35), therefore, becomes

4

3

(

|c−1/2|2 + |c1/2|2
)2 − 4|c−1/2|2 − 6|c−3/2|2 > 0 (42)

and the corresponding one with Jz → −Jz,
4

3

(

|c−1/2|2 + |c1/2|2
)2 − 4|c1/2|2 − 6|c3/2|2 > 0 (43)

if the total state of the system is written, as in the previ-
ous subsection, in the general form (with p initial quanta)

|ψ(t)〉 =
m=j
∑

m=−j

cm(t) |m〉 |p− (m+ j)〉 (44)

The equations of motion are now

ċ3/2 = −ig
√

3(p− 2) c1/2

ċ1/2 = −ig2
√

p− 1 c−1/2 − ig
√

3(p− 2) c3/2

ċ−1/2 = −ig
√

3p c−3/2 − ig2
√

p− 1 c1/2

ċ−3/2 = −ig
√

3p c−1/2 (45)

� � � � � ��
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FIG. 3: Entanglement, as indicated by positive values of the
left-hand sides of Eqs. (42) and (43), for a system of three
atoms starting from the ground state with n0 = 1 (solid line),
2 (dashed line), 3 (dotted line) and 4 (dot-dashed line) pho-
tons respectively. For n0 = 1, only the left-hand side of (43)
contributes (i.e., is greater than zero). For larger n0, how-
ever, its contribution is limited to small secondary minima,
here only visible for n0 = 2.

As was the case for N = 2, no entanglement is found
either by (42) or (43) for the spontaneous decay case,
m0 = 3

2
, n0 = 0. The cases in which the system starts

from the ground state with n0 = 1, 2, 3 and 4 photons are
illustrated in Figure 3, which shows only the maximum
of either 0, the left-hand side of (42), or the left-hand
side of (43). As before, the usefulness of the second cri-
terion, (43), is limited to the cases with few excitations:
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all the visible features in the figure for n0 = 3 and 4 come
from (42), and for n0 = 2 (43) only contributes the small
secondary maxima. On the other hand, (43) is essential
to show the entanglement for n0 = 1, since in that case
(42) is found never to hold, whereas (43) shows the state
is, in fact, virtually always entangled.

Note that, for m0 = − 3

2
, if n0 = 1 (resp. n0 = 2) only

the state(s) m = − 1

2
(resp. m = − 1

2
, 1
2
) can be excited.

The solution to Eqs. (45) in these two cases is sufficiently
simple to be included here:

n0 = 1 : |ψ(t)〉 = cos(
√
3gt)

∣

∣− 3

2

〉

|1〉 − i sin(
√
3gt)

∣

∣− 1

2

〉

|0〉

n0 = 2 : |ψ(t)〉 = 1

5

(

2 + 3 cos
(
√
10gt

)

)

∣

∣− 3

2

〉

|2〉 − i

√

3

5
sin(

√
10gt)

∣

∣− 1

2

〉

|1〉+ 2
√
6

5
sin2

(√
10

2
gt

)

∣

∣

1

2

〉

|0〉 (46)

In the first case the reduced density operator for the
atoms is formally equivalent to a two-qubit system, since
only two states of the two-atom subsystem are involved
(|gg〉 and (|eg〉+ |ge〉)/

√
2). The second case (and all the

others with n0 > 2) is formally equivalent to a qubit-
qutrit system, since the state |ee〉 is also involved. This
means that, in principle, the negativity would still pro-
vide a necessary and sufficient condition for entangle-
ment. Rather than engage in such a laborious calcula-
tion, however, we can use the equations (46) to under-
stand the main features of Figure 3 with some simple con-
siderations. In particular, the taller peaks in the n0 = 2
case happen when

√
10gt is close to an odd multiple of

π, since in that case the weight of the state
∣

∣− 3

2

〉

is very

small (1/25 = 0.04), that of the state
∣

∣− 1

2

〉

is zero, and

the state is almost entirely
∣

∣

1

2

〉

, which can be written

∣

∣

1

2

〉

=
1√
3

(

|egg〉+ |geg〉+ |gge〉
)

(47)

This is an entangled state, of the W form, like the one
observed experimentally in [28]. The preponderance of
m > 0 in the mix also explains why the entanglement
is not so readily detected by the criterion (43), which is
instead responsible for the small peaks; these happen at
times when c1/2 is small and the state

∣

∣− 1

2

〉

dominates,

although with a substantial contribution from
∣

∣− 3

2

〉

.

C. Four atoms

1. One atom versus the rest

With four atoms, to test for entanglement of any one
atom with the other three, Eqs. (33) (and the correspond-
ing ones with m → −m) yield the two entanglement in-

equalities

1

4

(

3|c1|2 + 4|c0|2 + 3|c−1|2
)2 − 6|c0|2 − 12|c−1|2

− 12|c−2|2 > 0 (48a)

1

4

(

3|c1|2 + 4|c0|2 + 3|c−1|2
)2 − 6|c0|2 − 12|c1|2

− 12|c2|2 > 0 (48b)

The equations of motion are now

ċ2 = −2ig
√

p− 3 c1

ċ1 = −2ig
√

p− 3 c2 − ig
√

6(p− 2) c0

ċ0 = −ig
√

6(p− 2) c1 − ig
√

6(p− 1) c−1

ċ−1 = −ig
√

6(p− 1) c0 − 2ig
√
p c−2

ċ−2 = −2ig
√
p c−1 (49)

As before, neither of the two inequalities detects entan-
glement at any time for the spontaneous emission case,
m0 = 2, n0 = 0. When starting from the ground state in-
stead, the inequality (48a) does not detect entanglement
for n0 = 1, but (48b) does, and shows essentially the
same result as for N = 2 and 3 atoms, namely, a regular
oscillation that implies entanglement at all times except
when c−1 = 0, which here happens for 2gt = nπ.
It is, in fact, possible to use the criterion (35), with

Jz → −Jz, to show that this is a general result, valid
for all N . First, in the case there is only one excita-
tion in the system, (m0 = −N/2, n0 = 1) the equations
of motion immediately show that |c−N/2|2 = cos2 θ and

|c−N/2+1|2 = sin2 θ, with θ = gt
√
N . The density op-

erator for the atomic system is therefore the incoherent
superposition of an entangled state |m〉 = |−N/2 + 1〉
and the product ground state |−N/2〉:

ρat = cos2 θ |−N/2 + 1〉 〈−N/2 + 1|+sin2 θ |−N/2〉 〈−N/2|
(50)

When the criterion (35), with Jz → −Jz, is applied to
this state, a little algebra shows that the inequality re-
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duces to

− (N − 1)2

N
sin4(gt

√
N) < 0 (51)

which is always satisfied, except when gt
√
N = nπ. Note

that, for N = 2, the state |−N/2 + 1〉 is a Bell state, and
for N > 2 a W state.
Leaving the n0 = 1 case aside, then, the graphs in

Fig. 4a focus on the less obvious cases with n0 = 2, 3 and
4. For n0 = 2, the large peaks in Fig. (4a) also come from
(48b), whereas (48a) contributes only a few small peaks.
As expected, as the number of excitations increases, and
the upper atomic levels become more populated, the sit-
uation is reversed, with (48b) contributing only one small
peak to the n0 = 3 graph and essentially nothing visible
to the n0 = 4 case.

2. Two atoms versus two

If instead of one atom versus three we want to test
the entanglement of any two atoms with the other two,
Eqs. (34) (and the corresponding ones with n → −m)
yield the inequalities

(

|c1|2 +
4

3
|c0|2 + |c−1|2

)2

− 8

3
|c0|2 − 4|c−1|2 − 4|c−2|2 > 0

(52a)
(

|c1|2 +
4

3
|c0|2 + |c−1|2

)2

− 8

3
|c0|2 − 4|c1|2 − 4|c2|2 > 0

(52b)

Again no entanglement is detected for the sponta-
neous emission case, and for the system starting from
the ground state the results are also remarkably similar
to the 1-to-3 case, as figure 4b shows, the only visible dif-
ference being two small peaks for n0 = 3 (near gt = 1.5
and 3.4).
On the other hand, this is also the first opportunity to

test the criteria (26) and (27) with n > 1, namely, n = 2
(clearly, these criteria cannot be applied to the study of
the 1-to-N − 1 split, since acting on a single spin J2

± will
necessarily give zero). We do not have general formulas
for arbitraryN andm, but it is easy to see that forN = 4
(26) and (27) yield the inequalities

|c0|4 − 36|c−2|2 > 0 (53a)

|c0|4 − 36|c2|2 > 0 (53b)

As usual, no entanglement is detected by either inequal-
ity for the spontaneous emission case, whereas starting
from the ground state entanglement is found for n0 = 2, 3
and 4, with inequality (53b) being the strongest for
n0 = 2 and 3, and both being comparable for n = 4. The
result, shown in Figure 5, is visibly different from Fig-
ure 4, with makes it clear that the criteria (26) and (27)
with n = 1 and 2 explore different types of entanglement,

(a)

(b)

FIG. 4: Entanglement between subsystems for N = 4 atoms
starting in the ground state and interacting with n0 = 2 (solid
line), 3 (dashed line) and 4 (dotted line) photons. (a) One
atom in subsystem a, three in subsystem b (inequalities (48)).
(b) Two atoms in each subsystem (inequalities (52)).

as discussed in Section III. Specifically, the inequalities
(53) test for the presence of the entangled superposition
|eegg〉+ |ggee〉, where the states of the two subgroups of
atoms are “as far apart” as possible.
As the figure suggests, the n0 = 2 and n0 = 3 curves,

while sometimes getting very close to zero, never actually
cross the x axis. This is because for n0 = 2 and n0 = 3,
starting from the ground state, the state m = 2 cannot
get populated, and thus the inequality (53b) is always
satisfied as long as c0 6= 0. This means that, for these two
cases, the atomic state is always entangled, with at least
some entanglement of the form |eegg〉+ |ggee〉, except for
the isolated times when c0 = 0. For n0 = 2, it is easy to
show analytically that this happens when gt

√
14 = 2nπ.

3. Comparison with other entanglement criteria

As mentioned in the Introduction, a number of crite-
ria to detect entanglement in systems of spins have been
have developed through the years. In this Section we
compare, for this particular problem, the performance of
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FIG. 5: Entanglement between subsystems of two atoms each,
for a total N = 4 atoms starting in the ground state and
interacting with n0 = 2, 3 and 4 photons, as detected by in-
equalities (53).

our criteria to some of these alternative ones, focusing
on the simplest ones, namely, those that only require the
measurement of various components of the total angular
momentum.
Perhaps the earliest such criterion is that Sørensen et

al. [3], according to which a state ofN qubits is entangled
if there exist three orthogonal directions (labeled by k, l
and n below) such that

〈

∆2Jn
〉

〈Jk〉2 + 〈Jl〉2
<

1

N
(54)

Because of the obvious symmetry of our problem (the
density operator is diagonal in the Jz basis) we expect to
find any maxima or minima when one of the directions
above is chosen to be z, and the other two are indiffer-
ently set to x or y. Clearly setting n = z in (54) will not
work in our case, since 〈Jx〉 = 〈Jy〉 = 0, but we can try,
e.g., k = z and then n = x, l = y. For

〈

∆2Jx
〉

with a ρ
of the form (31) we find

〈

∆2Jx
〉

=
〈

∆2Jy
〉

=
〈

J2
x

〉

=
〈

J2
y

〉

=
N

4

(

N

2
+ 1

)

−1

2

〈

J2
z

〉

(55)
and hence the condition (54) becomes

(

1

N
− 1

2

)

〈

J2
z

〉

− N

4

(

N

2
+ 1

)

> 0 (56)

which is an impossibility for any N ≥ 2.
Korbicz, Cirac and Lewenstein [7] introduced a neces-

sary and sufficient criterion for bipartite entanglement in
symmetric systems: the reduction of the density operator
to just two spins will be entangled if and only if there is
a direction n along which the total angular momentum
satisfies

1− 4 〈Jn〉2
N2

− 4
〈

∆2Jn
〉

N
> 0 (57)

With n = x or y this gives
〈

J2
z

〉

> N2

4
, which is impos-

sible, since N2/4 is the largest value J2
z can have. With

n = z, however, the criterion (57) actually shows entan-
glement most (but not all) of the time our other criteria
do, and also sometimes when our criteria fail to detect
it, as shown in Fig. 6.
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FIG. 6: Entanglement for the case N = 4 and n0 = 3 as
detected by inequalities (53) (solid line), (57) (bipartite en-
tanglement, dashed line), and Eqs. (52) (dotted line). Note
that the solid line is actually always above zero except at
gt
√
14 = 2nπ, whereas the other two cross the horizontal axis

with a nonzero slope. Note also the existence of a small region
to the right where the dashed line detects entanglement but
the dotted one does not.

The fact that our criteria sometimes show entangle-
ment when (57) does not is indicative that we have
genuine multipartite entanglement (involving 3 or more
qubits) in those cases. In [7] the authors actually give
several other criteria to test for tripartite entanglement
in any reduction of ρ to three qubits. One, Eq. (23) of
[7], is specifically for GHZ-type entanglement, and fails
to detect any for our system. Two others, Eqs. (24) and
(25) of [7], detect either GHZ or W-type entanglement.
The first one, for the optimal choice of z (z = n) becomes

−3
〈

J3
z

〉

−3

2
(N−2)

〈

J2
z

〉

+
3N2

4
〈Jz〉−

N

24
(7N2−38N+32) > 0

(58)
For N = 4, this fails to detect entanglement for the
n0 = 1 case. For n0 = 2, however, it detects it in a
narrow region around the tall peaks of Fig. 5, meaning
it always overlaps with (57), but it also shows that at
those times the system has both bipartite and tripartite
entanglement. For n0 = 3, it sometimes overlaps with
(57) and sometimes it does not, but in general both are
worse than (53b). Lastly, for n0 = 4, each of these three
criteria spots some entanglement that the others miss, as
can be seen in Figure 7.

As for the last criterion presented in [7], their Eq. (25),
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FIG. 7: Entanglement for the case N = 4 and n0 = 4 as
detected by inequalities (53) (solid line), (57) (bipartite en-
tanglement, dashed line), and (58) (genuine tripartite entan-
glement, dotted line). Note that the three criteria overlap in
places, but there are also times when entanglement is only
detected by one of them.

for our system it yields the condition

5

6

〈

J3
z

〉

− 1

4
(N − 2)

〈

J2
z

〉

− 1

24
(3N2 + 6N − 4) 〈Jz〉

− 1

16
(N3 − 4N2 + 4N) > 0

(59)

For N = 4, we find this only detects entanglement when
n0 = 1, and around the times where the right-hand side
of the inequality (51) is largest in absolute value, that is,
around gt = (2n + 1)π/4. Recall that both our criteria
(48b) and (52b) show that the n0 = 1 case is always
entangled (except when c0(t) = 0), both across 1-to-3
qubit and 2-2 qubit partitions. From (59), we get the
additional information that the system also has genuinely
tripartite entanglement for the reductions of ρ around the
times gt = (2n+ 1)π/4.
Finally, Tóth et al. have presented in [13] several other

criteria, summarized in their equations (7b)–(7d). When
we apply them to our system, we obtain only one inequal-
ity that can actually be satisfied: this is derived from
their Eq. (7c) with m = z, and ends up being equivalent
to (57).

V. CONCLUSIONS

We have presented a number of results concerning the
usefulness of the Hillery-Zubairy entanglement criteria
for systems of N qubits. For N = 2, we have shown that

the criterion (1b) is in general not useful, and that (1a),
while useful, is not in general an entanglement monotone,
although we have also identified some sets of states for
which it does have such a property. By focusing on the
kinds of correlation it is best suited to detect, we have
generalized it to angular momentum systems, or systems
with N > 2 qubits, and we have used these extensions,
Eqs. (26) and (27), to explore entanglement among atoms
in the Tavis-Cummings model when the field is initially
in a number state, so the atomic state is an evolving
mixture of Dicke states. By comparing our results with
those obtained from other previously-derived criteria to
detect entanglement in systems of spins, we have shown
that ours can, in fact, detect entanglement in situations
where the others miss it, and vice-versa. We conclude
that, as all of these criteria explore different entangle-
ment possibilities, all are valuable if one wants to obtain
as complete a picture as possible of the quantum corre-
lations possible in mixed states of N -qubit systems.
With respect to the Tavis-Cummings model specifi-

cally, we have been able to prove a number of results,
such as that, for any N , when the atom’s start in the
ground state with only one photon present, the resulting
state (a mixture of the ground state and a W -type state)
is always entangled, except for a discrete set of times.
We have also shown that the same is true in the N = 4
atom case when only two or three photons are initially
present. Generalizations of this last result to larger N
systems are almost certainly possible, but we have not
pursued them here.
Perhaps our most intriguing result, however, is that all

the criteria fail to detect any entanglement, at any time,
for the “spontaneous emission” case, where the atoms
start all in the excited state with no photons present. We
conjecture that this is probably a general result, valid for
allN , but we have no way of proving it or explaining it. It
implies, among other things, that the probability to find
all the atoms in the ground state cannot be equal to 1 at
any time, since otherwise the subsequent evolution would
produce entangled states; hence, the picture it suggests
is that as long as the emitted photons “stick around,”
they can be reabsorbed, and the atomic system cannot
get rid of all its energy at any time. This, at least, would
change in the presence of losses (e.g., in free space, or
in a leaky cavity), and it might be interesting to see if
entanglement appears in that case.
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