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The Krylov subspace method is a traditional approach to approximate quantum evolution, al-
lowing to treat systems with large Hilbert spaces. Despite its popularity, current bounds typically
overestimate the error, which translates into more expensive simulation routines. In this paper, we
tackle this problem by realizing that the error can be understood as a Loschmidt echo in a 1-D
non-interacting tight-binding Hamiltonian. We show that the different time-regimes of the approxi-
mation can be understood using simple physical ideas. More importantly, we obtain computationally
cheap error bounds that describe with high precision the actual error in the approximation.

I. INTRODUCTION

Quantum devices capable of transmitting and process-
ing information have been established recently [1]. Lab-
oratories around the world are in the race to develop in-
creasingly accurate quantum devices. To carry out this
successfully, it is necessary to test their operation on clas-
sical devices. For this reason, it is important to have
efficient classical algorithms to perform quantum simula-
tions [2, 3].

Several approaches for the efficient computation of
quantum time-evolution have been proposed in the liter-
ature [4–8]. The cost of the simulation usually depends
on the specifics of the system, e.g. the initial state, or
on the information that we want to know about the dy-
namics. For example, the cost of the simulation can be
greatly reduced if the amount of entanglement developed
by the system remains bounded [7, 8]. Less restrictive are
the well-known Krylov-subspace methods, constructed to
provide approximations to the action of the exponential
of a matrix on a vector. In the context of quantum sim-
ulation, the mechanics of the approximation is the fol-
lowing: an initial state in a (possibly very) large Hilbert
space is first mapped to an effective subspace, the Krylov
subspace, that captures the most relevant features of the
dynamics. Within this low-dimensional subspace, time
evolution is (cheaply) computed. Finally, the evolved
state is mapped back to the large Hilbert space. Besides
quantum simulation, the method has other important
applications like solving systems of ordinary differential
equations, large-scale linear systems and more [9, 10]

The core challenge in Krylov-subspace methods is to
keep the error at low values and, thus, achieve a pre-
cise evolution. For this reason, it is desirable to pre-
dict the time regime in which the error will remain less
than a given predetermined tolerance. This problem has
been approached in several ways in the literature [11–
15, 17, 18], and the provided bounds generally overesti-
mate the error (significantly). In the seminal paper [11],

Park and Light use the fact that the dynamics in the
reduced subspace is that of an effective 1d lattice with
a tridiagonal Hamiltonian. An initial state localized at
one end starts spreading and the error in the method is
approximated by the population at the other end of the
chain. Later, Saad [12] derived computable estimates
of the error using an expansion in the Krylov subspace
exploiting the Lanczos algorithm. Other error bounds
include involved computations making it difficult to use
in an operational way [14].

The goal of this paper is to find tight and computation-
ally inexpensive error bounds for the approximation error
in Krylov schemes. We take advantage of a simple ob-
servation: the error can be regarded as a Loschmidt echo
in which both the forward and backward evolutions are
given by 1-D non-interacting tight-binding Hamiltonians.
In a virtual chain, we have an initial state that is local-
ized at one end. The error is related to an echo between
evolutions in a D site chain and a trimmed N << D
chain, where N is the dimension of the truncated Krylov
subspace used for the approximation. This analogy al-
lows us to describe the time-regimes of the error using
Loschmidt echo theory. In particular, we show that the
error remains negligible up to some time at which it starts
building up exponentially. This time is related to the tail
of the travelling wave-packet hitting the end of the vir-
tual chain [11]. The core of our proposal is that, in this
regime, the error can be captured remarkably well by
replacing the full-size evolution with the one of a chain
with a single extra site. As we show, this provides an
accurate and cheap bound for the error. To motivate
this behaviour, we analytically solve for the bound in
the case in which the 1-D non-interacting tight-binding
Hamiltonian has homogeneous diagonal and off-diagonal
elements. We test this solution in a one-dimensional Ising
spin chain with a transverse magnetic field. Finally, we
give some physical insight that explains why this simple
model works in the general case.

The paper is organized as follows. In Sec. II, we in-
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troduce the general framework of the Krylov-subspace
method for quantum time evolution. In Sec. III, we
describe the different time-regimes of the error, focus-
ing on the analogy with Loschmidt echo dynamics un-
der 1-D non-interacting tight-binding Hamiltonians. In
Sec. IV, we use the connection between the error and
the Loschmidt echo of 1-D non-interacting tight-binding
Hamiltonians to propose a bound that describes ex-
tremely well the inaccuracy of the approximate evolution
in the Krylov subspace. Finally, in Sec. V, we offer some
final remarks. Appendix A provides a brief description
of Lanczos algorithm and Appendix B includes details
of the system used for the numerical simulations, a one-
dimensional Ising spin chain with a transverse magnetic
field. Appendix C offers a study of the scaling of the
time regimes with the size of the Krylov subspace and
Appendix D derives results for the robustness of esti-
mating the error using an approximation for the next
hopping term. In Appendix E, the error bound is ana-
lytically solved for the simple case in which the 1-D non-
interacting tight-binding Hamiltonian has homogeneous
diagonal and non-diagonal elements.

II. THE KRYLOV-SUBSPACE METHOD

Let us start by reviewing the so-called Krylov-subspace
method for approximating quantum dynamics. Consider
a state |ψ〉 in a D-dimensional complex Hilbert space
H = CD, that evolves under a time-independent Hamil-
tonian H ∈ End(H). The N -dimensional Krylov sub-
space associated with |ψ〉 and H is given by

KN = span{|ψ〉 , H |ψ〉 , . . . , HN−1 |ψ〉}. (1)

Here, without loss of generality, we consider that H and
|ψ〉 share no symmetries, i.e. such that KD = H. If they
did share some symmetry, time evolution would occur
constrained to its respective subspace Hj ⊂ H. In this
case, the problem is redefined to the one belonging within
that subspace, e.g. H ← Hj .

The Krylov approach aims at approximating the time-
evolved state |ψ(t)〉 with the best element |ψN (t)〉 ∈ KN .
To do so, we first have to build an orthonormal basis for
KN , which we denote BN = {|v0〉 ≡ |ψ〉 , . . . , |vN−1〉}.
This is usually done using Lanczos’s algorithm, a sort
of Gram-Schmidt procedure that harnesses the fact that
orthonormalization only needs to be enforced with re-
spect to the last two vectors in the basis (see Appendix
A). Using BN , we approximate the time-evolved state by
projecting into KN

1,

1 See Fig. 1 (a) for a schematic representation of the method

|ψ(t)〉 = e−iHt |ψ〉 ≈ PNe
−iHt

PN |ψ〉

= V
†
Ne

−iTN t
VN |ψ〉

≡ |ψN (t)〉 .

(2)

Here, TN = VNHV
†
N is the Hamiltonian H reduced to

the Krylov subspace KN , and

V
†
N =








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|v0〉 , |v1〉 , , |vN−1〉
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







(3)

and PN = V
†
NVN are the reduction-to-the-subspace op-

erator and projector, respectively. By definition, VN

maps given initial state into the first coordinate vec-
tor of an effective N -dimensional system, VN |ψ〉 =
(1, 0, · · · , 0)T ≡ |0〉N . It is especially relevant to notice
that the Hamiltonian reduced to a Krylov subspace is
tridiagonal

TN =













α1 β1 0 · · · 0
β1 α2 β2 · · · 0
0 β2 α3 · · · 0
...

...
...

. . .
...

0 0 0 · · · αN ,













(4)

and, thus, the system in the Krylov basis (henceforth, the
effective system) has the form of a 1-D non-interacting
tight-binding model. An initial state localized in one end
of an effective chain evolves according to TN (i.e. with
onsite potential αi and hopping amplitude βi at the ith
site) propagating the excitation and populating the rest
of the lattice (see Fig. 1(b) for a schematic representa-

tion). Finally, V†
N maps the effective evolved state back

to full Hilbert space. The efficiency of the method resides
in the fact that the time evolution is solved with very
few computational costs in the reduced space, i.e. one
replaces the exponential of a D×D Hermitian matrix H
with the much more economical exponential of a N ×N
symmetric tridiagonal TN . Of course, the assumption is
that N << D.

The challenge in this approximate evolution scheme is
to keep the error bounded by a given tolerance. This
has been studied in different ways for more than three
decades [11–15, 17, 18]. In the next Section, we show that
the error as a function of time has regimes that can be
well understood using physical ideas based on Loschmidt
echo theory and diffusion in a 1-D non-interacting tight-
binding model [19].
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Figure 1. Schematic Krylov Approximation: (a) An initial
state |ψ〉 (blue circle) evolves under Hamiltonian H , drawing
some trajectory on Hilbert space H (dashed line). At time t,
the evolved state is |ψ(t)〉 (red circle). The Krylov approach
consists in approximating this state with |ψN(t)〉, its projec-
tion into the Krylov subspace KN (green circle), defined in
Eq. (1). (b) The dynamics of |ψ〉 under H , from the Lanczos
Basis perspective, corresponds to the diffusion of an initial
state |0〉 that is completely localized at the leftmost end of
a virtual tight-binding chain. Here, the off-diagonal elements
of Lanczos tridiagonal matrix, βi, act as hopping amplitudes
between neighbouring sites and the diagonal elements αi as
local onsite potentials (not depicted in the image). Using
a truncated Lanczos basis can be regarded as "cutting" the
chain at site N .

III. TIME REGIMES OF THE ERROR

Let us review the time regimes of the error in the
Krylov-subspace method. Such error is given by the
instantaneous infidelity between exact and approximate
evolved states

ǫN (t) = 1− | 〈ψN (t)|ψ (t)〉 |2. (5)

Any actual implementation of the approximation method
has to keep track of this error. Notoriously, its exact
computation is out of the question because it involves
solving the problem one is trying to approximate, e.g.
constructing |ψ(t)〉.

A closer inspection of Eq. (5) allows for an interesting
interpretation. Rewriting the overlap as,

| 〈ψN (t)|ψ (t)〉 |2 =
∣

∣ 〈ψ|V†
Ne

iTN t
VNe

−iHt |ψ〉
∣

∣

2

=
∣

∣ 〈ψ|V†
Ne

iTN t
VNV

†
De

−iTDt
VD |ψ〉

∣

∣

2

=
∣

∣ 〈ψ|V†
De

iT̃N t
VDV

†
De

−iTDt
VD |ψ〉

∣

∣

2

=
∣

∣ 〈0| eiT̃N te−iTDt |0〉
∣

∣

2
,

(6)

where T̃N = VDPNHPNV
†
D has the form

T̃N =

(

TN 0

0 0

)

, (7)

it is noticed that 1 − ǫN (t) is described by a Loschmidt
echo [19] on which both backwards and forward evolu-
tions are described by tight-binding Hamiltonians. We
start with |0〉 ≡ VD |ψ〉, a completely localized state at
one end of the virtual chain. This state evolves subject
to TD for some time t, then evolves backwards subject to
T̃N (a perturbed TD where the effective onsite potentials
and hoppings of sites N +1, . . . , D are turned off) and is
finally overlapped with the initial state |0〉.

The Loschmidt echo can measure the characteristic re-
vival occurring after forward and backwards time evo-
lutions generated by two slightly different Hamiltonians
[19–21]. As far as we know, the case of tight-binding
Hamiltonians has not been explicitly considered in the
literature so far. We note that one of the evolutions hap-
pens with a chain of length D, while the other evolution
corresponds to the case in which the chain gets clipped at
site N (the hoppings and onsite potentials at the second
part of the chain are set to zero, i.e. αi = 0 and βi = 0
for i = N + 1, . . . , D ).

To gain insight into the time regimes of the ap-
proximation, we show in Fig. 2 the Loschmidt echo
| 〈ψN (t)|ψ (t)〉 |2 (top panel) and the error ǫN (t) (bottom
panel) for an Ising spin chain with 10 sites and a trans-
verse magnetic field (see Sec. IV for more details). From
now on, we set ~ = 1, such that energies are measured
in units of the interaction strength J , and times in units
of J−1. The parameters of the chain are J = 1, hx = 1
and hz = 0.5, corresponding to a quantum chaotic case,
i.e. the distribution of energy levels matches the one in
Random Matrix Theory [22] (see Appendix B for more
details). The initial state |ψ〉 is drawn randomly from the
even subspace. Same results were obtained with initial
states in the odd or even subspaces. We use a Krylov-
subspace of N = 30 sites. We can see that the Loschmidt
echo has two very different time regimes. Until the time
of colition between the wave package and the end of the
chain t ≈ tcol, the echo remains roughly one and the
approximate evolution faithfully captures the exact one.
After this first "faithful" regime, an abrupt decrease is
observed and from there on it decays in a monotonous
way.

In this first time-regime t < tcol, where the echo prac-
tically does not change, the error has two relevant sub-
regimes. First, until some time t < texp, the error is es-
sentially zero. Then, at t = texp the error suddenly starts
to build-up exponentially. We can interpret this transi-
tion as the tail of the wave-packet starting to impact the
end of the trimmed chain. The interval texp ≤ t ≤ tcol
precisely delimits the region where a proper approxima-
tion must happen to obtain a low error. We note that
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the noisy plateau of εN (t) for t < texp is due to round-off
errors in the floating-point arithmetic used in the com-
putations.

In order to understand the time regimes of Fig. 2, we
plot in Fig. 3 the square of the amplitudes in the Lanczos
basis for both the exact and approximate evolved states
of Eq. ((6)), i.e. | 〈vi |ψN (t)〉 |2 and | 〈vi |ψD(t)〉 |2 for i =
1, . . . , N and i = 1, . . . , D, respectively. For the rest of
the paper, we call the amplitudes 〈vi |ψK(t)〉 ≡ ψK,i(t),
We provide snapshots of these virtual travelling wave-
packets at times t = 10, 25, 45 and 70. As mentioned
before, we start with localized states at one end of the
effective tight-binding chain. In the first panel of Fig.
3, corresponding to time t = 10, both wave-packets are
travelling to the right and are essentially equal. How-
ever, at t = texp ≈ 25, the exponential tail reaches the
site N = 30, and the error starts to build up rapidly.
This process continues until t = tcol ≈ 42, where one of
the packets bounces with the end of its chain and starts
returning to its original position. This difference in the
behavior of the wave-functions is reflected in an abrupt
decay of the echo (see Fig. 2). At t = 60 and t = 80,
the wave packets continuously grow apart and become
more and more orthogonal. Although here we have cho-
sen to illustrate the regimes of the error using a quan-
tum chaotic spin chain, similar behaviour is observed in
the integrable setting (see Appendix B for more details).
Furthermore, Appendix C provides a study of the scal-
ing of the time regimes with the size of the Krylov sub-
space. We observe a quasi-linear scaling, indicating that
the dynamics slightly deviates from that of a wave-packet
propagating at a constant speed (where both texp and tcol
would scale linearly).

IV. FROM LOSCHMIDT ECHOES TO ERROR

BOUNDS

In the previous section, we have shown that the er-
ror in the Krylov method can be seen as a Loschmidt
echo. Let us now show how this description can help de-
rive tight and computationally cheap bounds for the er-
ror, providing advantages for future implementations of
the approximation method. In particular, we will focus
on the time-regime that is relevant for such implemen-
tations: the one between texp and tcol. In this region,
the travelling packet has its center between sites 1 and
N , and only a small, exponentially suppressed popula-
tion tail surpasses site N . With this in mind, we can
ask ourselves: is it really necessary to consider the entire
chain to describe the behavior of the error? Given that
in the [N+1, D] region we have exponentially suppressed
populations, isn’t it possible to capture the essential fea-
tures of the error by considering instead an echo where
we replace the full chain with one with K = N + i sites,
i.e. where i is a small number of extra sites? To answer

10−3
10−2
10−1
100

1−
ε N
(t)

texp tcol

0 30 60 90 120
time t

10−16
10−12
10−8
10−4
100

ε N
(t)

Figure 2. Time regimes of the echo. Loschmidt echo
| 〈ψN (t)|ψ (t)〉 |2 = | 〈ψN (t)|ψD (t)〉 |2 (top panel) and error
ǫN(t) (bottom panel) for an Ising spin chain with transverse
magnetic field. We use N = 30 and D = 2L = 1024, and
the time is measure in units of J−1. We have marked with
dashed vertical lines the times that correspond to the snap-
shots shown in Fig. 3. We also highlight the relevant times
texp and tcol. The initial state |ψ〉 is random state in the even
subspace. See text for more details.

Figure 3. Time evolution of exact and approximate states
in the Lanczos basis. We draw | 〈vi (t)|ψD (t)〉 |2 = |ψD,i(t)|

2

(black line) and | 〈vi (t)|ψN (t)〉 |2 = |ψN,i(t)|
2 (solid blue) at

times t = 10, 25, 42, 60 and 80 (top to bottom). Remark:
the representation in the figure takes a cubic interpolation
between each site to smooth out the discrete sites effect for
an easier visualization.
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this question, we compare the echo | 〈ψN (t)|ψ (t)〉 |2 with
| 〈ψN (t)|ψK (t)〉 |2 using K = N +1 and K = N +5 (see
Fig. 4). Here, we can see that both cases (with one ex-
tra and five extra sites, respectively) accurately capture
the important region between texp and tcol (shaded re-
gion of Fig. 4). In the inset of Fig. 4 we plot the error
εKN (t) = 1 − | 〈ψN (t)|ψK (t)〉 |2 in the shaded region to
highlight this last conclusion. This remarkable fact, i.e.
that only a single extra site is enough to capture the be-
haviour of the error in the relevant region, will be the
main building block of our error bound proposal. Let
us note that, although here we have used a spin chain
model, the behavior appears to be the same for other
fundamentally different systems [23]. Among others, we
have confirmed this observation in random Hamiltoni-
ans that belong to the Gaussian Orthogonal Ensemble
(GOE) and Gaussian Unitary Ensemble (GUE) [24] (see,
for example, Appendix C).

0 20 40 60time t

0.25

0.5

0.75

1.0

1−
εε N

(t)

K: D
K: N+1
K: N+5

20 30 40
10−14

10−8

10−2

εε N
(t)

Figure 4. Loschmidt echo | 〈ψN (t)|ψK (t)〉 |2 with K = N +1
(light blue dashed line), K = N + 5 (green dotted line) and
D (black solid line). Here, we use D = 210- dimensional Ising
spin chain with transverse magnetic field. Inset: The error
εKN (t) in the shaded region of the main plot.

Now, suppose we have computed the Krylov subspace
KN and want to estimate the error. As we have argued
in the previous paragraph, one can effectively approxi-
mate the error with | 〈ψN (t)|ψN+1 (t)〉 |2.To do so, one
would have to perform an extra iteration of the Lanczos
algorithm, i.e. to compute this extra site approximation
|ψN+1(t)〉. Alternatively, it is possible to approximate
the new site in the tight-binding chain without having to
do such extra iteration. This is based on the fact that,
as we show in Appendix D, the error in the β coefficient
propagates quadratically into the approximation for the
error of the Krylov method,

εKK+1(t) ≈

(

β̃

β

)2
[

1− |
〈

ψ̃K+1 (t)
∣

∣

∣
ψK (t)

〉

|2
]

, (8)

where
∣

∣

∣ψ̃K+1

〉

is the solution that corresponds to keeping

the first K coefficients unchanged and replacing the last
one with β̃.

A simple yet effective way of estimating the coefficients
of this new site is to average over the previous sites. That
is,

αN+1 ≈ ᾱ ≡
1

N

N
∑

1

αi ,

βN+1 ≈ β̄ ≡
1

N

N
∑

1

βi . (9)

Finally, all the elements needed to test our error bound
and compare it with the established ones from the liter-
ature, e.g. of Ref. [12], are ready. In Fig. 5, we show

the ratio between the error bounds 〈ε〉N+1
N and the ac-

tual error εN of Eq. (5). We bracket the bound 〈ε〉N+1
N

to denote that we use the averaged estimation of Eq. (9)
for the coefficients of site N + 1. In the inset of Fig. 5,
we shade the region of the bound εN+1

N in which the ele-
ments αN+1 and βN+1 are the maximum o the minimum
of αi and βi with i = 1, ...N . We also show the ratio of
the bound of Ref. [12] with the actual error. We see that
both the proposed bounds provide an overestimation that
remains constant throughout the evolution, and is quite
lower than Ref. [12].

10-12 10-10 10-8 10-6 10-4

εN

0

1

2

3

4

5

6

bo
u
n
d
/ε

N

Ref. [12]〈
ε
〉
N+1
N

ε̃N+1
N

10-12 10-6εN
0

1

bo
u
n
d
/ε

N

Figure 5. Ratio of the bounds 〈ε〉N+1

N (dashed line), ε̃N+1

N

(dotted line) and the a posteriori bound of Ref. [12] (solid
line) with the the actual error εN vs. εN . See text for more
details.

Interestingly, the echo | 〈ψN (t)|ψN ′ (t)〉 |2 can be
solved analytically in the particular case of homogeneous
coefficients, ∀i : αi = α and ∀i : βi = β , which corre-
sponds to the Toeplitz tridiagonal matrix [25] (see Ap-
pendix E for the derivation). Using such analytical ex-

pression, we compute a new bound ε̃N+1
N (with a tilde)

where we use Eq. (E6) with α = ᾱ and β = β̄ in Eq. (9).
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We finally show in Fig. 5 that this approximation also
works very well.

V. CONCLUSIONS

In this work, we have established a connection between
the behavior of the error in Krylov-subspace approxima-
tions for quantum simulation, and a Loschmidt echo be-
tween effective wave-packets travelling in effective tight-
binding chains. One of such chains has D sites and the
other one N << D. The packages start at the leftmost
end of the chain, and for some time their profile is identi-
cal. Then, at t ≈ texp, the tail of the approximate packet
starts colliding with the end of the chain and bouncing
back, while the true packet’s tail continues its journey
unaltered. This discrepancy causes errors to build-up
exponentially. At a later time,t ≈ tcol, the center of
this packet arrives at the end of the chain and bounces
back. Here, the error reaches significant values and the
echo forever departs from unity. Hereafter, the packages
travel in opposite directions and they become ever more
orthogonal.

In practice, any approximation method must be ac-
companied by an efficient and accurate error estima-
tor. Yet, error estimation for Krylov-subspace method
has been an elusive subject for more than 30 years [11–
15, 17, 18]. Thus, the Loschmidt echo picture offers,
apart from a nice physical insight on the mechanics of
the error, an elegant and simple solution to the error
tracking problem. Remarkably, we show that one can
capture with extreme precision the behaviour of the er-
ror in the relevant region, without having to incur extra
computations.

Typical implementations of Krylov-subspace methods
involve a time-stepping schedule [15]. The reason for
this is that Lanczos’s Algorithm suffers from instabil-
ities when Krylov basis is large. Thus, the common
workaround is to approximate the evolution using an iter-
ative approach: the actual trajectory in Hilbert space is
efficiently followed using a sequence of patches [16]. That
is, we build a Krylov-subspace, evolve for a small-time,
map back and start over. In this framework, our error
bounds provide a cheap and accurate way of comput-
ing optimal time intervals for the time-stepping sched-
ule. An open-source implementation in Python of the
Krylov evolution using the error bound developed in
this paper can be found in the GitHub repository at
https://github.com/emilianomfortes/krylovsolver.
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Appendix A: Lanzcos method

The Lanczos method (see Algorithm 0) is a well known
strategy for the construction of BN = {|v0〉 , . . . , |vN−1〉},
an orthonormal basis spanning the Krylov subspace KN .
One of the most appealing features of this approach is
that, unlike e.g. a Gram-Schmidt procedure where or-
thonormalization at each step involves the whole current
basis, the new candidate vector |xj〉 only needs to be
orthonormalized with respect to the previous two basis
vectors |vj−1〉 and |vj−2〉. The reason for this is that
the Hamiltonian, by construction, is tridiagonal in the
Lanczos Basis (see Eq. (4)).

Algorithm1 Lanczos Algorithm. Receives state |ψ〉
and Hamiltonian H and returns a set of N orthonormal

vectors {|vi〉} spanning the Krylov subspace KN .

1: |v0〉 = |ψ〉 (assume normalized)
2: |x1〉 = H |ψ〉
3: α1 = 〈x1|v0〉 (the component of |x1〉 in |v0〉)
4: |w1〉 = |x1〉 − α1 |v0〉
5: for j = 1, 2, . . . do

6: βj =
√

〈ωj |ωj〉
7: if βj > 0 then

8: |vj〉 ←
1

βj
|ωj〉.

9: else

10: break
11: |xj+1〉 = H |vj〉
12: αj+1 = 〈xj+1|vj〉
13: |ωj+1〉 = |xj+1〉 − αj+1 |vj〉 − βj |vj−1〉

Appendix B: Ising spin chain in a transverse

magnetic field

Let us describe the system used in the numerical sim-
ulations. Consider a 1D Ising spin chain with transverse
magnetic field and open boundary conditions, described
by,

H =

L
∑

k=1

(hxσ̂
x
k + hzσ̂

z
k)− J

L−1
∑

k=1

σ̂z
kσ̂

z
k+1, (B1)

where L is the total number of spin-1/2 sites of the chain,

σ̂j
k to the Pauli operator at site k ∈ {1, 2, ..., L} with

direction j ∈ {x, y, z} and J represents the interaction
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strength within the site k and k + 1. The parameters
hx and hz are, respectively, the strength of the magnetic
field in the (transverse) x direction, and in the (parallel)
z direction. We set ~ = 1, such that energies are mea-
sured in units of the interaction strength J , and times in
units of J−1.
The Hamiltonian of Eq. (B1) has parity conservation.
The parity is defined through the permutation operators
Π̂ = P̂1,LP̂2,L−1 . . . P̂L/2−1,L/2+1 for a chain of odd length
L and for the even case it is analogous. The spanned
space is divided into odd and even subspaces with di-
mension D = Deven + Dodd (Deven/odd ≈ D/2). This
symmetry must be taken into account for studying the
effect of quantum chaos transition. While this model
is integrable in the limit of hz ≫ hx and hx ≫ hz, it
exhibits quantum chaos when the longitudinal and the
transverse field are of comparable strength. In Fig.2 we
illustrate the behavior of the error ǫN(t) when the sys-
tem is in the quantum chaos regime, that is, the statis-
tical distribution of eigenenergies and eigenfunctions are
well described by Random matrix theory [22]. For the
computations, we fix hx = 1 and we consider the most
chaotic case hz = 0.5.

The question now is to establish what happens when
the system is in the integrable regime. For this reason, in
Fig. 6 we plot the error for an Ising spin chain with L =
10 sites with J = 1, hx = 1 and hz = 0 and hz = 10 which
corresponds to integrable cases, that is, the energy levels
follows a Poisson distribution. We can see that the error
in both limits has the same behaviour that the chaotic
case of hz = 0.5 (which we also plot for convenience).

0 20 40 60 80
time t

10−16

10−12

10−8

10−4

100

ε ε
(t)

Figure 6. ǫN (t) for an Ising spin chain with transverse mag-
netic field. We use N = 30, D = 2L = 1024 J = 1, hx = 1
and hz = 0 (purple), 0.5 (lightblue) and 3 (green) The initial
state |ψ〉 is random state in the even space.

Appendix C: Scaling of the time regimes

The regimes of the error ǫN(t) and of the echo
| 〈ψN (t)|ψ (t)〉 |2 of Fig. 2 depend on texp and tcoll. We
want to study how these time regimes depend on the di-
mension N of the Krylov subspace and the number of
states D of the Hilbert space of the system. In Fig.
7, tcoll (top panel) and texp (bottom panel) are plot-
ted as a function of N for spin chain of length L = 6
(circles) and 10 (squares) [the parameters of the chain
are J = 1, hx = 1 and hz = 0 (purple symbols), 0.5
(green symbols) and 3 (lightblue symbols)]. These time
regimes were computed averaging over 100 initial states
and are scaled with the Hilbert norm of the Hamiltonian
to avoid spurious dependencies. We can see a smooth
quasi-linear dependence of these regimes withN . We also
see a small dependency with the Hamiltonian and with
the number of states of the Hilbert space. This quasi-
linear dependence shows how robust these times are for
estimating our bound. Same calculations of tcoll and texp
were done for a Hamiltonian with random entries taken
from a N (0, 1) distribution (i.e. draw from the Gaussian
Unitary Ensemble). This is shown in Fig. 8. We plot tcoll
(top panel) and texp (bottom panel) averaging over 100
initial states and are scaled with the Hilbert norm of the
Hamiltonian. The Hilbert space dimensions are D = 64
(circles) and 1024 (squares.) Again, a clear smooth de-
pendence with N is seen. This guarantees the possibility
of using these times to develop a bound to control the
error.

Appendix D: Quadratic behaviour of the bound

with next hopping coefficient

This appendix is devoted to present the equation
Eq. (8) of the main text. Let us suppose first that the
chain is in a state where the Krylov approximation is
valid, that is, the occupation of the site N + 1 is close
to zero, |ψK,N+1|2(t) ∼ 0. The solution |ψN (t)〉 can be
decomposed in the Lanczos basis as a sum of two com-
ponents,

ψN,i(t) = ψ
(0)
K,i(t) + ψ

(1)
K,i(t), (D1)

where ψ
(0)
K,i(t) is the Krylov approximation of order N ,

that is βi = 0 with i > N . In the regime where the
Krylov approximation holds, it is also valid the relation

|ψ
(0)
K,i(t)|

2 >> |ψ
(1)
K,i(t)|

2 with i ≤ N . It is straightforward

to show the equation of motion for ψ
(0)
K,i(t),

i
d

dt
ψ
(0)
i = αNψ

(0)
i + βN−1ψ

(0)
i−1 + βNψ

(0)
i+1 (D2)

ψ
(0)
i (t) = 0 if i > N, (D3)
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0
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/
||H

|| 2

(hz, L) (0, 6)
(0.5, 6)
(3, 6)
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p
/||

H
|| 2

Figure 7. (Upper panel) Scaled tcol for the transverse field
Ising model with fixed parameter hx = 1 and hz = 0 (purple),
0.5 (green) and 3 (lightblue). The different markers represent
chains of length L = 6 (circles) and L = 10 (squares) with
dimensions D = 64 and D = 1024 respectively. Calculations
are done using 100 random initial state conditions in order to
smooth out statistical fluctuations (Bottom panel) The same
plot but for the scaled texp quantity.

10

20

30

t c
ol
/
||H

|| 2

D=64
D=1024

10 15 20 25 30 35
N

0

10

20

t e
x
p
/||
H

|| 2
Figure 8. (Upper panel) Scaled tcol for a Hamiltonian with
random entries taken from a N (0, 1) distribution. The dif-
ferent markers represent Hamiltonians with dimensions with
dimensions D = 64 (circles) and D = 1024 (squares). Calcu-
lations are done using 100 random initial state conditions in
order to smooth out statistical fluctuations (Bottom panel)
The same plot but for the scaled texp quantity.

where we have omitted the temporal dependence and the

index K of the amplitudes ψ
(0)
K,i(t). Same simplification

of the notation is used in the rest of the appendix. The
Schrodinger equation for the full solution is

i
d

dt

[

ψ
(0)
i + ψ

(1)
i

]

= αN

(

ψ
(0)
i + ψ

(1)
i

)

+ βN−1

(

ψ
(0)
i−1 + ψ

(1)
i−1

)

+ βN
(

ψ
(0)
i+1 + ψ

(1)
i+1

)

. (D4)

We are interested in the Eq. (D4) for i = N+1, in this

case the terms ψ
(0)
N+1 and ψ

(0)
N+2 vanish. And |ψ

(0)
N | >>

|ψ
(1)
N |, then the equation of motion for ψ

(1)
N+1 result in,

i
d

dt
ψ
(1)
N+1 = αN+1ψ

(1)
N+1 + βNψ

(0)
N . (D5)

Eq. (D5) can be solve taking the Laplace transform,

ψ̂
(1)
N+1 = βN

{ ψ̂
(0)
N

is− αN+1

}

(D6)

and then using some properties of the Laplace transform,

ψ
(1)
N+1 = iβN

∫ t

0

eiαN+1tψ
(0)
N = βNI(t) (D7)

The full solution, throwing the order one for the sites

i ≤ N is,

ψN+1,i =











Aψ
(0)
i i ≤ N

Aψ
(1)
N i = N

0 i > N,

(D8)

with A = 1/
√

1 + |I(t)|2β2
N a normalization factor.

Then, the overlap between the solution for the Lanczos
approximation and the next order is,

|
〈

ψK

∣

∣

∣ψ̃K+1

〉

|2 = A2, (D9)

where ψ̃K+1 is the solution using βN = β̃. Finally, it is
straightforward to show,

1− |
〈

ψK

∣

∣

∣ψ̃K+1

〉

|2

1− | 〈ψK |ψK+1〉 |2
∼

1− Ã2

1−A2
∼

(

β̃

β

)2

. (D10)
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In the Fig. 9 it is shown the validity of the quadratic
behavior of the Eq. (D10) for an Ising spin chain with
L = 10 sites with J = 1, hx = 1 and hz = 0.5 and T = 25
(circles), 35 (squares) and 40 (triangles).

0 0.5 1.0 1.5 2.0
β̃/β

1

2

3

4

1
−
|〈 ψ

K
|ψ̃

K
+
1

〉 |2
1
−
|〈 ψ

K
|ψ

K
+
1

〉 |2

Figure 9.
1− |

〈

ψK

∣

∣

∣
ψ̃K+1

〉

|2

1− | 〈ψK |ψK+1〉 |2
vs. β̃

β
for an Ising spin chain

with L = 10 sites with J = 1, hx = 1 and hz = 0.5. T = 25
(circles), 35 (squares) and 40 (triangles). The function x2 is
plotted with solid line.

Appendix E: Analytical solution of the error:

special case of homogeneous hopping

In this appendix, we solve a simplified model for the
evolution on the Krylov subspace KN . Let us assume
that after mapping |ψ〉 and H to |0〉N and TN , we find a
homogeneous tridiagonal matrix,

TN = α
N
∑

n=1

|n〉 〈n|+ β
N−1
∑

n=1

|n〉 〈n+ 1|+ h.c. . (E1)

Here, |n〉 ≡ |n〉N (here and hereafter we drop de sub-
script) denotes the localized "site" states of the N -
dimensional tight-binding chain associated with the dy-

namical system (ψ,H). The Hamiltonian in Eq. (E1)
corresponds to the so-called Toeplitz tridiagonal matrix
[25–27], and has well documented analytical expressions
for its eigenstates and eigenenergies,

〈n|Ek〉 =

√

2

N + 1
sin

(

nkπ

N + 1

)

, (E2)

and

Ek = α+ 2β cos

(

nkπ

N + 1

)

. (E3)

The time evolution of an arbitrary initial state

|ψ(t = 0)〉 =
∑N

n=1 cn |n〉 is given by,

|ψ(t)〉 =
N
∑

n,n′

cnS
N
n,n′(t) |n′〉 , (E4)

where the transition matrix SN
n,n′(t) is defined as,

SN
n,n′(t) =

√

2

N + 1

N
∑

k=1

sin

(

nkπ

N + 1

)

sin

(

n′kπ

N + 1

)

eitEk .

(E5)
Finally, the amplitude of the echo of two time-

evolutions with Toeplitz matrices of lengths N and N ′

yields,

〈0| e−itT ′

N eitTN |0〉 = 1−
N ′

∑

n=1

SN
1,n(t)S

N ′

n,1(−t). (E6)

It is clear from Eq. (E3), that the parameter α will not
affect the value of the echo and β acts as a rescaling of
time. Thus, one can limit itself to study the behavior of
the chain with parameters α = 0 and β = 1, and then
rescale time by βt.
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