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Quantum kernel methods are considered a promising avenue for applying quantum computers to
machine learning problems. Identifying hyperparameters controlling the inductive bias of quantum
machine learning models is expected to be crucial given the central role hyperparameters play in
determining the performance of classical machine learning methods. In this work we introduce the
hyperparameter controlling the bandwidth of a quantum kernel and show that it controls the ex-
pressivity of the resulting model. We use extensive numerical experiments with multiple quantum
kernels and classical datasets to show consistent change in the model behavior from underfitting
(bandwidth too large) to overfitting (bandwidth too small), with optimal generalization in between.
We draw a connection between the bandwidth of classical and quantum kernels and show analogous
behavior in both cases. Furthermore, we show that optimizing the bandwidth can help mitigate
the exponential decay of kernel values with qubit count, which is the cause behind recent observa-
tions that the performance of quantum kernel methods decreases with qubit count. We reproduce
these negative results and show that if the kernel bandwidth is optimized, the performance instead
improves with growing qubit count and becomes competitive with the best classical methods.

INTRODUCTION

Algorithms designed for quantum computers are theo-
retically able to provide exponential speedups over the
best known classical algorithms for certain problems,
most famously integer factoring [1]. Recent advances
in quantum computing hardware open the possibility of
realizing this potential. Urgently needed, however, is
development of novel algorithms that effectively lever-
age the power of quantum computation. A particularly
promising problem domain is machine learning, owing to
the ubiquity of machine learning problems in science and
technology.

A number of approaches have been proposed for apply-
ing quantum computers to machine learning problems.
In this work we focus on a subset of such approaches
that can be reformulated as kernel methods. The central
idea of kernel methods is to embed the data into a fea-
ture space (typically, of dimension higher than the input
data) in which it becomes easier to analyze. The analysis
is then performed by using solely the values of similarities
(kernel values) between the representations of the data
points in feature space. Most supervised machine learn-
ing methods (quantum or classical) can be equivalently
reformulated as kernel methods with an appropriately
defined (potentially, quantum) kernel [2, 3]. Quantum
kernel methods [4, 5] have been shown to theoretically
provide speedups over classical methods [6, 7]. In quan-
tum kernel methods, datapoints are mapped to quantum
states using a quantum feature map, and the value of the
kernel between two datapoints is given by some similarity
measure (such as fidelity) of the corresponding quantum
states. The power of quantum kernel methods comes
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from being able to process the data using an exponen-
tially sized Hilbert space, performing computations that
are hard classically even for sizes attainable on currently
available quantum hardware [8].

Recently, the exponential dimensionality of the space
into which the classical data is being mapped has been
identified as a potential obstacle to achieving quantum
advantage using kernel methods. The fidelity of two
random quantum states decreases exponentially with the
number of qubits (typically set to be equal to the num-
ber of dimensions of the input data), leading to the ex-
ponential vanishing of kernel values and making learning
impossible [9]. This behavior is analogous to the curse of
dimensionality in classical kernel methods [10] and not
specific to the choice of fidelity as the similarity mea-
sure. One recently proposed approach to overcome this
limitation is controlling the inductive bias of the quan-
tum kernel methods by projecting the quantum state into
a lower-dimensional subspace [7, 11]. In general, how-
ever, additional information is required to appropriately
choose the projection [11].

These no-go results [7, 11] depend crucially on the
quantum feature map being fixed as the number of qubits
grows. However, this overlooks the important role hyper-
parameters play in machine learning. Hyperparameter
tuning is known to be central to the good performance
of classical machine learning models in general and clas-
sical kernel methods in particular [3]. One such hyper-
parameter is kernel bandwidth, which is known to affect
the performance of methods such as support vector ma-
chines (SVMs) and is routinely optimized when SVMs
are used in practice. Recently, attempts have been made
to introduce similar hyperparameters into the quantum
models [12–14]. At the same time, no evidence has been
shown that these hyperparameters enable the quantum
model to maintain performance as the number of qubits
grows, which is a prerequisite for quantum advantage.
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In this work we identify quantum kernel bandwidth as
a centrally important hyperparameter for quantum ker-
nel methods. We demonstrate that varying it controls the
expressiveness of the model, with high bandwidth lead-
ing to underfitting and low bandwidth to overfitting. We
show that for the quantum feature maps considered, the
bandwidth can be controlled by rescaling the datapoints.
We draw an analogy with the bandwidth of classical ra-
dial basis function (RBF) kernels and show that varying
bandwidth affects expressiveness of the model in a simi-
lar way in both quantum and classical cases. As a conse-
quence of the effect of the bandwidth on generalization,
optimizing the bandwidth can improve the performance
from being comparable to a random guess to being com-
petitive with the best classical methods. We reproduce
recent numerical results used to support an argument
against quantum kernels [7]. We show how changing the
value of the kernel bandwidth can lead to significantly
better performance than the results in [7]. Moreover,
we observe that when the bandwidth is optimized, the
performance of quantum kernel methods improves with
qubit count, which is the opposite scaling behavior from
the one documented in [7]. We provide extensive numer-
ical evidence of the importance of the bandwidth and
its effect on model generalization and performance with
varying qubit count, performing simulations with mul-
tiple quantum feature maps and datasets using up to
26 qubits. We show that hardware limitations, such as
finite precision of controls and the variance introduced
by sampling, are not obstacles to achieving the observed
performance.

RESULTS

Setup

We begin by formalizing our notions of quantum ker-
nels, quantum feature maps, and machine learning prob-
lems, as well as establishing notation. We consider
the problem of supervised learning, specifically the task
of classification, although we expect our conclusions to
apply more generally. Given a training dataset of N
pairs {(xi, yi)}Ni=1, where xi ∈ Rd is a datapoint and
yi ∈ {0, 1} is a binary label produced by some unknown
map m : Rd → {0, 1}, the goal is to learn a map from
datapoints to labels that agrees with the true map m
with high probability on an unseen test set.

We consider quantum models where a datapoint xi is
encoded in a quantum state |xi〉 by a parameterized uni-
tary: |xi〉 = Uenc(xi) |0〉. We will refer to the unitary
Uenc as a quantum feature map. A kernel matrix K
is obtained by computing Kij = k(xi,xj) = | 〈xi|xj〉 |2
(the quantum kernel) for all pairs of datapoints. This
value can be computed on a quantum computer by
measuring the value of observable |0〉 〈0| on the state
U†enc(xi)Uenc(xj) |0〉. This kernel matrix is then used in-
side an SVM or other kernel methods [15, 16]. A quan-

tum feature map and a classical kernel method such as
an SVM fully define a quantum kernel method.

In this paper we use the quantum kernel matrix in a
support vector classifier (SVC). SVC seeks an optimal
separating hyperplane between two (potentially nonsep-
arable) classes in the feature space. An optimal hyper-
plane is one that maximizes the distance (margin) to the
closest point from either class [17]. The hyperplane is
found by determining coefficients α ∈ RN that maximize
the objective function

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjk(xi,xj), (1)

subject to
∑N
i=1 αiyi = 0 and 0 ≤ αi ≤ C, i = 1, . . . , N .

The penalty term C > 0 controls the trade-off between
the goals of minimizing the training error and maximizing
the margin: smaller values of C lead to larger margin at
the cost of higher training error.

Motivating example

The recent results on quantum kernel methods do not
explicitly study the choice of hyperparameters in quan-
tum feature maps. As a motivating example, we consider
the paper [7], which includes numerical experiments on
the performance of the quantum kernel method with the
feature map given by

|xi〉 =

 d∏
j=1

exp

(
−i

t

T
xijH

xyz
j

)T
n+1⊗
j=1

|ψj〉 , (2)

where

Hxyz
j = xjxj+1 + yjyj+1 + zjzj+1. (3)

Here xj , yj , and zj are the Pauli operators acting on
qubit j, and |ψj〉 is a Haar-random single-qubit state.
The Haar-random state |ψj〉 is sampled and fixed for each
qubit. This feature map represents a d-dimensional data-
point as a d+1-qubit quantum state [18]. We refer to this
feature map as the Hamiltonian evolution feature map.

The feature map given by equation 2 has two hyper-
parameters: the total evolution time t (equivalent to the
scaling of the inputs xi ← txi) and the number of Trot-
ter steps T . Huang et al. [7] set t = d

3 and T = 20
and reported prediction accuracy on the test set of the
quantum kernel method (SVC) with this feature map on
the Fashion-MNIST (fmnist) dataset [19]. Each data-
point is reduced to the specified number of dimensions
by using principal component analysis (PCA). In Fig. 1b
we present the results reported in [7] and the results
we reproduced independently. The details of the SVC
implementation and data preprocessing are given in the
Methods section. Our reproduced results are presented
as boxplots over 20 choices of the Haar-random initial
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FIG. 1. (a) Schematic overview of the effect of bandwidth on kernel method performance. Some bandwidth optimization is
typically required to avoid under- or overfitting. (b) Prediction accuracy of the quantum kernel method with Hamiltonian
evolution feature map as a function of number of qubits. “Reported” and “Reproduced” results have t = d

3
, where d is the

dimensionality of the datapoint. “Optimized” presents performance of the kernel method with the same feature map and
t = 0.05. The performance of our quantum kernel with optimized bandwidth approaches that of the best classical methods
reported in [7]. Note that from the construction given in Ref. [7] (see equation 2), an n-dimensional datapoint is embedded
into an (n+ 1)-qubit state.

state fixed across all qubit counts, with the box show-
ing the middle 50% quantile range and whiskers showing
minimum and maximum. The reported and reproduced
results agree well, and both show that the performance
of the quantum kernel method decreases with increasing
qubit count, approaching the performance of a random
guess (i.e., 0.5 accuracy) at about 20 qubits.

While Huang et al. [7] performed extensive hyperpa-
rameter optimization of both the SVC that uses the quan-
tum kernel and the classical methods with which the
quantum kernel method is compared, no hyperparameter
optimization is reported for the quantum feature map it-
self. In fact, choosing t = 0.05 and keeping everything
else fixed lead to much better performance, approaching
the performance of the best classical machine learning
methods (see Fig. 1b). The reason is that the parameter
t controls the bandwidth of the quantum kernel. Large
values of t lead to the kernel’s being too “narrow” (small
bandwidth), making learning impossible. We discuss the
relationship between the scaling factor, quantum kernel
bandwidth, and model performance in detail below.

In addition to providing improved performance, this
hyperparameter choice leads to an opposing conclusion
about the scaling of the performance with qubit count:
in this case, the performance increases with qubit count
until plateauing at about 14 qubits. The improvement in
performance can be partially explained by observing that
with larger qubit count, more components are kept in the
PCA-based reduction, thereby giving the model access to
a larger part of the explanation of variance in the data.
Unlike the previous results [7, 11], we do not observe a
large drop in performance for larger qubit counts. This
example highlights the importance of hyperparameter se-
lection in determining the effectiveness of quantum kernel
methods.

Importance of hyperparameters in quantum
machine learning

We now show that the ability of hyperparameter choice
to make or break performance of a quantum kernel
method is not limited to the above example. To this end,
we perform a systematic study of how bandwidth affects
the prediction accuracy of quantum kernel methods. In
addition to the Hamiltonian evolution feature map given
in Equation 2, we consider a feature map inspired by the
instantaneous quantum polynomial (IQP) circuits used
in [5, 7]:

|xi〉 = UZ (xi)H
⊗dUZ (xi)H

⊗d ∣∣0d〉 , (4)

where

UZ (xi) = exp

 d∑
j=1

λxijZj +

d∑
j=1

d∑
j′=1

λ2xijxij′ZjZj′

 .

(5)
We endow this feature map with a hyperparameter

λ > 0 analogous to the total evolution time in the Hamil-
tonian evolution feature map. Since both hyperparam-
eters are equivalent to a rescaling of the input data, we
refer to them as “scaling factors.” The scaling factor λ
can be subsumed into the definition of the input data by
setting xi ← λxi. The scaling factor can be understood
as a hyperparameter of the quantum feature map since
it can always be included in the definition of the feature
map if an assumption on the input data distribution is
made (e.g., the data has mean zero and standard devia-
tion one). We show below that the scaling factor behaves
analogously to bandwidth in classical kernel methods.

The performance is evaluated on three real-world
datasets. In addition to the Fashion-MNIST (fmnist)
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FIG. 2. Prediction accuracy of the quantum kernel method with IQP (a) and Hamiltonian evolution (c) feature maps and as
a function of the scaling factor. (b) Effects of finite precision of controls on performance of the quantum kernel method. Error
bars show one standard deviation. (d) Effects of finite sampling on performance of the quantum kernel method. Top: median
value and standard deviation of the non-diagonal entries of the kernel matrix K computed from full-precision quantum state.
Bottom: test accuracy for kernel matrix computed from full-precision quantum state and from 5,000 samples as a function of
scaling factor applied to the data.

dataset, we use Kuzushiji-MNIST (kmnist), a dataset
containing cursive Japanese characters [20], and a cos-
mological dataset focused on the task of supernova clas-
sification (plasticc) [21]. Two of the datasets were used
to study quantum kernel methods (fmnist in [7] and
plasticc in [22]). The datasets are balanced; that is,
the number of datapoints with label 0 is approximately
equal to the number of datapoints with label 1 for both
training and testing datasets. All input data is normal-
ized to be centered around zero with the standard devi-
ation of approximately one. A precise description of the
experimental setup is given in the Methods section.

We observe that hyperparameter selection significantly
affects the performance of quantum kernel methods. We
find in particular that the performance of the models
varies drastically with the scaling factor (bandwidth).
This relationship is presented in Figs. 2a and 2c. Since
no significant effect is observed from varying the number
of Trotter steps T in the Hamiltonian evolution feature
map, here and for the remainder of the paper we set
T = 40; results with other values are available in the
Supplementary Information. We observe a clear trend in
optimal values of the scaling factor, with larger values
leading to overfitting and smaller values to underfitting.
This relationship is schematically presented in Fig. 1a.
Counterintuitively, the scaling factor of one (correspond-
ing to the data having standard deviation of approxi-
mately one) is a bad choice for all the datasets and fea-

ture maps considered.

We can understand the importance of the scaling fac-
tor by considering the relationship between qubit count,
scaling factor, and the values of the kernel matrix. The
performance of SVC is sensitive to kernel bandwidth. If
the kernel bandwidth is too small (kernel is “narrow”),
then the kernel matrix will be close to identity; and if
the bandwidth is too large (kernel is “wide”), all kernel
matrix entries will be close to one. In both scenarios
learning is impossible, which is why kernel bandwidth is
routinely optimized in classical kernel methods. Scaling
factor is analogous to kernel bandwidth for quantum ker-
nels. When the scaling factor is large, the kernel matrix
approaches identity as the qubit count grows. Corre-
spondingly, when the scaling factor is small, kernel ma-
trix entries all approach one. This relationship is shown
in Fig. 3b. Both of those extremes lead to suboptimal
performance (see Fig. 3a); the goal of hyperparameter
optimization is therefore to find the “Goldilocks” value
of the scaling factor. We discuss the analogy with clas-
sical kernel bandwidth and the effect on model gener-
alization in detail below by comparing the behavior of
quantum kernels with that of the classical RBF kernel.
Previously, in [22] rescaling of the data was shown to
lead to an improvement in performance of SVC with a
different feature map applied to the plasticc dataset.

Let us now consider the impact of scaling factor and
qubit count on the values of the kernel matrix. First,
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FIG. 3. Scaling of the kernel with the IQP quantum feature map. (a) Prediction accuracy as a function of number of qubits and
the scaling factor λ. For each qubit count, the value of the scaling factor corresponding to the highest accuracy is highlighted
with a purple square. The trend in scaling factor values corresponding to the highest accuracy is evident. (b) Kernel matrix
entries as a function of number of qubits and the scaling factor λ. If ‖K − I‖2 is small, non-diagonal kernel matrix entries are
small (i.e., K approaches the identity). The value ‖K − I‖2 is largest when all kernel matrix entries are close to one. (c) The
scaling of the kernel as a function of the scaling factor λ. The points xi and xj are taken from the fmnist dataset; the number
of qubits is 20. The kernel scales exponentially with λ. (d) Value of the kernel of two points as a function of the number of
qubits. Exponential decay in the value of the kernel entry with the number of qubits is clearly visible.

note that if the data is rescaled by λ, then the operator
(5) becomes

UZ (λxi) = exp

λ d∑
j=1

xijZj + λ2
d∑
j=1

d∑
j′=1

xijxij′ZjZj′


=

exp

 d∑
j=1

xijZj + λ

d∑
j=1

d∑
j′=1

xijxij′ZjZj′

λ

.

Analogous behavior can be easily shown for the Hamil-
tonian evolution feature map. This highlights the expo-
nential relationship between the scaling factor and the
kernel value for the family of kernels considered in this
work. Figure 3c numerically elucidates this exponential
relationship by plotting k(λxi, λxj) against k(xi,xj)

λ for
two fixed datapoints. Second, note the exponential rela-
tionship between the qubit count and the kernel value.
As the number of qubits grows, the fidelity of two ran-
dom states decays exponentially. Correspondingly, the
fidelity of the embeddings |xi〉 of the datapoints, equal
to the value of the quantum kernel of the datapoints, also
decays exponentially. This can be observed in Fig. 3d,
which shows the scaling of the value of the kernel of two
points with the number of qubits. The points in Fig. 3d
are sampled from a normal distribution with mean zero
and standard deviation of one (“Normal”) or are taken
from the fmnist dataset, preprocessed as described in
the Methods section, and scaled to have mean zero and
standard deviation one. In both cases, the exponential
decay in the kernel value with qubit count is clearly visi-
ble. These two exponential relationships have important
implications since high qubit count is a necessary (but
not sufficient) prerequisite for the possibility of quantum
advantage. While the kernel value decays exponentially
irrespective of the fixed value of the scaling factor, se-
lecting a scaling factor based on the qubit count may

mitigate the effects of this decay.
For the datasets and feature maps considered, and the

range of qubit counts accessible in classical simulation,
we find that choosing one fixed scaling factor leads to
good performance. However, we expect that in general
the value of scaling factor will vary with qubit count, data
properties and the feature map structure. For example,
we anticipate that the scaling factor required to maintain
good generalization will decrease with qubit count. Ini-
tial evidence of this can be glanced from Figs. 3a, wherein
the optimized value of the scaling factor decreases slightly
for higher qubit count. Since obtaining true scaling of the
bandwidth parameter would require experiments with
the numbers of qubits far beyond those accessible in sim-
ulation, a promising future direction is studying of an-
alytically tractable feature maps and data distributions
such as those considered in Ref. [11]. For such problems
it may be possible to derive closed-form scaling of opti-
mal bandwidth parameter, as well as establish the scaling
of important properties such as the range of parameter
values that lead to good generalization.

As shown in Fig. 1b, the Hamiltonian evolution feature
map with optimized scaling factor can achieve accuracy
approaching that of the best classical model reported in
[7]. The improvement in performance with qubit count,
observed in the motivating example, is present for all
datasets and qubit counts considered. Figure 4 shows
prediction accuracy as a function of datapoint dimension,
which is equal to the qubit count in the case of the IQP
feature map and is equal to (Number of qubits − 1) for
the Hamiltonian evolution feature map. With the scal-
ing factor fixed to the optimized value, we observe im-
provement in performance with growing qubit count up
to a certain threshold at which the performance plateaus.
The value of the threshold depends on the difficulty of the
classification task. For fmnist, considered in [7], the per-
formance stops improving at about 13 qubits, whereas for
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evolution (“HamEvo”) feature map. For the easier datasets,
fmnist and kmnist, the performance stops improving after a
certain threshold is reached, whereas for the harder dataset,
plasticc, the performance keeps improving up to the largest
datapoint dimension considered.

the more difficult plasticc dataset, considered in [22],
the performance improves for the entire range of qubit
counts considered, namely, up to 22. Similar to the mo-
tivating example, the improvement in performance can
be partially attributed to the increased dimensionality of
the input datapoint, which allows PCA to preserve more
data variance. We note, however, that within the regime
considered, no deleterious effects of increased dimension-
ality of the Hilbert space are observed. The cessation
in the performance improvement with qubit count for
fmnist can be explained by the model saturating the
best possible performance on this problem, as evidenced
by it matching the performance of the best known clas-
sical methods (see Fig. 1b).

Impact of bandwidth on model generalization and
comparison with classical kernels

In the preceding section we showed that the perfor-
mance of quantum kernel methods is sensitive to quan-
tum kernel bandwidth (scaling factor). This sensitiv-
ity is due to how the kernel bandwidth affects the ex-
pressivity of the model, which we now explain. We
being by noting that the behavior is completely analo-
gous to the variation in the performance of classical ker-
nel methods with kernel bandwidth. The role of kernel
bandwidth and its effect on SVC performance are well
known in classical machine learning [15, 23, 24]. To il-
lustrate its effect, we consider the RBF kernel given by

k(xi,xj) = exp(−γ‖xi − xj‖2); here the hyperparame-
ter γ controls the bandwidth. Analogously to the case
of the quantum feature map we considered above, γ can
be subsumed into the definition of input data as a scal-
ing factor. The kernel matrix Kij = k(xi,xj) is then
used in an SVC analogously to the quantum kernel case
described above.

If γ is large, the kernel is “narrow,” and the SVC with
such a kernel can fit any labels, which may lead to over-
fitting. This is analogous to the scaling factor λ above,
where large scaling factor values lead to overfitting. Fig-
ure 5 shows overfitting resulting from an overly expressive
kernel. For large values of γ or λ, the score on the train-
ing set goes to one, and the score on the test set decreases
to that of random guessing. On the other hand, for suf-
ficiently small values, the kernel is “wide,” and the SVC
with such kernel is insufficiently expressive, leading to
underfitting. The goal is therefore to identify the band-
width that makes the model sufficiently but not overly
expressive.

To illustrate the effect of quantum kernel bandwidth
(controlled by the scaling factor) on the expressiveness
of the model, we present two sets of experiments in
Fig. 5. We optimize the penalty term C in SVC either
using cross-validation or to directly maximize the train-
ing score (see Methods for detailed description). When
the penalty term that maximizes the training score is
chosen, we observe clear under- and overfitting for small
and large values of the scaling factor, respectively. Ad-
ditional information about the performance of the meth-
ods without cross-validation is given in the Supplemen-
tary Information. In the preceding sections, however,
we presented the results with cross-validation since they
show slightly better performance. In this case, for the
easier fmnist and kmnist datasets, the behavior is simi-
lar. For the harder plasticc dataset, the training score
for the largest value of the scaling factor λ decreases,
thereby indicating the absence of overfitting. We ob-
serve that for the plasticc dataset, for both feature
maps the cross-validation hyperparameter optimization
leads to the smallest possible value C, corresponding to
the largest margin at the cost of a lower training score.
For this particular dataset, this is sufficient to prevent
overfitting. For the other datasets considered, the hy-
perparameter optimization does not lead to the largest
penalty, suggesting that increasing the penalty would not
help overcome overfitting.

Effects of limited control precision and finite
sampling

So far we have demonstrated that with appropriate
bandwidth selection, performance of quantum kernel
methods need not deteriorate with the growth in qubit
count and can approach the performance of the best clas-
sical methods. Two major obstacles arise in realizing
the observed performance of quantum models in prac-
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FIG. 5. Effects of kernel bandwidth on model generalization on fmnist dataset for (a) classical RBF kernel and quantum
kernels using 19 qubits with (b) and without (c) cross-validation. Dashed and solid lines represent the training and test
scores, respectively. For large values of γ or the scaling factor, the kernel is narrow, and the models can fit any data, leading
to overfitting. For small values, the kernel is wide, and the model is insufficiently expressive, leading to underfitting. The
maximum average number of support vectors per class is 400 (i.e., every training point is a support vector).

tice: the errors introduced by finite sampling and the
limited precision of controls. We now provide numeri-
cal evidence that these obstacles do not prevent realizing
the good model performance observed above under real-
istic assumptions on the number of samples used and the
control precision.

The first obstacle is that, in practice, the kernel matrix
is evaluated by performing measurements of a quantum
device, limiting the effective precision with which kernel
matrix elements can be evaluated. In general, the er-
rors introduced by the finite sampling statistics need not
preclude quantum advantage [6]. For small values of the
kernel, however, finite sampling may lead to large relative
errors [25] and can potentially nontrivially affect predic-
tion performance. Moreover, the variance of the errors in
the value of | 〈0|ψ〉 |2 introduced by finite sampling differs
depending on the choice of state |ψ〉, necessitating careful
numerical investigation. This can be easily observed by
comparing the variance between |ψ〉 = 1

2n

∑
x∈{0,1}n |x〉

and |ψ〉 being an n-qubit GHZ state [26]. To numerically
evaluate the effects of finite sampling in a realistic setting,
we consider the Hamiltonian evolution feature map with
the hyperparameters corresponding to the highest predic-
tion accuracy on the fmnist dataset (n = 19, T = 40).
For each value of the scaling factor, we recompute the
5-by-5 subset of the corresponding kernel matrix using
5,000 shots 10 times, and we use the mean of the stan-
dard deviations of the submatrix entries as the standard
deviation for i.i.d. normal noise with mean zero applied
to the full matrix. The noise is applied in a way that pre-
serves the symmetry of the matrix. The resulting matrix
may not be positive semi-definite; we take the closest (in
Frobenius norm; see, e.g., Ref. [27]) positive semi-definite

approximation as the kernel matrix for the SVC.

Figure 2d presents the prediction accuracy obtained
with the kernel matrix evaluated from full quantum state
up to machine precision (“Exact”) and with sampling
noise (“5k shots”). We observe poor performance in the
cases where the nondiagonal kernel matrix values are all
close to zero or all close to one (i.e., kernel very nar-
row or very wide). However, at the same time, when
an appropriate kernel bandwidth (equivalent to scaling
the data) is chosen, we observe that good performance
is recovered. This is due to bandwidth choice preventing
the values of the kernel matrix from concentrating; see
Fig. 2d, top. This evidence suggests that in some cases
judicious choice of bandwidth parameter may reduce the
number of samples needed.

The second obstacle is finite precision of controls avail-
able on noisy intermediate-scale quantum (NISQ) hard-
ware, which limits the range of values that can be used as
inputs to the quantum feature map. This can potentially
limit the scaling of the data. Note that this issue is lim-
ited to NISQ devices, since fault-tolerant architectures
allow synthesis of single-qubit operations with precision
matching that of classical machines [28]. To numerically
evaluate the effects of finite precision, we recompute the
kernel matrix values with parameters rounded to no more
than a fixed number of decimals. Figure 2b shows that
with the scaling factor that maximizes performance in
the full-precision case (0.05), three decimals of precision
is sufficient to match the performance of the noiseless
case. As the scaling factor decreases, the number of dec-
imals required to match the full precision increases. We
note that precision of trapped ion hardware currently
available on the cloud (three decimals [29]) is sufficient
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to saturate the noiseless performance of a scaling factor
that is five times smaller than the one maximizing perfor-
mance at 19 qubits, suggesting that the control precision
would not be the limiting factor for the qubit counts ex-
pected in the near term.

DISCUSSION

Numerical evaluation of promising quantum algo-
rithms is an essential complement to theoretical analy-
sis. When identifying opportunities and no-go results
for quantum advantage, it is therefore crucial to con-
sider all aspects of the quantum algorithm that can be
used to boost its performance. In this work we identify
quantum kernel bandwidth as the key hyperparameter
controlling the expressiveness of the model, with exces-
sively small bandwidth leading to overfitting and large
bandwidth leading to underfitting. We show that care-
ful kernel bandwidth selection can mitigate the exponen-
tial decay of kernel values with qubit count and avoid
overfitting and the corresponding drop-off in prediction
accuracy. As a pleasant surprise, we discover that for a
given dataset a wide range of bandwidth values work well
(this is most clearly visible in Fig. 5). This observation
suggests that optimizing kernel bandwidth need not be
difficult in practice: finding the correct order of magni-
tude is often sufficient for achieving good performance.

While the bandwidth hyperparameter we introduce is
superficially similar to the rescaling of the data used by
Schuld et al. [14] to control the expressive power of pa-
rameterised quantum circuits, our perspective differs in
two important ways. First, we study the kernel method
setting, therefore the expressiveness of the model is con-
trolled by the properties of the kernel matrix: roughly
speaking, the closer the kernel matrix is to diagonal,
the more expressive the model. As can be glanced from
Fig. 5, one consequence of this is that simply increas-
ing the scaling factor leads to more expressive model –
a drastically different dynamic from the one considered
in Ref. [14]. Second, the kernel setting we choose has
the attribute that increasing the number of qubits while
keeping the feature map fixed implicitly increases the ex-
pressiveness of the model. This expressiveness is then
modulated by the bandwidth hyperparameter. The set-
ting chosen in Ref. [14] does not have this property, and
the authors do not consider explicitly the interplay be-
tween the hyperparameters and qubit counts.

Recent proposals to control the inductive bias of quan-
tum kernels by projecting them into a lower-dimensional
subspace [7, 11] are clearly complementary to the ideas
put forward in this work since they attempt to overcome
similar challenges. The projection can be straightfor-
wardly combined with bandwidth optimization to more
precisely modulate the inductive bias of the model.
More interestingly, the projection operation can itself be
viewed as a hyperparameter in the absence of sufficient
prior knowledge. Such techniques may be required to

achieve good performance with qubit counts significantly
larger than accessible for study at the time of writing.

In this paper we consider only two hyperparameters—
scaling factor and the number of Trotter steps in the
Hamiltonian evolution feature map. We see a signifi-
cant effect for only one of them, the scaling factor, which
controls the kernel bandwidth. We anticipate that more
elaborate feature maps will be explored with potentially
more parameters that can be tuned. Doing so may help
bridge the gap between fully trainable quantum embed-
dings [12], which require expensive training on a quantum
computer, and fixed feature maps. Careful consideration
of hyperparameters of quantum kernels may enable the
tuning of the inductive bias of the model in a way that is
infeasible classically, providing a potential path to quan-
tum advantage in machine learning.

METHODS

Data preprocessing We preprocess the input data in
the following way. For fmnist [19], we follow the prepro-
cessing pipeline of [7], which results in the two classes of
dresses (class 0) and shirts (class 3). For kmnist [20], we
arbitrarily choose class 1 and class 4. For plasticc [21],
we use the dataset preprocessed as described in [22], pro-
vided by the authors. For all datasets, each datapoint is
rescaled such that the mean value is zero and the stan-
dard deviation is one. Then, each datapoint (28-by-28
pixel images for fmnist and kmnist and 67-dimensional
vector for plasticc) is reduced to the required number
of dimensions by using the scikit-learn [30] implementa-
tion of PCA. We use 800 randomly selected points as
the training set and 200 randomly selected points as the
test set. The fmnist and kmnist datasets provide sep-
arate training and test sets, and for plasticc we split
the dataset into training and testing parts randomly, as
stratified by the value of the label. The random splits
result in approximately (though not exactly) balanced
problems. The same random samples are used for all
quantum feature maps and hyperparameter values.
a. Kernel methods The quantum kernels are com-

puted by using Qiskit [31]. For each datapoint xi, we
use the Qiskit Aer simulator [31] to compute the vector
of amplitudes describing the quantum state of its repre-
sentation |xi〉. Then, the values of the kernel k(xi,xj) =

|〈xi|xj〉|2 are obtained by taking inner products of the
corresponding vectors of amplitudes. The resulting ker-
nel matrix is used in the scikit-learn [30] implementation
of the SVC. Following [7], we perform a grid search over
the following values of the penalty term in Eq. 1:

C ∈ {0.006,0.015, 0.03, 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0,

4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256, 512, 1024}.

For the results presented in Fig. 1b, 5c, we choose the
value C that maximizes the training score. In all other
plots, we perform 5-fold cross-validation to choose C. In
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all plots, we report balanced accuracy, defined as the
mean recall of the two classes, as the prediction accuracy
score.

For the classical RBF kernel k(xi,xj) = exp(−γ‖xi −
xj‖2), we begin by performing 5-fold cross-validation
over the values of C defined above and the following val-
ues of γ:

γ ∈ {0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 20.0, 50.0, 100.0,

200.0, 500.0, 1000.0, 5000.0, 10000.0}/ (N Var [x]) ,

where Var [x] is the variance of the training data and
N = 800 is the number of training points. Then, we
fix the value of C to the optimized value obtained from
the cross-validation, and we vary parameter γ to obtain
Fig. 5a.

b. Data availability We release all code used to gen-
erate the data and the plots, as well as the raw data,
online: https://github.com/rsln-s/Importance-of-

Kernel-Bandwidth-in-Quantum-Machine-Learning/.
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Appendix A: Additional numerical experiments

Figure 6 illustrates the relationship between model per-
formance and scaling factor for varying levels of the sec-
ond hyperparameter, namely, the number of Trotter steps
T . No significant variation in performance with T is ob-
served. Figure 7 shows the scaling of the kernel for fea-
ture maps and datasets not included in the main text.

Figures 8 and 9 show results without cross-validation
for SVM hyperparameter optimization. Concretely, the
penalty term C is optimized to maximize the training
score. Figure 8 shows the prediction accuracy change
with scaling factor, and Figure 9 shows scaling of predic-
tion accuracy with qubit count for optimized bandwidth.
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FIG. 6. Prediction accuracy of the quantum kernel method with the Hamiltonian evolution feature map as a function of the
scaling factor for the number of Trotter steps T = 25 and T = 40.
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FIG. 7. Additional numerical evidence of kernel matrix entry scaling and model performance variation with the scaling factor.
For each qubit count, the value of the scaling factor corresponding to the highest accuracy is highlighted with a purple square.
For each model and each dataset considered, a clear “Goldilocks” regime is visible where the scaling factor is neither too small
nor too large.
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FIG. 8. Prediction accuracy as a function of the scaling factor for IQP (top) and Hamiltonian evolution (bottom, varying T )
without cross-validation for SVM hyperparameter optimization.
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