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1Department of Electrical and Computer Engineering,
Princeton University, Princeton, New Jersey 08544, USA

2Department of Engineering Physics, Polytechnique Montral, Montral, Qubec H3T 1J4, Canada
3Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37073 Göttingen, Germany

We exploit fluctuational electrodynamics to present trace expressions for the torque experienced
by arbitrary objects in a passive, non-absorbing, rotationally invariant background environment.
Specializing to a single object, this formalism, together with recently developed techniques for
calculating bounds via Lagrange duality, is then used to derive limits on the maximum Casimir
torque that a single object with an isotropic electric susceptibility can experience when out of
equilibrium with its surrounding environment. The maximum torque achievable at any wavelength is
shown to scale in proportion to body volumes in both subwavelength (quasistatics) and macroscopic
(ray optics) settings, and come within an order of magnitude of achievable torques on topology
optimized bodies. Finally, we discuss how to extend the formalism to multiple bodies, deriving
expressions for the torque experienced by two subwavelength particles in proximity to one another.

Over the past decades, much effort has been devoted to
understanding fluctuation phenomena in structured me-
dia [1, 2]. For example, in recent years Casimir forces
have been considered in a variety of systems out of ther-
mal equilibrium, including planar slabs [3], spheres [4–
6], cylinders [7], and gratings [8]. Whether through
surface texturing or by enforcing far out of equilibrium
conditions, the Casimir force can be made to exhibit a
wide range of power laws [9], lead to unstable and sta-
ble equilibria [4], become repulsive [3, 4], and lead to
self-propulsion [4, 6]. In anisotropic media or systems
exhibiting chirality, thermal fluctuations can also cause
objects to exchange net angular momentum with their
environments or other nearby objects, resulting in a net
torque [10–14], a prediction that was recently verified in
experiments [15]. As interest in mechanical devices of in-
creasingly smaller scales continues to grow, so too is the
ability to exploit fluctuation phenomena such as laser
shot noise and the Casimir effect to actuate nanoscale
rotors [16–18].

In this paper, we exploit the mathematical framework
of fluctuational electrodynamics [19, 20] and scattering
theory [21] to rigorously derive trace expressions for the
thermal Casimir torque experienced by a set of objects
out of equilibrium with themselves or their environment.
Based on the dyadic Green’s function G0 of a rotationally
invariant background environment and the scattering T
operators of each object in isolation, these expressions,
valid also for arbitrary anisotropic bodies, are extensions
of analogous and recently derived power and force quan-
tities [5]. Special attention is given to the case of a single
body embedded in a background environment as well as
two-body scenarios, generalizing recent expressions for
the torque on dipolar particles [11, 13, 22, 23]. Further-
more, employing Lagrange duality in the case where the
single body is composed of an isotropic electric suscep-
tibility, we present upper bounds on the frequency con-
tributions to the non-equilibrium Casimir torque possi-
ble for arbitrarily structured objects confined within a
bounding sphere. These bounds show that the maximum

torque experienced by a body scales like the volume of
the object in both the small particle (quasistatics) and
large-body (ray optics) limits, a feature unique to torque
as both heat transfer and forces are known to scale like
area in the large-size limit [2, 24]. Finally, our expressions
are valid for arbitrary geometries and take simple forms
in the limit of dipolar particles, which we illustrate by
deriving expressions involving torque between two sub-
wavelength bodies out of equilibrium and in the vicinity
of one another. For clarity and conciseness, the main
text focuses on fundamental equations and results, leav-
ing detailed derivations and technical discussions to the
appendix; interested readers are encouraged to consult
the appendix for additional insights.

I. GENERAL FORCE AND TORQUE
FORMULAS

The net force and torque on a body composed of a
charge density ρ and current density K resulting from a
set of prescribed electromagnetic fields E and B acting
on it can be derived from the Lorentz force law [25], and
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are given by (using Einstein convention):

F =

∫
V

d3r

∫ ∞
−∞

dω [ρ∗(ω, r)E(ω, r) + K∗(ω, r)×B(ω, r)]

(1)

=

∫
V,ω

[
i

ω
(∇ ·K∗)E− i

ω
K∗ × (∇×E)

]
, (2)

=

∫
V,ω

i

ω
[(∇ ·K∗)E−K∗ · ∇E(ω, r) + (K∗ · ∇)E] ,

(3)

=

∫
V,ω

i

ω

[
∂K∗j
∂rj

Ekek −K∗j
∂Ej
∂rk

ek +K∗j
∂Ek
∂rj

ek

]
,

(4)

=

∫
V

d3r

∫ ∞
−∞

dω
1

~ω

[
K∗a p̂Ea + i~

∂

∂rj
(K∗jEk)ek

]
(5)

τ =

∫
V

d3r

∫ ∞
−∞

dωr× [ρ∗(ω, r)E(ω, r) + K∗(ω, r)×B(ω, r)]

(6)

=

∫
V,ω

i

ω
r× [(∇ ·K∗)E−K∗ × (∇×E)] (7)

=

∫
V,ω

i

ω
emεmjk[−rjK∗a(∂kEa) + ∂a(rjK

∗
aEk)−K∗jEk]

(8)

=

∫
V

d3r

∫ ∞
−∞

dω
1

~ω
[K∗aL̂Ea + K∗ŜE+

i~emεmjk∂a(rjK
∗
aEk)] (9)

where L̂ = r× p̂ = −i~r×∇ and

Ŝ = −i~

{0 0 0
0 0 1
0 −1 0

 ,
0 0 −1

0 0 0
1 0 0

 ,
 0 1 0
−1 0 0
0 0 0

}, (10)

are the orbital and spin angular momentum operators,
respectively [26], defined in the Cartesian basis and com-

pactly summarized by (Ŝa)bc = −i~εabc. In deriving the
expressions above, we made use of the continuity equa-
tion iωρ(ω, r) = ∇ · K(ω, r), Faraday’s law B(ω, r) =
1
iω∇×E(ω, r), and the following algebraic identities:

r× (K∗(ω, r)× (∇×E(ω, r)))

= eiεijkrj(K
∗(ω, r)× (∇×E(ω, r)))k

= eiεijkrj(K
∗
a(∂kEa)−K∗a(∂aEk))

= eiεijk(rjK
∗
a(∂kEa)− ∂a(rjK

∗
aEk)

+ δajK
∗
aEk + rj(∂aK

∗
a)Ek)

and r× (∇ ·K∗(ω, r))E(ω, r) = eiεijkrjEk(∂aK
∗
a).

Notably, the total derivative terms ∼ ∂a(rjK
∗
aEk)

above vanish in scenarios in which there are no net cur-
rents just outside the body. In fact, Eq. (5) minus

the total derivative terms has been used as the start-
ing point for deriving trace expressions for the Casimir
force [4–6, 27]. In considering torque, one might naively
though incorrectly insert r× into prior trace expressions
for forces [4–6], introducing terms of the form r × ∇
and thus leading to quantities proportional to the orbital
angular momentum operator L̂ = r × p̂ = −i~r × ∇.
Specifically, while the K∗aL̂Ea term above would follow
upon inserting r× into the force expression of Eq. (5),
such naive manipulation would miss the additional term
K∗ŜE = −i~K∗ × E present in Eq. (9). The presence
of this last term should be expected on physical grounds:
a photon is a spin-1 particle, and the torque exerted by
a vector field does not just depend on angular deriva-
tives (“orbital” contributions), but also on the mixing of
different vector components (“spin” contributions).

II. CASIMIR TORQUE ON A SINGLE BODY

Starting from the above general expression, one can
derive a corresponding expression for the Casimir torque
on a collection of objects, the origin of which are thermal
fluctuations of currents and fields in matter and through-
out space. The relation quantifying the statistical ther-
modynamics of matter and resulting charge fluctuations
is known as the fluctuation-dissipation theorem (FDT),
and takes the form [28, 29]

〈Ki(x, ω)K∗j (x′, ω′)〉T

=
ωε0
2π

coth

(
~ω

2kBT

)
χA
ij(x,x

′;ω)δ(ω − ω′), (11)

with 〈· · · 〉T denoting an equilibrium thermal average of
the electric current sources in a medium of general elec-
tric susceptibility χ held at a temperature T . The su-
perscript A on an operator Θ denotes its asymmetric
part, ΘA ≡ 1

2i (Θ−Θ†), where † denotes conjugate trans-

pose. In our notation, Θ†ab(x,y) = Θba(y,x)∗, treat-
ing the vector component and spatial coordinate as an
index pair. For systems in thermal equilibrium, the
current–current correlations along with Maxwell’s equa-
tions can be used to derive corresponding field–field cor-
relations, Ceqij (T, ω, ω′; r, r′) ≡ 〈Ei(r, ω)E∗j (r′, ω′)〉T =

~ω2

2πc2ε0
coth

(
~ω

2kBT

)
δ(ω − ω′)GA

ij(ω; r, r′), in terms of

the Green’s function of the system G, defined by[
∇×∇×−V− ω2

c2 I
]
G(r, r′) = Iδ(3)(r − r′) where V =

ω2

c2 (ε − I) + ∇ × (I − µ−1)∇× is the potential or gener-
alized susceptibility introduced by the objects [29]. In a
nonequilibrium stationary state, each object is assumed
to be at local equilibrium, such that the current fluctua-
tions within each object satisfy the FDT at the appropri-
ate local temperature. The details of the use of FDT and
local equilibrium properties with the scattering equations
have been described before [5, 29] and laid out in the ap-
pendix. Detailed derivations and use of similar principles
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to derive force expressions can be found in Refs. [5, 6].
Here, we restrict our attention to torque.

As a concrete example, we consider the Casimir torque
on an isolated body out of equilibrium with its surround-
ings. To begin with, we use the linear response rela-
tion between the set of sources in the body and resulting
fields, E = iµ0ωG0K, to rewrite the thermally averaged
torque in terms of the field–field correlation Dyadic:

τ = Re

∫
Vbody

d3r

∫ ∞
−∞

dω
1

~ω
[K∗aL̂Ea + K∗ŜE] (12)

= −Im

∫
Vbody

d3r

∫ ∞
−∞

dω
1

~ω2µ0
[(G−1

0 E)∗aL̂Ea+

(G−1
0 E)∗ŜE] (13)

= −Im

∫ ∞
−∞

dω
1

~ω2µ0
Tr|Vbody [ĴCG−1†

0 ], (14)

where Ĵ = L̂+Ŝ is the total angular momentum operator
and the trace is taken over the vector components and
position arguments. The final line follows by taking an
ensemble average 〈τ 〉 of the torque, expanding the inte-
grand, and replacing 〈Ea(r, ω)E∗b (r′, ω)〉 by the field-field
correlator Cab(r, r′). The notation |Vbody denotes that the
outer-most indices of the operator are traced over posi-
tions in the body, while all others are over all space. The
operator G0 represents the background Green’s function,

which in vacuum satisfies
[
∇×∇×−ω

2

c2 I
]
G0(r, r′) =

Iδ(3)(r−r′). All of the statistical properties of the sources
in Eq. (14) are represented by the field–field correla-
tion Dyadic C which, in the out of equilibrium set-
ting, can be decomposed Cneq(Tenv, Tbody) = Ceq(Tenv)+
[Csrcbody(Tbody) − Csrcbody(Tenv)] as a sum of an equilibrium

Ceq(Tenv) plus a non-equilibrium term stemming from
the difference of the temperatures of the body and envi-
ronment, with the contribution due to the sources (src)
in the body (as opposed to the environment) at a local
temperature T given by [5],

Csrcbody(T ) = sgn(ω)
~ω2

πc2ε0
n(|ω|, T )G0

(
TA − TGA

0T†
)
G†0,

where n(ω, T ) = 1

exp
(

~ω
kBT

)
−1

is the Bose–Einstein distri-

bution function. The scattering T operator introduced
above transforms incident fields into induced currents in
the body [21], and is formally defined by the relation
T = V(I − G0V)−1. Plugging the field–field correlator

Cneq(Tenv, Tbody) into Eq. (14) yields

τ = −Im

∫ ∞
0

dω [n(ω, Tbody)− n(ω, Tenv)]

× 2

π
Tr[ĴG0

(
TA − TGA

0T†
)
] (15)

=

∫ ∞
0

dω[n(ω, Tbody)− n(ω, Tenv)]

× 2

π
Tr[(−ĴGA

0 )
(
TA − TGA

0T†
)
]︸ ︷︷ ︸

ΦJ (ω)

(16)

The Tr symbol denotes a trace over the complete set of in-
dices of the enclosed operators (for example, both the po-
sition and polarization indices of the dipole sources). The

switch from Tr|Vbody to Tr is possible since CsrcbodyG
−1†
0 has

T or T† on the left or right of each term in the expansion.
As T vanishes for all points outside Vbody, one can extend
the spatial integration to be over all space, resulting in a
trace expression. Furthermore, in going to the final ex-
pression above, we used the Hermiticity of the quantity
in parenthesis and assumed a background environment
with rotational symmetry (so that G0 and Ĵ commute)

in which case, since Ĵ is Hermitian, (ĴG0)A = ĴGA
0 . The

assumption that G0 describes a rotationally symmetric
background is the only symmetry assumption needed to
arrive at the final expression Eq. (16). In particular, note
that V can be anisotropic or nonreciprocal.

The purely algebraic quantity ΦJ depends only on geo-
metric and material properties and can be directly inter-
preted as angular momentum exchanged between the ob-
ject and its environment, with −(TA−TGA

0T†)Ĵ describ-
ing absorption expressed as the subtraction of scattered
angular momentum from net extracted (extinction) an-
gular momentum: namely, the first term quantifies angu-
lar momentum extracted from an incident wave upon in-
teraction with the body while the second describes angu-
lar momentum carried away by the scattered field. Note
that since fluctuations at different frequencies are uncor-
related, as per Eq. (11), the total rate of angular mo-
mentum transfer is therefore given by an integral over all
frequencies, with each frequency contribution weighted
by a difference of thermal occupation numbers.

In general, the calculation of trace expressions for
forces in the basis of vector spherical harmonics (VSH) is
complicated by the fact that the matrix representation of
p̂ is not diagonal in this basis [26]. Introducing multiple
bodies adds further complications. However, beyond its
logical necessity, the appearance of the total angular mo-
mentum Ĵz ≡ L̂z + Ŝz in torque trace expressions offers
computational advantages for torque calculations com-
pared to force calculations. In the basis of VSH, Ĵz is
diagonal [26], suggesting that torque calculations in cer-
tain physical setups might be simpler analytically and nu-
merically than the corresponding force calculations. As
an illustrative example, we first consider bounds on the
maximum non-equilibrium torque that a single compact
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body may experience.

A. Size scaling and maximum torque

Equation (16) is valid for arbitrarily structured objects

of any size and shape. As the VSHs are eigenstates of Ĵz,
it is convenient to express the underlying scattering op-
erators in a spectral basis of VSHs [26, 34]; choosing the
origin to lie at the center of mass, the vacuum Green’s
function can be written as GA

0 =
∑
P,j,m |P, j,m〉 〈P, j,m|

(the eigenvalues are not explicitly factored out, al-
lowing for easier extraction of scaling behavior be-
low) and the net angular momentum exchange as
ΦJ(ω) = − 2~

π

∑
Pjm
P ′j′m′

m(Im[TPjm;P ′j′m′ ]δP ′j′m′;Pjm −

TPjm;P ′j′m′T ∗Pjm;P ′j′m′) in terms of the matrix elements

of the T operator, TPjm;P ′j′m′ ≡ 〈P, j,m |T|P ′, j′,m′〉.
It follows that objects for which the scattering opera-
tor satisfies TP,j,m;P ′,j′,m′ = TP,j,−m;P ′,j′,−m′ (for exam-
ple, spherically or cylindrically symmetrical bodies), ex-
hibit zero Casimir torque, owing to the lack of a pre-
ferred direction of radiation. Intuitively, for small objects
(particles), the scaling of the lowest order scattering el-
ements TN1m,N1m ∝ R3, with all other matrix elements
being higher order in R, yields a torque which scales like
the volume of the object. For larger sizes, the situa-
tion becomes complicated owing to higher order scatter-
ing and the stronger dependence on geometry. Thank-
fully, a recently developed formulation of electromagnetic
bounds [35, 36] allows shape-agnostic analysis of size scal-
ing which, perhaps not surprisingly, reveals persistent
volumetric scaling beyond quasitatic settings [37].

Generally, the question of what kind of geometry leads
to maximum torque is interesting and can, in absence
of intuitive characteristics, be probed via large scale op-
timization [38, 39]. Further understanding e.g. scal-
ing behavior, can be achieved by applying a recent
framework based on Lagrange duality to compute shape-
independent bounds, previously used in the context of
thermal radiation [24, 35, 36]. Concisely, and at a high
level, bounds are obtained by maximizing a desired ob-
jective function: the contribution to the torque Eq. (16)
at a single characteristic angular frequency of the ab-
sorption spectrum of the object, with respect to possible
scattering operator response [40] subject to constraints
incorporating a subset of the scattering physics of the
problem. For simplicity, we consider non-magnetic ma-
terials (µ = I). Supposing a local isotropic material
susceptibility (χ) and isotropic background environment
(G0), Eq. (16) becomes rotationally invariant. Accord-
ingly, both the chosen direction and sign of the objective
ΦJ—the geometry dependent component of Eq. (16)—
are immaterial to the optimization; the optimal values
for the maximization and minimization of ΦJ differ by a
minus sign.

Maximizing ΦJ by considering the optimal T can be
achieved by moving to an eigenbasis of GA

0 . In particular,

since GA
0 describes radiation away from an object into the

surrounding environment [41, 42], an eigenbasis of GA
0 is

a natural choice to evaluate the trace. Furthermore, the
vector spherical harmonics are, by definition, eigenstates
of Ĵz (see the appendix for a review). Working in

this eigenbasis of GA
0 [34], one finds ĴzGA

0 (x,y) =
k
∑
j,m(−1)mm~[RMj,m(kx)RMj,−m(ky) +

RNj,m(kx)RNj,−m(ky)]. This choice of basis is
further useful and natural if the design domain is a
spherical ball (the body must fit within a sphere of
radius R), as will be the case in this article. In order
to keep the expressions more compact, we will write the
eigenmode expansion [43] as GA

0 =
∑
n ρn |Qn〉 〈Qn| ,

where each radiative coefficient ρn is non-negative
due to passivity (that is, GA

0 is positive semi-definite).
Therefore, the eigenvectors |Qn〉 can be indexed as
|QP,j,m〉 , where P denotes the type (M or N wave),
j = 1, 2, . . . , and m = −j,−j + 1, . . . , j − 1, j, and
Ĵz|QP,j,m〉 = m~|QP,j,m〉. The eigenvalues can be
expressed in the case of a sphere of radius R (for
orthonormal basis vectors) as

ρM,j,m =
π(kR)2

4k2

(
J2
j+ 1

2
(kR)− Jj− 1

2
(kR)Jj+ 3

2
(kR)

)
(17)

ρN,j,m =
π(kR)2

4k2
×[

j + 1

2j + 1

(
J2
j− 1

2
(kR)− Jj+ 1

2
(kR)Jj− 3

2
(kR)

)

+
j

2j + 1

(
J2
j+ 3

2
(kR)− Jj+ 1

2
(kR)Jj+ 5

2
(kR)

)]
(18)

where Jν is a Bessel function of the first kind of order ν.
In this basis and setting |Tn〉 ≡ T |Qn〉, with − i

kZ |Tn〉
denoting the electric polarization current density in the
object resulting from the n-th radiative mode, one finds

ΦJ = − 2

π

∑
n

ρn

(
Im
[〈

Qn|Ĵz|Tn

〉]
− 〈Tn| ĴzGA

0 |Tn〉
)
.

(19)
The form of ΦJ implies that there is a limit on the
torque. The argument is similar to that of bounds for
power quantities [44] and relies on the competition be-
tween the linear and quadratic terms in the polarization
currents which limits the magnitude of the optimal po-
larization current. In particular, note also that in this
basis, Ĵz and ĴzGA

0 each break down into a positive def-
inite block (m > 0), a 0 block (m = 0), and a negative-
definite block (m < 0). Noting the overall minus sign
in ΦJ , therefore, in order to optimize absorption it is
clear from Eq. (19) that each radiative mode within the
negative-definite block must generate a strong polariza-

tion: − Im
[〈

Qn|Ĵz|Tn

〉]
is the extracted angular mo-

mentum. However, the generation of these currents nec-
essarily leads to radiative losses of angular momentum,
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Tenv

T1

Side view

Top view

FIG. 1. Bounds on maximum angular momentum transfer based on the conservation of energy. An isolated body
out of equilibrium can exchange net angular momentum with the environment, illustrated by an inset schematic. The figure
shows the maximum spectral angular momentum transfer ΦJ(ω) (defined in the main text) at a single wavelength λ allowed for
a body enclosed in a spherical design volume of radius R, for multiple values of body material susceptibilities χ(ω), captured
by the material factor ‖χ(ω)‖2/ Im [χ(ω)] . ΦJ,max(ω) is seen to smoothly blend the intuitively expected ∝ V behaviors of
quasi-static and ray-optic regimes, with an intermediate regime of growing radiative losses that suppresses the overall prefactor
in the volumetric scaling. The full bounds, involving a relaxation of physics through the conservation of energy or optical
theorem [30], described in App. F, are shown as dashed lines. Solid lines describe a semi-analytical bound that, while looser
owing to additional relaxations, provides an intuitive picture of the various wave contributions to torque (see main text). The
dots indicate values of ΦJ(ω) observed in topology optimized structures [31–33].

−〈Tn| ĴzGA
0 |Tn〉, which grow relatively in strength as

the size of the domain increases through the growth of the
ρn radiative coupling coefficients [42, 45]. Likewise, each
radiative mode within the positive-definite block should
ideally not generate a polarization current.

At the coarsest level of this relaxation procedure, with
details in the appendix, the loosest ΦJ,max, consistent
only with optimal scattering satisfying not the full scat-
tering equations but merely the conservation of power
(optical theorem [30]) over the entire domain, is

ΦJ,max =
~

2π

∑
P,j,m


0 m ≥ 0{
−m ζρP,j,m > 1

− 4mζρP,j,m
(1+ζρP,j,m)2 ζρP,j,m ≤ 1

m < 0

(20)

where ζ ≡ k2‖χ‖2/ Im [χ] is a measure of the dissipative
response of the system [42, 44]. The simplicity of ΦJ,max
as arising from a sum over independent channel contri-
butions lends itself to simple interpretation. The optimal
polarization currents associated with maximum angular
momentum transfer in each channel can be chosen to be
proportional to the radiative states, here taken to be the
eigenbasis of GA

0 , such that T
∣∣QP,j,m

〉
= cP,j,m |QP,j,m〉,

with the maximum bound polarization response for each

channel set by ‖cP,j,m‖ ≤ min
{

1
2ρP,j,m

, ζ
}

with m < 0

and cP,j,m = 0 for m ≥ 0.
Figure 1 shows ΦJ,max for various system parameters,

illustrating the dependence of maximal angle-integrated
angular momentum transfer for bodies of different shapes
and material compositions enclosed in a spherical ball of
radius R. It is observed that the mere imposition of en-
ergy conservation is sufficient for the bounds to show in-
tuitive quasi-static and ray-optic behavior. In the limit
of a small design volume, ζρP,j,m � 1 for all {P, j,m},
ΦJ,max is seen to exhibit volumetric scaling consistent
with the assumption that the magnitude of all generated
polarization currents can grow as large as material loss
allows: as the volume grows, so does the available angu-
lar momentum in each channel, and hence so should the
polarization response. Intuitively, if the object size R is
smaller than the penetration (skin) depth of the medium,
then one expects the entire volume of the object to inter-
act with any impinging waves. Owing to the necessary
coupling of the currents with radiative waves, as R in-
creases there is a decrease in how much net angular mo-
mentum can be transferred per volume of the object. In
the intermediate regime where the object is on the wave-
length scale, in each index of Eq. (19) growth in ρP,j,m
causes radiative losses to compete with the net extracted
angular momentum if the magnitude of |TP,j,m〉 becomes
too large, leading the associated channel (index) to enter
the saturation condition of Eq. (20), visible in Fig. 1 as
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the onset of steps. As an increasing number of channels
saturate, the volumetric scaling appears to transition to
area scaling as observed for radiated power [42], but only
temporarily. Intuitively, if the object size R is signifi-
cantly larger than the penetration depth, the effective
portion of the object interacting with an impinging wave
is expected to scale like the surface area times the pen-
etration depth (which is material dependent, but inde-
pendent of the object size). The angular momentum for
the photons on the surface relative to the center of mass
of the object is expected to have orbital contributions
which scale like the distance from the origin, suggest-
ing R × R2 ∝ V scaling again. Consequently, one finds
that spin and orbital contributions each dominate in the
quasistatic and ray-optic limits, respectively, leading to
volumetric scaling in either regime.

As support for the above intuitive picture, the small
R asymptotic (point particle limit) for ΦJ can be carried
out analytically (see appendix) to yield,

τ (Tbody, Tenv)

= − 2

π

∫ ∞
0

dω[n(ω, Tbody)− n(ω, Tenv)]Tr

[
ω3

6πc3
Ŝα

A
]
,

(21)

where α(ω) ≡ 4πR3 ε(ω)−I
ε(ω)+2I is the polarizability of the

particle and Tr is a trace of a 3-by-3 matrix. Notably,
the R3 order terms from the L̂z operator vanish exactly
leaving only the Ŝz dependence. (Note furthermore that
for a reciprocal particle and to linear order in volume,
the torque vanishes exactly.)

III. CASIMIR TORQUE FOR MULTIPLE
BODIES

Although we have so far focused on the case of a sin-
gle body, the trace expressions derived above can be ex-

tended to incorporate interactions between multiple ob-
jects at different temperatures. The analysis follows a
similar approach to that of nonequilibrium heat transfer
and force described in Refs. [5, 46], so below we simply
summarize the salient points. Suppose that there is a
set of N bodies (not counting the environment) indexed
by α = 1, 2, . . . , N. The starting point is Eq. (14), where
the volume integral is over object α. The total Casimir
torque on the αth object can be decomposed as

τ (α),neq(Tenv, {Tβ}) = τ (α),eq(Tenv)+∑
β

[τ
(α)
β (Tβ)− τ

(α)
β (Tenv)]. (22)

That is, the total Casimir torque in nonequilibrium
can be written as a sum of an equilibrium contribu-
tion τ (α),eq(Tenv) where all objects are at a temperature
Tenv plus non-equilibrium contributions when the ob-
jects 1, . . . , N deviate from the temperature of the back-
ground environment Tenv. This follows from the field–
field correlator in non-equilibrium Cneq(Tenv, {Tβ}) =
Ceq(Tenv)+

∑
β [Csrcβ (Tβ)−Csrcβ (Tenv)] which has an equi-

librium correlation part and a sum of terms that measure
the contributions to the field–field correlator for objects
held at different temperatures from the background en-

vironment [5]. τ
(α)
β (T ) is the torque on α due to sources

in β, when body β is at a temperature T and Csrcβ (T )
denotes the contribution to the field–field Dyadic from
sources (src) in object β and scattered by all other ob-
jects. Calculating the torque on object α due to Csrcβ (T )

involves a spatial integral
∫
Vα
d3r(. . . ) only over the vol-

ume of α, which is not a trace expression. However, fur-
ther analysis carried out in Ref. [5] in the case of force
calculations and omitted here proves that one can indeed
extend the integral to the entire domain, resulting in a
basis-independent trace expression. Carrying out a sim-
ilar procedure in the case of two bodies yields

τ
(1)
1 (T ) = − 2

π

∫ ∞
0

dω n(ω, T )ImTr[Ĵ(1 + G0T2)
1

1−G0T1G0T2
G0(TA

1 − T1GA
0T
†
1)

1

1−G†0T
†
2G
†
0T
†
1

], (23)

τ
(1)
2 (T ) = − 2

π

∫ ∞
0

dω n(ω, T )ImTr[Ĵ(1 + G0T1)
1

1−G0T2G0T1
G0(TA

2 − T2GA
0T
†
2)G†0

1

1− T†1G
†
0T
†
2G
†
0

T†1]. (24)

Plugging these expressions into Eq. (22), one can thus ob-
tain the various contributions to the torque on either ob-
ject. Note that the above equations follow directly from
Eqs. (76–77) in Ref. [5] upon the substitution p̂ → Ĵ,
corresponding to the change in observable from linear
momentum p̂ = −i~∇ to net angular momentum as de-
rived and discussed in Sec. I.

As in the section above and for illustrative purposes,

we now consider the special case of two point particles
(radius smaller than any other length scale in the prob-
lem including the thermal wavelength, skin depth, and
inter-particle distance) of polarizabilities α1 and α2 held
at temperatures T1 and T2 compared to a vacuum en-
vironment of temperature Tenv. In this limit, one can
neglect multiple scatterings and work within the Born
approximation so that only the lowest order terms in the
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scattering operators are kept, in which case the inverse
operators 1

I−... in the trace expression above become the
identity and the above expressions simplify to yield,

τ
(1)
1 (T ) · ez = − 2

π

∫ ∞
0

dω
ω2

c2
n(ω, T )×

Tr
[
(ĴzGA

0 )(r1, r1)α
A
1

]
(25)

τ
(1)
2 (T ) · ez = − 2

π

∫ ∞
0

dω
ω4

c4
n(ω, T )×

ImTr
[
(ĴzG0)(r1, r2)α

A
2G
†
0(r2, r1)α

†
1

]
(26)

where r1, r2 are the locations of the point particles and
the trace involves only a sum over the vector components
so that Tr[A(r, r′)] ≡

∑
aAaa(r, r′).

Let V1 and V2 denote the volumes of particles 1 and 2,
respectively, which are separated by a distance d. Since
the vacuum Green’s functions scale as 1/d3 and 1/d in
the near- and far-fields, respectively, one expects the
separation-dependent parts of both quantities to scale
∝ V1V2/d

6 and ∝ V1V2/d
2 for small and large sepa-

rations, respectively. Note however the presence of a

separation-independent term in τ
(1)
1 · ez ∝ V1. As in

the single-body case, one can show (see appendix) that

(ĴzGA
0 )(r, r) = (ŜzGA

0 )(r, r) = k
6π Ŝz, leading to vanish-

ing torque on reciprocal particles, α1,xy = α1,yx, to lead-
ing order in their volumes. Plugging the various torque
contributions into Eq. (22), one finds that as d → ∞,
the net torque τ (1),neq on particle 1 is dominated by

the separation-independent self-torque τ
(1)
1 derived in the

previous section and given by Eq. (21). For a concrete ex-
ample illustrating the above salient features we consider
the torque arising in a configuration of two InSb particles
subjected to an external magnetic field of magnitude 1 T
(104 Gauss), resulting in a permittivity of the form

ε =

 ε1 −iε2 0
iε2 ε1 0
0 0 ε3


cart

. (27)

Figure 2 shows τ
(1)
2 (T2) · ez, normalized by ~V1V2, as

a function of separation of two particles of radius 100
nm in a zero-temperature vacuum and held at different
temperatures T1 = 0 K and T2. In addition to showcas-
ing the above-mentioned scaling with d, the plots illus-
trate that the temperatures and separations determine
which frequency contributions to the total torque domi-
nate, resulting in possible transitions in the sign of the
torque [4]. For the settings shown, the largest possible
torque is roughly 10−23 Nm, occurring for T2 = 300 K
and d ≈ 100 nm. Dividing by the moment of inertia of
the particle (2

5M1R
2
1) yields a potential angular acceler-

ation for particle 1 around its center of mass of roughly
400 rad/s2 at d ≈ 1 µm.

Tenv
T1

T2

FIG. 2. Torque on a particle due to fluctuating sources
in a neighboring particle. Two objects can exchange net
angular momentum amongst themselves and their environ-
ment, illustrated by an inset schematic. For concreteness, we

plot τ
(1)
2 (T2) · ez, the torque on particle 1 due to the sources

in particle 2, normalized by ~V1V2 where V1 and V2 are the
volumes of particle 1 and 2, respectively, as a function of
the separation d along the x-direction of two InSb particles
in the xy-plane subject to an external magnetic field in the
z-direction. Solid/dashed lines indicate positive/negative val-
ues.

IV. CONCLUDING REMARKS

In summary, we have introduced trace expressions for
non-equilibrium Casimir torque that apply to arbitrary
object shapes and materials, generalizing prior work on
power transfer [24, 29, 45] and forces [5, 29, 47] and
showing explicitly the need for a full account of the
spin and orbital angular momentum carried by waves
in this setting. Furthermore, we have shown that re-
cently developed techniques [36, 45, 47–50] for calculat-
ing bounds on sesquilinear objectives in electromagnetics
can be applied to torque problems, revealing volumetric
scaling for small and large object asymptotics in a shape-
independent framework. The closeness of the associated
limits with specific body shapes as discovered by inverse
design, continues a trend observed in previous works on
bounds to thermal absorption and emission [35, 49]. Al-
though the calculated bounds focused exclusively on con-
tributions from a dominant frequency, extensions to net
(spectrally integrated) torque can be carried out as de-
scribed in Ref. [50]. Further extensions to analyze the
impact of nonreciprocal and anisotropic media will also
be considered in the near future.
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Appendix A: Thermal field correlations in
equilibrium and non-equilibrium settings

In this section, we summarize the details of the use
of fluctuation-dissipation theorem (FDT) and local equi-
librium properties with the scattering equations as de-
scribed in Refs. [5, 29], modified to SI units and without
assumptions of reciprocity. Let 〈· · · 〉T denote an equilib-
rium thermal average at a temperature T. In the Rytov
formalism for fluctuation electrodynamics [19], one as-
sumes that the free dipoles inside an object fluctuate. In
thermal equilibrium, one can show that the fluctuation-
dissipation theorem gives [28, 29],〈

Ki(x, ω)K∗j (x′, ω′)
〉
T︸ ︷︷ ︸

fluctuation

=

ωε0
2π

coth

(
~ω

2kBT

)
χA
ij(x,x

′;ω)︸ ︷︷ ︸
dissipation

δ(ω − ω′), (A1)

Ceqij (T, ω, ω′; r, r′) ≡
〈
Ei(r, ω)E∗j (r′, ω′)

〉
T

(A2)

= b(T )δ(ω − ω′)GA
ij(ω; r, r′) (A3)

where

b(T ) ≡ ~ω2

2πc2ε0
coth

(
~ω

2kBT

)
. (A4)

One can also define

b(T ) ≡ a(T ) + azp (A5)

a(T ) ≡ sgn(ω)
~ω2

πc2ε0

1

exp
( ~|ω|
kBT

)
− 1

(A6)

azp ≡ sgn(ω)
~ω2

2πc2ε0
(A7)

to further break-up the terms into a temperature depen-
dent piece and a quantum zero-point term. The Dyadic
Green’s function satisfies[

H0 − V− ω2

c2
I
]
G(r, r′) = Iδ(3)(r− r′), (A8)

where H0 = ∇×∇× and

V =
ω2

c2
(ε− I) +∇× (I− µ−1)∇× . (A9)

The vacuum Green’s function G0 is the solution of
Eq. (A8) with V = 0.

Before considering non-equilibrium situations, rewrite
the equilibrium expressions. As a first step, use the
(mathematically trivial) fact that GA = −GG−1AG† and
the fact that, from Eq. (A8),

−(G−1 −G−1
0 )A = VA. (A10)

This then lets one write

GA = G(VA −G−1A
0 )G† (A11)

Suppose that there are N objects labeled by α =
1, . . . , N. Then one may rewrite the expression for Ceq
to get

Ceq(T ) = Czp + Cenv(T ) +
∑
α

Csrcα (T ). (A12)

where V =
∑
α Vα and

Czp = azpGA, (A13)

Csrcα (T ) = a(T )GVA
αG†, (A14)

Cenv(T ) = −a(T )GG−1A
0 G†. (A15)

The interpretation is as follows. Csrcα , which involves Vα,
is interpreted as the contribution to the spectral density
function due to the sources in object α, so that the “left-
over” term Cenv is interpreted as the contribution from
the environment (which is anything not described by the
non-zero parts of V).

At this point, some assumptions have to be made in
order to proceed further. We assume that in the non-
equilibrium situation one may still use the above decom-
position by assuming that the fluctuations still satisfy
the fluctuation-dissipation theorem at the corresponding
local temperatures of each object. Also, we assume that
the time scales for temperature changes are much longer
than the time scales for observation of the mechanical
effects. Assuming that all the temperatures are indepen-
dently tunable, the non-equilibrium expression for the
field correlator becomes

Cneq(Tenv, {Tα}) = Czp + Cenv(Tenv) +
∑
α

Csrcα (Tα)

(A16)

= Ceq(Tenv) +
∑
α

[Csrcα (Tα)− Csrcα (Tenv)].

(A17)

Suppose that there is only one body. Then

Cneq(Tenv, Tbody) = Czp + Cenv(Tenv) + Csrcbody(Tbody)

(A18)

= Ceq(Tenv) + (Csrcbody(Tbody)− Csrcbody(Tenv))

where

Cenv(Tenv) = −a(Tenv)GbodyG−1A
0 G†body, (A19)

Csrcbody(Tbody) = a(Tbody)GbodyVA
bodyG

†
body. (A20)
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We remark that it is possible to write the formulas
using G directly, but we choose to rewrite the quantities
using the T operator. The bounds are found by maximiz-
ing an objective function with respect to possible scat-
tering operator response, making an objective in terms of
scattering operators more useful than one in terms of the
total Green’s function. This is done by rewriting, using
Gbody = G0 + G0TbodyG0, so that

Cenv(Tenv) = −a(Tenv)GbodyG−1A
0 G†body

= a(Tenv)(I + G0Tbody)GA
0 (I + T†bodyG

†
0).

(A21)

Csrcbody(Tbody) = a(Tbody)GbodyVA
bodyG

†
body

= a(Tbody)

(
(G0 + G0TbodyG0)

VA
body(G0 + G0TbodyG0)†

)
(A22)

While the above equations are true, they do not lead
directly to trace formulas. For this to occur, one must
be able to extend integrals over a particular region to
that of the entire space. A way to do this is to write
the expressions so that the T operator (or V) appears
on the right (or left) in integrands. Since the T vanishes
unless both spatial arguments are inside V, one may then
extend the integral over all space, resulting in a trace

expression. Multiplying Eq. (A22) on the right by G−1†
0

gives the correct form, but Eq. (A21) does not. A way
around this is to note that (ignoring δ(ω − ω′) factors)

Csrcbody(T ) + Cenv(T ) = a(T )GA
body (A23)

= a(T )(G0 + G0TbodyG0)A, (A24)

which along with Eq. (A21) gives, after a few lines of
algebraic manipulations,

Csrcbody(T ) = a(T )G0

(
TA
body − TbodyGA

0T
†
body

)
G†0, (A25)

≡ a(T )Rbody, (A26)

where in the last line we defined the radiation opera-
tor Rbody, so called as it appears in formulas involv-
ing a surface integral of the Poynting vector [5]. Note
that this required that Cenv and Csrcbody be evaluated at
the same temperatures. This is where the utility of
the second line of Eq. (A18) becomes apparent. Note

also that CsrcbodyG
−1†
0 has a right-most Tbody operator, so

that spatial integrals over the body
∫
Vbody

dr(. . . ) can

be extended over all space if the integrand depends on

CsrcbodyG
−1†
0 , which it does for power and force [5] as well

as for torque (see Eq. (14)). The non-equilibrium por-
tion of heat transfer, forces, and torques depends solely
on (Csrcbody(Tbody)− Csrcbody(Tenv)).

Appendix B: Evaluation of Green’s function in
spherical domains

Once an origin has been specified, the Green’s function
can be expanded in terms of the regular spherical vector
waves RN,RM and in terms of the outgoing spherical
vector waves N,M as [34]

G0(x,y) = −δ(x− y)

k2
x̂⊗ ŷ + ik

∞∑
J=1

J∑
M=−J

(−1)M

(B1){
MJ,M (kx)RMJ,−M (ky) + NJ,M (kx)RNJ,−M (ky), x > y

RMJ,M (kx)MJ,−M (ky) + RNJ,M (kx)NJ,−M (ky), x < y

The asymmetric part has a spectral basis expansion as

GA
0 (x,y) = k

∑
J,M

(−1)M

(
RMJ,M (kx)RMJ,−M (ky)+

RNJ,M (kx)RNJ,−M (ky)

)
(B2)

Explicitly,

RNJ,M (y) =

√
J(J + 1)

y
jJ(y)A

(3)
JM +

1

y

∂(yjJ(y))

∂y
A

(2)
JM

(B3)

RMJ,M (y) = jJ(y)A
(1)
JM (B4)

NJ,M (y) =

√
J(J + 1)

y
h

(1)
J (y)A

(3)
JM +

1

y

∂(yh
(1)
J (y))

∂y
A

(2)
JM

(B5)

MJ,M (y) = h
(1)
J (y)A

(1)
JM (B6)

where jJ(y) is the spherical Bessel function of order J

and h
(1)
J (y) is the spherical Hankel function of order J.

A
(1)
JM (r̂) =

1√
J(J + 1)

∇× (rYJM (r̂))

=
1√

J(J + 1)
∇YJM (r̂)× r (B7)

A
(2)
JM (r̂) =

1√
J(J + 1)

r∇YJM (r̂) (B8)

A
(3)
JM (r̂) = r̂YJM (r̂) (B9)

and the convention is such that

YJM (θ, φ) =

√
2J + 1

4π

(J −M)!

(J +M)!
PMJ (cos (θ))eimφ

(B10)

where PMJ (z) is the associated Legendre polynomial. The
eigenvalues of GA

0 are [24]
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ρRM,J,M =
π(kR)2

4k2

(
J2
J+ 1

2
(kR)− JJ− 1

2
(kR)JJ+ 3

2
(kR)

)
(B11)

ρRN,J,M =
π(kR)2

4k2

(
J + 1

2J + 1

(
J2
J− 1

2
(kR)

− JJ+ 1
2
(kR)JJ− 3

2
(kR)

)
+

J

2J + 1

(
J2
J+ 3

2
(kR)− JJ+ 1

2
(kR)JJ+ 5

2
(kR)

))
(B12)

where Jν is a Bessel function of the first kind of order ν.
Note that −i ∂∂φ acting on the vector spherical harmon-

ics does not simply introduce an overall factor of m. This
is because the coordinate vectors er, eθ, eφ depend on φ

as well. More to the point, −i ∂∂φ = L̂z (math references

usually have ~ = 1) in the position space representation
but the vector spherical harmonics are not defined to be
eigenstates of L̂z. That said, there does exist an operator,
let us call it Ĵz, equal to Ĵz = L̂z + Ŝz for some opera-
tor Ŝz that cancels the terms introduced by the action of
∂
∂φ on er, eθ, eφ such that the vector spherical harmonics

are eigenfunctions of Ĵz with eigenvalues equal to the m
label. See Section C for more details.

Appendix C: Tensor spherical harmonics

In this section, we summarize several salient mathe-
matical identities and definitions from Ref. [26] surround-
ing tensor spherical harmonics. The tensor spherical har-
monics Y LSJM (θ, φ) are, by definition, eigenfunctions of the

operators Ĵ2, Ĵz, L̂
2, and Ŝ2 where L̂ is the operator for

the orbital angular momentum, Ŝ is the operator for the
spin, and Ĵ = L̂+ Ŝ is the operator for the total angular
momentum. Explicitly,

Ĵ2Y LSJM (θ, φ) = J(J + 1)Y LSJM (θ, φ) (C1)

ĴzY
LS
JM (θ, φ) = MY LSJM (θ, φ) (C2)

L̂2Y LSJM (θ, φ) = L(L+ 1)Y LSJM (θ, φ) (C3)

Ŝ2Y LSJM (θ, φ) = S(S + 1)Y LSJM (θ, φ). (C4)

Note that the units are such that ~ = 1. The interpreta-
tion within physics is that the tensor spherical harmonics
may be used in the expansion of the angular distribution
and polarization of spin-S particles. The tensor spherical
harmonics are states with definite total angular momen-
tum J , definite projection M along an axis (chosen to
be the z axis), and definite orbital angular momentum
L. For S = 0, these are just the spherical harmonics,

often written Ylm(θ, φ) or Y ml (θ, φ). The S = 1
2 func-

tions are sometimes called spinor spherical harmonics.
The S = 1 states are the vector spherical harmonics, etc.
(The transformation properties of the tensor spherical
harmonics under a rotation of the coordinate system are
determined by J, and not L or S so calling them spinor
or vector spherical harmonics is a bit of a misnomer from
this point of view.)

The tensor spherical harmonics may be constructed
from the spherical harmonics, let us label them YLM (θ, φ)
(instead of Ylm(θ, φ) of Y ml (θ, φ)). The expansion is

Y LSJM (θ, φ) =
∑
M,σ

CJMLMSσYLM (θ, φ)χSσ. (C5)

This follows from the fact that any total angular mo-
mentum basis |jm; lσ〉 can be expanded in terms of the
direct product basis |lml;σmσ〉 ≡ |lml〉 ⊗ |σmσ〉 and the
Clebsch-Gordon coefficients

|jm; lσ〉 =

l∑
ml=−l

σ∑
mσ=−σ

〈lml;σmσ|jm; lσ〉 |lml;σmσ〉

(C6)

In the coordinate representation L̂ is represented as a
differential operator L̂ = −ir×∇. Using the coordinate
representation and the fact that, by definition, the spher-
ical harmonics Ylm(θ, φ) satisfy

L̂2Ylm(θ, φ) = l(l + 1)Ylm(θ, φ) (C7)

L̂zYlm(θ, φ) = mYlm(θ, φ) (C8)

gives the coordinate representation claimed in Eq. (C5).
The indices J and S are integer or half-integer non-
negative numbers. L is a nonnegative integer. For a
fixed value of J and S, then L can only take on values
from |J − S|, |J − S| + 1, . . . , J + S − 1, J + S. For a
given value of J, then M can only take on values from
−J,−J + 1, . . . , J − 1, J.

For fixed values of J,M,L, S the tensor spherical har-
monics are function of θ, φ, and ξ, where ξ is the spin vari-
able. The polar angles are θ, φ take on values 0 ≤ θ ≤ π
and 0 ≤ φ ≤ 2π. To be precise, one should write
Y LSJM (θ, φ, ξ) but the dependence on the spin variable is
usually not explicitly mentioned. The reason for this is
because of the next step: Represent Y LSJM (θ, φ) as a col-
umn matrix (that is, a column vector) of length 2S + 1.
Therefore, the spin variable now refers to a particular
component of the column vector, and summation of spin
variables has the interpretation of matrix multiplication.
Using the matrix notation, the following orthogonality
relation holds:∑

M

(Y L
′,S

LM (θ, φ))∗T · Y LSJM (θ, φ) = 0, if L′ 6= L. (C9)
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1. Vector spherical harmonics

The vector spherical harmonics are defined as the ten-

sor spherical harmonics with S = 1; they are Y L,1JM (θ, φ).
Using the vector notation,

Y L,1JM (θ, φ) =
∑
M,σ

CJMLM1σYLM (θ, φ)eσ, (C10)

where eσ are a covariant spherical basis vector. That is,

e+1 = − 1√
2

(ex + iey), (C11a)

e0 = ez, (C11b)

e−1 =
1√
2

(ex − iey). (C11c)

For a fixed value of J, the possible values of L are J −
1, J, J+1, with the exception of J = 0, where only L = 1
is allowed.

While the covariant spherical basis vectors are nice
from a mathematical theoretical point of view and lead
to cleaner transformation properties of their components
under rotations of coordinate systems, other bases are
possible. The change of basis formulas from covari-
ant spherical basis to Cartesian or polar coordinates are
straightforward (see below).

Given this introduction to tensor spherical har-
monics, a valid question is how does this relate to

A
(1)
JM ,A

(2)
JM ,A

(3)
JM which are also called vector spherical

harmonics. Note that Y LSJM are, by definition, states of
definite orbital angular momentum. In the context of
radiation settings in electromagnetism, it can be conve-
nient to work in a basis that separates longitudinal and
transverse waves. It turns out that

A
(1)
JM (r̂) = −iY J,1JM (θ, φ), (C12)

A
(2)
JM (r̂) =

√
J + 1

2J + 1
Y J−1,1
JM (θ, φ) +

√
J

2J + 1
Y J+1,1
JM (θ, φ),

(C13)

A
(3)
JM (r̂) =

√
J

2J + 1
Y J−1,1
JM (θ, φ)−

√
J + 1

2J + 1
Y J+1,1
JM (θ, φ)

(C14)

are the needed combinations of the tensor spherical har-
monics (up to overall constant complex factors) for the
decomposition into transverse and longitudinal waves.

A
(3)
JM are longitudinal waves. A

(1)
JM and A

(2)
JM are trans-

verse waves, sometimes called magnetic and electric mul-
tipoles, respectively. See Chapter 7 of Ref. [26] for more
details. Ref. [51] explicitly works out the divergence of
the tensor spherical waves and shows how to use the ex-
pressions for the divergence to construct linear combina-
tions of the tensor spherical waves that are longitudinal

and transverse. This process is invertible, namely,

Y J,1JM (θ, φ) = iA
(1)
JM (r̂), (C15)

Y J+1,1
J,M (θ, φ) =

√
J

2J + 1
A

(2)
JM (r̂)−

√
J + 1

2J + 1
A

(3)
JM (r̂),

(C16)

Y J−1,1
JM (θ, φ) =

√
J + 1

2J + 1
A

(2)
JM (r̂) +

√
J

2J + 1
A

(3)
JM (r̂)

(C17)

so A
(1)
JM ,A

(2)
JM ,A

(3)
JM also constitute a complete orthonor-

mal vector set for the range 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.
Their longitudinal and transverse orientations relative to
r̂ makes them a convenient basis to use in radiation set-
tings in electromagnetism.

2. The Ŝz Operator

In the covariant spherical basis [26],

Ŝz =

1 0 0
0 0 0
0 0 −1

 . (C18)

From Eq. (C11), it follows that the change-of-basis oper-
ator from {e+1, e0, e−1} to {ex, ey, ez} is

M(x, y, z ← +1, 0,−1) =

− 1√
2

0 1√
2

− i√
2

0 − i√
2

0 1 0

 . (C19)

Likewise, the change-of-basis operator from
{e+1, e0, e−1} to {er, eθ, eφ} is

M(r, θ, φ← +1, 0,−1) =

−
sin(θ)√

2
eiφ cos (θ) sin(θ)√

2
e−iφ

− cos(θ)√
2
eiφ −sin (θ) cos(θ)√

2
e−iφ

− i√
2
eiφ 0 − i√

2
e−iφ

 .
(C20)

It follows that in the polar coordinate basis {er, eθ, eφ}

Ŝz =

 0 0 −isin (θ)
0 0 −icos (θ)

isin (θ) icos (θ) 0

 . (C21)

From these change-of-basis operators, it follows that in
the Cartesian coordinate basis {ex, ey, ez}

Ŝz =

0 −i 0
i 0 0
0 0 0

 . (C22)

3. Action of L̂z and Ŝz on Y LS
JM

Let Φ(r) be an arbitrary function of r = |r|. From
Ref. [26], the following holds:
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L̂µ{Φ(r)Y LSJM (θ, φ)} = Φ(r)L̂µ{Y LSJM (θ, φ)}

= (−1)J+L+S+1Φ(r)
√

(2J + 1)L(L+ 1)(2L+ 1)
∑
J′

{
J J ′ 1
L L S

}
CJ
′M+µ

JM1µ Y LSJ′M+µ(θ, φ). (C23)

Ŝµ{Φ(r)Y LSJM (θ, φ)} = Φ(r)Ŝµ{Y LSJM (θ, φ)}

= (−1)L+1Φ(r)
√

(2J + 1)S(S + 1)(2S + 1)
∑
J′

(−1)J
′+S

{
J J ′ 1
S S L

}
CJ
′M+µ

JM1µ Y LSJ′M+µ(θ, φ).

(C24)

When µ = 0, the spherical coordinate components are equal to the Cartesian coordinate components. Namely,

L̂z{Φ(r)Y LSJM (θ, φ)} = Φ(r)L̂z{Y LSJM (θ, φ)}

= (−1)J+L+S+1Φ(r)
√

(2J + 1)L(L+ 1)(2L+ 1)
∑
J′

{
J J ′ 1
L L S

}
CJ
′M

JM10Y
LS
J′M (θ, φ). (C25)

Ŝz{Φ(r)Y LSJM (θ, φ)} = Φ(r)Ŝz{Y LSJM (θ, φ)}

= (−1)L+1Φ(r)
√

(2J + 1)S(S + 1)(2S + 1)
∑
J′

(−1)J
′+S

{
J J ′ 1
S S L

}
CJ
′M

JM10Y
LS
J′M (θ, φ). (C26)

4. Action of Ŝz on A
(1)
JM ,A

(2)
JM ,A

(3)
JM

Using the results of the previous parts,

ŜzA
(1)
JM = −i(−1)J+1

√
(2J + 1)S(S + 1)(2S + 1)

∑
J′

(−1)J
′+1

{
J J ′ 1
1 1 J

}
CJ
′M

JM10Y
J,1
J′M (C27)

= −i(−1)J+1
√

(2J + 1)S(S + 1)(2S + 1)

(
(−1)J

{
J J − 1 1
1 1 J

}
CJ−1,M
JM10 Y J,1J−1,M

+ (−1)J+1

{
J J 1
1 1 J

}
CJ,MJM10Y

J,1
J,M

+ (−1)J
{
J J + 1 1
1 1 J

}
CJ+1,M
JM10 Y J,1J+1,M

)
= −i(−1)J+1

√
(2J + 1)S(S + 1)(2S + 1)

(
(−1)J

{
J J − 1 1
1 1 J

}
CJ−1,M
JM10

√
J − 1

2J − 1
A

(2)
J−1,M − (−1)J

{
J J − 1 1
1 1 J

}
CJ−1,M
JM10

√
J

2J − 1
A

(3)
J−1,M

+ (−1)J+1

{
J J 1
1 1 J

}
CJ,MJM10iA

(1)
JM

+ (−1)J
{
J J + 1 1
1 1 J

}
CJ+1,M
JM10

√
J + 2

2J + 3
A

(2)
J+1,M + (−1)J

{
J J + 1 1
1 1 J

}
CJ+1,M
JM10

√
J + 1

2J + 3
A

(3)
J+1,M

)
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ŜzA
(2)
JM =

√
J + 1

2J + 1
(−1)J

√
(2J + 1)S(S + 1)(2S + 1)

∑
J′

(−1)J
′+1

{
J J ′ 1
1 1 J − 1

}
CJ
′M

JM10Y
J−1,1
J′M (C28)

+

√
J

2J + 1
(−1)J

√
(2J + 1)S(S + 1)(2S + 1)

∑
J′

(−1)J
′+1

{
J J ′ 1
1 1 J + 1

}
CJ
′M

JM10Y
J+1,1
J′M

= (−1)J
√

J + 1

2J + 1

√
(2J + 1)S(S + 1)(2S + 1)

(
(−1)J

{
J J − 1 1
1 1 J − 1

}
CJ−1,M
JM10 Y J−1,1

J−1,M

+ (−1)J+1

{
J J 1
1 1 J − 1

}
CJ,MJM10Y

J−1,1
J,M

)
+ (−1)J

√
J

2J + 1

√
(2J + 1)S(S + 1)(2S + 1)

(
(−1)J+1

{
J J 1
1 1 J + 1

}
CJ,MJM10Y

J+1,1
JM

+ (−1)J
{
J J + 1 1
1 1 J + 1

}
CJ+1,M
JM10 Y J+1,1

J+1,M

)
= (−1)J

√
J + 1

2J + 1

√
(2J + 1)S(S + 1)(2S + 1)

(
(−1)J

{
J J − 1 1
1 1 J − 1

}
CJ−1,M
JM10 iA

(1)
J−1,M

+ (−1)J+1

{
J J 1
1 1 J − 1

}
CJ,MJM10

√
J + 1

2J + 1
A

(2)
J,M + (−1)J+1

{
J J 1
1 1 J − 1

}
CJ,MJM10

√
J

2J + 1
A

(3)
J,M

)
+ (−1)J

√
J

2J + 1

√
(2J + 1)S(S + 1)(2S + 1)

(
(−1)J+1

{
J J 1
1 1 J + 1

}
CJ,MJM10

√
J

2J + 1
A

(2)
JM − (−1)J+1

{
J J 1
1 1 J + 1

}
CJ,MJM10

√
J + 1

2J + 1
A

(3)
JM

+ (−1)J
{
J J + 1 1
1 1 J + 1

}
CJ+1,M
JM10 iA

(1)
J+1,M

)
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ŜzA
(3)
JM =

√
J

2J + 1
(−1)J

√
(2J + 1)S(S + 1)(2S + 1)

∑
J′

(−1)J
′+1

{
J J ′ 1
1 1 J − 1

}
CJ
′M

JM10Y
J−1,1
J′M (C29)

−
√

J + 1

2J + 1
(−1)J

√
(2J + 1)S(S + 1)(2S + 1)

∑
J′

(−1)J
′+1

{
J J ′ 1
1 1 J + 1

}
CJ
′M

JM10Y
J+1,1
J′M

= (−1)J
√

J

2J + 1

√
(2J + 1)S(S + 1)(2S + 1)

(
(−1)J

{
J J − 1 1
1 1 J − 1

}
CJ−1,M
JM10 Y J−1,1

J−1,M

+ (−1)J+1

{
J J 1
1 1 J − 1

}
CJ,MJM10Y

J−1,1
J,M

)
− (−1)J

√
J + 1

2J + 1

√
(2J + 1)S(S + 1)(2S + 1)

(
(−1)J+1

{
J J 1
1 1 J + 1

}
CJ,MJM10Y

J+1,1
JM

+ (−1)J
{
J J + 1 1
1 1 J + 1

}
CJ+1,M
JM10 Y J+1,1

J+1,M

)
= (−1)J

√
J

2J + 1

√
(2J + 1)S(S + 1)(2S + 1)

(
(−1)J

{
J J − 1 1
1 1 J − 1

}
CJ−1,M
JM10 iA

(1)
J−1,M

+ (−1)J+1

{
J J 1
1 1 J − 1

}
CJ,MJM10

√
J + 1

2J + 1
A

(2)
J,M + (−1)J+1

{
J J 1
1 1 J − 1

}
CJ,MJM10

√
J

2J + 1
A

(3)
J,M

)
− (−1)J

√
J + 1

2J + 1

√
(2J + 1)S(S + 1)(2S + 1)

(
(−1)J+1

{
J J 1
1 1 J + 1

}
CJ,MJM10

√
J

2J + 1
A

(2)
JM − (−1)J+1

{
J J 1
1 1 J + 1

}
CJ,MJM10

√
J + 1

2J + 1
A

(3)
JM

+ (−1)J
{
J J + 1 1
1 1 J + 1

}
CJ+1,M
JM10 iA

(1)
J+1,M

)

Analogous expressions for the action of L̂z on A
(1)
JM ,A

(2)
JM ,A

(3)
JM can be derived starting from Eq. (C25) and following

steps similar to the above work. One can also start from L̂zAJM = ĴzAJM − ŜzAJM = MAJM − ŜzAJM and then
use the expressions just derived.

Appendix D: Contibutions to ΦJ in the small R limit

Let R be a measure of the size of the compact body. In this section, we show that in the small R limit the
contributions from the L̂z terms vanish exactly to lowest order in R whereas they do not, in general, vanish from the Ŝz
terms. This supports the intuitive semi-classical picture that the spin contributions dominate in the quasistatic regime.

In the small R limit, the RNJM with J = 1 terms dominate in ΦJ . In this limit (using limx→0
∂(xjJ (x))

∂x ≈ (J+1)jJ(x))
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one finds

ĴzGA
0 (x,y) ≈

∑
M=−1,0,1

MRN1,M (x)RN∗1,M (y) (D1)

≈
∑

M=−1,0,1

j1(x)j1(y)

xy

A
(1)
1M (x)

A
(2)
1M (x)

A
(3)
1M (x)


T

AM

A
(1)∗
1M (y)

A
(2)∗
1M (y)

A
(3)∗
1M (y)

 (D2)

where

A−1 =

0 0 0

0 −4 −2
√

2

0 −2
√

2 −2

 , A0 =

0 0 0
0 0 0
0 0 0

 , A1 =

0 0 0

0 4 2
√

2

0 2
√

2 2

 . (D3)

In this small R limit, ΦJ ≈ − 2
πTr[ĴzGA

0TA] = − 2
πTr[L̂zGA

0TA]− 2
πTr[ŜzGA

0TA]. From the expressions in the previous

sections for the action of Ŝz on the VSHs, one can extract scaling behaviors of the Ŝz and L̂z contributions. To do

this, one must rewrite GA
0 as an outerproduct of the vectors A

(1)
JM ,A

(2)
JM ,A

(3)
JM and then act with Ŝz. After plugging

in the definition of RNJM and RMJM one finds

ŜzGA
0 (x,y) =

∑
JM

jJ(x)jJ(y)ŜzA
(1)
JM (x)A

(1)∗
JM (y) +

∑
JM

J(J + 1)

xy
jJ(x)jJ(y)ŜzA

(3)
JM (x)A

(3)∗
JM (y)

+
∑
JM

√
J(J + 1)

xy
jJ(x)

∂(yjJ(y))

∂y
ŜzA

(3)
JM (x)A

(2)∗
JM (y)

+
∑
JM

√
J(J + 1)

xy
jJ(y)

∂(xjJ(x))

∂x
ŜzA

(2)
JM (x)A

(3)∗
JM (y)

+
∑
JM

1

xy

∂(xjJ(x))

∂x

∂(yjJ(y))

∂y
ŜzA

(2)
JM (x)A

(2)∗
JM (y). (D4)

In the limit that the object size R approaches 0, then the x and y arguments in the above expression will also approach

0 when evaluating the trace over the object. But limx→0 jJ(x) = 2J

(2J+1)!x
J and limx→0

∂(xjJ (x))
∂x ≈ (J + 1)jJ(x) so

that

ŜzGA
0 (x,y) =

∑
JM

jJ(x)jJ(y)ŜzA
(1)
JM (x)A

(1)∗
JM (y) +

∑
JM

J(J + 1)

xy
jJ(x)jJ(y)ŜzA

(3)
JM (x)A

(3)∗
JM (y)

+
∑
JM

√
J(J + 1)(J + 1)

xy
jJ(x)jJ(y)ŜzA

(3)
JM (x)A

(2)∗
JM (y)

+
∑
JM

√
J(J + 1)(J + 1)

xy
jJ(y)jJ(x))ŜzA

(2)
JM (x)A

(3)∗
JM (y)

+
∑
JM

(J + 1)2

xy
jJ(x)jJ(y)ŜzA

(2)
JM (x)A

(2)∗
JM (y). (D5)

This then allows one to extract the dominate terms in the small R limit. The lowest order terms appear in the J = 1
terms. In particular, the jJ(x)jJ(y) ∼ R2J and jJ(x)jJ(y)/(xy) ∼ R2J−2. Ultimately, one needs the trace and there
is also TA which contains a delta function, so the overall scaling in the final trace gets an additional R3 factor. The
smallest in R terms come from the J = 1 terms in jJ(x)jJ(y)/(xy), which scales like R2(1)−2+3 = R3 in ΦS . Plugging

in the expressions for ŜzA
(k)
JM for k = 1, 2, 3 and simplifying one finds that

ŜzGA
0 (x,y) =

∑
M=−1,0,1

j1(x)j1(y)

xy

A
(1)
1M (x)

A
(2)
1M (x)

A
(3)
1M (x)


T

AM

A
(1)∗
1M (y)

A
(2)∗
1M (y)

A
(3)∗
1M (y)

+O(R1) (D6)
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where, again,

A−1 =

0 0 0

0 −4 −2
√

2

0 −2
√

2 −2

 , A0 =

0 0 0
0 0 0
0 0 0

 , A1 =

0 0 0

0 4 2
√

2

0 2
√

2 2

 . (D7)

Thus, Tr[−ŜzGA
0TA] will scale like R0+3 = R3 for small R. Interestingly, repeating the same work for L̂zGA

0 (say, by

taking Ŝz → Ĵz − Ŝz = L̂z in the above expressions to avoid recalculating L̂zA
(1,2,3)
JM ) we find that the corresponding

R0 terms in L̂zGA
0 vanish exactly (the matrices analogous to A1,A0,A−1 are all zero), regardless of what T is. Of

course, this is to be expected as the sum of the Ŝz and L̂z terms in the small R limit should result in the small R
limit of Ĵz term.

In sum, at least on a mathematical level the spin operator is the relevant operator in the definition of ΦJ for small
R/λ. One remark, however, is that spin and orbital contributions to ΦJ are

ΦL =
2

π
Tr[(−L̂G0)A(TA

body − TbodyGA
0T
†
body)], (D8)

ΦS =
2

π
Tr[(−ŜG0)A(TA

body − TbodyGA
0T
†
body)], (D9)

where, for example,

(ŜaG0)Aij(x,y) =
1

2i
[Ŝa,ibG0,bj(x,y)− (Ŝa,jbG0,bi(y,x))∗]. (D10)

Namely, it is (−L̂G0)A and (−ŜG0)A rather than (−L̂GA
0 ) and (−ŜGA

0 ) that originally appear in what are deemed the
orbital and spin contributions (see Eq. (15)) and that are individually Hermitian. Since the total angular momentum

operator commutes with G0, the (−ĴG0)A term in the trace expression in ΦJ can be replaced with (−ĴGA
0 ) which leads

to more convenient analysis due to the lower rank of GA
0 compared to G0. In general, L̂ and Ŝ do not commute with

G0 so this similar switch of, for example, (−L̂G0)A → −L̂GA
0 is not correct. It is interesting to see that in the small R

limit of the simplified ΦJ expression with (−ĴzGA
0 ), one can make the replacement Ĵz → Ŝz. However, as it is the total

angular momentum that is the assumed conserved quantity, physically it is likely that only total angular momentum
transfer is a meaningful quantity to calculate, and it is only in the strict point-particle limit that the replacement of
Ĵz with Ŝz is exact; (ŜzG0)A(x,y) and (L̂zG0)A(x,y) both appear to diverge as y→ x, so it is not clear if calculating
a separate quantity to designate as orbital and spin is physically meaningful, in particular in the case of a single
isolated finite-size object. This is reminiscent of diverging energies in the Casimir force calculations [52], although the
forces (related to the gradients of the energies) are finite. Torque is a physically meaningful quantity, which solely

depends on the total angular momentum transfer, and (ĴzG0)Aij(x,y) = ĴzGA
0,ij(x,y) is manifestly free of singularities

as y → x, as can be seen from ĴzGA
0 (x,y) = k

∑
j,m(−1)mm~[RMj,m(kx)RMj,−m(ky) + RNj,m(kx)RNj,−m(ky)]

or Eq. (E13).

Appendix E: ĴzG0 and ĴzGA
0 Dyadic forms

The Green’s function dyadic can be written as

G0 =
eikr

4πr
[aI + ber ⊗ er] (E1)

where k = ω/c,

a = 1 +
ikr − 1

(kr)2
(E2)

b =
3− 3ikr − (kr)2

(kr)2
(E3)

and er = (R − R′)/|R − R′| in a unit vector from the
source location R′ to the observation point R. Without
loss of generality, we can consider the source location R′

to be located at the origin of the coordinate system so
that the relevant vectors can be expressed using er, eθ, eφ
polar coordinate basis.

Working in the {er, eθ, eφ} basis, we have
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ŜzG0(r, 0) =
eikr

4πr

 0 0 −isin (θ) a
0 0 −icos (θ) a

isin (θ) (a+ b) icos (θ) a 0

 (E4)

=
eikr

4πr

1

(kr)2

 0 0 isin (θ)
0 0 icos (θ)

2isin (θ) −icos (θ) 0


+
eikr

4πr

1

kr

 0 0 sin (θ)
0 0 cos (θ)

2sin (θ) −cos (θ) 0


+
eikr

4πr

0 0 −isin (θ)
0 0 −icos (θ)
0 icos (θ) 0


Using ∂

∂φer = sin (θ) er, we also find

L̂zG0(r, 0) =
eikr

4πr

 0 0 −ibsin (θ)
0 0 0

−ibsin (θ) 0 0

 (E5)

=
eikr

4πr

1

(kr)2

 0 0 −3isin (θ)
0 0 0

−3isin (θ) 0 0


+
eikr

4πr

1

kr

 0 0 −3sin (θ)
0 0 0

−3sin (θ) 0 0


+
eikr

4πr

 0 0 isin (θ)
0 0 0

isin (θ) 0 0


and, hence,

ĴzG0(r, 0) =
eikr

4πr

 0 0 −isin (θ) (a+ b)
0 0 −icos (θ) a

isin (θ) a icos (θ) a 0

 (E6)

=
eikr

4πr

1

(kr)2

 0 0 −2isin (θ)
0 0 icos (θ)

−isin (θ) −icos (θ) 0


+
eikr

4πr

1

kr

 0 0 −2sin (θ)
0 0 cos (θ)

−sin (θ) −cos (θ) 0


+
eikr

4πr

 0 0 0
0 0 −icos (θ)

isin (θ) icos (θ) 0

 .
In the Cartesian basis, this is

ĴzG0(r, 0) =
eikr

4πr

(
a

0 −i 0
i 0 0
0 0 0


cart

+ b

icos (φ) sin (θ)
2

sin (φ) −icos (φ)
2

sin (θ)
2

0

isin (θ)
2

sin (φ)
2 −icos (φ) sin (θ)

2
sin (φ) 0

icos (θ) sin (θ) sin (φ) −icos (θ) cos (φ) sin (θ) 0


cart

)
(E7)
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In this notation, in the {er, eθ, eφ} basis GA
0 is

GA
0 (r, 0) =

k

4π
(
cos (kr)

(kr)2
− sin (kr)

(kr)3
+

sin (kr)

kr
)

1 0 0
0 1 0
0 0 1

 (E8)

+
k

4π
(−3

cos (kr)

(kr)2
+ 3

sin (kr)

(kr)3
− sin (kr)

kr
)

1 0 0
0 0 0
0 0 0


and

ĴzGA
0 (r, 0) =

k

4π
(
cos (kr)

(kr)2
− sin (kr)

(kr)3
+

sin (kr)

kr
)

 0 0 −isin (θ)
0 0 −icos (θ)

isin (θ) icos (θ) 0

 (E9)

+
k

4π
(−3

cos (kr)

(kr)2
+ 3

sin (kr)

(kr)3
− sin (kr)

kr
)

0 0 −isin (θ)
0 0 0
0 0 0


=

k

4π
(
cos (kr)

(kr)2
− sin (kr)

(kr)3
+

sin (kr)

kr
)

 0 0 0
0 0 −icos (θ)

isin (θ) icos (θ) 0

 (E10)

+
k

4π
2

sin (kr)− krcos (kr)

(kr)3

0 0 −isin (θ)
0 0 0
0 0 0


Changing from the {er, eθ, eφ} basis to the Cartesian basis {ex, ey, ez} one finds

ĴzGA
0 (r, 0) =

k

4π
(
cos (kr)

(kr)2
− sin (kr)

(kr)3
+

sin (kr)

kr
)

0 −i 0
i 0 0
0 0 0


cart

(E11)

+
k

4π
(−3

cos (kr)

(kr)2
+ 3

sin (kr)

(kr)3
− sin (kr)

kr
)

icos (φ) sin (θ)
2

sin (φ) −icos (φ)
2

sin (θ)
2

0

isin (θ)
2

sin (φ)
2 −icos (φ) sin (θ)

2
sin (φ) 0

icos (θ) sin (θ) sin (φ) −icos (θ) cos (φ) sin (θ) 0


cart

The small r expansions are

GA
0 (r, 0) =

k

6π

1 0 0
0 1 0
0 0 1


cart

+O(kr)2 (E12)

ĴzGA
0 (r, 0) =

k

6π

0 −i 0
i 0 0
0 0 0


cart

+O(kr)2 (E13)

=
k

6π
Ŝz +O(kr)2

= ŜzGA
0 (r, 0) +O(kr)2

Once again, we see that as the two spatial arguments approach one another, the total angular momentum operator
in ĴzGA

0 can be replaced with the spin operator Ŝz to leading order in the expansion. The replacement is exact only
if the two spatial coordinates coincide. Insert factors of ~ in the intermediate expressions if working in units where
~ 6= 1 in Ĵz, L̂z, Ŝz.

Appendix F: Upper Bounds on Torque

In this section we provide details of the calculation of
bounds on maximal torque using techniques developed

in Refs. [24, 35, 49, 50] and reviewed in Ref. [36]. For-
mally, the problem we solve is the maximization of ΦJ
for an object contained within a spherical design domain
Ω subject to the conservation of global resistive and re-
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active power:

max
{|Tn〉∈Ω}

− 2

π

∑
n

ρn

(
Im
[〈

Qn|Ĵz|Tn

〉]
− 〈Tn| ĴzGA

0 |Tn〉
)

such that ∀n

Im [〈Qn|Tn〉]− 〈Tn|
(
V−1† −G†0

)A
|Tn〉 = 0,

Re [〈Qn|Tn〉]− 〈Tn|
(
V−1† −G†0

)S
|Tn〉 = 0. (F1)

The induced currents T|Qn〉 are taken as the optimiza-

tion degrees of freedom. Here GS
0 ≡ 1

2 (G0 + G†0) is
the symmetric part of G0. Global power conservation
here means when spatially integrated over the object.
There can still be local violations of power conservation.
The constraints follow by acting on the left and right of

T = T†
(
V−1† −G†0

)
T by the eigenvectors of GA

0 , and are
statements about conservation of energy (optical theo-
rem [30]).

If only resistive power conservation is globally con-
served (only the Im constraint is kept), the optimal value
can be bound by a semi-analytical expression using La-
grange duality. Applying the relaxation of Lagrange du-
ality ([48, 53–56]) one gets the semianalytic expression
presented in the main text (details of the calculation are
given below).

Shown in Fig. 1 is also ΦJ,opt when reactive power con-
servation is imposed in addition to resistive power con-
servation (dashed lines). It is seen that including reac-
tive power conservation can lead to substantially tighter
limits, particularly for dielectric materials and smaller
design domains. The solution to Eq. (F1) with resis-
tive and reactive power conservation does not, in gen-
eral, have a simple semi-analytic expression similar to
Eq. (20) with only resistive power conservation. The op-
timization problem was solved numerically using a mod-
ification of the code developed and provided in Ref. [48].

For large R/λ, the bounds suggest that the response is
mostly dominated by conservation of resistive power as
there is enough design freedom in the optimization prob-
lem to satisfy resonance conditions, so the inclusion of
reactive power conservation does not lead to substantial
tightening of bounds.

Modifying the fluctuating-volume current formulation
and codes developed in Refs. [31–33], from power quanti-
ties to the torque quantities derived in this article, we dis-
covered design patterns that approach the torque bounds.
Constraints to make the design pattern experimentally
practical to fabricate were ignored, for simplicity. Shown
in Fig. 1 as an inset is a sample structure for R/λ = 0.25
and χ = −10 + i. Intuitively, one expects a chiral object
to be an optimal performer when the electric susceptibil-
ity is isotropic (without anisotropy, there is only geomet-
rical structure freedom left with which to discriminate
incoming waves). Indeed, the optimal induced current∣∣J(opt)

〉
= − i

kZ

∣∣T(opt)
〉

is a sum of terms with only one
sign of m, in agreement with intuition that the structure
of an optimal body is such that the induced currents
are biased towards one azimuthal direction. Some of the
chiral structures from the inverse designs approach the
bounds within a factor of 15. Adding local power conser-
vation constraints may result in better agreement [49, 57].

1. Semi-analytical bounds for spherical bounding
domains

Here we explain in more detail the derivation of the
bounds when only imposing the asymmetric constraints
(physically, the conservation of resistive power) over the
entire domain (a spherical ball of radius R). We calcu-
late a bound on the optimization problem by calculating
the Lagrange dual function [53]. The corresponding La-
grangian that involves (t, j,m) terms is

L(t,j,m) = −mρt,j,mIm[〈St,j,m|Tt,j,m〉] +mρt,j,m 〈Tt,j,m|GA
0 |Tt,j,m〉)

+α(Im[〈St,j,m|Tt,j,m〉]− 〈Tt,j,m|UA |Tt,j,m〉). (F2)

Here, U ≡ V−1†−G†0. The main observation is the follow-
ing. The optimal |Tt,j,m〉 at a stationary point satisfies

(−mρt,j,mGA
0 + αUA) |Tt,j,m〉

=

(
−mρt,j,mi

2
+
iα

2

)
|St,j,m〉 . (F3)

Define ζ = k2‖χ‖2/ Im [χ] . In general,

|Tt,j,m〉 =
i

2

(−mρt,j,m + α)

−mρ2
t,j,m + α( 1

ζ + ρt,j,m)
|St,j,m〉+ |K〉 ,

(F4)

where |K〉 lies in the kernel of the operator which multi-
plied |Tt,j,m〉 in Eq. (F3). This may be used to derive a
semi-analytical expression for the optimal dual objective
value. There are a few cases to consider.

• If m = 0, then the contribution to the torque is
clearly 0.

• If m > 0, there are 3 cases for α to consider.

– If α > 0, then the dual function is unbounded
since (−mρt,j,mGA

0 +αUA) becomes indefinite
(recall that GA

0 is positive semidefinite).
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– If α = 0, then the operator is negative semidef-
inite. In such a case,

|Tt,j,m〉 =
i

2

1

ρt,j,m
|St,j,m〉+ |K〉 (F5)

where |K〉 is in the kernel of −mρt,j,mGA
0 .

Evaluating the objective function for this vec-
tor gives −m4 〈St,j,m|St,j,m〉 .

– If α < 0, then (since UA is positive definite)
the kernel is trivial. Then α can be solved for
from

Im[〈St,j,m|Tt,j,m〉] = 〈Tt,j,m|UA |Tt,j,m〉 . (F6)

The two solutions are α = mρt,j,m and α =
mρt,j,m(2ρt,j,m−ut,j,m)/ut,j,m, where ut,j,m =
1
ζ +ρt,j,m. The maximum of the objective eval-

uated at these two values of α is given by

max

(
0,−m

(
ρt,j,m
ut,j,m

−
(
ρt,j,m
ut,j,m

)2
))

. (F7)

Note that α < 0 when
ρt,j,m
ut,j,m

< 1
2 . It hits α =

0− when
ρt,j,m
ut,j,m

= 1
2 .

– In sum, for m > 0 the optimal objective value
is

L(t,j,m)
opt =


max

(
0,−m4

)
, if

ρt,j,m
ut,j,m

≥ 1
2

max

(
0,−m

(
ρt,j,m
ut,j,m

−
(
ρt,j,m
ut,j,m

)2
))

, if
ρt,j,m
ut,j,m

< 1
2

(F8)

This simplifies for m > 0 as the above is al-
ways 0. That is, the positive m vector spheri-
cal harmonics do not contribute to the objec-
tive at the optimal solution. Intuitively, only

one sign should contribute to the torque if one
wishes to maximize the torque imparted to an
object.

• If m < 0, there are three cases of α to consider.

– If α > 0, then −mρt,j,mGA
0 + αUA is positive

definite, so the kernel is trivial. Then α can
be solved for from

Im[〈St,j,m|Tt,j,m〉] = 〈Tt,j,m|UA |Tt,j,m〉 . (F9)

The two solutions are α = mρt,j,m and α =
mρt,j,m(2ρt,j,m−ut,j,m)/ut,j,m, where ut,j,m =
1
ζ +ρt,j,m. The maximum of the objective eval-

uated at these two values of α is given by

max

(
0,−m

(
ρt,j,m
ut,j,m

−
(
ρt,j,m
ut,j,m

)2
))

. (F10)

Note that α > 0 when
ρt,j,m
ut,j,m

< 1
2 . It hits α =

0+ at
ρt,j,m
ut,j,m

= 1
2 .

– If α = 0, then the operator is positive semi-
definite. In such a case,

|Tt,j,m〉 =
i

2

1

ρt,j,m
|St,j,m〉+ |K〉 (F11)

where |K〉 is in the kernel of −mρt,j,mGA
0 .

Evaluating the objective function for this vec-
tor gives −m4 〈St,j,m|St,j,m〉 .

– If α < 0, then the operator is indefinite and
the dual function diverges.

– In sum, for m < 0 the optimal objective value
is

L(t,j,m)
opt =

{
max

(
0,−m4

)
, if

ρt,j,m
ut,j,m

≥ 1
2

max
(

0,−m
(
ρ
u −

(
ρ
u

)2))
, if

ρt,j,m
ut,j,m

< 1
2

(F12)

In sum, simplifying the calculations, the semi-analytical
result for the (t, j,m) block is given by

L(t,j,m)
opt =


0, if m ≥ 0

max
(
0,−m4

)
if

ρt,j,m
ut,j,m

≥ 1
2

max

(
0,−m

(
ρt,j,m
ut,j,m

−
(
ρt,j,m
ut,j,m

)2
))

if
ρt,j,m
ut,j,m

< 1
2

if m < 0.
(F13)

which can be written in terms of ζ and ρt,j,m as

L(t,j,m)
opt =


0, if m ≥ 0{
−m4 if ζρt,j,m ≥ 1

− mζρt,j,m
(1+ζρt,j,m)2 if ζρt,j,m < 1

if m < 0.
(F14)
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This semi-analytical expression for the bound when only
imposing global resistive power conservation is compared
in the main text to the bounds found numerically when
imposing global resistive and reactive power conserva-
tion. Note that one can rescale the variables by k2 by
redefining ζ = ‖χ‖2/ Im [χ] and ρt,j,m as the eigenvalues
of k2GA

0 , making ζ and the eigenvalues dimensionless.

Appendix G: Torque expressions in the
point-particle limit

Using the point particle limit and the Born approxi-
mation, a simplified expression for the torque exerted on
particle 1 by particle 2 is

τ
(1)
2 (T ) · ez = − 2

π

∫ ∞
0

dωn(ω, T )ImTr[ĴzG0TA
2G
†
0T
†
1]

(G1)

Using the scattering operators in the small-sphere
limit [58],

Tr[ĴzG0TA
2G
†
0T
†
1] =Im

9ω4

c4

∫
V1

d3r

∫
V2

d3r′(ĴzG0)ab(r, r
′)

×
(
ε2 − 1

ε2 + 2

)A

bc

G†0,cd(r
′, r)

(
ε1 − 1

ε1 + 2

)†
da

.

(G2)

Since the dimensions of the point particles are assumed
small compared to any other dimensions in the problem,

(ĴzG0)(r, r′) and G†0(r′, r) do not vary significantly be-
tween different points in the different particles. Letting
r1 and r2 denote the centers of particle 1 and particle
2, respectively, the integrals

∫
V1

and
∫
V2

simply intro-

duce factors of 4πR3
1/3 and 4πR3

2/3 so that the torque is
proportional to the volumes of the particles. Compactly,

τ
(1)
2 (T ) · ez = − 2

π

∫ ∞
0

dω
ω4

c4
n(ω, T )×

ImTrcmp[(ĴzG0)(r1, r2)α
A
2G
†
0(r2, r1)α

†
1]

(G3)

where Trcmp means a trace only over the vector com-
ponents (Trcmp[A(r, r′)] ≡

∑
aAaa(r, r′)). Using very

similar arguments, one finds

τ
(1)
1 (T ) · ez = − 2

π

∫ ∞
0

dωn(ω, T )×

ImTr[ĴzG0TA
1 ] (G4)

= − 2

π

∫ ∞
0

dω
ω2

c2
n(ω, T )×

Trcmp[(ĴzGA
0 )(r1, r1)α

A
1 ]. (G5)

Similar arguments are used to get the torque expression
in the single body case, Eq. (21).

Appendix H: InSb material parameters

We consider particles with permittivities

ε =

 ε1 −iε2 0
iε2 ε1 0
0 0 ε3


cart

. (H1)

For InSb one has [59]

ε1 = ε∞

(
1 +

ω2
L − ω2

T

ω2
T − ω2 − iΓω

+
ω2
p(ω + iγ)

ω[ω2
c − (ω + iγ)2]

)
(H2)

ε2 =
ε∞ω

2
pωc

ω[(ω + iγ)2 − ω2
c ]

(H3)

ε3 = ε∞

(
1 +

ω2
L − ω2

T

ω2
T − ω2 − iΓω

−
ω2
p

ω(ω + iγ)

)
(H4)

where ε∞ = 15.7, ωL = 3.62 × 1013 rad/s, ωT = 3.39 ×
1013 rad/s, n = 1.07 × 1017 cm−3,m∗ = 1.99 × 10−32

kg, ωp =
√

nq2

m∗ε0ε∞
= 3.15× 1013 rad/s, q = 1.6× 10−19

C, Γ = 5.65 × 1011 rad/s, γ = 3.39 × 1012 rad/s, and
ωc = eB

m∗ . To calculate the moment of inertia of the InSb

particles, we used a density of 5.78 g/cm3.
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