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We study the radiative properties—the Lamb shift, Purcell decay rate and the spontaneous emis-
sion dynamics—of an artificial atom coupled to a long, multimode cavity formed by an array of
Josephson junctions. Introducing a tunable coupling element between the atom and the array,
we demonstrate that such a system can exhibit a crossover from a perturbative to non-perturbative
regime of light-matter interaction as one strengthens the coupling between the atom and the Joseph-
son junction array (JJA). As a consequence, the concept of spontaneous emission as the occupation
of the local atomic site being governed by a single complex-valued exponent breaks down. This
breakdown, we show, can be interpreted in terms of formation of hybrid atom-resonator modes with
radiative losses that are non-trivially related to the effective coupling between individual modes.
We develop a singular function expansion approach for the description of the open quantum system
dynamics in such a multimode non-perturbative regime. This modal framework generalizes the nor-
mal mode description of quantum fields in a finite volume, incorporating exact radiative losses and
incident quantum noise at the delimiting surface. Our results are pertinent to recent experiments
with Josephson atoms coupled to high impedance Josephson junction arrays.

I. INTRODUCTION

Progress in the fabrication and control of supercon-
ducting devices has provided a renewed impetus to re-
examine some of the foundational problems of Quantum
Electrodynamics (QED) [1] in the context of material
systems. Research in the last two decades has spawned
profound questions about radiative corrections and the
issue of the correct gauge-invariant description of the dy-
namics of artificial atoms in solid-state electromagnetic
media. These questions are fueled in part by engineered
superconducting electrodynamical systems that feature
some of the strongest interactions between light and mat-
ter ever achieved in the laboratory [2, 3], opening up
exciting possibilities for applications in quantum infor-
mation processing [4–7] while radically modifying vari-
ous quantum optical phenomena, e.g., Purcell effect [8],
Dicke physics [9], and ground state properties of atoms
and the vacuum field [4, 10–12].

In formulating a dynamical description of quantum
electrodynamical systems, one must address the ques-
tion of an appropriate basis of normal modes to express
the problem efficiently. In Quantum Optics and more
specifically in Cavity QED, one generally operates under
the presumption that cavity normal modes have an exis-
tence that is independent of the atomic system they are
coupled to [13]. In atomic Cavity QED systems the char-
acteristic weakness of light-matter interaction means this
is generally a good starting point, as the hybridization of
the atomic and cavity modes is weak except in a small
spectral band. In that band the full quantum description
of the atom coupled to one or few normal modes of the
bare cavity is sufficient to capture the atomic dynamics
accurately [14]. Superconducting Cavity QED systems
have brought forth conditions, however, where the atom-
field hybridization can be substantial and give rise to sig-
nificant renormalization of the atomic dynamics. It was
therefore understood within the circuit QED framework

that such hybridization has to be accurately captured,
and appropriate theoretical and computational methods
developed to do so [15–17].
Recent experiments have shown that an artificial atom

embedded in a high-impedance Josephson metamaterial
provides a setting where the strength of the coupling be-
tween the artificial atom and its environment can no
longer be described via perturbation theory [18, 19].
Such Josephson junction arrays (JJAs) exhibit an array
of interesting physical phenomena ranging from quan-
tum phase transitions between a superconducting and
insulating phase persisting at zero temperature [20], to
synchronization [21], and implementing low-loss large
impedances that can be comparable to the resistance
quantum [18, 19, 22–24]. It has been experimentally
observed that such high impedance environments can
sustain large zero-point flux fluctuations, thereby result-
ing in enhanced vacuum-induced Lamb shifts and spon-
taneous emission for artificial atoms coupled to JJAs
[18, 19].
In this paper we examine the radiative corrections and

open quantum system dynamics of an artificial atom cou-
pled to such a high-impedance JJA, with a view to ad-
dress a subset of the aforementioned issues. We con-
sider a variable LC coupler between the atom and the
JJA that allows one to tune between different regimes of
coupling strength and hybridization. We demonstrate
that in a particular regime that we refer to here as
“non-perturbative” (in atom-cavity coupling), one can no
longer identify an eigenmode of the total system that is
localized either (1) spatially close to the atomic position
or (2) spectrally close to the bare atomic frequency. We
analyze the radiative properties of the atom using non-
Hermitian eigenmodes of the finite system that bridge the
perturbative and non-perturbative regimes and provides
an interpretable unified description. We compare our re-
sults with those from second order perturbation theory,
demonstrating a marked deviation of the obtained radia-
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FIG. 1. Schematic circuit for an artificial atom coupled to a JJA. The JJA is modeled as N parallel LC-circuits with inductance
L and capacitance C coupled to each other in series. Each node is connected to the ground via a capacitance Cg. The waveguide
is coupled to the JJA via a coupling capacitance Cc, and is described as a lumped element transmission line with inductance
LW and ground capacitance CW . The first element of the JJA has an inductance and capacitance value {L0, C0} that can
be different from the rest of the array. The parameter values assumed throughout all the calculations are (unless specified
otherwise): N = 1000, L = 1 nH, C = 150 fF, Cg = 0.1 fF, Cc = 100 fF. The atomic charging energy is assumed to be
EA

C/~ = 2π × 15 GHz. The capacitance and inductance values of the coupler are assumed to be L0 = L/χ and C0 = χC,
where the coupling parameter χ can be varied. The transmission line is assumed to have an impedance of ZW = 50 Ω.

tive corrections as the atom-JJA coupling strength is in-
creased. The technical machinery to enable this dynam-
ical description is based on the extension of the singular
function expansion method to an open quantum system
description. Furthermore, such an approach allows one
to derive the dynamics of the system in a multimode
non-perturbative regime.

The rest of this paper is organized as follows. Sec-
tion IIA describes the model of the system in consider-
ation, detailing the circuit Lagrangian and parameters.
Section II B discusses the equations of motion of the lin-
ear system, and a description of the open system dynam-
ics in a reduced subspace. In Section IIC we describe
the singular function expansion method that we use to
determine the radiative properties and open system dy-
namics of the system. Section III discusses the effective
Hamiltonian for the closed artificial atom+JJA system,
defining the characteristic coupling strengths between the
atomic and the JJA modes. Section IV details the ra-
diative properties of the artificial atom, comparing the
atomic Lamb shifts and Purcell decay obtained via the
modal analysis with those obtained via second order per-
turbation theory. The dynamics of the open system is
illustrated in Section V, particularly considering the case
of an initially excited atom. We present our conclusions
and outlook in Section VI.

II. MODEL

A. Lagrangian

Let us consider the system of an artificial atom coupled
to a JJA (with N = 1000 junctions), which is in turn

coupled to an infinite 50 Ω transmission line, as shown
in Fig. 1. The atom is modeled as a Josephson junction
with a Josephson energy EA, shunted by a capacitance
with a charging energy EAC ≡ e2/(2CA). In practice, the
difference between the artificial atom junction and the
individual junctions of the JJA resides in their junction
areas, chosen such that the atomic junction has a much
stronger anharmonicity.
The JJA is constructed using N nominally-identical

component circuits coupled in series; each circuit has a
capacitance C, with an anharmonicity engineered to be
substantially weaker than the artificial atom, allowing it
to be treated as a linear inductor to lowest order. A
distinct coupling element, realized as a parallel LC cir-
cuit with inductance and capacitance {L0, C0}, connects
the first element of the chain to the artificial atom, al-
lowing for the possibility of having a weak or a strong
coupling between the atom and the JJA. The waveguide
is modeled as a lumped-element transmission line with
inductance LW and a ground capacitance CW .

The total system is described by the Lagrangian

L = LA + LJJA + LA−JJA + LJJA−W + LW , (1)

where

LA =1
2CAΦ̇2

A −
1

2LA
Φ2
A − UA(ΦA) (2)

stands for the bare atomic Lagrangian with ΦA as the flux
across the atom. Here UA(ΦA) is the explicitly nonlinear
part of the Josephson potential.
The bare JJA Lagrangian is given by
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LJJA =1
2 (C + Cg) Φ̇2

1 −
1

2LΦ2
1 +

N−1∑
n=2

[
1
2 (2C + Cg) Φ̇2

n −
1
L

Φ2
n

]
+ 1

2 (C + Cg) Φ̇2
N −

1
2LΦ2

N

−
N−1∑
n=1

[
CΦ̇nΦ̇n+1 −

1
L

ΦnΦn+1

]
, (3)

where Φn corresponds to the (nodal) flux at the nth node
of the JJA measured with respect to the ground, as shown
in Fig. 1.

The impedance of the array can be obtained by succes-
sively adding together the impedances of each unit of the
JJA as shown in Appendix A. In particular, we consider
a JJA with N = 1000 junctions in our calculations. As a
figure of merit for describing high impedance JJAs, often
the impedance of an infinite JJA (with the same parame-
ters per unit length as the finite JJA) is used [18, 19, 23],
which is given by:

Z∞ ≈
√
ZLCZg, (4)

where ZLC ≡ iωL
1−ω2/Ω2

0
corresponds to the impedance

of the individual LC-oscillator units of the JJA and
Zg ≡ 1/ (iωCg) corresponds to the impedance of the
capacitance to the ground, with Ω0 ≡ 1/

√
LC as the

plasma frequency [25]. We note that for frequencies
much lower than the cut-off frequency for the individ-
ual LC-oscillators (ω � Ω0) the array impedance can
be approximated as Z∞ ≈

√
L/Cg ≈ 3.16 kΩ, and for

higher frequencies (ω � Ω0) Z∞ ≈ i
√

1/(ω2CCg) ≈
i
(Ω0
ω

)
3.16 kΩ, for the chosen set of parameter values as

detailed in the caption of Fig. 1. Experimental systems
with such large impedances comparable to the resistance
quantum (RQ ≈ 6.15 kΩ) have been instrumental in ex-
ploring quantum many-body effects (Z∞ ≈ 1.8 kΩ) [18],
superconducting-insulator phase transitions (Z∞ ≈ 0.7–
19 kΩ) [23], and ‘superstrong’ coupling regimes wherein
the atom-field coupling strength can be comparable to
the mode-spacing of the environment (Z∞ ≈ 5–10 kΩ)
[19, 26].

The interaction between the atom and the JJA has
both capacitive and inductive contributions, and is given
by the Lagrangian:

LA−JJA = 1
2C0

(
Φ̇A − Φ̇1

)2 − 1
2L0

(ΦA − Φ1)2
. (5)

In addition to explicit coupling contributions that arise as
cross terms, the form of the coupling leads to a renormal-
ization of the atom and JJA parameters. To parametrize
the coupling strength, we introduce the dimensionless
coupling parameter χ such that

L0 = L/χ and C0 = χC, (6)

such that the plasma frequency for the coupling circuit
is equivalent to that of the rest of the chain. Particu-
larly, we note that a value of χ = 1 corresponds to the
case of an artificial atom galvanically coupled to a high
impedance JJA, similar to the experimental setups in
[18, 19]. As we will demonstrate, the strength of the cou-
pling and hybridization between atomic and JJA modes
is determined by χ, changing which allows us to ob-
serve a crossover from a perturbative to non-perturbative
regime.
The Lagrangians LW and LJJA−W correspond to the

waveguide and the JJA-waveguide coupling respectively
and are defined as

LW =
∞∑
n=0

1
2CW

(
Φ̇Wn

)2 − 1
2LW

(
ΦWn − ΦWn+1

)2 (7)

LJJA−W =1
2Cc

(
Φ̇N − Φ̇W0

)2
. (8)

The coupling to an external waveguide renders the
atom+JJA system open, leading to radiative losses.

B. Equations of motion

While the inclusion of the nonlinear Josephson poten-
tial UA(ΦA) ultimately enables the realization of an arti-
ficial atom, a number of important physical parameters of
the joint system are already set at the linear level. These
include strong hybridization effects renormalizing the fre-
quency and dissipation rates of atomic and JJA modes.
Understanding these linear effects is crucial to the def-
inition of an appropriate set of normal modes that can
form the basis for describing the nonlinear quantum dy-
namics. We thus consider the linear chain by dropping
at the first stage the nonlinear potential UA(ΦA) from
the bare artificial atom Lagrangian, Eq. (2), hence con-
sidering the Josephson potential to linear order. We will
later re-introduce the non-linearity through perturbation
theory in Sec. V.
The total Lagrangian for the linear system can be ex-

pressed in a matrix representation as follows:

Ltot = 1
2Φ̇T

totCtotΦ̇tot −
1
2ΦT

totL
−1
totΦtot, (9)

where Φtot =
{

ΦA,Φ1, . . . ,ΦN , . . . ,ΦW0 , . . .
}
represents

the flux variables for the various nodes, and the capac-
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itance and inductance matrices Ctot and Ltot are given by:

Ctot =

CA + C0 −C0 0 . . . 0 0 0 0 . . .

−C0 Cg + C + C0 −C . . . 0 0 0 0 . . .

0 −C Cg + 2C . . . 0 0 0 0 . . .

...
...

... . . . ...
...

...
... . . .

0 0 0 . . . Cg + 2C −C 0 0 . . .

0 0 0 . . . −C Cg + C + Cc −Cc 0 . . .

0 0 0 . . . 0 −Cc Cc + CW 0 . . .

0 0 0 . . . 0 0 0 CW . . .

...
...

... . . . ...
...

...
... . . .





C ′A

CJJA

,

(10)

L−1
tot =

1/LA + 1/L0 −1/L0 0 . . . 0 0 0 0 . . .

−1/L0 1/L+ 1/L0 −1/L . . . 0 0 0 0 . . .

0 −1/L 2/L . . . 0 0 0 0 . . .

...
...

... . . . ...
...

...
... . . .

0 0 0 . . . 2/L −1/L 0 0 . . .

0 0 0 . . . −1/L 1/L 0 0 . . .

0 0 0 . . . 0 0 1/LW −1/LW . . .

0 0 0 . . . 0 0 −1/LW 2/LW . . .

...
...

... . . . ...
...

...
... . . .





1/L′A

L−1
JJA

. (11)

As indicated in the above matrices, the atom (orange,
top left) and JJA (green, middle) subspaces are coupled
capacitively and inductively via C0 and 1/L0 respectively
(the blue sector, overlapping atom and JJA subspaces).
The waveguide (shown in yellow, bottom right) is coupled
only capacitively to the JJA

Additionally, as discussed earlier, these terms lead
to on-site contributions that renormalize the physically-
coupled elements of the atom and JJA sectors respec-
tively. For example, the ‘bare’ atomic frequency is renor-
malized to ω′A ≡

√
1

L′
A
C′

A
, where L′A ≡

(
1
LA

+ 1
L0

)−1

and C ′A ≡ (CA + C0).
We define the total Hamiltonian for the system

via the standard Legendre transformation as Htot =(∑
kQkΦ̇k

)
−Ltot, where the conjugate momenta to the

node flux variables are given by Qn ≡ δLtot
δΦ̇n

, for the to-
tal Lagrangian Ltot (Eq. (9)). We next promote the flux
and charge variables to quantum operators, satisfying the
canonical commutation relation

[
Φ̂j , Q̂j′

]
= i~δj,j′ . The

quantized Hamiltonian can then be written as:

Htot = 1
2Q̂T

totC
−1
totQ̂tot + 1

2Φ̂T
totL

−1
totΦ̂tot. (12)

The Heisenberg equations of motion for the flux and
charge dynamical variables are:

d

dt
Φ̂tot =C−1

totQ̂tot (13)

d

dt
Q̂tot =− L−1

totΦ̂tot. (14)

Formally, the Heisenberg equations of motion include a
discrete but infinite set of equations for the waveguide
nodes coupled to the atom+JJA system. While the out-
put waveguide is itself a multimode transmission line,
its primary role is to serve as a uniform environment
allowing observers to direct inputs to, and extract out-
puts from, the system of interest. An analysis of the
waveguide field in terms of incoming and outgoing modes
with respect to the resonator (defined as − and + re-
spectively) allows the separation of the incoming noise
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component of the waveguide modes from the outgoing
component carrying information about the atom and the
resonator. We show in Appendix B 1 that it is then possi-
ble to place a transparent boundary after the first waveg-

uide node. The remaining finite set of equations for the
atom+JJA+first waveguide node (the latter denoted here
by index 0) includes then a dissipation and noise term,
given by:

d

dt̃
Φ̂red = C−1

red

[
Z0Q̂red

]
(15)

d

dt̃

[
Z0Q̂red

]
= −L−1

redΦ̂red −
Z0

ZW
δN+2C

−1
red

[
Z0Q̂red

]
︸ ︷︷ ︸

Dissipation

+ 2
Ω0

[
Z0Q̂in (t)

]
δN+2︸ ︷︷ ︸

Noise

, (16)

where we have defined Z0 ≡
√
L/C, Ω0 ≡

1/
√
LC, t̃ ≡ Ω0t and the reduced subspace

vectors Φ̂red =
{

Φ̂A, Φ̂1, . . . , Φ̂N , Φ̂W0
}

and

Q̂red =
{
Q̂A, Q̂1, . . . , Q̂N , Q̂

W
0

}
that encompass

the atom+JJA+first waveguide node. The second

and third terms in the equation of motion for the
charge variables indicate dissipation and noise due to
coupling to the waveguide, with δN+2 ≡ {0, 0, . . . , 1},
δN+2 ≡ δTN+2δN+2, and Q̂in

(
t̃
)
representing the input

noise at the zeroth waveguide node (see Appendix B for
details). The dimensionless capacitance and inductance
matrices in the reduced subspace are defined as:

Cred = 1
C

CA + C0 −C0 0 . . . 0 0 0
−C0 Cg + C + C0 −C . . . 0 0 0

0 −C Cg + 2C . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . Cg + 2C −C 0
0 0 0 . . . −C Cg + C + Cc −Cc
0 0 0 . . . 0 −Cc Cc + CW




, (17)

L−1
red = L

1/LA + 1/L0 −1/L0 0 . . . 0 0 0
−1/L0 1/L+ 1/L0 −1/L . . . 0 0 0

0 −1/L 2/L . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . 2/L −1/L 0
0 0 0 . . . −1/L 1/L 0
0 0 0 . . . 0 0 0




. (18)

We remark that such an approach for eliminating the
environmental modes to describe the dynamics of an open
quantum system does not require one to take into ac-
count the full Hilbert space of the bath. The effects of
the system-bath interaction are captured in terms of the
appropriate effective dissipation and noise terms at the

boundary node, thereby reducing the computational re-
sources needed for a numerical solution significantly.
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C. Singular function expansion

We now turn to describing the open quantum system
dynamics in terms of a singular function expansion [27–
29] of the propagator for the system dynamics. The equa-
tions of motion Eqs. (15) and (16) can be solved by tak-
ing a Laplace transform to obtain the linear dynamics of
node flux variables as (see Appendix C for details of the
derivation):

Φ̂(0)
red
(
t̃
)

= 1
2πi

∫ i∞

−i∞
ds̃ es̃t̃ G (s̃) Ŷ (s̃) (19)

where the superscript (0) denotes the linear dynamics of
the system and

G (s̃) ≡
[
s̃2Cred + Z

ZW
s̃δN+2 + L−1

red

]−1
, (20)

corresponds to the propagator for the open system dy-
namics. The initial conditions and the input noise from
the waveguide are represented by the operator:

Ŷ (s̃) ≡
[
s̃Cred + Z0

ZW
δN+2

]
Φ̂red (0) + Z0Q̂red (0)

+ 2
[
Z0Q̃in (s̃)

]
δN+2, (21)

with Q̃in (s̃) ≡
∫∞

0 dt̃ e−s̃t̃ Q̂in
(
t̃
)
, the Laplace transform

of the input quantum field at the first waveguide node1

We next decompose the propagator using a singular
function expansion as G−1 (s̃) = α (s̃) γ (s̃)β (s̃), where
γ (s̃) is a diagonal matrix with γjj (s̃) as the singular val-
ues of the propagator and α (s̃) and

[
β (s̃)

]T
as orthogo-

nal matrices.
We express the quantized flux field of the system as

Φ(0)
red
(
t̃
)

=
∑
p e
−iω̃p t̃−→ϕ p, where ω̃p = −is̃p are a set of

generally complex-valued poles of the system propagator
G (s̃p) = 0. The poles and the associated set of sys-
tem eigenmodes −→ϕ p are determined by the generalized,
quadratic eigenvalue problem[

ω̃2
pCred − iω̃p

Z0

ZW
δN+2 − L−1

red

]
−→ϕ p = 0. (22)

The transient quantum dynamics of the linear problem
(e.g. the spontaneous emission dynamics) is encoded en-
tirely in the eigenmodes and complex eigenfrequencies
obtained by solving Eq. (22). This approach makes no as-
sumptions on the strength of coupling between the atom
and JJA sectors, and is thus expected to be valid across

1For a coherently driven resonator, the spectral form the input
field Q̃in,tot(s̃) =

∑
n

Qdn
s̃−iω̃dn

+ Q̃in(s̃) is analytic except at a dis-
crete set of real poles ωdn corresponding to the frequencies of the
driving field, with Qdn as complex-valued scalars.

regimes of varying atom-field coupling strengths. As a
consequence, there is no formal distinction between the
JJA modes and the atomic mode; the obtained eigen-
modes −→ϕ p are not necessarily restricted to either atom
or JJA sectors.
Considering the transient oscillations in an initially ex-

cited system (which, for cavity-like modes is referred to
as ringdown and for the qubit-like mode as spontaneous
emission) we obtain the dynamics of the flux at node j
as:

Φ̂(0)
red,j

(
t̃
)

=
∑
p,q

es̃p t̃ηp,q (s̃p) Ŷq (s̃p) , (23)

where

ηp,q (s̃p) ≡
1(

δγpp(s̃p)
δs̃

)β−1
j,p (s̃p)α−1

p,q (s̃p) , (24)

with α (s̃p) and β (s̃p) representing the singular vectors
evaluated at the poles s̃p(= iω̃p) of the propagator eval-
uated using Eq. (22).
Substituting Eq. (23) in Eq. (15), we obtain the linear

dynamics of the charge variables as follows:

Z0Q̂
(0)
red,j

(
t̃
)

=
∑
p,q

es̃p t̃ζp,q (s̃p) Ŷq (s̃p) , (25)

where

ζp,q (s̃p) ≡
∑
r

s̃p
1(

δγpp(s̃p)
δs̃

)Cred,j,rβ
−1
r,p (s̃p)α−1

p,q (s̃p) .

(26)

Thus, the linear dynamics of the open atom+JJA sys-
tem is described exactly by Eqs. (23) and (25). However,
an often-used perspective is to treat the artificial atom
as the system of interest and the JJA as its environment.
Next, we show how this perspective can be obtained from
our approach, with the eventual aim of comparing how
perturbation theory results using the standard perspec-
tive compare to exact results obtained using Eq. (22).
The atom+JJA description typically centers around a
Hamiltonian formulation, assuming the combined artifi-
cial atom+JJA system to be only weakly-coupled to the
lossy waveguide. We will thus begin by deriving the exact
Hamiltonian of the artificial atom+JJA system.

III. HAMILTONIAN FOR THE CLOSED
SYSTEM: ATOM-JJA INTERACTION

In this section we consider the atom+JJA as a closed
system without the external coupling to the waveguide
(Cc → 0) to describe the interaction between the atom
and the array in terms of an effective Hamiltonian. It
proves useful to separate the flux variables into atomic
and JJA sectors, Φclosed = {ΦA; ΦJJA}, where ΦJJA =
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{Φ1, . . . ,ΦN}. Then, the full closed system Lagrangian
can be equivalently written as:

L ≡ 1
2Φ̇T

JJACJJAΦ̇JJA −
1
2ΦT

JJA L−1
JJAΦJJA

+ 1
2(CA + C0)Φ̇2

A −
1
2

(
1
L

+ 1
L0

)
Φ2
A

− C0Φ̇AΦ̇1 + 1
L0

ΦAΦ1. (27)

We use the Lagrangian of the JJA as given by the first
line, thus including on-site renormalization due to the
coupling to the artificial atom, to define an appropriate
set of JJA modes. More precisely, we calculate the Euler-
Lagrange equations of motion for the JJA nodes, and
obtain a generalized eigenvalue problem for eigenmodes
of the JJA introduced via ΦJJA = e−iωk,JJAtΦk,JJA, and
eigenfrequencies ωk,JJA (real in the closed system limit),
as detailed in Appendix D:

ω2
k,JJACJJAΦk,JJA = L−1

JJAΦk,JJA, (28)

assuming Cc → 0 for a closed JJA. The obtained eigen-
values form a photonic band as shown in Fig. 2, with a
band edge at Ω0/(2π) ≈ 12.95 GHz (see also Fig. 9 (a)
in the Appendix). We emphasize here that the modes
Φk,JJA of the JJA are calculated by including the cou-
pling capacitance (C0) and inductance (L0) between the
JJA and the atom in the CJJA and LJJA matrices.
Thus, the JJA spatial eigenmodes follow the appropri-
ate boundary conditions determined self-consistently by
the strength of the coupling element (see Appendix D for
details).

Having defined the JJA modes, we will now rewrite the
total closed system Lagrangian in this basis. To this end,
we can define the vector Ψ ≡ {ΦA; Φk,JJA} as the com-
posite of the bare atomic mode ΦA and the JJA eigen-
modes Φk,JJA. Rewriting the closed system Lagrangian
in this composite basis, we obtain:

L = 1
2Ψ̇T C̃Ψ̇− 1

2ΨT L̃−1Ψ. (29)

The transformed capacitance and inductance matrices
are defined as C̃ ≡ UTCU and L̃−1 ≡ UTL−1U , where
the matrix U relates the flux vector in the spatial basis
to that in the partially diagonalized basis Φclosed = UΨ.

We define the conjugate momenta corresponding to the
eigenmodes of the uncoupled JJA and atomic flux vari-
ables as Qk,JJA = δL

δΦ̇k,JJA
, and QA = δL

δΦ̇A
respectively.

This yields Q = C̃Ψ̇, where Q ≡ {QA; Qk,JJA}. The
Hamiltonian is thus obtained via the Legendre transfor-
mation as

H = 1
2QT C̃−1Q + 1

2ΨT L̃−1Ψ. (30)

Promoting the flux and charge variables {Ψ,Q} to
quantum observables, one can express those in terms of
bosonic operators as

(a)

(b)

FIG. 2. Coupling coefficients gk,Φ (solid blue) and gk,Q (dot-
ted blue), as obtained numerically from Eq. (37) and Eq. (38),
corresponding to (a) χ = 1 and (b) χ = 10−5. The bare and
renormalized atomic frequencies (ωA and ω′′A) are denoted by
the dashed orange horizontal lines for each case. The dashed-
dotted curves correspond to the JJA eigenfrequencies ωk,JJA,
and the dashed curve corresponds to the free spectral range
∆ωk,JJA. The shaded regions represent the different coupling
regimes (A), (B) and (C) denoted by the blue, green and
yellow shaded areas, respectively. We have chosen the bare
atomic frequency to be ωA/(2π) ≈ 15 GHz.

Φ̂k,JJA(A) =
√

~Zk(A)

2

(
âk(A) + â†k(A)

)
(31)

Q̂k,JJA(A) =− i
√

~
2Zk(A)

(
âk(A) − â†k(A)

)
, (32)

where the creation and annihilation operators corre-
sponding to the array modes (atom) satisfy the canon-
ical commutation relations

[
â†k(A), âk(A)

]
= 1. The
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impedances associated with the atom and the kth JJA
mode are defined as ZA ≡

√
L′A/C

′′
A and Zk ≡

1
(Cg+2C)ωk,JJA

. The renormalized atomic capacitance is
given by

C ′′A ≡C ′A −
C2

0
Cg + 2C

∑
k

Φ2
k,JJA(1). (33)

This allows one to rewrite the Hamiltonian in Eq. (30)
as (see Appendix E for details)

H =~ω′′Aâ
†
AâA +

∑
k

[
~ω′k,JJAâ

†
kâk + ~gk,Φ

(
âA + â†A

)(
âk + â†k

)
+ ~gk,Q

(
âA − â†A

)(
âk − â†k

)]
+
∑
k 6=k′

[
~ξk,k′

(
âk − â†k

)(
âk′ − â†k′

)]
, (34)

We emphasize that the Hamiltonian of Eq. (34) is ex-
act for the closed system: there is no truncation in the
number of JJA modes retained, or any weak-coupling
approximations. We have introduced the renormalized
atomic and array mode frequencies, defined respectively
as

ω′′A =ω′A

[
1− C2

0
C ′A (Cg + 2C)

∑
k

Φ2
k,JJA (1)

]−1/2

(35)

ω′k,JJA =ωk,JJA

[
1 + C2

0
C ′′A (Cg + 2C)Φ2

k,JJA(1)
]−1/2

.

(36)

We remark that the renormalized atomic frequency ω′′A
can be drastically different from the bare atomic fre-
quency, as well as the physical eigenfrequency corre-
sponding to the atomic mode in the non-perturbative
regimes, as analyzed in Appendix E.

The flux and charge coupling coefficients between the
atom and the JJA modes, gk,Φ, and gk,Q, are given, re-
spectively, by

gk,Φ =− χ
√
ZAZk
2L Φk,JJA(1) (37)

gk,Q =− χC

2 (Cg + 2C)C ′′A
√
ZAZk

Φk,JJA(1). (38)

We note from the above that the coupling strength be-
tween the atom and the JJA modes goes linearly as the
coupling parameter χ. It is also pertinent to note here
that the amplitude of the JJA eigenmodes at the atomic
position Φk,JJA also varies as one changes χ.

ξk,k′ = C2
0

4 (Cg + 2C)2
C ′′A
√
ZkZk′

Φk,JJA (1) Φk′,JJA (1)

(39)

corresponds to the strength of coupling between the k
and k′ JJA modes, mediated by the atom.
We plot the coupling coefficients between the atom and

the JJA, gkΦ and gkQ, in Fig. 2 (a) and (b) for χ = 1
and χ = 10−5, respectively, with increasing χ indicating
stronger coupling values (see Eq. (6)). One can approx-
imately identify the following coupling regimes as indi-
cated by the different shaded regions in the plots:

A. Region (A) is identified by the condition

gk/ωk & 0.1, (40)

where gk ≡ max {gk,Φ, gk,Q} is defined as the max-
imum of the two coupling coefficients and ωk =
min

{
ω′k,JJA, ω

′′
A

}
is defined as the minimum of the

bare excitation frequencies for a given k value. In such
a regime perturbation theory does not apply anymore
and non-RWA terms become important in describing
the radiative properties and dynamics of the atomic
system. Such a regime is often referred to as the
‘ultrastrong’ or ‘deep strong’ coupling regime [2, 3].
However, we note that contrary to these regimes that
rely on a single environmental mode, the coupling
strength in the present system can be greater than or
comparable to the free spectral range of the environ-
ment (gk & ∆ωk,JJA), necessitating a consideration of
multiple environmental modes.

B. Region (B) corresponds to the case where the cou-
pling strength is comparable to or greater than the
free spectral range but smaller than the bare excita-
tion frequencies of the atomic and JJA modes

∆ωk,JJA . gk � ωk, (41)

for a specific k value. Such a regime is also referred to
as the multimode strong coupling or the ‘superstrong’
coupling regime, wherein the atomic mode couples
strongly to multiple modes of the environment [19,
26, 30].
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C. Region (C) corresponds to the case where the coupling
strength is smaller than both the free spectral range
and the individual mode frequencies.

Our analysis indicates that a careful treatment of the
coupling terms, incorporating the spatial dependence of
the array modes, is necessary to model the interaction
between the artificial atom and a high-impedance res-
onator. The atom in such experimental setups [18, 19]
generally corresponds to a junction with a distinctly dif-
ferent non-linearity than the rest of the junctions. Thus,
in practice, it is convenient to identify the atom by its lo-
cality. However, its “coupling” to the environment must
be physically defined. One approach used in the liter-
ature to arrive at a Hamiltonian description of such a
system is to carry out an equivalent circuit analysis via
the Foster theorem to derive a Caldeira-Leggett model for
the atom-environment interaction [19, 31, 32]. In particu-
lar, while performing an equivalent circuit transformation
the coupling term between the atom and the JJA must
be appropriately transformed. The resulting Caldeira-
Leggett model, Eq. (34), generally contains both a flux
and a charge coupling term, even when a further diago-
nalization of the JJA sector is performed to remove the
ξk,k′ term.
Having analyzed the closed atom-JJA interaction, we

now return to the open system description.

IV. RADIATIVE PROPERTIES OF THE ATOM

A. Complex eigenfrequencies in the linear regime

We will now consider the radiative properties of the
atom, namely the radiative frequency shift, a.k.a. the
Lamb shift, and the spontaneous emission decay rate,
a.k.a the Purcell decay rate. In calculating the exact
atomic mode eigenfrequency, we must first address the
question of how the atomic mode is identified when solv-
ing Eq. (22) for eigenmodes that are defined over the
joint atom+JJA system. We note that in the absence
of the atom-JJA coupling, {C0, 1/L0} → 0, Eq. (22)
becomes block-diagonal, reducing to two independent
eigenproblems for the separate atom and JJA modes
respectively. The atomic mode eigenproblem yields an
eigenmode −→ϕA ∝ {1; 0} that is completely localized at
the spatial index corresponding to the atom, with bare
frequency ωA = 1√

CALA
.

This uncoupled regime forms the starting point for an
adiabatic procedure that allows us to track the evolution
of the atomic frequency and spatial eigenmode as the cou-
pling strength is increased to a desired nonzero value, de-
termined by C0, L0. More precisely, we consider an itera-
tive procedure

{
C

(n)
0 , 1/L(n)

0

}
→ {nC0/Na, Na/(nL0)},

for n = 0, . . . , Na, yielding eigenmode −→ϕ (n)
A and com-

plex eigenfrequency ω
(n)
A for the nth step, such that

−→ϕ (0)
A ∝ {1; 0} and ω(0)

A = 1√
CALA

. At each step we iden-

4 6 8 10 12 14 16 18
0

1

2

3

4

5

6
10

-3

FIG. 3. The change in the complex atomic frequency ωA when
χ = 0→ χ = 1. Plotted is this shift for two cases: for the bare
atomic frequency in the band ωA,in/(2π) = 5 GHz (squares)
and outside the band ωA,out/(2π) =15 GHz (circles). The
photonic band edge frequency is shown as the vertical dashed-
dotted line around Ω0/(2π) ≈ 12.95 GHz.

tify the atomic mode as the one that has maximum over-
lap with the atomic mode at the previous step. For a suf-
ficiently large number of steps such that the change in the
eigenmode frequency between iteration steps is smaller
than other energy scales, we obtain a convergence to a
specific eigenmode that we identify as the atomic mode
with eigenfrequency ω̃A, and the corresponding spatial
eigenfunction −→ϕA.
One may wonder why such an adiabatic limiting pro-

cedure is needed to identify the atomic mode. In the
perturbative limit (χ � 1), the atomic mode can easily
be identified by the local nature of the associated eigen-
mode. Our analysis in Sec. IVC will show that in the
non-perturbative regime such an identification is not pos-
sible. This is also the reason why in recent experiments
accessing this regime [18], the Lamb shift could not be
directly measured. Instead, it was inferred via an indi-
rect measurement of the splitting between various modes
in the system.
The adiabatic procedure described here is applicable

to both closed and open system cases. As shown in
Fig. 3, one can plot the atomic eigenfrequency on the
complex plane as one increases the coupling strength be-
tween the atom and the JJA. The Lamb shift of the atom
is identified as the difference between the real part of the
eigenvalue and the bare atomic frequency for the uncou-
pled atom. The spontaneous emission rate of the atom
is given by the imaginary part of the complex atomic
eigenfrequency. We note that the atom here is assumed
to not be coupled to any other bath than the waveguide.
It can be seen from Fig. 3 that for the case where the
bare atomic frequency is outside the band (at χ = 0),
the atomic mode incurs a substantial Lamb shift while
the spontaneous emission rate remains negligible, as a
result of the lack of density of modes.
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FIG. 4. (a) Atomic frequency as a function of the coupling parameter χ for ωA/(2π) = 15 GHz. The solid curve stands for
the real part of the numerically obtained atomic eigenmode frequency Re [ω̃A]. The dashed-dotted curve corresponds to the
renormalized atomic frequency ω′′A (Eq. (35)), and the dashed curve represents the renormalized atomic frequency including
second-order perturbative corrections as given by Eq. (42). (b) Atomic dissipation as a function of the coupling parameter χ
for ωA/(2π) = 5 GHz. The solid curve denotes the numerically obtained atomic dissipation (Im[ω̃A]), the dash-dotted curve
represents the decay obtained via the perturbative expression Γeff given by Eq. (43), and the dashed curve corresponds to the
perturbative decay rate Γ∞ obtained with considering an infinite JJA impedance. Atomic eigenmode as a function of spatial
position and coupling strength for (c) ωA/(2π) = 15 GHz and (d) ωA/(2π) = 5 GHz.

B. Comparison with perturbative approach

A standard approach to calculating the field-induced
modification of atomic properties is via perturbation the-
ory. Reintroducing the Josephson potential UA(ΦA) into
the linear Hamiltonian, Eq. (34), furnishes the nonlinear-
ity necessary to render the bare atomic spectrum anhar-
monic, thus allowing the addressability of two individual
energy levels under coherent monochromatic input. We
can thus derive the frequency shift of the atomic mode as
the second order perturbative correction to the difference
between the energies of these lowest two states. The cor-
rection to the ground and first-excited states |0〉A |{0}k〉
and |1〉A |{0}k〉 are given by δω(2)

A,0 = −~
∑
k

(gk,Φ+gk,Q)2

ω′′
A

+ω′
k,JJA

and δω
(2)
A,1 = ~

∑
k

(gk,Φ−gk,Q)2

ω′′
A
−ω′

k,JJA
− 2~

∑
k

(gk,Φ+gk,Q)2

ω′′
A

+ω′
k,JJA

, re-
spectively. This yields the perturbative shift to the

atomic mode as:

∆ω(2)
A =

∑
k

[
(gk,Φ − gk,Q)2

ω′′A − ω′k,JJA
− (gk,Φ + gk,Q)2

ω′′A + ω′k,JJA

]
. (42)

We remark here that the perturbation theory is per-
formed by segregating the total Hamiltonian Eq. (34)
into H0 ≡ ~ω′′Aâ

†
AâA as the unperturbed atomic Hamil-

tonian, and HI ≡
∑
k

[
~gk,Φ

(
âA + â†A

)(
âk + â†k

)
+~gk,Q

(
âA − â†A

)(
âk − â†k

)]
as the perturbative cor-

rection. Fig. 4 (a) shows the renormalized frequency
with the above perturbative corrections as a function of
the coupling parameter χ. It can be seen that includ-
ing the perturbative corrections brings the renormalized
frequency closer to the exact eigenmode frequency, and
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Eigenfrequencies of the coupled atom+JJA system as a function of the bare atomic frequency for (a) χ = 10−5, (b)
χ = 10−2.5 and (c) χ = 1. The atomic mode frequency is denoted by the solid orange curve in each plot and the gray curves
corresponds to the JJA normal modes. The atomic eigenmodes corresponding to (a), (b) and (c) are shown in (d), (e) and
(f), respectively. The inset shows the Inverse Participation Ratio (IPR) for the atomic mode as a function of the bare atomic
frequency as determined by Eq. (44).

we see an agreement between ω′′A + ∆ω(2)
A and the exact

normal mode frequency for χ . 0.05.
Fig. 4 (c) shows the corresponding atomic eigenmode

as a function of the array position and coupling param-
eter χ. It can be seen that the atomic mode is localized
at the atomic position for coupling parameter χ . 0.05,
at which point we see a concomitant breakdown of per-
turbation theory in Fig. 4 (a) and (c).

The perturbative expression for the spontaneous emis-
sion decay rate of an atom coupled to continuum is given
by [33]

Γeff = 1
2πCA

Re
[

1
Zeff (ωA)

]
, (43)

where Zeff (ωA) corresponds to the effective impedance
of the environment at the atomic frequency (See Ap-
pendix A for a detailed derivation). We remark that
the effective impedance of the environment seen by the
atom is different from that of an infinite JJA Z∞ (see
Appendix A for comparison), which yields a spontaneous
emission rate of Γ∞ ≡ 1

2πCA
Re
[

1
Z∞(ωA)

]
.

It can be seen from Fig. 4 (b) that for coupling pa-
rameter χ . 10−4, there is an agreement between the
perturbative Γeff and the numerically obtained atomic
decay (Im [ω̃A]), though for larger coupling strengths the

two differ significantly. We further note that the pertur-
bative Γ∞ calculated with the infinite array impedance
is appreciably different from both the exact decay rate as
well as Γeff . Fig. 4 (d) shows the atomic eigenmode for
the bare atomic frequency ωA/(2π) = 5 GHz. We find
that the atomic mode is mostly localized at the atomic
position for χ . 10−4, and is delocalized over the en-
tire array for larger coupling parameters. Specifically,
the atomic mode is pinned to the spectrally-closest JJA
mode corresponding to k = 4, as we will illustrate in the
following subsection, and the decay rate saturates to the
loss for that array mode for large χ.

C. Atomic mode in the spatial and spectral domain

As seen in the previous section, atomic properties de-
pend not only on the coupling parameter χ but also on
the atomic frequency, and in particular whether it is
within or outside the photonic frequency band. Realizing
an artificial atom in cQED using a SQUID loop provides
the advantage of being able to tune the atomic mode fre-
quency in-situ; we thus explore in this section how the
spatial and spectral properties of the atomic mode vary
as its bare frequency is tuned across the photonic band.
One can observe from Figs. 5 (a)–(c) that for small
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FIG. 6. (a) Schematic circuit for a toy model with an artificial
atom (A) coupled to an open single LC-resonator (R) via a
coupler (C). The resonator is in turn coupled to a transmission
line (W). (b) Dynamics of expected number of excitations at
the atomic node for couplings χ = 1. (c) The Fourier trans-
form of nA

(
t̃
)
exhibits resonances at the beat frequencies

between the various poles in the system, as indicated by the
dashed vertical lines. The pole values and the corresponding
eigenmodes are shown in (d) and (e) respectively. The bare
atomic frequency is taken to be ωA/ (2π) ≈ 5 GHz, and tem-
perature T = 50 mK.

coupling parameter χ as one tunes the bare atomic fre-
quency through the photonic band, the atomic mode goes
through a series of avoided crossings, while for larger χ,
the atomic frequency appears ‘pinned’ to those of the ar-
ray. Outside the photonic band, for small χ the atomic
frequency is close to the bare atomic frequency with a
negligible shift, while for χ & 1 the atomic frequency ex-
hibits a significant Lamb shift. Furthermore, it can be
seen from Fig. 5 (c) that for a galvanic coupling (χ = 1)
the eigenvalues of the array modes change as we vary the
bare atomic frequency within the band [34]. For smaller
values of χ (e.g., Fig. 5 (a)), while the atomic mode goes
through a series of avoided crossings, there is negligible
effect of changing the atomic frequency on the eigenval-
ues of the JJA.

The corresponding atomic eigenmode is shown is

Figs. 5 (d)–(f), which shows the localization of the atomic
mode. To quantify the hybridization of the atomic eigen-
mode with the modes of the JJA, we define the Inverse
Participation Ratio (IPR) as a measure of atomic mode
localization as [35]

IPR =
∑
n

|−→ϕA(n)|4 . (44)

We see from Fig. 5 (d) that for small χ, the atomic mode
is spatially localized at the position of the atom except
at the points of avoided crossings where it hybridizes
strongly with the near-resonant modes of the JJA. For
χ = 1, for the atomic frequency within the band the
atomic mode is delocalized over the entire array, with
the mode function corresponding to the near resonant
eigenmodes of the array. For the bare atomic frequency
outside of the photonic band the atomic mode is spatially
localized at the atomic position as seen from Fig. 5 (f).
The localization increases near the band edge as the atom
hybridizes with a larger number of modes close to the
edge which can help create an effective localized mode
near the position of the atom.
Having considered the radiative properties of the atom,

we know turn to the open quantum system dynamics in
the following section.

V. SPONTANEOUS EMISSION DYNAMICS

We now consider the evolution of the number of exci-
tations at the atomic node starting with the initial state
ρ(0) = |1〉A 〈1|A ⊗ |{0}〉 〈{0}|, such that the atomic node
contains one excitation to start with and remainder of the
nodes are in vacuum. Such an initial state can be pre-
pared by driving the atomic node locally via an external
drive to the first excited state and, if necessary, switching
on the coupling between the atom and the JJA quickly
compared to the time scales of the system dynamics. The
number of excitations at the atomic node at any given
time are obtained as:

〈
n̂

(0)
A

(
t̃
)〉

=

1
2~ZA

[〈
:
(

Φ̂(0)
A

(
t̃
))2

:
〉

+ Z2
A

〈
:
(
Q̂0
A

(
t̃
))2

:
〉]

. (45)

Substituting Eqs. (23) and (25) in Eq. (45), one can
obtain the dynamics of the excitation number expecta-
tion value at the atomic node as follows (see Appendix F
for details of the derivation):
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〈
n̂

(0)
A

(
t̃
)〉

= 1
2
∑

p,q,m,n

e(s̃p+s̃m)t̃s̃ps̃mCred,q,1Cred,n,1

[
ηp,q (s̃p) ηm,n (s̃m) +

(
ZA
Z0

)2
ζp,q (s̃p) ζm,n (s̃m)

]

+ 1
2
∑
p,m

e(s̃p+s̃m)t̃
(
Z0

ZA

)2
[ηp,1 (s̃p) ηm,1 (s̃m) + ζp,1 (s̃p) ζm,1 (s̃m)]

+ kBTZ
2
0

~Ω0ZAZW

∑
p,m

1
(s̃p + s̃m)

[
ηp,N+2 (s̃p) ηm,N+2 (s̃m) +

(
ZA
Z0

)2
ζp,N+2 (s̃p) ζm,N+2 (s̃m)

](
1− e(s̃p+s̃m)t̃

)
, (46)

with ηp,q and ζm,n defined by Eqs. (24) and (26). The
first two lines in the above equation represent the con-
tribution from initial conditions, and the last line corre-
sponds to the input noise from the waveguide. The in-
dices p,m indicate the sum over the various eigenmodes
of the system. We have assumed here that the system is

(a)

(b)

FIG. 7. (a) Dynamics of the number expectation value at
the atomic node for various coupling coefficients χ for an ar-
ray with N = 100 junctions, with ωA/ (2π) = 5 GHz, and
temperature T = 50 mK. (b) Steady state excitation number
values at the atomic node nA,∞[χ] as a function of the cou-
pling strength χ.

in the high temperature limit, such that the noise cor-
relation time is much smaller compared to the charac-
teristic system relaxation time scale

(
~

kBT
� Γ−1

)
. The

input noise from the transmission line can thus be ap-
proximated to be delta-correlated:

〈
: Q̂in (t1) Q̂in (t2) :

〉
→ kBT

2ZW
δ (t1 − t2) . (47)

We illustrate the dynamics of the number expectation
value at the atomic position for in a simple system with
an atom coupled to an open resonator, as shown in
Fig. 6(a), corresponding to the N = 1 limit of the JJA.
The dominant frequencies in the dynamics as obtained
via the Fourier transform of the time domain signal in
Fig. 6(c). The vertical dashed lines in Fig. 6(c) represent
various beat frequencies obtained as Ims̃p+Ims̃m for dif-
ferent poles s̃p,m in the system, shown in Fig. 6(d). The
eigenmodes corresponding to the various poles are shown
in Fig. 6(e).
Fig. 7(a) shows the dynamics of the number expecta-

tion value at the atomic position for different coupling
coefficients in the non-perturbative regime for a larger
array with N = 100 junctions. We note from Fig. 7(b)
that as the coupling strength is increased, the system
decays into a steady state with increasingly larger num-
ber of excitations. The steady state excitation num-
ber nA,∞ [χ] ≡ limt̃→∞

〈
n̂

(0)
A

(
t̃
)〉

can be obtained from
Eq. (46) as:

nA,∞ [χ]→ kBTZ
2
0

~Ω0ZAZW

∑
p,m

1
(s̃p + s̃m)

[ηp,N+2 (s̃p) ηm,N+2 (s̃m)

+
(
ZA
Z0

)2
ζp,N+2 (s̃p) ζm,N+2 (s̃m)

]
. (48)

The increase in the steady state occupation of the excita-
tion number at atomic node with χ can be attributed to
the fact that the number non-conserving non-RWA terms
become prominent in the non-perturbative regime.
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A. Including atomic nonlinearity

We rewrite the equations of motion for the reduced
system subspace including the nonlinear potential for the
atomic junction, using (15) and (16), as follows:

d

dt̃
Φ̂red =C−1

red

[
Z0Q̂red

]
(49)

d

dt̃

[
Z0Q̂red

]
=− L−1

redΦ̂red −
Z0

ZW
δN+2C

−1
red

[
Z0Q̂red

]
+ 2

Ω2
0

[
Z0Q̂in

]
δN+2 + 1

Ω0

∂UA (ΦA)
∂ΦA︸ ︷︷ ︸

Nonlinear source

.

(50)

We assume the perturbative solutions up to first order
in atomic nonlinearity to be:

Φ̂red,j (t) = Φ̂(0)
red,j (t) + λΦ̂(1)

red,j (t) (51)

Q̂red,j (t) = Q̂
(0)
red,j (t) + λQ̂

(1)
red,j (t) , (52)

where
{

Φ̂(0)
red, Q̂

(0)
red

}
represents the solution to the linear

problem as derived in Eqs. (23) and (25),
{

Φ̂(1)
red, Q̂

(1)
red

}
represents the first order perturbative correction and λ is
the perturbative parameter that scales with the strength
of nonlinearity. Substituting the perturbative ansatz into
the nonlinear equations of motion (Eqs. (49) and (50)),
one can obtain the dynamics of the perturbative correc-
tions to the flux and charge dynamical variables as:

d

dt̃
Φ̂(1)

red = C−1
red

[
Z0Q̂(1)

red

]
(53)

d

dt̃

[
Z0Q̂(1)

red

]
= −L−1

redΦ̂(1)
red −

Z0

ZW
δN+2C

−1
red

[
Z0Q̂(1)

red

]
+ 1
λΩ0

δ1

(
∂UA (ΦA)
∂ΦA

)
. (54)

We note that the homogeneous part of the above equa-
tions of motion is the same as Eqs. (15) and (16), thus
corresponding to the same propagator

(
G (s̃)

)
as in the

linear problem. It is pertinent to remark here that a
Kerr-type nonlinearity gives rise to secular terms, which
can be addressed by a multi-scale perturbation the-
ory [36]. For an odd-order nonlinearity, such as a cubic
potential realizable e.g. with a SNAIL-based atom [37],
one can obtain lowest order nonlinear corrections to the
dynamics as follows:

Φ̂(1)
red,j

(
t̃
)

=∑
p,q

es̃p t̃
1(

δγpp(s̃p)
δs̃

)β−1
j,p (s̃p)α−1

p,q (s̃p) Ŷ (1)
q (s̃p) , (55)

Z0Q̂
(1)
red,j

(
t̃
)

=∑
p,q,r

s̃pe
s̃p t̃

1(
δγpp(s̃p)

δs̃

)Cred,j,qβ
−1
q,p (s̃p)α−1

p,r (s̃p) Ŷ (1)
r (s̃p) ,

(56)

where Ŷ(1) (s̃) ≡
∫

dt̃ e−s̃t̃
[

1
λδ1

(
∂UA(ΦA)
∂ΦA

)]
corresponds

to the nonlinear source term.
We can thus obtain the nonlinear corrections to the

number expectation value at the atomic node as:

〈
n̂

(1)
A

(
t̃
)〉

=

λ2

2~ZA

[〈
:
(

Φ̂(1)
A

(
t̃
))2

:
〉

+ Z2
A

〈
:
(
Q̂

(1)
A

(
t̃
))2

:
〉]

.

(57)

The lowest order contribution is at the second order in
nonlinearity. For a cubic nonlinearity, the above expres-
sion can be evaluated as described in Appendix H.

VI. DISCUSSION

We have analyzed the radiative properties and open
system dynamics of an artificial atom coupled to a high
impedance JJA. We study the crossover from a pertur-
bative to a non-perturbative regime of light-matter inter-
action, considering a tunable coupler between the atom
and the JJA that allows one to isolate the atom from
the array modes. We develop a singular function ex-
pansion approach to describe the atom+JJA system in
Sec. II B, which allows one to analyze the properties and
dynamics of the system in terms of its non-Hermitian
eigenmodes. The dissipation and noise from system-bath
interaction are accounted for by eliminating the waveg-
uide modes via appropriate boundary conditions without
requiring a full consideration of the waveguide Hilbert
space, thereby making the approach computationally ef-
ficient. We derive an effective Hamiltonian to describe
the closed atom+JJA system in Sec. III, delineating dif-
ferent regimes of coupling strengths realizable in the sys-
tem. It is shown that the system can exhibit multimode
nonperturbative coupling strengths between the atomic
and the resonator modes (Fig. 2). Sec. IV discusses a sce-
nario of large coupling where the Lamb shift and Purcell
decay in such a system can no longer be described via a
perturbative approach (Fig. 4). We define and identify
the atomic eigenmode across different coupling regimes,
and discuss its qualitative behavior in terms of the spa-
tial and spectral properties in Sec. IVC. In multimode
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non-perturbative coupling regimes, it can be seen that,
the atomic mode is no longer spatially or spectrally lo-
calized due to a strong hybridization between the atomic
and field modes (Fig. 5). Finally we illustrate the spon-
taneous emission dynamics of such a system in the non-
perturbative regime in Sec.V. It is found that there is
a significant contribution from the non-RWA terms to
the steady state occupation of the atomic node as the
light-matter coupling becomes non-perturbatively strong
(Fig. 7).

This work opens several new directions to explore with
regard to fluctuation phenomena in high impedance en-
vironments in non-perturbative regimes of 1+1 dimen-
sional QED. In the presence of strongly hybridized mat-
ter and field degrees of freedom, the quantum vacuum
fluctuations are also hybridized, and can lead to non-
perturbatively strong dispersive and dissipative effects as
we have shown in this work. Previous experiments have
explored Lamb shifts and dynamical Casimir effects in
cQED setups [38, 39]; it would be interesting to extend
such studies to strongly hybridized regimes and analyze
the non-perturbative effects therein.

The dynamics of the atom in such a system can be
highly non-Markovian as a result of several factors com-
ing into play [40–42] – particularly, a nonperturbative
multimode strong coupling between the atom and its
environment, going beyond the multimode strong cou-
pling regime of cavity QED [26, 43]. We show that such
non-Markovian effects manifest themselves as a multi-
exponential ocillatory decay of the atomic mode, where
the individual exponents can be related to a set of dis-
crete complex-valued poles that correspond to the eigen-
frequencies of the non-Hermitian modes of the system.
Understanding the non-Markovian dynamics in terms of
these eigenmodes can offer insights into how excitations
and coherences evolve in such a non-perturbative multi-
mode regime of light-matter interaction.

In the presence of a drive, the non-linearity of the atom
can result in rich dynamical behavior such as bistability
and self-oscillations, leading to generation of frequency
combs [44]. While this dynamical instability has been
observed for a single mode environment [45], JJA arrays
provide an ideal platform for its study in a multimode
setting, where quantum features such as multipartite en-
tanglement and soliton formation may prevail. It has
also been discussed that in the presence of strong hy-
bridization the atomic non-linearity can be transferred
to the JJA modes [18], diluting the effect of the atomic
non-linearity as predicted in Ref. [42] (see Sec. IVB), an
effect that requires further careful theoretical analysis.

Additionally, JJAs exhibit several interesting proper-
ties as an optical medium. Through their strong non-
linearities and large or negative refractive index [46], they
can serve as a platform to study electromagnetic phenom-
ena such as slow and stopped light [47] in new regimes. It
has also been proposed that the optical properties of the
JJAs can be dynamically controlled by quantum coherent
states of qubits coupled to them [48]. The tunability of

the individual junctions forming the JJA can be used to
design the spectral properties of the JJA modes and en-
gineer band gaps [49]. Thus coupling an artificial atom
to an optical medium that possesses a great degree of
tunability and inherent quantum non-linearity provides
for several opportunities for exploring and understanding
novel quantum optical phenomena.
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Appendix A: JJA impedance

One can write the effective impedance seen by the atom
as a cumulative sum of the impedance of all junctions of
the array plus the external waveguide [25]. The external
impedance is given as

Zext (ω) = ZTL + 1
iωCc

, (A1)

where ZTL = 50 Ω is the impedance of the transmission
line. We add the impedances of the junctions in the ar-
ray successively by defining the effective impedance after
adding n junctions as Z(n)

eff (ω), such that

Z
(n)
eff (ω) = ZLC +

[
1
Zg

+ 1
Z

(n−1)
eff (ω)

]−1

, (A2)

where we start with Z(0)
eff (ω) ≡ Zext(ω). The impedance

seen by the atom is

Z
(N)
eff (ω) = ZLC

χ
+
[

1
Zg

+ 1
Z

(N−1)
eff (ω)

]−1

, (A3)

where we note that the impedance of the coupler is
ZLC/χ.
Fig. 8 compares the real part of the effective admit-

tance 1/Z(N)
eff (ω) with that of an infinite JJA. It can be

seen that for the atomic frequency within the photonic



16

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
10

-3

FIG. 8. Real part of the admittance of the array as a func-
tion of the atomic frequency. The solid line represents the
cumulative impedance of the JJA Z

(n)
eff as given by Eq. (A2).

The gray dashed-dotted line represents the impedance of the
infinite array Z∞ as given by Eq. (4).

band the effective admittance seen by the atom exhibits
an oscillatory behavior owing to the resonances of the
multimode cavity. Outside of the photonic band we see
that both 1/ZNeff and Z∞ vanish.

Appendix B: Waveguide dissipation and noise

1. Incoming and Outgoing waveguide modes

We define the bosonic operators associated with the
waveguide modes as [50]:

b̂k (t) ≡ 1√
2~NW

NW∑
n=0

e−ikn
[
i
√
ZW Q̂

W
n + |k|√

ZW
Φ̂Wn

]
(B1)

b̂†k (t) ≡ 1√
2~NW

NW∑
n=0

eikn
[
−i
√
ZW Q̂

W
n + |k|√

ZW
Φ̂Wn

]
.

(B2)

One can note from the above that the bosonic operators
b̂k and b̂†k′ satisfy the commutation relations:[

b̂k, b̂
†
k′

]
= |k| δk,k′ (B3)

The waveguide node flux and charge variables can be
defined in terms of incoming and outgoing set of modes
as follows:

Φ̂Wn (t) =Φ̂W+
n (t) + Φ̂W−n (t) (B4)

Q̂Wn (t) =Q̂W+
n (t) + Q̂W−n (t) , (B5)

where

Φ̂W±n (t)

≡
√

~ZW
2NW

∑
k>0

1
|k|

[
b̂±k (0) e−i(ωt∓kn) + b̂†±k (0) ei(ωt∓kn)

]
(B6)

Q̂W±n (t)

≡ −i
√

~
2ZWNW

∑
k>0

[
b̂±k (0) e−i(ωt∓kn) − b̂†±k (0) ei(ωt∓kn)

]
,

(B7)

such that ω and k are related by the waveguide dispersion
relation:

ω2

Ω2
W

= 2(1− cos k), (B8)

where ΩW = 1/
√
LWCW corresponds to the plasma fre-

quency of the transmission line.

We write the Heisenberg equations of motion at the
first waveguide node as follows:

dQ̂W0
dt

=− 1
LW

(
Φ̂W0 − Φ̂W1

)
(B9)

(CW + Cc)
dΦ̂W0
dt
− Cc

dΦ̂N
dt

=Q̂W0 . (B10)

We note that the only coupling between the first waveguide node and the rest of the waveguide is inductive. In
order to eliminate the remainder of waveguide, we expand the RHS of Eq. (B9) in terms of the incoming and outgoing
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modes (Eq. (B6)) as follows:

dQ̂W0
dt

= 1
LW

√
~ZW
2NW

[∑
k>0

1
|k|

{
b̂ke
−i(ωt−k) − b̂†ke

i(ωt−k)
}

+
∑
k>0

1
|k|

{
b̂−ke

−i(ωt+k) − b̂†−ke
i(ωt+k)

}
−
∑
k>0

1
|k|

{
b̂ke
−iωt − b̂†ke

iωt
}
−
∑
k>0

1
|k|

{
b̂−ke

−iωt − b̂†−ke
iωt
}]

(B11)

= 1
LW

√
~ZW
2NW

[∑
k>0

1
|k|

{
b̂ke
−iωt (eik − 1

)
− b̂†ke

iωt
(
e−ik − 1

)}
+
∑
k>0

1
|k|

{
b̂−ke

−iωt (e−ik − 1
)
− b̂†−ke

iωt
(
eik − 1

)}]

= 1
LW

√
~ZW
2NW

[∑
k>0

1
|k|

{
b̂ke
−iωt (cos k − 1 + i sin k)− b̂†ke

iωt (cos k − 1− i sin k)
}

+
∑
k>0

1
|k|

{
b̂−ke

−iωt (cos k − 1− i sin k)− b̂†−ke
iωt (cos k − 1 + i sin k)

}]
(B12)

We use the dispersion relation for the waveguide (Eq. (B8)), keeping terms up to lowest order in ω/ΩW in the
continuum limit of the waveguide, to simplify the above as:

dQ̂W0
dt

= 1
LW

√
~ZW
2NW

[∑
k>0

1
|k|

(
iω

ΩW

){
b̂ke
−iωt + b̂†ke

iωt
}

+
∑
k>0

1
|k|

(
− iω

ΩW

){
b̂−ke

−iωt + b̂†−ke
iωt
}]

(B13)

=− 1
ZW

(
dΦ̂W+

0
dt

− dΦ̂W−0
dt

)
(B14)

=− 1
ZW

dΦ̂W0
dt︸ ︷︷ ︸

Dissipation

+ 2Q̂in︸︷︷︸
Noise

, (B15)

where we have defined Q̂in (t) ≡ ΩW Q̂W−0 (t). The first and the second terms in the above equation correspond to the
dissipation and noise, respectively. We thus obtain the equations of motion in the reduced subspace as in Eqs. (15)
and (16).

2. Noise correlation

We evaluate the noise correlation function between the input noise at two times as follows:

〈
: Q̂in (t1) Q̂in (t2) :

〉
=− ~Ω2

W

2ZWNW

∑
k,k′

〈
:
[
b̂−ke

−iωkt1 − b̂†−ke
iωkt1

] [
b̂−k′e

−iω′kt2 − b̂†−k′e
iω′kt2

]
:
〉

(B16)

= ~ΩW
ZWNW

∑
k

ωk
e~ωk/(kBT ) − 1 cos [ωk (t1 − t2)] (B17)

≈ ~
2πZW

∫ ∞
0

dωk
ωk

e~ωk/(kBT ) − 1 cos [ωk (t1 − t2)] (B18)

= ~
4πZW

 1
(t1 − t2)2 −

π2cosech2
(
πkBT (t1−t2)

~

)
(~/(kBT ))2

 (B19)

where we have assumed continuum limit for the waveguide. This can be rewritten as Eq. (F5).
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Appendix C: Solving equations of motion in reduced subspace

Let us consider the Laplace transform of the equations of motion in Eq. (15) and (16) as follows:

s̃Φ̃red (s̃) = Φ̂red(0) + C−1
red
[
Z0Q̃red (s̃)

]
(C1)

s̃
[
Z0Q̃red (s̃)

]
= Z0Q̂red (0)− L−1

redΦ̃red (s̃)− Z0

ZW
δN+2C

−1
red
[
Z0Q̃red (s̃)

]
+ 2

Ω0

[
Z0Q̃in (s̃)

]
δN+2, (C2)

where we have defined Õ (s̃) ≡
∫∞

0 dt̃e−s̃t̃Ô
(
t̃
)
as the Laplace transform of the operator Ô

(
t̃
)
.

One can use Eq. (C2) to express Z0Q̃red (s̃) in terms of Φ̃red (s̃) and the initial conditions and noise as:

Z0Q̃red (s) =
[
s̃+ Z0

ZW
δN+2C

−1
red

]−1 [
Z0Q̂red (0)− L−1

redΦ̃red (s̃) + 2
Ω0

[
Z0Q̃in (s̃)

]
δN+2

]
. (C3)

Substituting above in Eq. (C1), we obtain:

Φ̃red (s̃) =
[
s̃2Cred + s̃

Z0

ZW
δN+2 + L−1

red

]−1 [{
s̃Cred + Z0

ZW
δN+2

}
Φ̂red (0) + Z0Q̂red (0) + 2

Ω0

[
Z0Q̃in (s̃)

]
δN+2

]
.

(C4)

Taking the inverse Laplace transform of the above
equation we obtain Eq. (19).

Appendix D: JJA Eigenvalues and Eigenmodes

1. Plane-wave basis

Let us consider the eigenvalue problem Eq. (28)
for partial diagonalization of the JJA, expressing
the eigenmodes in a plane-wave basis Φk,JJA =∑(N−1)/2
p=−(N−1)/2 ckpφp, such that φp(n) = 1√

N
e2πinp/N .

One can rewrite such a plane-wave expansion of the
eigenmodes in a matrix representation as

Φk,JJA = φck, (D1)

where φ ≡
{
φ−(N−1)/2 . . . φ(N−1)/2

}
and ck ≡{

ck(−(N−1)/2), . . . ck(−(N−1)/2)
}T . One can thus substi-

tute the plane-wave expansion in the eigenvalue problem
Eq. (28) to obtain

ω2
k,JJAC̄JJAck = L̄−1

JJAck, (D2)

where we have defined M̄ ≡ φ†Mφ.
It can be shown that(

L̄−1
JJA
)
k,k′

= 1
Lk
δk,k′ + BL, (D3)(

C̄JJA
)
k,k′

=Ckδk,k′ + BC , (D4)

where the terms BL,C ∼ 1/N correspond to the bound-
ary contributions and the effective inductance and capac-

itance values corresponding to the JJA modes are given
as

Ck ≡Cg + 2C
[
1− cos

(
2πk
N

)]
(D5)

Lk ≡
L

2
(
1− cos

( 2πk
N

)) . (D6)

We can thus arrive at the dispersion relation in the limit
of N � 1, such that the contribution of the boundary
terms is negligible

ωk,JJA ≈
1√
LkCk

= Ω0

√√√√ 1− cos
( 2kπ
N

)
Cg

2C + 1− cos
( 2kπ
N

) . (D7)

Furthermore, considering the diagonal forms of the ma-
trices L̄−1

JJA and C̄JJA, it can be shown that

ckk′

{
6= 0, if k′ = ±k
= 0, otherwise.

(D8)

This allows us to write the eigenmodes as

Φk,JJA(n) ≈ c+kφ+k(n) + c−kφ−k(n) (D9)

We now apply the boundary conditions (BCs)

ω2
k,JJA [(C + Cg + C0) Φk,JJA(1)− CΦk,JJA(2)]

=
(

1
L

+ 1
L0

)
Φk,JJA (1)− 1

L
Φk,JJA (2) (D10)
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ω2
k,JJA [(C + Cg + Cc) Φk,JJA(N)− CΦk,JJA(N − 1)]

= 1
L

Φk,JJA (N)− 1
L

Φk,JJA (N − 1) . (D11)

Substituting the plane-wave decomposition of the flux
vector in Eq. (D10) we obtain

c−k
c+k

= −
(C + Cg + C0)ω2

k,JJAe
2πik/N − Cω2

k,JJAe
4πik/N −

(
1
L + 1

L0

)
e2πik/N + 1

Le
4πik/N

(C + Cg + C0)ω2
k,JJAe

−2πik/N − Cω2
k,JJAe

−4πik/N −
(

1
L + 1

L0

)
e−2πik/N + 1

Le
−4πik/N

(D12)

.
We note from the above that |c+k| = |c−k|. From the right boundary condition Eq. (D11) one further has that

c−k
c+k

= −
(C + Cg + Cc)ω2

k,JJAe
2πik − Cω2

k,JJAe
2πik(N−1)/N − 1

Le
2πik + 1

Le
2πik(N−1)/N

(C + Cg + Cc)ω2
k,JJAe

−2πik − Cω2
k,JJAe

−2πik(N−1)/N − 1
Le
−2πik + 1

Le
−2πik(N−1)/N , (D13)

which provides the allowed values of k. We consider the
following approximate parameter values to determine the
allowed values of k: Cg � C, Cc ≈ C, N � 1, and (a)
{1/L0, C0} = {1/L,C} and (b) {1/L0, C0} � {1/L,C}.
We look at the two cases of homogeneous array and
weakly coupled atom as follows:

(a) For a homogeneous array with {1/L0, C0} =
{1/L,C} one obtains from left BC (Eq.(D10)) c−k

c+k
≈

− 1−2πik/N
1+2πik/N ≈ −1. Together with the right BC

(Eq. (D11)), this yields sin (2πk) ≈ 0, such that the
allowed k values are 2k = q, with q ∈ I.
Using the normalization condition
ΦT
k,JJAC̄JJAΦk′,JJA = δk,k′ we can determine

the eigenmodes of the JJA as

Φk,JJA(n) ≈ 2i√
N

√
2C + Cg

2Ck
sin
(

2πkn
N

)
. (D14)

(b) For a weakly coupled atom with {1/L0, C0} �
{1/L,C}, we obtain from the left BC c+k

c−k
≈ 1, which

taken together with the right BC gives cos (2πk) = 0.
Thus for a weakly coupled atom one obtains that
k = q + 1

2 , with q ∈ I.
The eigenmodes are thus given as

Φk,JJA(n) ≈ 2√
N

√
2C + Cg

2Ck
cos
(

2πkn
N

)
. (D15)

2. JJA Modes

Let us consider the equations of motion for the JJA
subspace as follows

CJJAΦ̈JJA = −L−1
JJAΦJJA, (D16)

where the matrices CJJA and L−1
JJA are the capacitance

and inverse inductance matrices as indicated in Eqs. (10)
and (11), and ΦJJA = {Φ1, . . . ,ΦN} represents the flux
on the JJA nodes. The generalized eigenvalue problem
for the JJA subspace is thus given by Eq. (28).
The generalized eigenvalue problem can be solved nu-

merically to obtain the eigenfrequencies ωk,JJA and eigen-
modes Φk,JJA of the JJA. We choose the normalization
of the eigenmodes such that

ΦT
k,JJACJJAΦk′,JJA = (Cg + 2C) δk,k′

ΦT
k,JJAL

−1
JJAΦk′,JJA =

ω2
k,JJA

L
δk,k′ . (D17)

In the limit of a large JJA, the eigenmodes of the ar-
ray can be well-approximated as two counterpropagating
plane wave solutions which yields approximate analytical
expressions for the eigenvalues and eigenvectors. While
we are exclusively considering the JJA subspace here, the
first element of the inductance and capacitance matrices
includes the coupling term {L0, C0}, which is crucial in
determining the boundary condition (BC) at the atomic
end. We consider the two hybridization regimes corre-
sponding to the two coupler values as follows:

• Strongly hybridized (SH) regime: The SH regime
corresponds to having a Dirichlet BC at the atomic
end, with the dispersion relation given by substitut-
ing the allowed values of k in the dispersion relation
Eq. (D7) as

ωDNk,JJA =Ω0

√
1− cos ((k + 1/2)π/N)

Cg/(2C) + 1− cos ((k + 1/2)π/N) ,

(D18)

with the band edge frequency ωc ≡
1/
√
L(Cg/2 + C).
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FIG. 9. Eigenfrequencies and eigenmodes for the uncoupled
JJA. (a) The black solid curve represents the analytical dis-
persion relation for the JJA assuming Neumann BC at both
ends of the JJA (see Eq. (D20)) and the gray curve represents
the JJA dispersion assuming Dirichlet BC at the atomic end
and Neumann at the waveguide end (see Eq. (D18)). The
squares and circles represent the numerically obtained JJA
eigenfrequencies for χ = 10−5 and χ = 1 respectively. The
band edge frequency is ωc/(2π) ≈ 12.99 GHz, as depicted by
the horizontal dashed-dotted line. The JJA eigenmodes cor-
responding to (b) χ = 1 and (c) χ = 10−5. The numerically
obtained eigenmodes are depicted in blue solid and dashed-
dotted curves for k = 2 and k = 3 respectively. For χ = 1
(χ = 10−5), the black dashed and dotted curves represent the
k = 2 and k = 3 eigenmodes corresponding to the approxi-
mate analytical solution with Dirichlet (Neumann) BC at the
atomic end given by Eq. (D19) (Eq. (D21)), respectively.

The corresponding eigenmodes of the JJA can be
obtained as (see Eq. (D14))

ΦDNk,JJA(n) ≈
√√√√√ Cg + 2C

N

(
C

[
1− cos

(
π(k+ 1

2 )
N

)]
+ Cg

2

)
cos
(
π(k + 1

2 )n
N

)
.

(D19)

We note that in the SH regime, the array eigen-
modes have a minimum at the atomic end.

• Weakly hybridized (WH) regime: For {1/L0, C0} �

{1/L,C}, we obtain Neumann BC at the atomic
end, substituting the allowed values of k in the dis-
persion relation Eq. (D7), we obtain

ωNNk,JJA =Ω0

√
1− cos (kπ/N)

Cg/(2C) + 1− cos (kπ/N) . (D20)

The corresponding eigenvectors for the Neumann-
Neumann BCs are (see Eq. (D15))

ΦNNk,JJA(n) ≈i
√√√√ Cg + 2C
N
(
C
[
1− cos

(
πk
N

)]
+ Cg

2

) sin
(
πkn

N

)
.

(D21)
The array modes have a maximum at the atomic
end in the WH regime.

We note that having a general strength of the coupler
corresponds to mixed BCs at the atomic end, as can be
determined from Eq. (D13). The eigenvalues for χ = 1
(SH) and χ = 10−5 (WH) are plotted in Fig. 9 (a). It
can be seen from Fig. 9 (a) that the eigenvalues for the
SH case agree with the approximate analytical dispersion
relation for Dirichlet BC at left end and Neumann on
the right (Eq. (D18)) and those for WH case agree with
the dispersion relation for Neumann BC at both ends
(Eq. (D20)). Similarly, the eigenmodes corresponding to
Dirichlet-Neumann (Neumann-Neumann) BC agree well
with the numerically obtained eigenmodes for the SH
(WH) case, as shown in Fig. 9 (b) and (c).

Appendix E: Hamiltonian derivation

Using the partially diagonalized basis for the JJA, we
can write the atom+JJA Lagrangian in Eq. (29) as

L =LA +
∑
k

(
1
2 C̃kΦ̇

2
k,JJA −

L̃−1
k

2 Φ2
k,JJA

)
− C0Φ̇A

∑
k

δ
T
1 Φ̇k,JJA −

1
L0

ΦA
∑
k

δ
T
1 Φk,JJA,

(E1)

where δT1 Φk,JJA = Φk,JJA(1), and C̃k and L̃−1
k represent

the (k+1)th diagonal element of the matrices C̃ and L̃−1.
From the normalization conditions (Eq. (D17)) we note
that C̃k = Cg + 2C and L̃−1

k = ω2
k,JJA/L.

Let us define the conjugate momenta corresponding to
the flux variables for the atom ΦA and the uncoupled
JJA Φk,JJA as

QA ≡
δL
δΦ̇A

= C ′AΦ̇A − C0
∑
k

δ
T
1 Φ̇k,JJA (E2)

Qk,JJA ≡
δL

δΦ̇k,JJA
= (Cg + 2C) Φk,JJA − C0Φ̇Aδ1.

(E3)
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FIG. 10. Renormalized atomic frequency ω′′A (dashed curve) as a function of the number of modes incorporated, for (a) χ = 1
and (b) χ = 10−5 . The bare atomic frequency is ωA/(2π) ≈ 15 GHz, the atomic frequency in the presence of on-site coupling
ω′A is denoted by the solid horizontal line. The gray circles denote the eigenfrequencies ωA,p(k), corresponding to the eigenmode
of the Hamiltonian H(k) with the highest amplitude at the atomic position and the dotted horizontal line corresponds to the
adiabatically obtained atomic mode frequency ω̃A. The inset illustrates the convergence of ωA,p(k) to ω̃A. The coupling
coefficient ξk,k′ between the JJA modes k and k′ for (c) χ = 1 and (d) χ = 10−5.

This allows us to write the Hamiltonian as

H = QAΦ̇A +
∑
k

QT
k,JJAΦ̇k,JJA − L. (E4)

We can simplify the above Hamiltonian to obtain

H =1
2
Q2
A

C ′′A
+ 1

2
Φ2
A

L′A
+
∑
k

[
Q2
k,JJA

2 (Cg + 2C) + ω2
k,JJA

Φ2
k,JJA

2L + C0

C ′′A (Cg + 2C)Φk(1)QAQk,JJA −
1
L0

Φk(1)ΦAΦk,JJA

]

+ C2
0

2C ′′A (Cg + 2C)2

(∑
k

Φk(1)Qk,JJA

)2

, (E5)

where the renormalized capacitance C ′′A is defined in
Eq. (33). Defining the renormalized mode frequency to
include the self-interaction terms between the JJA modes
as (see Eq. (36)), and promoting the flux and charge vari-
ables to quantum operators as defined in Eq. (31) and
Eq. (32) yields the Hamiltonian in Eq. (34).

It can be seen from Fig. 10 (a) and (b) that for a
galvanically coupled atom (χ = 1) the renormalized

atomic frequency can be drastically different from the
bare atomic frequency, and, does not actually correspond
to a physical eigenfrequency of the total system. As a
benchmark for comparison, one can define the frequency
ωA,p(k) of the eigenmode of the Hamiltonian that has the
largest amplitude at the atomic position. The eigenmode
corresponding to ωA,p(k) is obtained by numerically di-
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agonalizing the Hamiltonian H(k) defined as

H(k) =1
2

(
Q(k)

)T (
C̃(k)

)−1
Q(k)

+ 1
2

(
Ψ(k)

)T (
L̃(k)

)−1
Ψ(k), (E6)

where Ψ(k) ≡ {ΦA; Φj,JJA|j ∈ 1 . . . k}, Q(k) ≡
{QA; Qj,JJA|j ∈ 1 . . . k},

(
C̃(k))

mn
=

(
C̃
)
mn

and(
L̃(k))

mn
=
(
L̃
)
mn

(m,n ∈ 1 . . . k). Thus diagonalizing
the Hamiltonian after including the coupling terms, we
find that the mode frequencies of the total system do not
see as large a renormalization as indicated by ω′′A.

It can also be seen from Fig. 10(c) and (d) that the
coupling ξk,k′ between the modes k and k′ of the JJA
can be as large as ∼ 0.1 GHz for χ = 1, while it remains
negligibly small for χ = 10−5.

Appendix F: Average number of excitations at the
atomic node

The average number of excitations at the atomic node
is given by Eq. (45), which can be simplified by substi-
tuting Eqs. (23) and (25) as follows:

〈
n̂

(0)
A

(
t̃
)〉

= 1
2~ZA

[〈
:
(

Φ̂(0)
A

(
t̃
))2

:
〉

+ Z2
A

〈
:
(
Q̂

(0)
A

(
t̃
))2

:
〉]

(F1)

= 1
2~ZA

〈:
(∑
p,q

es̃p t̃ηp,q (s̃p) Ŷq (s̃p)
)2

:
〉

+
(
ZA
Z0

)2
〈

:
(∑
p,q

es̃p t̃ζp,q (s̃p) Ŷq (s̃p)
)2

:
〉 (F2)

= 1
2~ZA

[∑
p,q

∑
m,n

e(s̃p+s̃m)t̃

{
ηp,q (s̃p) ηm,n (s̃m) +

(
ZA
Z0

)2
ζp,q (s̃p) ζm,n (s̃m)

}〈
: Ŷq (s̃p) Ŷn (s̃m) :

〉]
. (F3)

We can now evaluate the correlation
〈

: Ŷq (s̃p) Ŷn (s̃m) :
〉
explicitly for an initial state of the system ρ(0) = |1〉A 〈1|A⊗

|{0}〉 〈{0}| as:

〈
: Ŷq (s̃p) Ŷn (s̃m) :

〉
=
〈

:
{
s̃p
∑
r

Cred,q,rΦ̂red,r (0) + Z0

ZW
δq,N+2Φ̂red,q (0) + Z0Q̂red,q (0) + 2

[
Z0Q̃in (s̃p)

]
δN+2,q

}
{
s̃m
∑
l

Cred,n,lΦ̂red,l (0) + Z0

ZW
δn,N+2Φ̂red,n (0) + Z0Q̂red,n (0) + 2

[
Z0Q̃in (s̃m)

]
δN+2,n

}
:
〉

(F4)

We note that the normal-ordered expectation values of the flux and charge variables for the initial state in consideration
are given by

〈
: Φ̂red,p(0)Φ̂red,m(0) :

〉
= ~ZAδp,1δm,1 and

〈
: Q̂red,p(0)Q̂red,m(0) :

〉
= ~

ZA
δp,1δm,1. The auto-correlation

function of the input noise quadratures are given by (see Appendix B 2 for derivation):

〈
: Q̂in (t1) Q̂in (t2) :

〉
= (kBT )2

2π~ZW
Re
[
ψ(1)

(
1− i

(
t1 − t2
β

))]
→ kBT

2ZW
δ (t1 − t2) , (F5)

where β = ~Ω0
kBT

, and ψ(1) (z) represents trigamma function of z ∈ Z [51]. We assume a high temperature limit, such
that the input noise from the transmission line can be approximated to be delta-correlated (Eq. (47)), which can be
justified for the parameters in consideration.

Thus we can simplify Eq. (F4) as follows:

〈
: Ŷq (s̃p) Ŷn (s̃m) :

〉
= ~ZA

[
s̃ps̃mCred,q,1Cred,n,1 +

(
Z0

ZA

)2
δq,1δn,1

+ 2kBTZ2
0

~Ω0ZAZW (s̃p + s̃m)δq,N+2δn,N+2

(
e−(s̃p+s̃m)t̃ − 1

)]
. (F6)

We use the above correlation to simplify the excitation number at the atomic position in Eq. (F3) as follows:
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〈
n̂

(0)
A

(
t̃
)〉

= 1
2
∑

p,q,m,n

e(s̃p+s̃m)t̃

[
ηp,q (s̃p) ηm,n (s̃m) +

(
ZA
Z0

)2
ζp,q (s̃p) ζm,n (s̃m)

]
[
s̃ps̃mCred,q,1Cred,n,1 +

(
Z0

ZA

)2
δq,1δn,1 + 2kBTZ2

0
~Ω0ZAZW (s̃p + s̃m)δq,N+2δn,N+2

(
e−(s̃p+s̃m)t̃ − 1

)]

= 1
2
∑

p,q,m,n

e(s̃p+s̃m)t̃

[
ηp,q (s̃p) ηm,n (s̃m) +

(
ZA
Z0

)2
ζp,q (s̃p) ζm,n (s̃m)

][
s̃ps̃mCred,q,1Cred,n,1 +

(
Z0

ZA

)2
δq,1δn,1

]

+ kBTZ
2
0

~Ω0ZAZW

∑
p,m

e(s̃p+s̃m)t̃

(s̃p + s̃m)

[
ηp,N+2 (s̃p) ηm,N+2 (s̃m) +

(
ZA
Z0

)2
ζp,N+2 (s̃p) ζm,N+2 (s̃m)

](
e−(s̃p+s̃m)t̃ − 1

)
(F7)

The above equation can be rewritten as Eq. (46) and the t→∞ limit of the above expression yields Eq. (48).

Appendix G: Dynamics of artificial atom coupled to single open resonator

In this section we analyze the spontaneous emission dynamics of an artificial atom coupled to an open
LC-resonator, as shown in Fig. 6 (a). We can write the equations of motion for the reduced subspace of
Atom+Coupler+Resonator+First waveguide node explicitly as follows (see Eqs. (15) and (16)):

d

dt



Φ̂A
Φ̂C
Φ̂R
Φ̂W0
Z0Q̂A
Z0Q̂C
Z0Q̂R
Z0Q̂

W
0


=

Ω0



0 0 0 0
(
C−1

red

)
11

(
C−1

red

)
12

(
C−1

red

)
13

(
C−1

red

)
14

0 0 0 0
(
C−1

red

)
21

(
C−1

red

)
22

(
C−1

red

)
23

(
C−1

red

)
24

0 0 0 0
(
C−1

red

)
31

(
C−1

red

)
32

(
C−1

red

)
33

(
C−1

red

)
34

0 0 0 0
(
C−1

red

)
41

(
C−1

red

)
42

(
C−1

red

)
43

(
C−1

red

)
44(

L−1
red

)
11

(
L−1

red

)
12

(
L−1

red

)
13

0 0 0 0 0(
L−1

red

)
21

(
L−1

red

)
22

(
L−1

red

)
23

0 0 0 0 0(
L−1

red

)
31

(
L−1

red

)
32

(
L−1

red

)
33

0 0 0 0 0

0 0 0 0 − Z0
ZW

(
C−1

red

)
41
− Z0
ZW

(
C−1

red

)
42
− Z0
ZW

(
C−1

red

)
43
− Z0
ZW

(
C−1

red

)
44





Φ̂A
Φ̂C
Φ̂R
Φ̂W0
Z0Q̂A
Z0Q̂C
Z0Q̂R
Z0Q̂

W
0



+ Ω0



0
0
0
0
0
0
0

2 1
Ω0
Z0Q̂in


, (G1)

where
(
C−1

red

)
jk

and
(
L−1

red

)
jk

indicates the {j, k} element of the inverse capacitance and inductance matrices in the
reduced subspace as defined in Eqs. (17) and (18).
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Taking the Laplace transform of the above and rearranging terms, we get:



Φ̃A
Φ̃C
Φ̃R
Φ̃W0
Z0Q̃A
Z0Q̃C
Z0Q̃R
Z0Q̃

W
0


= 1

Ω0
G̃



Φ̂A (0)
Φ̂C (0)
Φ̂R (0)
Φ̂W (0)
Z0Q̂A (0)
Z0Q̂C (0)
Z0Q̂R (0)

Z0Q̂
W
0 (0) + 2Z0Q̃in


, (G2)

where we have defined Laplace transform of the fluxes at various nodes as Õ (s) =
∫∞

0 dt e−stÔ(t). The propagator
matrix G̃ is defined as:

G̃ ≡



s̃ 0 0 0 −
(
C−1

red

)
11

−
(
C−1

red

)
12

−
(
C−1

red

)
13

−
(
C−1

red

)
14

0 s̃ 0 0 −
(
C−1

red

)
21

−
(
C−1

red

)
22

−
(
C−1

red

)
23

−
(
C−1

red

)
24

0 0 s̃ 0 −
(
C−1

red

)
31

−
(
C−1

red

)
32

−
(
C−1

red

)
33

−
(
C−1

red

)
34

0 0 0 s̃ −
(
C−1

red

)
41

−
(
C−1

red

)
42

−
(
C−1

red

)
43

−
(
C−1

red

)
44(

L−1
red

)
11

(
L−1

red

)
12

(
L−1

red

)
13

0 s̃ 0 0 0(
L−1

red

)
21

(
L−1

red

)
22

(
L−1

red

)
23

0 0 s̃ 0 0(
L−1

red

)
31

(
L−1

red

)
32

(
L−1

red

)
33

0 0 0 s̃ 0

0 0 0 0 Z0
ZW

(
C−1

red

)
41

Z0
ZW

(
C−1

red

)
42

Z0
ZW

(
C−1

red

)
43

s̃+ Z0
ZW

(
C−1

red

)
44



−1

(G3)

with s̃ ≡ s/Ω0.
We can take the inverse Laplace transform of Eq. (G2) to obtain the dynamics of the atomic observables as follows:

Φ̂A
(
t̃
)

= GΦΦ
AA

(
t̃
)

Φ̂A (0) +GΦΦ
AC

(
t̃
)

Φ̂C (0) +GΦΦ
AR

(
t̃
)

Φ̂R (0) +GΦΦ
AW

(
t̃
)

Φ̂W (0) +GΦQ
AA

(
t̃
) [
Z0Q̂A (0)

]
+GΦQ

AC

(
t̃
) [
Z0Q̂C (0)

]
+GΦQ

AR

(
t̃
) [
Z0Q̂R (0)

]
+GΦQ

AW

(
t̃
) [
Z0Q̂W (0)

]
+
∫ t̃

0
dτ̃ GΦQ

AW

(
t̃− τ̃

) [ 2
Ω0
Z0Q̂in

(
τ̃

Ω0

)]
(G4)

Z0Q̂A
(
t̃
)

= GQΦ
AA

(
t̃
)

Φ̂A (0) +GQΦ
AC

(
t̃
)

Φ̂C (0) +GQΦ
AR

(
t̃
)

Φ̂R (0) +GQΦ
AW

(
t̃
)

Φ̂W (0) +GQQAA
(
t̃
) [
Z0Q̂A (0)

]
+GQQAC

(
t̃
) [
Z0Q̂C (0)

]
+GQQAR

(
t̃
) [
Z0Q̂R (0)

]
+GQQAW

(
t̃
) [
Z0Q̂W (0)

]
+
∫ t̃

0
dτ̃GQQAW

(
t̃− τ̃

) [ 2
Ω0
Z0Q̂in

(
τ̃

Ω0

)]
,

(G5)

where we have defined t̃ ≡ Ω0t and the inverse Laplace transform of the propagator matrix G̃ as:

1
2πi

∫ i∞

−i∞
ds estG̃ (s) ≡



GΦΦ
AA (t) GΦΦ

AC (t) GΦΦ
AR (t) GΦΦ

AW (t) GΦQ
AA (t) GΦQ

AC (t) GΦQ
AR (t) GΦQ

AW (t)
GQΦ
AA (t) GQΦ

AC (t) GQΦ
AR (t) GQΦ

AW (t) GQQAA (t) GQQAC (t) GQQAR (t) GQQAW (t)
GΦΦ
RA (t) GΦΦ

RC (t) GΦΦ
RR (t) GΦΦ

RW (t) GΦQ
RA (t) GΦQ

RC (t) GΦQ
RR (t) GΦQ

RW (t)
GQΦ
RA (t) GQΦ

RC (t) GQΦ
RR (t) GQΦ

RW (t) GQQRA (t) GQQRC (t) GQQRR (t) GQQRW (t)
GΦΦ
WA (t) GΦΦ

WC (t) GΦΦ
WR (t) GΦΦ

WW (t) GΦQ
WA (t) GΦQ

WC (t) GΦQ
WR (t) GΦQ

WW (t)
GQΦ
WA (t) GQΦ

WC (t) GQΦ
WR (t) GQΦ

WW (t) GQQWA (t) GQQWC (t) GQQWR (t) GQQWW (t)


. (G6)

We obtain the normal ordered expectation values of Φ̂2
A (t) and Q̂2

A (t) as follows:
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〈
: Φ̂2

A

(
t̃
)

:
〉

=~ZA
[(
GΦΦ
AA

(
t̃
))2 + Z2

0
Z2
A

(
GΦQ
AA

(
t̃
))2
]
〈n̂A (0)〉

+ 4Z2
0

Ω2
0

∫ t̃

0
dτ̃1

∫ t̃

0
dτ̃2GΦQ

AW

(
t̃− τ̃1

)
GΦQ
AW

(
t̃− τ̃2

)〈
: Q̂in

(
τ̃1
Ω0

)
Q̂in

(
τ̃2
Ω0

)
:
〉
, (G7)〈

: Z2
0 Q̂

2
A

(
t̃
)

:
〉

=~ZA
[(
GQΦ
AA

(
t̃
))2

+ Z2
0

Z2
A

(
GQQAA

(
t̃
))2
]
〈n̂A (0)〉

+ 4Z2
0

Ω2
0

∫ t̃

0
dτ̃1

∫ t̃

0
dτ̃2GQQAW

(
t̃− τ̃1

)
GQQAW

(
t̃− τ̃2

)〈
: Q̂in

(
τ̃1
Ω0

)
Q̂in

(
τ̃2
Ω0

)
:
〉
, (G8)

where we have assumed that the total system is initially in a vacuum state for all nodes except the atomic node.
Substituting the noise correlation in the high temperature limit in the above (Eq. (47)), we obtain:

〈
: Φ̂2

A

(
t̃
)

:
〉

=~ZA
[(
GΦΦ
AA

(
t̃
))2 + Z2

0
Z2
A

(
GΦQ
AA

(
t̃
))2
]
〈n̂A (0)〉+ 2kBTZ2

0
Ω0ZW

∫ t̃

0
dτ̃
(
GΦQ
AW

(
t̃− τ̃

))2
, (G9)

〈
: Z2

AQ̂
2
A

(
t̃
)

:
〉

=~ZA
[(
GQΦ
AA

(
t̃
))2

+ Z2
0

Z2
A

(
GQQAA

(
t̃
))2
]
〈n̂A (0)〉+ 2kBTZ2

0
Ω0ZW

∫ t̃

0
dτ̃
(
GQQAW

(
t̃− τ̃

))2
. (G10)

Appendix H: Including the atomic nonlinearity perturbatively

In this Appendix, we evaluate the perturbative corrections due to nonlinearity considering a cubic form of the
nonlinear potential UA(ΦA) = −EAc3

(
ΦA

φ0

)3
≡ ΛΦ3

A. We simplify the following two constituent terms in the nonlinear
corrections to the number expectation value Eq. (57) separately:

〈
n̂

(1)
A,Φ

(
t̃
)〉
≡ λ2

2~ZA

〈
:

∑
p,q

es̃p t̃
1(

δγpp(s̃p)
δs̃

)β−1
1,p (s̃p)α−1

p,q (s̃p) Ŷ (1)
q (s̃p)


∑
m,n

es̃m t̃
1(

δγmm(s̃m)
δs̃

)β−1
1,m (s̃m)α−1

m,n (s̃m) Ŷ (1)
n (s̃m)

〉 , (H1)

〈
n̂

(1)
A,Q

(
t̃
)〉
≡λ

2ZA
2~

〈∑
p,q,r

s̃pe
s̃p t̃

1(
δγpp(s̃p)

δs̃

)Cred,1,qβ
−1
q,p (s̃p)α−1

p,r (s̃p) Ŷ (1)
r (s̃p)


∑
l,m,n

s̃le
s̃l t̃

1(
δγll(s̃l)
δs̃

)Cred,1,mβ
−1
m,l (s̃l)α

−1
l,n (s̃l) Ŷ (1)

n (s̃l)

 :
〉
. (H2)

The nonlinear source term for the case of cubic nonlinear potential is given as:

Ŷ(1) (s̃) ≡
∫

dt̃ e−s̃t̃
[
Z0Λ

(
δ1Φ̂(0)

red
(
t̃
))2
]
. (H3)

Substituting the linear solution (Eq. (23)) in the above we obtain the nonlinear source term as follows:

Ŷ
(1)
j (s̃) =

∫
dt̃ e−s̃t̃

Z0Λ
λ

δj1

∑
p,q

es̃p t̃
1(

δγpp(s̃p)
δs̃

)β−1
1,p (s̃p)α−1

p,q (s̃p) Ŷq (s̃p)

∑
m,n

es̃m t̃
1(

δγmm(s̃m)
δs̃

)β−1
1,m (s̃m)α−1

m,n (s̃m) Ŷn (s̃m)


 . (H4)



26

FIG. 11. Comparison of the atomic excitation number dynamics for the toy model of an atom coupled to an open resonator
(see Fig. 6(a)) for χ = 1, T = 50 mK, and ωA/(2π) ≈ 5 GHz. The analytical solution is obtained from substituting Eqs. (G9)
and (G10) in Eq. (45), and the numerical solution in matrix representation is obtained from substituting Eqs. (23) and (25) in
Eq. (45).

We now substitute the nonlinear source term in Eqs. (H1) and (H2), which yields:

〈
n̂

(1)
A,Φ

(
t̃
)〉
≡ (Z0Λ)2

2~ZA〈
:

∑
p,q

es̃p t̃
1(

δγpp(s̃p)
δs̃

)β−1
1,p (s̃p)α−1

p,1 (s̃p)
∫

dt̃1 e−s̃p t̃1



∑
p1,q1

es̃p1 t̃1
1(

δγp1p1(s̃p1)
δs̃

)β−1
1,p1

(s̃p1)α−1
p1,q1 (s̃p1) Ŷq1 (s̃p1)


∑
m1,n1

es̃m1 t̃1
1(

δγm1m1(s̃m1)
δs̃

)β−1
1,m1

(s̃m1)α−1
m1,n1

(s̃m1) Ŷn1 (s̃m1)





∑
m

es̃m t̃
1(

δγmm(s̃m)
δs̃

)β−1
1,m (s̃m)α−1

m,1 (s̃m)
∫

dt̃2 e−s̃m t̃2



∑
p2,q2

es̃p2 t̃2
1(

δγp2p2(s̃p2)
δs̃

)β−1
1,p2

(s̃p2)α−1
p2,q2 (s̃p2) Ŷq2 (s̃p2)


∑
m2,n2

es̃m2 t̃2
1(

δγm2m2(s̃m2)
δs̃

)β−1
1,m2

(s̃m2)α−1
m2,n2

(s̃m2) Ŷn2 (s̃m2)



 :
〉

(H5)
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=(Z0Λ)2

2~ZA

[∑
p,m

∑
p1,q1

∑
m1,n1

∑
p2,q2

∑
m2,n2

〈
: Ŷq1 (s̃p1) Ŷn1 (s̃m1) Ŷq2 (s̃p2) Ŷn2 (s̃m2) :

〉 e(s̃p+s̃m)t̃

(−s̃p + s̃p1 + s̃m1) (−s̃m + s̃p2 + s̃m2)

(
e−(s̃p−s̃p1−s̃m1)t̃ − 1

)(
e−(s̃m−s̃p2−s̃m2)t̃ − 1

) 1(
δγpp(s̃p)

δs̃

)β−1
1,p (s̃p)α−1

p,1 (s̃p)


 1(

δγmm(s̃m)
δs̃

)β−1
1,m (s̃m)α−1

m,1 (s̃m)


1(

δγp1p1(s̃p1)
δs̃

)β−1
1,p1

(s̃p1)α−1
p1,q1 (s̃p1)




1(
δγm1m1(s̃m1)

δs̃

)β−1
1,m1

(s̃m1)α−1
m1,n1

(s̃m1)


1(

δγp2p2(s̃p2)
δs̃

)β−1
1,p2

(s̃p2)α−1
p2,q2 (s̃p2)




1(
δγm2m2(s̃m2)

δs̃

)β−1
1,m2

(s̃m2)α−1
m2,n2

(s̃m2)


 . (H6)

〈
n̂

(1)
A,Q

(
t̃
)〉
≡ (Z0Λ)2

ZA
2~ ∑

p,q,l,m

∑
p1,q1

∑
m1,n1

∑
p2,q2

∑
m2,n2

〈
: Ŷq1 (s̃p1) Ŷn1 (s̃m1) Ŷq2 (s̃p2) Ŷn2 (s̃m2) :

〉 s̃ps̃le
(s̃p+s̃l)t̃

(−s̃p + s̃p1 + s̃m1) (−s̃l + s̃p2 + s̃m2)(
e−(s̃p−s̃p1−s̃m1)t̃ − 1

)(
e−(s̃l−s̃p2−s̃m2)t̃ − 1

)
 1(

δγpp(s̃p)
δs̃

)Cred,1,pβ
−1
p,q (s̃p)α−1

q,1 (s̃p)


 1(

δγmm(s̃m)
δs̃

)Cred,1,mβ
−1
m,n (s̃m)α−1

n,1 (s̃m)


1(

δγp1p1(s̃p1)
δs̃

)β−1
1,p1

(s̃p1)α−1
p1,q1 (s̃p1)




1(
δγm1m1(s̃m1)

δs̃

)β−1
1,m1

(s̃m1)α−1
m1,n1

(s̃m1)


1(

δγp2p2(s̃p2)
δs̃

)β−1
1,p2

(s̃p2)α−1
p2,q2 (s̃p2)




1(
δγm2m2(s̃m2)

δs̃

)β−1
1,m2

(s̃m2)α−1
m2,n2

(s̃m2)


 . (H7)

The above expressions for
〈
n

(1)
A,Φ

(
t̃
)〉

and
〈
n

(1)
A,Q

(
t̃
)〉

can be simplified by substituting the linear solution Eq. (21) to

obtain the fourth order correlation function
〈

: Ŷq1 (s̃p1) Ŷn1 (s̃m1) Ŷq2 (s̃p2) Ŷn2 (s̃m2) :
〉
.
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