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Motivated by recent experiments, we investigate particle emission from a Bose-Einstein condensate
in a one-dimensional lattice, where the interaction strength is periodically modulated. The mod-
ulated interactions parametrically excite a collective mode, leading to density oscillations. These
collective oscillations in turn drive particle emission. This multi-step process amplifies the drive,
producing larger particle jets. We find that the amplitude dependence of the emission rate has a
characteristic threshold behavior, as seen in experiments.

I. INTRODUCTION

Pattern formation is one of the most striking phenom-
ena of nonequilibrium dynamical systems [1]. Examples
can be found in contexts ranging from fluid dynamics and
nonlinear optics [2, 3] to biochemistry and the early uni-
verse [4, 5]. In the quantum regime the physics is even
richer [6–13], with the possibility of new forms of order-
ing and superpositions of macroscopically distinguishable
patterns. Here we model cold atom experiments where
periodically modulating the interaction strength leads to
particle “jets” [14–17], focussing on the role of collective
modes.

In a previous work we analyzed a minimal model of
these experiments, which demonstrated how the modu-
lated interactions lead to particle emission [18]. That pre-
vious model consists of a semi-infinite 1D lattice where a
deep local potential confines a condensate to the bound-
ary site. When the interactions are modulated at the
appropriate frequencies, atoms can be excited from the
condensate into unbounded modes, allowing them to es-
cape. While that model provided significant insights, it
did not contain enough degrees of freedom to capture the
role of collective modes. Unlike the experiments, particle
emission was found for arbitrarily weak drive strength,
and it was incapable of explaining the observed density
modulations. To overcome these deficiencies, here we
introduce a slightly more sophisticated model, in which
the trap consists of two sites. The modulated interac-
tions can then parametrically excite a “sloshing mode”,
which in turn drives particle emission. This collective
mode provides a resonant enhancement, allowing a weak
modulation to produce a jet containing a macroscopic
number of particles. Evidence of these collective modes
were found in the experiment [15]. Our model explains
the large density modulations which accompany the par-
ticle emission, as well as the amplitude dependence of the
emission rate. In particular we give a physical picture of
the threshold behavior seen in Ref. [14].
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There has been a number of theoretical works which
explained various aspects of the experiments [16, 17, 19–
21]. Our model differs from previous ones in its simplic-
ity. We are able to investigate all of the relevant physics
in a transparent way, and discuss the conditions for res-
onantly exciting the collective mode, the mode-matching
conditions with the environment, and the dependence on
drive amplitude. Related physics has also been explored
in other contexts [22–28].

In Sec. II we describe our new model and the relevant
equations of motion. In Sec. III we perturbatively ana-
lyze this model with respect to the symmetric mode and
the antisymmetric mode. In Sec. IV we parametrically
drive the antisymmetric mode and compare the results to
a numerical solution. We provide a summary in Sec. V.

II. MODEL

We consider a 1D infinite lattice, as depicted in Fig. 1.
The two central sites, labeled a and b represent a trap
of depth V which confines a Bose-Einstein condensate.
Atoms in these sites can tunnel back and forth, with am-
plitude Jab. If an atom has sufficient energy, it could
also escape from the trap, by hopping onto one of the
two leads, with sites labeled 1, 2, · · · . The coupling be-
tween the trap and the lead has amplitude Jc, while Jl
quantifies the coupling between nearest-neighboring sites
in each lead. Since the particle density is small outside of
the trap, we can neglect the interactions there, and write
the Hamiltonian as

Ĥ = V
(
â†0â0 + b̂†0b̂0

)
+

1

2
[U + g (t)]

(
â†0â
†
0â0â0 + b̂†0b̂

†
0b̂0b̂0

)
−Jab

(
â†0b̂0 + b̂†0â0

)
−Jc

(
â†0â1 + â†1â0 + b̂†0b̂1 + b̂†1b̂0

)
−Jl

∞∑
j=1

(
â†j+1âj + â†j âj+1 + b̂†j+1b̂j + b̂†j b̂j+1

)
,(1)
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FIG. 1. (color online) Schematic of the 1D infinite lattice.
A local trapping potential V is applied to the dashed box,
containing sites labeled a and b. The sites on the leads are
labeled by non-zero integers.

where â†j(âj) and b̂†j(b̂j) are creation (annihilation) oper-

ators on the j’th site to the left or right; â0 and b̂0 corre-
spond to the trapped sites. The time-dependent pairwise
interactions are characterized by a constant term U and
a sinusoidally oscillating term g(t) = g sin(ωt)θ(t), where
θ(t) is the step function. In the experiments, the DC
component of the interactions is generally small [14–17].
Thus, to simplify the analysis, we take the limit U = 0.
In our previous work, where the geometry was somewhat
simpler, we extensively studied U 6= 0 and found that
finite U played an insignificant role in the physics, while
making the analysis much more complicated.

Experimentally, this inhomogeneous lattice, with a
trap and barriers, could be implemented in a quantum-
gas microscope [29] or in a hybrid system involving an
optical lattice and optical microtraps [30]. Time- and
space-dependent interactions are routinely implemented
through magnetic field driven Feshbach resonances [31].
We emphasize, however, that the value of this model is
not in describing a particular experiment, but in provid-
ing a simple context to explore the physics. The moti-
vating experiments [14–17] were performed in the con-
tinuum, and faithfully modeling them requires a more
complicated and hence less transparent formalism.

The trap and the jets contain a macroscopic number
of particles, thus it is reasonable to replace the operators

with their expectation values aj = 〈âj〉 and bj = 〈b̂j〉.
Physically |aj |2 and |bj |2 represent the number of par-
ticles on site j in each lead. Using units where ~ = 1,
the expectation value of the the Heisenberg equations of
motion read

i∂ta0 = 〈[â0, Ĥ]〉
= V a0 + g sin (ωt) |a0|2 a0 − Jabb0 − Jca1, (2)

i∂ta1 = 〈[â1, Ĥ]〉 = −Jca0 − Jla2, (3)

i∂taj = 〈[âj , Ĥ]〉 = −Jl (aj−1 + aj+1) . (4)

Similar equations hold for bj . In equilibrium where g = 0,
we find a stationary state of the form a0 = b0 = αe−iνt,
aj≥1 = bj≥1 = αe−iνte−κ1e−κ(j−1). Straightforward al-

gebra gives ν =
(J2
c−2J

2
l )(V−Jab)±J

2
c

√
(V−Jab)2+4J2

c−4J2
l

2(J2
c−J2

l )
,

coshκ = ν
−2Jl , and κ1 = −log( −Jc

ν+Jle−κ
).

As in our previous work, we can use Green’s function
techniques to eliminate the leads, solving Eqs. (3) and
(4) to write a1 as a function of a0. This results in a set
of nonlinear integrodifferential equations for the order

parameters in the trap,

i∂ta0 = V a0 − Jabb0 + J2
c

∫ t

G11(t− τ)a0(τ)dτ

+g sin(ωt)|a0|2a0, (5)

i∂tb0 = V b0 − Jaba0 + J2
c

∫ t

G11(t− τ)b0(τ)dτ

+g sin(ωt)|b0|2b0, (6)

where Gj1 is the time-domain Green’s function

Gj1(t) = ij−2
jJj(2Jlt)

Jlt
θ(t) (7)

with Jn(z) the Bessel function of the first kind. We can
numerically solve these equations, using the techniques
discussed in Ref. [18]. Equivalently, we can truncate the
leads and directly solve Eqs. (2) through (4). Our key
results in the following come from perturbatively solving
Eqs. (5) and (6).

III. PERTURBATIVE ANALYSIS

In the absence of the drive (g = 0) the equations of
motion are linear. The resulting spectrum has two dis-
crete peaks, and a continuum. The peaks represent the
symmetric and antisymmetric modes in the trap, and the
continuum corresponds to the modes in the lead. In the
limit where Jc is negligable the discrete modes give fre-
quencies νs = V −Jab and νa = V +Jab. The continuum
corresponds to −2Jl < ν < 2Jl.

To observe resonantly enhanced emission, we need to
be in the regime where the symmetric mode is stable
(outside the continuum) but the antisymmetric mode is
unstable (inside the continuum), i.e.,

|V − Jab| > 2Jl, |V + Jab| < 2Jl. (8)

Under these circumstances a large-amplitude antisym-
metric mode can decay into particle jets. We will para-
metrically excite this antisymmetric mode by modulating
the interaction strength, taking ω = 2(νa − νs) = 4Jab.
In our previous work we had one fewer constraint, only
requiring that the trapped mode was stable and that a
multiple of the drive frequency connected the bound state
to the continuum.

To model the emission process, we use the method of
multiple scales, writing

a0 = e−iνstψ(t) + e−iνatφ(t), (9)

b0 = e−iνstψ(t)− e−iνatφ(t), (10)

where ψ(t) and φ(t) are the slowly varying amplitudes
of the symmetric and antisymmetric modes, respectively.
We substitute this ansatz into Eqs. (5) and (6), and use
that for any slowly varying function f(t),∫ t

G11(t− τ)e−iντf(τ)dτ ≈ f(t)e−iνtG11(ν). (11)
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Discarding the rapidly oscillating terms in the resulting
expression yields

i∂tψ = J2
cG11(νs)ψ +

g

2i
φ2ψ∗, (12)

i∂tφ = J2
cG11(νa)φ− g

2i
ψ2φ∗. (13)

For small Jc we can neglect the real parts of G11, as
they just introduce a slight shift of the frequency. Note
that G11(νa) is complex and Γ = −2J2

c ImG11(νa) rep-
resents the inverse lifetime of the antisymmetric mode.
This term must be kept in order to capture the physics.

If we throw away the real part of G11, then both ψ and
φ are real. To explore the system’s stability we linearize
about φ = 0, finding that φ decays to zero if Γ > gψ2.
Otherwise φ grows. Thus there is a minimum amplitude
g needed to excite the system. Such a threshold was seen
in the experiment [14].

The number of particles in the symmetric mode, ψ2,
monotonically decreases with time. Thus if the drive is
initially above the threshold (g > Γ/ψ2), it will remain
so for all time: Atoms will be ejected from the conden-
sate until none remain. The emission rate Γφ2, increases
as the amplitude of the antisymmetric mode grows. At
longer times, φ2 falls, and so does the emission rate. Thus
the jet emission is in the form of a pulse. For contrast,
in our prior work the jet consisted of a relatively steady
flux of particles.

IV. NUMERICS

A. Short-time behavior

We verify the scenario from Sec. III by numerically
solving Eqs. (2) through (4). We assume that the system
is in its equilibrium when t < 0, and seed the antisym-
metric mode by making a0 and b0 slightly different from
one-another: a0(t = 0) = 1.01 and b0(t = 0) = 1. We
work in units where Jab = 1, or equivalently measure
energies and times in units of Jab and ~/Jab.

We first validate that significant particle emission only
occurs when the drive frequency is tuned to resonance,
ω = 2(νa − νs) = 4Jab. Figure 2 shows the total number
of trapped particles |a0|2 + |b0|2 as a function of time
for different drive frequency ω. As can plainly be seen,
the number of particles in the central sites is very stable,
unless the drive is resonant.

Specializing to the resonant case, we next investigate
the build-up of the antisymmetric mode. Figure 3 shows
the difference |a0|2 − |b0|2 as a function of time for dif-
ferent drive strengths g. There is a clear separation of
scales between the rapid oscillations and the slow time-
evolution of the envelope. This separation of scales was
key to the approximations in Sec. III. As expected, when
gψ2 < Γ the initial imbalance decays, while for larger
drive the imbalance grows. In that figure we also plot the
perturbative results from integrating Eqs. (12) and (13).
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FIG. 2. (color online) Time dependence of the total number of
trapped particles for different drive frequencies ω. Here, the
potential depth is V = −2, and the drive strength is g = 0.1.
The coupling strengths are Jc = 0.1 and Jl = 1. Energies are
in units of Jab, and times are in units of ~/Jab.
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FIG. 3. (color online) Typical examples of the time evolu-
tion of the density modulation |a0|2 − |b0|2 for different drive
strengths g with fixed trapping potential V = −2. The an-
alytic results (red solid) and the numerical solutions (blue
dotted) are nearly indistinguishable. The drive frequency is
resonant, ω = 4Jab, and the coupling strengths are Jc = 0.1
and Jl = 1. Energies are in units of Jab, and times are in
units of ~/Jab.

The numerical and perturbative results are indistinguish-
able, and all figures appear to only have a single curve.
To emphasize the threshold behavior, we fit the envelopes
of these curves to exponentials, (|a0|2−|b0|2)env = Ae−γt.
Figure 4 shows the exponential γ as a function of the
drive strength g, and compares it to the prediction from
our perturbative analysis, γ = Γ− gψ2.

B. Long-time behavior

Figures 2 through 4 illustrate the short-time behavior
of the trapped particles. In Fig. 5 we explore the full
time-dependence of the average number of particles in
each site of the trap. For comparison, we have also in-



4

●

●

●

●

●

●

●

●

●

0.01 0.02 0.03 0.04
g

-0.010

-0.005

0.005

0.010
γ

Γ>gψ2

Γ<gψ2

FIG. 4. Collective mode decay rate γ found by fitting the
envelopes of |a0|2−|b0|2 to a decaying exponential, up to time
t = 100. To the right of the arrow, γ < 0, representing an
exponential growth. Here, we have taken V = −2, Jc = 0.1
and Jl = 1. The drive frequency is resonant. Energies are in
units of Jab, and times are in units of ~/Jab.
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FIG. 5. (color online) Average number of particles per site in
trap. Orange-solid: Two-site model described in this paper.
Blue-dashed: Single-site model from Ref. [18]. Here, V =
−2, g = 0.1, Jc = 0.1 and Jl = 1. In each case the frequencies
are tuned to resonance with ωS = 2Jl and ωT = 4Jab for
the single-site and the two-site, respectively. Inset shows the
behavior of the single-site model in more detail, and over a
longer time interval. Energies are in units of Jab, and times
are in units of ~/Jab.

cluded the results from the single-site model in Ref. [18].
We choose same values of V, Jc, Jl, and g for both calcu-
lations, and use slightly different values of ω, as the con-
dition for particle emission is different in each case. The
two-site model shows very little decay at short times, dur-
ing which the antisymmetric mode grows in amplitude.
A large pulse of particles is emitted at intermediate times
200 < t < 300, causing the number of trapped particles to
rapidly fall. The single-site case instead is characterized
by a slow and steady decay, and the number of trapped
particles is well approximated by an exponential. This
behavior is best seen in the inset, which includes a longer
time interval. The collective mode in the two-site model
provides a dramatic enhancement in the emission rate.

Finally, in Fig. 6 we illustrate the structure of a jet
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FIG. 6. (color online) Number of the particles on the j’th site
of each lead, as a function of time. Here, V = −2, g = 0.1,
Jc = 0.1, and Jl = 1. Energies are in units of Jab, and times
are in units of ~/Jab.

by plotting the number of particles on every site of each
lead, as a function of time. The antipodal pulses are
clearly visible.

V. SUMMARY AND OUTLOOK

We have produced the minimal model which can be
used to explore how collective modes lead to a resonant
enhancement of particle emission from a Bose-Einstein
condensate with modulated interactions [15, 17]. This
model is designed so that much of its behavior can be
analyzed analytically. We validate our perturbative cal-
culations through numerical studies.

In our model, the antisymmetric “sloshing mode” is
parametrically excited when the interactions are modu-
lated at twice the collective-mode frequency (which in
turn is the difference in energy between the antisymmet-
ric and symmetric mode). In this process, atoms are
promoted to the antisymmetric state, where they can
tunnel into the leads. This tunneling damps out the col-
lective mode. If the drive is stronger than the damping,
the mode grows exponentially, leading to a large burst
of particles. Conversely, if the drive is weaker than the
damping, then very few particles are emitted.

The underlying parametric resonance phenomena can
be thought of as an amplifier: when the drive is suffi-
ciently strong, a small seed grows exponentially. In our
model there is only a single collective mode, so the end re-
sult is foreordained. The experimental system, however,
boasts a large number of collective modes. Modulating
the interactions will cause a number of these modes to
grow exponentially – but one will dominate. The final
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pattern will depend upon the initial fluctuations and the
frequency of the drive [17]. The initial fluctuations are
likely to be thermal in nature – in which case the dynam-
ics are well described by the formalism used here.

It is interesting to contemplate the possibility that
the parametric excitation could amplify quantum fluc-
tuations. In that case one would produce a quantum
superposition of different collective modes, and a quan-
tum superposition of different jets. Such Schrödinger cat
states are quite fragile, and it would be challenging to
detect the coherence between the macroscopically distin-
guishable configurations. Nonetheless, the quantum na-
ture of the fluctuations could be revealed in the statistics
of the outcomes. There have been a number of relevant
optical analogs [32, 33], and such parametrically driven
systems have been proposed as platforms for quantum
computing [34].

If one wanted to explore the physics related to the com-

petition between different collective modes, one would
need to extend our model to include more sites inside
the trap. One could introduce various seeds, and see
how they grow, and study the properties of the result-
ing particle jets. Geometries with more than two leads
are particularly interesting. Such configurations would
enable a study of the correlation between the particle
emission and the various leads. The continuum limit of
a large number of leads would mimic the experimental
geometry, where antipodal particle jets are correlated.
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Ng, S. D. Graham, P. Uerlings, T. Langen, M. Zwierlein,
and T. Pfau, Phys. Rev. Research 3, 033125 (2021).

[14] L. W. Clark, A. Gaj, L. Feng, and C. Chin, Nature (Lon-
don) 551, 356 (2017).

[15] H. Fu, L. Feng, B. M. Anderson, L. W. Clark, J. Hu, J.
W. Andrade, C. Chin, and K. Levin, Phys. Rev. Lett.
121, 243001 (2018).

[16] L. Feng, J. Hu, L. W. Clark, and C. Chin, Science 363,
521 (2019).

[17] Z. Zhang, K. X. Yao, L. Feng, J. Hu, and C. Chin, Nat.
Phys. 16, 652 (2020).

[18] L. Q. Lai, Y. B. Yu, and E. J. Mueller, Phys. Rev. A
104, 033308 (2021).

[19] T. Chen and B. Yan, Phys. Rev. A 98, 063615 (2018).
[20] Z. G. Wu and H. Zhai, Phys. Rev. A 99, 063624 (2019).
[21] L. Y. Chih and M. Holland, New J. Phys. 22, 033010

(2020).
[22] F. Riboli and M. Modugno, Phys. Rev. A 65, 063614

(2002).
[23] C. H. Lee, W. Hai, X. Luo, L. Shi, and K. L. Gao, Phys.

Rev. A 68, 053614 (2003).
[24] N. K. Whitlock and I. Bouchoule, Phys. Rev. A 68,

053609 (2003).
[25] H. L. Haroutyunyan and G. Nienhuis, Phys. Rev. A 70,

063603 (2004).
[26] L. Salasnich, B. A. Malomed, and F. Toigo, Phys. Rev.

A 81, 045603 (2010).
[27] R. Gati, B. Hemmerling, J. Fölling, M. Albiez, and M.
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