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There is a pressing need to develop new rechargeable battery technologies that can offer higher
energy storage, faster charging, and lower costs. Despite the success of existing methods for the
simulation of battery materials, they can sometimes fall short of delivering accurate and reliable
results. Quantum computing has been discussed as an avenue to overcome these issues, but only
limited work has been done to outline how they may impact battery simulations. In this work,
we provide a detailed answer to the following question: how can a quantum computer be used to
simulate key properties of a lithium-ion battery? Based on recently-introduced first-quantization
techniques, we lay out an end-to-end quantum algorithm for calculating equilibrium cell voltages,
ionic mobility, and thermal stability. These can be obtained from ground-state energies of materials,
which is the core calculation executed by the quantum computer using qubitization-based quantum
phase estimation. The algorithm includes explicit methods for preparing approximate ground states
of periodic materials in first quantization. We bring these insights together to perform the first
estimation of the resources required to implement a quantum algorithm for simulating a realistic
cathode material, dilithium iron silicate.

I. Introduction

Lithium-ion batteries have revolutionized portable
electronic devices, allowing them to operate indepen-
dently, safely, and over an extended period of time dur-
ing multiple charging cycles [1–6]. Rechargeable batteries
are also expected to play a central role in powering trans-
portation and facilitating energy storage from renewable
resources [7–10]. Despite their current remarkable per-
formance, there is an increasing demand for new bat-
tery technologies that can deliver longer lifetimes, faster
charging, higher capacity, and lower costs [11–14].

To achieve this goal, an interdisciplinary effort is cru-
cial to discover new materials [15] and to understand
their performance for batteries. Anchored by computer
simulation methods, important steps have been taken
towards reducing the overall cost associated with dis-
covering and commercializing new materials. Electronic
structure methods to simulate materials are widely em-
ployed to study the building blocks of commercial bat-
teries: an electrochemical cell consisting of two elec-
trodes, the anode and the cathode, separated by an elec-
trolyte [7, 10, 16].

The ability to accurately compute ground-state ener-
gies of battery materials is important to derive key prop-
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erties that define their performance. For example, accu-
rate electronic structure calculations aid in the discov-
ery of materials for high-energy cathodes [17, 18], better
anodes that enable faster charging [19], and more sta-
ble electrolytes [20]. Extending the lifespan of commer-
cial batteries while maintaining their safe operation re-
quires understanding how to suppress the reaction mech-
anisms driving the loss of ions and the degradation of
the electrode active materials [21, 22]. For example,
the growth of the solid electrolyte interphase consumes
lithium ions which may result in a significant capacity
loss [23, 24], and the electrochemical reduction of de-
graded oxide-based cathodes can lead to ignition of the
electrolyte [25]. These simulations involve large-scale and
costly computations to predict stable structures, phases,
and properties of new materials [26, 27].

Density functional theory (DFT) methods [28, 29] have
been central to making progress in the simulation of bat-
tery properties at the atomistic level [30]. However, DFT
requires access to the exchange and correlation energy
density functionals which are only approximately known.
Despite the fact that a diverse landscape of different
functionals has been developed [31], DFT has limitations
which prevent it from tackling key battery properties, es-
pecially those requiring highly-accurate electronic struc-
ture calculations of materials characterized by strong
electronic correlations [17, 30]..

The local density and the generalized gradient approx-
imations (LDA and GGA) to the exchange-correlation
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functionals have been extensively used in materials
science due to their favorable computational perfor-
mance [30–32]. Unfortunately, it is well known that they
suffer from self-interaction error [33], which can lead to
very inaccurate values of the absolute energy of the sys-
tem. This is particularly critical to simulate battery
properties derived from the difference of the total energies
of the material computed for different electronic phases,
which lacks error cancellations. For example, predict-
ing the cell voltage requires computing the lithium in-
sertion energy into a transition metal oxide cathode. In
this case LDA/GGA approximations introduce large de-
viations in the computed voltage of up to one volt [30].
Alternatively, the DFT+U method [34] has been used to
partially mitigate this problem. Inspired by the Hubbard
model, this approach aims at capturing the effects of local
electronic correlations in the transition metal by incorpo-
rating a Hubbard-like term in the DFT formulation [34].
However, the improvements in the simulated quantities
comes at the price of using specific values of the Hub-
bard parameter U which are strongly system-dependent.
LDA/GGA self-interaction error can also be reduced by
using hybrid functionals which incorporate a fraction of
the exact exchange from Hartree-Fock theory [35]. How-
ever, hybrid functionals also contain an adjustable pa-
rameter to select the amount of exact exchange to be
included in the calculation, and their computational per-
formance scales poorly with the system size. Overall,
these corrections to DFT approximations reduce the de-
viations in the predicted cell voltages to about 0.2 volts
[30, 36] with the limitations mentioned above.

Quantum computing is a fundamentally different ap-
proach to the simulation of quantum systems that may
be capable of overcoming some of the limitations of DFT
approximations [37–40]. Quantum algorithms are known
to be capable of performing electronic structure calcula-
tions with chemical accuracy using time and memory re-
sources that scale only polynomially with system size [41–
43]. One of the most important of these algorithms, and
the one we will analyze in this review, is the phase esti-
mation algorithm, which allows recovering Hamiltonian
eigenvalues as phases appearing in the Hamiltonian sim-
ulation of time evolution [44]. Nevertheless, as with any
emerging technology, quantum computing also faces sev-
eral challenges. To fully unlock the potential of quantum
computing, the long-term goal of the field is to build
fault-tolerant devices capable of reliably implementing
sophisticated large-scale quantum algorithms. This is a
major experimental and theoretical effort requiring in-
novations on several fronts. While the computational re-
source requirements of quantum algorithms have steadily
decreased over time [45], there is still significant room to
improve and identify problems of practical importance
where a convincing argument can be made for the bene-
fits of a quantum approach [38, 46–48].

In this work, we combine insights from quantum chem-
istry, materials science, and quantum algorithms to ad-
dress the following question: how can a quantum com-

puter be used to simulate key properties of a lithium-ion
battery? Prior work at the intersection of battery simu-
lation and quantum computing [6, 49] focused mainly on
computing ground-state energies of electrolyte molecules.
We instead focus on the simulation of cathode materials,
which is crucial for predicting important properties of a
battery cell. We describe how the equilibrium cell volt-
age, ionic mobility, and thermal stability of lithium-ion
batteries can be obtained from ground-state energy cal-
culations of these materials. We then perform a detailed
end-to-end description of a qubitization-based quantum
phase estimation algorithm, which is based on the first-
quantization techniques pioneered in Refs. [43, 50]. The
description of the algorithm includes an explicit recipe
for preparing approximate ground states in first quanti-
zation and a summary of circuit implementation strate-
gies. Finally, we apply the quantum algorithm to the con-
crete case study of dilithium iron silicate, a realistic cath-
ode material. The analysis includes an estimate of the
resources required to implement the full quantum algo-
rithm, an estimate that is performed using the TFermion
library [45]. We find out that for ≈ 3× 105 plane waves
and a target precision of ε = 0.043 eV (chemical accu-
racy), we would require ≈ 2.5× 1013 Toffoli gates, which
would require synthesis times of the order of 1 year us-
ing 1 MHz gates. This signals that we need to further
improve the involved algorithms, but also that we are
close to the regime where these algorithms could become
practical.

The rest of this manuscript is organized as follows.
Due to the interdisciplinary nature of this work, we begin
in Sec. II with a comprehensive background on lithium-
ion batteries, their properties, and a description of the
specific cathode material that we will analyze later on,
Li2FeSiO4. We then shift gears in Sec. III and give an
end-to-end description of the full quantum algorithm to
perform ground-state energy calculation of cathode ma-
terials, including the review of previous work in App. D
and App. E. It is also in this section where we explain one
of our main contributions, the implementation of Givens
rotations to prepare the Hartree Fock state in first quan-
tization. In Sec. IV we study how the quantum algorithm
can be applied to the simulation dilithium iron silicate
and report the results fo resource estimation. We con-
clude in Sec. V, followed by an outlook of future research
directions in Sec. VI.

II. Lithium-ion batteries

This work encompasses technical information from sev-
eral disciplines: materials science, computational chem-
istry, battery technologies, and quantum algorithms.
Knowledge from all these fields is important to under-
stand how quantum computing can be used in the con-
text of battery simulations. While experts might choose
to skip some of these sections, it contains important in-
formation that is widely used throughout this work.
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FIG. 1. Quantum computing for battery simulations.
(a) Sketches depicting three key properties of lithium-ion bat-
teries that can be obtained from calculations of the ground-
state energies of cathode materials and isolated molecules
(Sec. II). (b) Summarizes the main steps of the first-quantized
quantum algorithm implemented in this work. The ground-
state energy E of a given material is obtained by running
a qubitization-based quantum phase estimation (QPE) algo-
rithm on a quantum computer (Sec. III C). The initial state
for the QPE method is obtained by calculating Hartree-Fock
orbitals and using the quantum computer to prepare the cor-
responding anti-symmetric Hartree-Fock state (Sec. D 1). (c)
Shows examples of measurable quantities that can be derived:
The cell voltage is given by the difference between the chemi-
cal potentials (µ) of the electrodes computed from the energy
variation (∆E) of the cathode material; the activation energy
(Ea), which is used to predict the ionic mobility; and the
temperature profile that helps to define the battery thermal
stability.

A. Battery properties

Fig. 2 depicts the fundamental components of a
rechargeable lithium-ion battery [51]. The battery cell
consists of a positive electrode (cathode) and a nega-
tive electrode (anode) that are electrically isolated by
a porous membrane (separator) and embedded in an
ion-conducting material (electrolyte). The conversion of
chemical into electrical energy in a battery cell is driven
by the chemical reactions that occur at the electrode-
electrolyte interface. During discharge, an oxidation re-
action at the anode produces electrons and lithium ions.
The electrons flow via an external circuit and the lithium
ions diffuse through the electrolyte until they get inserted

into the cathode material (intercalation), which is re-
duced by the external electrons. During charging, an
external voltage is applied to reverse this process, i.e.,
the lithium ions are extracted from the cathode (dein-
tercalation), transported in the opposite direction, and
intercalated into the anode material.

Typically, the cathode contains active materials based
on metal-oxides. The main classes of cathode materi-
als are layered and spinel oxides such as lithium cobalt
(LiCoO2) and lithium manganese (LiMn2O4) oxide cath-
odes, and the polyanion materials, e.g., Li2FeSiO4 [52].
Their chemical composition and main distinguishing fea-
tures are discussed in more details in Sec. IV. The
commercial active materials of the anode are typically
carbon-based materials, e.g., graphite and amorphous
carbon, as they offer a safe, environmentally friendly, and
cost-efficient option. However, carbon-based anodes pos-
sess a low specific capacity that lowers the overall capac-
ity of the battery. Alternatively, silicon, germanium, and
tin have also been actively investigated as high-capacity
anode materials [53]. The electrolyte, whose main role
is to efficiently transport lithium ions between the elec-
trodes, typically consists of a lithium salt such as lithium
hexafluorophosphate (LiPF6) dissolved in high dielec-
tric solvents like ethylene carbonate [54]. The separator
serves as a physical barrier keeping the cathode and an-
ode apart, preventing the direct flow of electrons, and
allowing only the lithium ions to pass through. Com-
mercial separators are typically synthetic resins such as
polyethylene (PE) and polypropylene (PP). Typically,
the anode materials offer a higher lithium-ion storage ca-
pacity than cathodes. Therefore, the cathode material
is the main limiting factor in the performance of batter-
ies [55] and also responsible for up to 50% of the total
battery cost [56].

Optimization of lithium-ion battery performance is
critical to developing the next generation of energy stor-
age systems. Such advances depend not only on the dis-
covery of novel materials but also on the development
of more accurate methods to simulate key properties of
lithium-ion batteries. The landscape of properties deter-
mining their performance is extremely rich. It includes
mechanical and electrochemical properties, thermal sta-
bility of the cathode, the electrochemical windows of
the electrolyte, formation of the solid-electrolyte inter-
phase, and ionic mobility, among others [57–60]. Typi-
cally, the computational simulation of these properties re-
quires multi-scale approaches combining electronic struc-
ture methods, molecular dynamics, and continuum mod-
els to describe solvation effects [23, 30, 52]. In this sec-
tion, we follow the strategy presented in Ref. [30] and
focus our attention on the equilibrium cell voltage of the
battery, the ionic mobility, and the thermal stability of
the cathode material. We briefly describe these prop-
erties and explain how they can be computed from the
ground-state energy of the cathode material. This sec-
tion is thus a summary of the main results of Ref. [30],
where readers can find a more in-depth discussion of these
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FIG. 2. Schematic of a typical lithium-ion battery. The
negative electrode is usually a graphitic carbon that holds
lithium ions within its layers, whereas the positive electrode
is a source of lithium ions. During discharge, lithium ions
move within the battery from the negative to the positive
electrode. The process is reversed during charging. The elec-
trolyte transports lithium ions between the electrodes and the
separator functions as a physical barrier keeping cathode and
anode apart. Negative and positive collectors receive electrons
from the external circuit during charging and discharging, re-
spectively.

properties.

1. The equilibrium voltage

The equilibrium voltage is key to determining the
amount of energy that can be stored in a battery in com-
parison to its volume (energy density) and weight (spe-
cific energy) [61]. The average voltage V of a device that
produces electrical energy from chemical reactions (elec-
trochemical cell) is given by the Nernst equation [62, 63]

V = −∆G

nF
, (1)

where n is the number of charges transferred, F is the
Faraday constant, and ∆G is the variation of the free
energy associated with the cell reaction. For example,
for the typical lithium cobalt oxide LiCoO2 cathode and
a metallic lithium anode, the electrical work generated
by the chemical reaction

Lix1
CoO2 + (x2 − x1)Li→ Lix2

CoO2, (2)

is determined by the free energy difference

∆G = GLix2CoO2
−GLix1CoO2

− (x2 − x1)GLi, (3)

where x2 > x1 denotes the number of ions per formula
unit in the cathode material upon lithium insertion. At
low temperatures (≤ 300K), the thermal and entropic
contributions to the free energy are small [30, 64], and
the equilibrium cell voltage is computed in terms of the

variation of the internal energy ∆E,

V = −
[
ELix2CoO2 − ELix1CoO2 − (x2 − x1)ELi

]

(x2 − x1)e
, (4)

where e is the electron charge. The total energies enter-
ing Eq. (4) are usually obtained from electronic structure
calculations performed using density functional theory
methods. In practice, the average cell voltage is esti-
mated by taking the energy difference for the extreme
cases in which the amount of intercalated lithium ions in
the material’s unit cell is maximum (lithiated phase) and
minimum (delithiated phase). For example, predicting
the voltage for LiCoO2 requires computing the energies
of two materials with compositions LiCoO2 and CoO2.

2. Ionic Mobility

Developing high-power batteries requires using mate-
rials that allow for optimal and stable mobility of the
lithium ions during battery operation [65–67]. To this
aim, understanding the microscopic mechanisms that de-
termine the ionic mobility in the electrode materials is es-
sential for predicting new materials with better lithium
intercalation rates which can enable, for example, faster
charging regimes [30].

The relevant quantity that characterizes the mobility
of the lithium ions in a given material is the chemical
diffusivity D. In cases where the diffusion mechanisms
do not depend on the temperature, a microscopic model
can be used to describe the hopping of a lithium ion from
its original site to a neighboring vacant site in the crystal
structure of the host material. In this approximation, the
diffusivity can be calculated as [68]

D(T ) ≈ a2k(T ), (5)

where a is the hopping distance between two adjacent
sites [69], and k(T ) is the hopping rate given by

k(T ) = ν∗(T )e
− (ET−EI)

kBT . (6)

In Eq. 6 ν∗(T ) is the average vibration frequency of
the lithium ions in the material (effective attempt fre-
quency) [70, 71], EI is the total energy of the material
when the lithium ion is in the original site, ET is the en-
ergy of the transition state that has to be overcome dur-
ing the diffusion, and T and kB are the temperature and
the Boltzmann constant, respectively. For given initial
and final states of the hopping process, there are efficient
methods such as the nudged elastic band approach [72]
to find the transition state along the minimum energy
path of the diffusion process. From Eq. (6), it suffices to
compute the activation energy (ET − EI) to predict the
ionic diffusivity.
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3. Thermal stability of cathode materials

There are many different processes that contribute to
the degradation of the battery performance over time.
These include the formation of the solid electrolyte in-
terphase, degradation of the cathode active materials,
lithium plating on the anode, and growth of lithium den-
drites, among others [21]. Simulating these processes re-
mains a challenge since it involves bottom-up approaches
from the atomic level to the macroscopic scale [73].

Predicting the thermal stability of the cathode ma-
terials is important to maximize the safety of lithium-
ion batteries, which can be unstable in their charged
state. As more lithium ions are removed from oxide-
based cathode materials, they may degrade to other
phases of the material [74]. This phase transformation,
typically driven by an exothermic chemical reaction, can
result in the release of heat and oxygen gas, which in
turn may lead to thermal runaway and combustion of
the electrolyte [25, 75].

The reduction chemical reaction for a lithium metal
oxide cathode with composition LixMyOz+z′ , where M
refers to one or multiple transition metals and O refers
to oxygen, is given by [30]

LixMyOz+z′ → LixMyOz+
z′

2
O2. (7)

The free energy change of the reaction in Eq. (7) is given
by

∆G = −GLixMyOz+z′ +GLixMyOz +
z′

2
GO2 . (8)

Under isobaric and isothermal conditions, the free energy
difference ∆G can be written as

∆G = ∆E + P∆V − T∆S, (9)

where P is the pressure, ∆V is the change in the volume
of the material, T is the temperature, and ∆S is the
change in entropy. The dominant contributions to Eq. (9)
come from the variation of the internal energy ∆E of
the cathode material and the entropy change due to the
release of oxygen gas [74]. Thus, the reaction free energy
can be approximated as

∆G ≈ −ELixMyOz+z′ + ELixMyOz

+
z′

2
EO2 −

z′

2
TS(O2), (10)

where EO2
is the total energy of the oxygen molecule at

zero temperature and S(O2) is its entropy, which can be
obtained from experimental thermochemistry data [76].
The temperature for which ∆G equals zero is the tem-
perature at which the cathode material becomes unstable
and undergoes the degradation reaction in Eq. (7). This
temperature can be calculated from the equation above
as:

T =
−ELixMyOz+z′ + ELixMyOz + (z′/2)EO2

(z′/2)S(O2)
. (11)

Similar to Eq. (4) for computing the equilibrium cell volt-
age, Eq. (11) allows us to compute the transition tem-
perature for a given cathode material by calculating the
ground state energies of different phases of the cathode
material and the oxygen molecule. A key step for as-
sessing the thermal stability of a cathode material is the
construction of a phase diagram to reliably predict the
stability of the reduced phases of the material [74]. This
requires highly accurate calculations of formation ener-
gies which are challenging for current DFT methods [77].

B. Overview of cathode materials

In this section we provide a summary of the main char-
acteristics of metal oxide cathodes which are discussed
more extensively in Ref. [52]. Exploring new cathode
materials has been crucial to improving the performance
of batteries and lowering their cost. In particular, the
groundbreaking discovery of metal oxide cathodes [78] al-
lowed to significantly increase the operating cell voltage,
and enabled the use of graphite anodes to overcome the
safety problems associated with the use of lithium anodes
[12]. There are three classes of oxide cathodes that have
been proposed for battery applications: layered oxides,
spinel oxides, and the polyanion materials [52]. Among
the different layered oxide materials with formula LiMO2,
where M indicates a transition metal, the lithium cobalt
oxide LiCoO2 has been a popular active material for com-
mercial cathodes due to its high operating voltage, good
structural stability and high ionic mobility [36, 79]. How-
ever, a large-scale deployment of the next-generation of
lithium ion batteries will benefit from replacing cobalt
with lower-cost and environmentally-friendly materials.

This has motivated the exploration of novel
mixed-metal layered materials with composition
LiNi1−y−zMnyCozO2, the so-called NMC cathodes [52].
These materials result from the progressive substitution
of cobalt with the more abundant elements manganese
and nickel. In these materials, manganese eases the
incorporation of nickel while serving as a structure
stabilizer. Furthermore, they exhibit better chemical
stability against oxygen loss from the cathode crystal
lattice at highly delithiated phases [80]. In general, NMC
cathodes show a high capacity across the full spectrum
of compositions, which make them the leading cathode
materials for automotive batteries [56]. Spinel oxides
have been also investigated [81, 82]. An advantage of
the LiMn2O4 spinel oxide is the reduction in cost when
compared with cobalt-based layered oxides. On the
other hand, the number of chemical compositions for
stable spinel-like phases is rather limited. Moreover,
they are typically characterized by a lower cell voltage
than traditional layered oxides [52].
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The third class of cathode materials that have been in-
vestigated are the polyanion oxides [83]. Polyanion ma-
terials based on phosphates with composition LiMPO4

(M=Co, Ni) offer a promising avenue to increase the cell
voltage to values as high as 5 volts [84]. On the other
hand, the orthosilicates with stoichiometry Li2MSiO4

(M=Fe, Mn) [85] have recently attracted significant at-
tention. The landscape of possible materials opens also
the possibility of using them to develop sodium-ion bat-
teries [86]. Furthermore, an interesting feature of these
materials is the possibility of extracting both lithium ions
via a two-electron redox process, which could produce a
higher capacity as compared to other cathodes [87].

In the next section, we focus on the cathode material
dilithium iron silicate Li2FeSiO4 oxide [85]. This material
is attractive in terms of sustainability since silicon and
iron are among the most abundant elements on earth.
Importantly, this silicate has high thermal stability due
to the strong covalent bond between the silicon and oxy-
gen atoms [88]. We have also selected this material as our
use case because its conventional unit cell is orthogonal
and significantly smaller than the unit cells of NMC cath-
odes. This facilitates the analysis and implementation of
the quantum algorithm.

C. Analysis of the Li2FeSiO4 material

Dilithium iron silicate belongs to the family of materi-
als with tetrahedral structures [89] where the lithium,
iron and silicon ions are coordinated by four oxygen
atoms that form a tetrahedron. In general, these struc-
tures can be further classified into two families identified
as β and γ. In β-type structures, all tetrahedra point
in the same direction. The γ polymorphs instead self-
assemble in groups of three, with the central tetrahedron
oriented in the opposite direction to the outer two [90].

The conventional unit cell and the structure of the
Li2FeSiO4 βII -polymorph [91] are shown in Fig. 3. The
unit cell of this material is orthorhombic (stretched cu-
bic lattice along two of its sides) and the crystal lattice
is spanned by the primitive vectors a1 = a1(1, 0, 0),a2 =
a2(0, 1, 0),a3 = a3(0, 0, 1), where a1 = 5.02 Å, a2 = 5.40
Å and a3 = 6.26 Å are the lattice constants [92]. The ba-
sis consists of sixteen atoms: four lithium (Li), two iron
(Fe), two silicon (Si) and eight oxygen (O) atoms in the
unit cell. The Li, Fe and Si ions are tetrahedrally coordi-
nated by the oxygen atoms. From Fig. 3(b) we see that
all tetrahedra point in the same direction, perpendicular
to the close-packed planes. Moreover, along the a3 di-
rection, the material consists of chains of LiO4 parallel
to alternating rows of SiO4 and FeO4 tetrahedra.

The lithium intercalation into the silicate cathode ma-
terial is represented by the chemical reaction

LixFeSiO4 + (2− x)Li→ Li2FeSiO4, (12)

where x in the equation above indicates the number of

FIG. 3. (a) Conventional unit cell for the dilithium iron sil-
icate Li2FeSiO4 cathode material [91]. (b) Crystal structure
of the βII polymorph where all tetrahedra point in the same
direction. Along the a3 direction, chains of LiO4 (green)
are parallel to rows of alternating SiO4 (blue) and FeO4

(brown) tetrahedra representing the four-fold coordination of
the lithium, silicon, and iron atoms by the oxygen atoms lo-
cated at the vertices. This figure was produced using the
VESTA package [93].

lithium atoms that have been removed per formula unit.
The analogue of Eq. (4) to compute the equilibrium cell
voltage for this cathode material is given by

V = − [ELi2FeSiO4
− ELixFeSiO4

− (2− x)ELi]

(2− x)e
. (13)

Equation (13) can be evaluated for the lithiated
(Li2FeSiO4) and delithiated (LiFeSiO4) phases of the
material, where the latter is produced by removing one
lithium atom per formula unit.

In practice, the total energies entering Eq. (13) are
typically obtained from first-principles density functional
theory (DFT) calculations. Previous DFT simulations
for this material have underestimated the experimental
voltage (∼ 3.10 volts) by roughly 0.4 − 0.7 volts [94–
96]. The large deviations have been ascribed to the self-
interaction error of semi-local functionals and the lack
of error cancellations in Eq. (13), as mentioned in the
introduction. Authors in Ref. [92] have used the DFT+U
correction to predict a more accurate voltage which is
0.24 volts above the experimental value [94].

III. Quantum algorithm for battery simulation

The quantum algorithm takes as input the Hamilto-
nian describing the interacting electrons in the material’s
unit cell and produces an estimate of its smallest eigen-
value, the ground-state energy. A method to represent
and construct Hamiltonians is required, which should be
tailored to the quantum algorithm. We define the elec-
tronic Hamiltonian in Sec. III A and explain why a first-
quantization approach in a plane-wave basis [97] is well
suited for simulating battery materials. As described in
the literature [41, 98], the quantum phase estimation al-
gorithm requires a method to prepare an approximate
ground state to be used as input. This is challenging
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to perform both for periodic materials and in first quan-
tization, so care must be taken to understand suitable
methods for doing so. This is discussed in Sec. III B,
where we outline the Hartree-Fock method for periodic
materials and describe strategies for preparing the result-
ing Hartree-Fock state on a quantum computer. Finally,
we outline how the qubitization formalism [99] can be
used to encode the Hamiltonian into a suitable unitary.
We employ the results of Ref. [43] to analyze the overall
complexity of the algorithm and to compile all opera-
tions into a universal set of quantum gates compatible
with fault-tolerant architectures.

A. First-quantized plane-wave Hamiltonians and
wave functions

In the quantum phase estimation algorithm, there are
three main choices to be made:

1. The Hamiltonian simulation technique used to en-
code Hamiltonians into unitaries. Widely-studied ap-
proaches include Trotterization [100], Taylor series [101],
qubitization [99] or interaction picture simulation [102].

2. The state and Hamiltonian representation. This
includes a choice between first or second quantization
and potentially also a specific fermion-to-qubit mapping
such as Jordan-Wigner [103] or Bravyi-Kitaev [104].

3. The basis functions used to represent the state
and the Hamiltonian. For material simulations, this is
a choice between plane wave functions or localized atom-
centered orbitals typically expanded in terms of con-
tracted Gaussian functions [105, 106].

Plane waves are suited for the study of periodic sys-
tems and lead to compact representations of Hamilto-
nians. The challenge is that many plane waves are re-
quired to reach high accuracy, which leads to a pro-
hibitively large number of qubits in second quantiza-
tion. This motivates the choice of first-quantization tech-
niques for materials simulation [43]. Finally, the qubiti-
zation approach, which is further described in Sec. III C,
has the advantage that the desired unitary can be im-
plemented exactly using a number of gates that scales
linearly with the number of particles in the system, up
to polylogarithmic factors [43]. Therefore, we focus on
qubitization-based quantum phase estimation algorithms
for first-quantized Hamiltonians represented in a plane-
wave basis. We explain these concepts in more detail
below.

The atomic structure of a cathode material is defined
by its unit cell consisting of a group of atoms that can
be translated in space to span the entire crystal. The
electronic structure of the material can be obtained by
solving the Schrödinger equation within the unit cell by
imposing periodic boundary conditions. In the Born-
Oppenheimer approximation [107] the Hamiltonian de-
scribing the interacting electrons in the unit cell is given
by

H = T + U + V, (14)

where T and V are the kinetic energy and the electron-
electron interaction operators, respectively, and U is the
Coulomb electron-nuclei interaction term, see App. C.

Any complete set of basis functions can be used to rep-
resent the first-quantized Hamiltonian H. However, for
periodic systems, using plane waves with the periodicity
of the underlying lattice is a natural choice. More impor-
tantly, as we describe in Sec. III C, they significantly sim-
plify the resulting expression for the Hamiltonian, which
is beneficial to implement the quantum algorithm.

Plane-wave functions are defined as

ϕp(r) =
1√
Ω
eiGp·r, (15)

where Ω is the volume of the unit cell and the wave vector
Gp is a reciprocal lattice vector (see App. A 1). For the
case of an orthogonal lattice, we define

Gp = 2π

[
p1

a1
,
p2

a2
,
p3

a3

]
, (16)

p ∈ G =

[
−N

1/3

2
+ 1,

N1/3

2
− 1

]3

, (17)

where a1, a2, a3 are the lattice constants, N is the total
number of plane waves, and the set G contains integer
vectors defining a grid of points in the reciprocal lat-
tice. Note that Eq. (17) assumes a uniform distribution
of points along the three orthogonal axes.

In first quantization, the wave function of η electrons
in a basis of N single-particle wave functions (orbitals)
is represented by directly specifying the single-particle
state occupied by each electron: we employ η registers
each of size n = dlogNe, where the computational basis
of each register enumerates the single-electron states.

A general wave function for a system of interacting par-
ticles is written as a sum of weighted Slater determinants
of η electrons in N orbitals:

|ψ〉 =
∑

i∈(Nη )

ciA(|pi1 , . . . ,piη 〉), (18)

where
∑
i |ci|2 = 1 with the index i denoting a choice of

η occupied orbitals,

A : |pi1 , . . . ,piη 〉 →
∑

σ∈Sη

(−1)π(σ)

√
η!

|σ(pi1 , . . . ,piη )〉 ,

(19)
is the antisymmetrization operator, Sη is the symmetric
group on η elements, π(σ) is the parity of the permuta-
tion, and |pi1 ,pi2 , . . . ,piη 〉 = |pi1〉 |pi2〉 . . . |piη 〉 is an or-
dered product state of η registers with n qubits each. The
number of qubits needed to represent the state scales log-
arithmically with N , requiring 3ηdlog(N1/3 + 1)e qubits,
while a second-quantization approach would require N
qubits.
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B. Initial state preparation

The quantum phase estimation algorithm requires an
input state with sufficiently large overlap with the true
ground state. In most quantum algorithms for quan-
tum chemistry, this is done by preparing a state of non-
interacting electrons described by single-particle wave
functions (orbitals) that are optimized using the Hartree-
Fock method [108]. This state is usually referred to
as the Hartree-Fock state. In second quantization and
the molecular orbital basis, the Hartree-Fock state is
straightforward to prepare since it is a computational ba-
sis state with no entanglement between qubits. The situ-
ation is more complicated when studying periodic mate-
rials in first quantization using a plane-wave basis. Here
we need to apply the Hartree-Fock method to extended
materials and provide an algorithm to prepare the re-
sulting Hartree-Fock state in a plane-wave basis, which
must be explicitly anti-symmetrized. Thus, we have to
carry out two main tasks: first, we generate an antisym-
metrized state representing the Hartree-Fock state in the
molecular orbital basis. Then, we will rotate the basis
to plane waves, ensuring that antisymmetrization is pre-
served in the process.

For the former, a very efficient protocol was proposed
in Ref. [41], which can be used for any ordered state
|pi1〉 |pi2〉 . . . |piη 〉 with pi1 < . . . < piη . Its key idea is
to save into auxiliary qubits the ordering process of a
symmetric state. Such qubits can then be used to anti-
symmetrize |pi1〉 |pi2〉 . . . |piη 〉, by reversing the ordering
procedure, as depicted in Fig. 4. We review this proce-
dure in more detail in App. D 1.

The second step key step we have to implement is the
basis rotation from the molecular orbital to the plane

|0〉 / H • × • × |pi1〉 /× • × •

|0〉 / H • × • × • × |pi2〉 /× • × • × •

|0〉 / H • × |pi3〉 / × •

|0〉 C • Z • C

|0〉 C • Z • C

|0〉 C • Z • C

FIG. 4. Antisymmetrization circuit. Example of an an-
tisymmetrization circuit for three electrons. The operation
C represents a comparison test controlled on the two regis-
ters that are being compared. The seed register is measured
in order to post-select on the collision-free subspace. The Z
gates perform the phase flip when swapping two registers. At
the end of the circuit, the auxiliary record qubits (bottom
register) can be discarded as they are disentangled [41]. This
circuit can be extended to an arbitrary number of electrons
η by increasing the size of the sorting network and adding
additional auxiliary qubits for each required comparison and
swap.

wave basis. This task too has been discussed in the lit-
erature [109–111]. According to Thouless theorem, a ba-
sis change can be written as the exponential of a sum
of single particle fermionic excitation operators [112], as
described in Eq. D8,

U(u) = e
∑
pq [log u]pqa

†
paq . (20)

The rotations that these operators implement are called
single particle Givens rotations. In the App. D 2 we de-
scribe Ref. [111] method to find a product of such Givens
rotations decomposing U(u), thus allowing its implemen-
tation via local unitary gates. Overall, this will require
applying η(N−η) rotations, between η initially occupied
orbitals, and N − η unoccupied ones.

One of the main contributions of our paper is showing
how to implement the Givens rotations in first quanti-
zation, and illustrating how this preserves the antisym-
metry of the state. We begin by describing how this
rotation acts in second quantization, derive its action in
first quantization, and finally discuss its implementation
algorithm. Consider a basis state in second quantization
a†p1 . . . a

†
pη |Ω〉, where the orbital indices pj are distinct

and |Ω〉 is the vacuum state. For this state, Rpq(θpq) acts
as the identity if none or both of p, q are in {p1, . . . , pη}.
Otherwise, it applies the rotation

RY (θpq) =

(
cos(θpq) sin(θpq)
− sin(θpq) cos(θpq)

)
, (21)

where the rows and columns correspond to (a†p, a
†
q). For

example, for η = 2 and three orbitals p, q, s, we have
Rpq(θpq)a

†
sa
†
q |Ω〉 = cos(θpq)a

†
sa
†
q |Ω〉 − sin(θpq)a

†
sa
†
p |Ω〉.

A Givens rotation in first quantization must preserve
the basis of antisymmetrized states A(|p1, . . . , pη〉). Con-
sider the operator B : a†p1 . . . a

†
pη |Ω〉 → A(|p1, . . . , pη〉)

that maps states in both representations. The trans-
formation of interest in first quantization is then given

by BRpq(θpq)B†, which we denote by R
(1)
pq (θpq). The

previous example expressed in first quantization is then

R
(1)
pq (θpq)A(|s, q〉) = cos(θpq)A(|s, q〉)− sin(θpq)A(|s, p〉).
To discuss the quantum circuit implementation, we

extend the definition of R
(1)
pq (θpq) to the full Hilbert

space spanned by the states |p1, . . . , pη〉. The action on
|p1, . . . , pη〉 is the following. If pj ∈ {p, q} for exactly
one j, it acts as the rotation RY (θpq) on the subspace
span{|p〉 , |q〉} of the j-th register; otherwise it acts as
the identity. This is indeed an extension of the operator

by linearity. In our example, we have R
(1)
pq (θpq) |s, q〉 =

cos(θpq) |s, q〉 − sin(θpq) |s, p〉 and it is straightforward to

compute R
(1)
pq (θpq) |q, s〉, then subtract both states to de-

rive the equation we wrote for R
(1)
pq (θpq)A(|s, q〉).

We now describe how to implement the action of

R
(1)
pq (θpq) on |p1, . . . , pη〉:

1. Initialize η auxiliary qubits in the state |0〉1 . . . |0〉η.

2. For 1 ≤ j ≤ η: If pj ∈ {p, q}, flip the auxiliary
qubit |0〉j to |1〉j .
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3. For 1 ≤ j ≤ η−1: Controlled on the auxiliary qubit
|bj〉j , swap the j-th and η-th register.

4. The auxiliary qubits are now in some state
|b1〉1 . . . |bη〉η, where each bj indicates if pj ∈ {p, q}.
Controlled on the parity of

∑η
i=1 bi, apply RY (θpq)

on the subspace span{|p〉 , |q〉} of the η-th register.
This step is illustrated for an example in Fig. 5 and
can be easily generalized.

5. Undo the controlled swaps and uncompute the aux-
iliary qubits by applying the same operators in
steps 2 and 3.

When |p1, . . . , pη〉 contains none or both of p, q, we get∑
bi = 0 (mod 2). Thus, no rotation happens in step

4. After undoing the swaps and flips we return to the
initial state, hence acting as the identity. Now assume
pj ∈ {p, q} for exactly one 1 ≤ j ≤ η. Then

∑
bi = 1

(mod 2), as bj = 1 and all others are zero. Thus the
rotation is done on pj since pj will be located on the η-th
register after step 3. After undoing the swaps, we get the
desired state.

X • • RY (θpq) • • X

X X

|∑ bi mod 2〉a •

FIG. 5. Circuit diagram of an example controlled ro-
tation RY (θpq). The rotation is performed on the subspace
spanned by |p〉 = |0101〉 and |q〉 = |0010〉. The following pro-
cedure is applied to the bits where they differ, namely the last
three qubits. First, we apply X gates such that |p〉 → |0000〉
and |q〉 → |0111〉. Then, CNOT gates map these states to
|0000〉 and |0100〉 respectively. This allows us to perform a
rotation on the second qubit controlled on the auxiliary qubit
|
∑
bi mod 2〉a. Finally, the CNOTs and X gates are uncom-

puted, yielding the desired controlled rotation on the subspace
span{|p〉 , |q〉}.

C. Qubitization-based quantum phase estimation

We now focus on the most expensive part of the quan-
tum algorithm, quantum phase estimation. The first step
is to identify a method for encoding the Hamiltonian into
a suitable unitary. Although there are several strategies
to achieve this, the qubitization approach of Ref. [99] is
particularly appealing because the resulting unitary can
be implemented exactly without the need for any approx-
imation.

The qubitization-based encoding proceeds as follows.
A Hamiltonian can be written as a linear combination of
unitaries

H =
∑

`

α`H`, (22)

where each H` is a unitary operator and we set α` >
0, which can always be ensured by absorbing the phase
inside the unitaries. The main strategy is to implement
the operator e−i arccos(H). This can be done exactly using
the quantum walk operator [41]

Q = (2 |0〉 〈0| − I)PREP†HSELHPREPH , (23)

which acts on the system register and an additional aux-
iliary register. The prepare operator is defined as

PREPH |0〉 |ψ〉 =

(∑

`

√
α`
λ
|`〉
)
|ψ〉 , (24)

where |ψ〉 is an arbitrary state and λ =
∑
` α`. The select

operator is defined as

SELH =
∑

`

|`〉 〈`| ⊗H`. (25)

If |Φk〉 is an eigenstate of H with eigenvalue Ek, the
operator Q performs the transformation

Q |0〉 |Φk〉 =
Ek
λ
|0〉 |Φk〉 −

√
1−

(
Ek
λ

)2

|ψ⊥〉 , (26)

where |ψ⊥〉 is some state orthogonal to |0〉 |Φk〉. Defining
cos(θk) = Ek

λ , a similar calculation can be performed to

derive the action of Q on |ψ⊥〉, leading to the result:

Q |0〉 |Φk〉 = cos(θk) |0〉 |Φk〉 − sin(θk) |ψ⊥〉 ,
Q |ψ⊥〉 = cos(θk) |ψ⊥〉+ sin(θk) |0〉 |Φk〉 .

(27)

The operator Q is therefore block-diagonal, with each
block Qk corresponding to a two-dimensional subspace
Wk = span{|0〉 |Φk〉 , |ψ⊥〉} that effectively forms a qubit,
hence the name “qubitization”. Diagonalizing the two-
dimensional submatrices Qk leads to a spectral decom-
position [41]

Qk = eiθk |θk〉 〈θk|+ e−iθk |−θk〉 〈−θk| , (28)

where |±θk〉 are the eigenstates of Qk. By using quan-
tum phase estimation on Q with an initial state close
to the ground-state |0〉 |Φ0〉 = α |θk〉 + β |−θk〉 for some
coefficients α and β, we obtain an estimate of θk with
probability |α|2 and an estimate of −θk with probability
|β|2. For the ground state, either result allows retrieval
of the ground-state energy since cos(±θ0) = E0/λ.

To estimate the total cost of quantum phase estima-
tion it suffices to focus on three key factors. The first one
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is the target accuracy, which may depend on the appli-
cation but is ultimately chosen by the user. The second
is the parameter λ =

∑
` α`, which can be viewed as the

one-norm of the Hamiltonian, as described in Eq. (26). It
is a crucial quantity in the complexity of quantum phase
estimation because it effectively sets the energy scale of
the problem: E0/λ has to be estimated with sufficient
precision to recover E0 with the desired error ε, which
is challenging if λ is large. Overall, this means O(λ/ε)
calls to a circuit implementing the qubitization operator
are needed [41]. The value of λ can be calculated by
adding the amplitudes for each component of the Hamil-
tonian [43]:

λT :=
∑

`T

α`T =
6ηπ2

Ω2/3

(
2np−1 − 1

)2
= O

( η

∆2

)
, (29)

λU :=
∑

`U

α`U =
η
∑
I ZI

πΩ1/3
λν = O

(
η2

∆

)
, (30)

λV :=
∑

`V

α`V =
η(η − 1)

2πΩ1/3
λν = O

(
η2

∆

)
, (31)

it is possible to gradually increase where

λν =
∑

ν∈G0

1

‖ν‖2 , ∆ =

(
Ω

N

)1/3

. (32)

Finally, a key result in Refs. [43, 50] shows that for
fermionic Hamiltonians in first quantization, it is possible
to implement the qubitization operator using circuits of
depth Õ(η), where the tilde means that polylogarithmic
terms are omitted. In fact, the leading cost subroutine in
quantum phase estimation are several controlled swaps
with cost adding up to 12ηnp. These controlled swaps
are used to place the j-th electron planewave |q〉j and

i-th electron planewave |p〉i in auxiliary registers where
translations of the lattice or phases are applied in (see e.g.
(E14) and (E11), (E14)). The resulting factors must be
later swapped back to their corresponding registers. The
PREP operator subroutines, in contrast, might be tech-
nically more convoluted, such as the momentum state
preparation explained in App. E 5. However, they are
also less expensive as they avoid the η multiplier, and
instead depend only on several number of qubit factors,
such as np which are typically polylogarithmic in N and
smaller. A detailed description of each of these steps can
be found in App. E.

Overall, this leads to a total complexity Õ(ηλ/ε) for
the qubitization-based quantum phase estimation algo-
rithm. More specifically, by setting Ω = O(η), the
asymptotic complexity of the algorithm is

Õ

(
η4/3N2/3 + η8/3N1/3

ε

)
. (33)

Moreover, taking constant resolution Ω = O(N), i.e.,

∆ = O(1), results in a scaling Õ(η3/ε) that grows only
polylogarithmically in N .

IV. Resource estimation

In this section, we discuss the gate cost, qubit cost,
and estimated runtime of implementing the quantum al-
gorithm for calculating the ground-state energy of the
Li2FeSiO4 cathode material. All calculations to derive
these costs have been carried out using the TFermion
library [45].

1. Gate cost

In the setting of fault-tolerant quantum computing, it
is customary to distinguish between Clifford gates, which
satisfy symmetry properties that make them easier to im-
plement, and non-Clifford gates, which are much more
expensive and therefore carry the leading cost of the
quantum computation [113]. Typically T gates or Tof-
foli gates are the non-Clifford gates considered in practi-
cal error-correcting codes such as the surface code [114].
Non-Clifford gates are expensive because they cannot
be transversely and fault-tolerantly implemented in two-
dimensional codes [115, 116] — the codes with the most
favorable thresholds. Consequently, their fault-tolerant
implementation requires either ‘code switching’ [117] to
three-dimensional codes [118, 119] for the T or Toffoli
gates, or a process known as magic state distillation
which usually has a lower overhead [120]. Magic state
distillation can however require many physical qubits and
rounds of error detection within such codes, during which
Clifford operations can be applied in parallel [50].

The most expensive step of the algorithm is performing
qubitization-based quantum phase estimation. The cen-
tral result of Ref. [43] is an explicit and general formula
for the number of Toffoli gates required to implement this
algorithm for a first-quantized Hamiltonian. For clarity,
we have reproduced it fully in Eq. (F1) in the appendix,
and summarize it here by writing the leading terms. By
taking only these leading terms, the number of Toffoli
gates required is equal to

⌈
πλ

2εQPE

⌉
(12ηnp + polylog(η,N, ε) + λZ + Er(λZ)) ,

(34)
where we recall np = dlog(N1/3 + 1)e is the number of
qubits needed to represent a component of the signed
plane-wave index, λZ =

∑
I ZI is the sum of nuclear

charges, εQPE is the accuracy of quantum phase estima-
tion, and Er(x) = minm(2m + d2−mxe). The dominant
term in the cost of the algorithm is the prefactor λ, which
depends on the number of particles η, the success prob-
ability of the momentum state preparation, and on the

spacing parameter ∆ =
(

Ω
N

)1/3
in the cell. This λ is not

exactly λT +λU +λV , but has to be slightly increased to
take into account some failure probabilities and imple-
mentation decisions; for a more detailed discussion see
Ref. [43, Eqs. 116-124]. In the case of Li2FeSiO4, the
cell consists of η = 156 electrons and has dimensions

https://github.com/PabloAMC/TFermion/tree/first_quantization
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5.02 × 5.40 × 6.26Å
3
, amounting to Ω ≈ 1145a3

0, where
a0 is the Bohr radius.

The number of plane waves N is a free parameter of
the algorithm, which can be chosen to achieve a desired
basis error εb in representing wave functions. This error
scales as εb = Õ(1/N) [97, App. E]. While it is difficult
to provide the prefactors required to quantify the basis
error exactly as a function of N , a variety of heuristic
guidelines can be employed. It has been argued that
in periodic materials roughly 10-20 times as many plane
waves as Gaussians are needed for the same level of pre-
cision [97]. Taking the Dunning basis sets from cc-pVDZ
to cc-pV5Z as a comparison point [121], we get 104 to
106 plane waves. We can also take the inverse density
of plane waves as a point of reference: ∆ = 10−2a0 is
expected to be more accurate than large Gaussian basis
sets [43]. Taking ranges from ∆ ∈ [10−2a0, a0] translates
to N ∈ [103, 109]. Another free parameter of the algo-
rithm is the target precision εQPE for quantum phase
estimation. The error in the phase estimation can be di-
rectly linked to an error in the voltage estimation using
Eq. (13).

Fig. 6 represents how the cost of the full algorithm,
captured by the number of Toffoli gates, depends on the
number of plane waves N for different values of the error
ε in the estimated ground-state energy. The values of
ε raging from 0.0027 eV to 0.1 eV were chosen accord-
ing to the required precision for simulating the battery
properties described in Section II A. For the equilibrium
cell voltage an error smaller than 0.1 V is considered to
be accurate as this is typically the estimated error for
experimental potentials [36]. Furthermore, this error is
comparable with the small entropic contribution to the
free energy of the cathode material which is often ne-
glected [64]. On the other hand, for simulating the mobil-
ity of the lithium ions in the cathode we have to compute
the hopping rate k given by Eq. (6). This requires calcu-
lating the activation energy entering the exponential of
the equation with a significantly higher precision of the
order of 0.1 mHa = 0.0027 eV [38]. Similarly, classical
computations of the transition temperature in Eq. (11) at
which a cathode material undergoes a degradation reac-
tion, aims at an error of the order of 20 K [74]. This value
translates into an energy error of 20 K kB ≈ 0.002 eV .
If we have access to highly accurate values for the oxygen
molecule entropy [76] the total energy difference entering
the numerator of Eq. (11) would need to be computed
with a similar precision of approximately 0.1 mHa.

The discrete number of qubits required to represent the
quantum state, and its direct relation to the Toffoli cost
(34), suggest using a number of plane waves N translat-
ing directly to integer values of np. Therefore in our re-
source estimations, we take N = (2np−1)3 for np ∈ [3, 9].
These resource estimations differ in two details from the
full gate cost equation presented in Eq. (F1). First, the
phase estimation error εQPE is not the only error source
we consider; we also take into account others due to the
finite number of bits used to represent |m〉 or |RI〉 in

the PREPU implementation. We refer to these as εM
and εR respectively. Additionally, we include the modi-
fication needed for dealing with a non-cubic unit cell, as
explained in App. G.

There is also one subtlety that explains why we only
count Toffoli gates in the phase estimation algorithm.
In principle, there is an important contribution of T
gates from the rotations required to implement e−iGν ·RI ,
which should be implemented over all applications of the
qubitization operator. However, there is a way to avoid
such T gates, as shown in Ref. [43]. The key idea is
to perform the addition in the dot product Gν · RI on

a gradient phase state 2−b/2
∑2b−1
k=0 e−2πik/2b |k〉. This

procedure, via a phase kickback [122, 123], implements
the desired rotations without increasing the number of
T gates that are required to prepare the gradient phase
state in the first place. Finally, additional T gates might
be needed in the inverse QFT, but those are negligible.

2. Qubit cost

The full description of each contribution to the to-
tal number of logical qubits for the quantum phase es-
timation algorithm is given in [43, App. C]. This can
be applied to the cathode material we study as the
modifications required to accommodate a non-cubic lat-
tice (App. G) change the qubit cost by a relatively small
constant. We do not reproduce here these logical qubit
numbers, but instead give their overall sum:

3ηnp + 4nMnp + 12np + 2

⌈
log

(⌈
πλ

2εQPE

⌉)⌉
+

2dlog(η)e+ 5nM + 3n2
p + dlog(η + 2λZ)e+

max(5np + 1, 5nR − 4) + max(nT , nR + 1) + 33,

(35)

where nM , nR, nT represent numbers of qubits that are
determined according to non-Clifford gate optimization
of the different error sources of the algorithm. These in-
clude for example the choice of M in the momentum state
preparation as in Eq. (E24) and the number of bits to rep-
resent nuclei coordinates. For each quantity nM , nR, nT ,
the number of qubits ranges from 30 to 50 depending on
the total error budget, while dlog(η + 2λZ)e ≈ 9. Note
however that the leading term is 3ηnp, corresponding to
the η momenta registers, each using np qubits for three
coordinates.

In contrast, during the initial state preparation, we
need 3ηnp qubits to represent the quantum state, and
(3np − 1) + 1 auxiliary qubits for the multi-control NOT
operations. With these choices, the overall number of log-
ical qubits is 2,375 for np = 4 and 6,652 for np = 9, where
the leading term 3ηnp provides the most significant con-
tribution of 1,872 and 4,680 logical qubits, respectively.
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FIG. 6. Non-Clifford gate cost for initial state preparation and quantum phase estimation. (a) The non-Clifford
gate cost due to Givens rotations used in the circuit for initial state preparation. (b) Toffoli gate cost of the quantum phase
estimation algorithm. All calculations are done for the unit cell of Li2FeSiO4 with 156 electrons. The total number of qubits is
2,375 for np = 4 and 6,652 for np = 9. In the right figure we only depict Toffoli gate count, as the number of T gates is much
smaller (< 3 × 105). The total error ε includes contributions from different approximations throughout the algorithm, but it
does not take into account the error derived from a finite basis set. The range of values for the error ε was set based on the
required accuracy for simulating the battery properties described in Sec. II A. While an error in the energy of the order of 0.1
eV is tolerable for predicting experimental voltages, simulating the ionic mobility and the thermal stability requires a higher
precision of ε ∼ 0.1 mHa = 0.0027 eV. The slope of the Toffoli gate cost for fixed target precision is a consequence of the leading
cost term in (34), 12ηnp d(πλ)/(2εQPE)e, where np = dlog(N1/3 + 1)e. The indicated eV energy precision directly translates
into the precision of the calculated voltage V (see Eq. (13)), as the denominator in that equation represents a multiple of the
charge of an electron, in our case 1e. Note also, that in our battery example we would need to compute the energy of both the
lithiated and de-lithiated phase, the latter being cheaper because of a smaller η. Consequently, the error in both estimations
will be added when computing any of the battery properties discussed. Thus a chemical precision error of ε = 0.043 eV is just
under the target voltage error of 0.1V. These calculations were performed with the TFermion library [45].

3. Algorithmic runtime

While we leave an accurate runtime analysis for fu-
ture work, rough estimates can be obtained. There are
three main variables that determine the runtime: the
surface code distance d (correcting bd/2c errors in com-
putations), the number of non-Clifford gates Nnc, and
the clock rate f for applying gates. The total time is
then given by Nncd/f .

First, we need to obtain the surface code distance d
leading to a logical failure rate low enough to perform
the computation. These calculations depend on the hard-
ware platform, and for this purpose we focus on photonic
architectures such as those described in Refs. [47, 124].
More specifically, we employ the formula in [47, Eq. 9] for
the value of d in our estimations, which leads to values
of d between 30 to 40.

Next, we discuss the number of non-Clifford gates. As
mentioned before, non-Clifford gates are produced us-
ing distillation of magic states made in so-called magic
state factories. In algorithms with few qubits, these fac-
tories make up a large percentage of the quantum com-
puter. However, for an algorithm with qubit costs in the
thousands, the footprint is rather small (roughly 2%).
Thus, parallelization techniques [125, 126] that do not
depend on the hardware can enable fast injection of dis-

tilled magic states, reducing runtime by an order of mag-
nitude. In a further optimization, since the algorithm
we study relies heavily on Toffoli gates (Fig. 6), we can
directly synthesize them using efficient magic state fac-
tories [127]. This generally quintuples the speed of the
algorithm compared to previous state-of-the-art proce-
dures [128].

Finally, we discuss the clock rate, which is the most
challenging value to calculate, with there being a variety
of estimates in the literature. For this reason, rather than
choosing a specific number, we explore how the runtime is
affected by different values of the clock rate. The results
are shown in Fig. 7. For a lower clock rate of 10KHz, the
runtime is a few years, even when using only np = 4. On
the other hand, assuming an optimistic but in principle
achievable clock rate of 100MHz [47, 124], for np = 4
we obtain a runtime estimate of less than an a day. For
np = 9, the runtime is a about a year. Arguably, an
appropriate choice is to select a number of plane waves
no larger than N = 106, which translates to np = 7
as even in a large basis set such as cc-pV5Z basis, our
system requires no more than that many planes to be
accurate [43, 97]. For this value and a 100MHz clock
rate, the runtime is roughly a few weeks.

We reiterate that these are all rough estimates for per-
forming one round of quantum phase estimation. This
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FIG. 7. Estimation of the time required to run the
algorithm. This figure illustrates total runtime for synthe-
sizing all the Toffoli gates indicated in Fig. 6 for ε = 0.043 eV.
All calculations are done for the unit cell of Li2FeSiO4 with
156 electrons, and we assume that the number of plane waves
used in the state preparation and quantum phase estimation
are the same. The total number of qubits is 2,375 for np = 4
and 6,652 for np = 9. We compute the distillation time as
the product of the number of Toffoli gates, the surface code
distance d, and the clock frequency, all divided by a small np
factor originating from the techniques in [125] that parallelize
the CSWAPs and arithmetic computations. We compute d in
this figure as in the moderate error case of Ref. [47]. We em-
phasize that these are rough estimates whose main purpose is
to provide a method to interpret the gate cost.

may need to be repeated to successfully project on the
true ground-state. While these estimates require further
study, they indicate that additional improvements to all
aspects of this algorithm will be crucial for the practical-
ity of quantum algorithms for battery simulation.

V. Conclusions

This work presents the first comprehensive analysis of
how quantum computers can be used in the context of
materials simulation for lithium-ion batteries. In par-
ticular, to the best of our knowledge, this is the first
attempt to estimate the resources required to execute
quantum algorithms aimed at performing high-accuracy
ground-state energy calculations of a realistic cathode
material. Our study explicitly establishes a connection
between battery simulation and quantum computing —
many key properties can be derived from the estimation
of ground-state energies of periodic materials, which are
amenable to known quantum algorithms. Thus, to im-
pact the field of battery simulations, a focus should be
placed on developing quantum algorithms for simulating
materials. This includes a closer look at better methods
for preparing approximate ground states.

Plane waves are an attractive basis set for describing
wave functions of periodic materials as they can inherit
the periodicity of the lattice and lead to simpler Hamil-
tonian representations. In a second-quantized approach
where a qubit is assigned to each basis function, this leads
to quantum algorithms potentially running on millions
of logical qubits, which is a troubling prospect. Conse-
quently, quantum algorithms based on first-quantization
could be unmatched for battery simulations that rely
heavily on understanding the properties of electrode ma-
terials described by periodic systems. First-quantization
methods are a relatively new technique in quantum algo-
rithms, which we identify as an important area for future
research.

A careful resource estimation of the full quantum algo-
rithm reveals that despite its favorable asymptotic scal-
ing, the overall resource requirements remain daunting.
This is true even under the assumption that a Hartree-
Fock approximation has sufficiently large overlap wit the
true ground state. Concretely, our calculations indicate
that thousands of logical qubits and trillions of logical
gates are necessary to execute one round of quantum
phase estimation. These numbers are not entirely pro-
hibitive; based on optimistic estimates of the clock rate
of fault-tolerant quantum computers, implementing the
full quantum phase estimation algorithm may take some-
where between hours to months depending on the num-
ber of plane waves used. Nevertheless, these resource
estimates are a pressing invitation to undertake a dedi-
cated effort aimed at reducing the cost of the quantum
algorithm by many orders of magnitude.

Overall, this manuscript lays the foundation for future
work on quantum computing for battery simulation. In
the following section, we present an outlook on promising
research directions aimed at both increasing the scope of
application and improving algorithmic performance.

VI. Outlook

The quantum algorithms for battery simulation de-
tailed in this work can be extended to simulate other
materials, reduce the gate and qubit costs, and expand
the scope of applications by addressing other processes
that occur in a battery cell. We provide an outlook on
potential avenues for achieving this.

A. Improving algorithmic performance

The preparation of the initial state is a crucial step
of any quantum phase estimation algorithm. For the
simulation of realistic cathode materials, it remains
an open question whether the state obtained from a
Hartree-Fock approximation has sufficient overlap with
the true ground state of the system. It is therefore
important to develop techniques to quantify the quality
of the input state and to identify better methods for
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preparing approximate ground states. For example,
defining a Slater determinant at the Γ point as the
initial state is also an approximation that is typically
more suitable for simulating a large supercell of the
cathode material. Using classical simulations at the level
of truncated configuration interaction or coupled-cluster
methods for periodic systems could be helpful to quantify
the quality of the Hartree-Fock state and, importantly,
to build quantum circuits for preparing a better initial
state beyond the mean-field approximation. It is also
possible to leverage quantum algorithms directly, for
example adiabatic quantum algorithms.

The gate counts reported in Sec. IV show that signif-
icant work is likely still required to reduce the compu-
tational cost of the quantum algorithm. This could be
achieved by reducing both the number of electrons in the
computational unit cell and the number of plane-wave
basis functions. To this aim, pseudopotentials can be em-
ployed to describe the electron-nuclei interaction terms in
the Hamiltonian [129]. This methodology is widely used
in DFT approaches to solve problems in materials sci-
ence. Their inclusion leads to a problem of interacting
valence-only electrons where the presence of core elec-
trons is modeled by a short-ranged effective potential,
which adds new terms to the electron-nuclei interaction
operator U [129].

Incorporating the pseudopotentials into the quantum
algorithm would require adapting several steps that de-
pend directly on the precise form of the Hamiltonian.
This include the decomposition into a linear combina-
tion of unitaries and the implementation of the qubitiza-
tion operator. Further reductions in the cost of running
the algorithm may be possible by manipulation of the
Hamiltonian, for example by exploiting symmetries or
employing factorization strategies. Some of these tech-
niques have already been explored in the context of sim-
ulating molecules in second quantization [42, 130] and
could be extended to deal with periodic materials in first
quantization.

B. Extending the scope of application

As described in Sec. III, the algorithm presented in
this work is constrained to simulate cathode materials
with orthogonal unit cells. Going beyond this approxi-
mation is key to simulate different phases of the cathode
materials. For example, such a generalization would
allow studying state-of-the-art cathodes used in electric
vehicles, which crystallize in a rhombohedral structure.
Extending the algorithm to account for any crystal
system requires generalizing Eqs. (16) and (17), which
define the reciprocal lattice vectors. While this does
not affect the expressions of the Hamiltonian matrix
elements, it does require generalizing the decomposition
of the Hamiltonian as a linear combination of unitaries,
as well as the qubitization operator and its circuit

implementation.

It is also worth exploring the applicability of the quan-
tum algorithm to simulate battery properties of increas-
ing complexity. For example, the redox potential of the
electrolyte molecules is important to predict the electro-
chemical stability of the cell [30]. Redox potentials are
obtained from the ground-state energies of the oxidized
and reduced electrolyte molecules, which are embedded
in a solvent solution. Single molecules could also be sim-
ulated with the present algorithm by using the supercell
approach to avoid the interaction between periodic im-
ages. In the case of electrolyte molecules, performing ac-
curate simulations of redox potentials requires accounting
for solvation effects [30, 131].

More complicated phenomena occur at the elec-
trode/electrolyte interface which are crucial to under-
stand the degradation processes of batteries [59]. In par-
ticular, describing the formation and composition of the
solid electrolyte interphase (SEI) is paramount to both
improve the performance and to extend the lifespan of
lithium-ion batteries [23]. Chemical reactions that in-
duce lithium ion losses at the SEI in graphite anodes
have been identified as a predominant cause of battery
capacity fading upon cycling [132, 133]. Modeling the
growth of the solid electrolyte interphase at the atomic
scale is challenging. However, at the core of this pro-
cess is the reduction of electrolyte molecules near the an-
ode surface [134], for which chemical reaction rates can
also be computed in terms of ground-state energy calcu-
lations. Advanced dynamical simulations of such reac-
tions requires multi-scale approaches combining ab-initio
molecular dynamics and continuum solvent models [135–
137], where most of the computational overhead comes
from the costly electronic structure calculations.

It is a new challenge to adapt quantum algorithms to
simulate such systems. Typically, quantum algorithms
have been studied in the context of molecules and mate-
rials consisting of not more than a few hundred electrons.
This is largely because, despite their polynomial scaling,
quantum algorithms still become more costly when
tackling larger systems potentially containing thousands
of electrons. This will likely require stepping outside
the box of existing approaches and exploring disruptive
new ideas in quantum algorithms. Pursuing efforts in
this direction may enable feasible simulations of more
complicated and larger-scale phenomena that occur in
battery cells.

As a whole, we are in the early stages of understand-
ing how quantum computing can truly impact industrial
operations. This applies in a broad sense to quantum
simulation, which extends beyond the context of bat-
teries. Still, lithium-ion batteries are complex systems
involving a variety of molecules, materials, and chemi-
cal processes. They can therefore serve as testbed for
continued development in quantum algorithms, whose
gains may then be extended to other areas that bene-
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fit from progress in techniques for simulating materials
and molecules. Our work is a starting point for the con-
tinued developments that will be necessary to understand
the role that quantum computers can play in impacting
industrial processes, particularly the development of new
battery technologies.
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[41] D. W. Berry, M. Kieferová, A. Scherer, Y. R. Sanders,

G. H. Low, N. Wiebe, C. Gidney, and R. Babbush, npj
Quantum Information 4, 1 (2018).

[42] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R.
McClean, N. Wiebe, and R. Babbush, PRX Quantum
2, 030305 (2021).

[43] Y. Su, D. W. Berry, N. Wiebe, N. Rubin, and R. Bab-
bush, PRX Quantum 2, 040332 (2021).

[44] M. A. Nielsen and I. Chuang, Quantum computation and
quantum information (American Association of Physics
Teachers, 2002).

[45] P. A. M. Casares, R. Campos, and M. A. Martin-
Delgado, arXiv (2021), 2110.05899.

[46] V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Rei-
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A. Basic concepts of periodic systems

We summarize the basic concepts used in the paper
that are key for the simulation of the electronic structure
of periodic materials, as well as provide an introduction
to the Hartree-Fock procedure. More extensive and de-
tailed description can be found in textbooks for solid-
state physics and electronic structure methods [129, 138].

1. The direct and reciprocal lattices

In a crystal structure the positions of the atoms repeat
periodically in space. Its entire structure can be defined
by specifying (i) the type of atoms and their positions in
the smallest portion of the crystal lattice, the primitive
unit cell, and (ii) the primitive vectors a1,a2,a3 used to
define all possible translations in space. The lattice of
points obtained by replicating the unit cell is called the
Bravais (direct) lattice. For a three-dimensional space
the direct lattice consists of all points with positions vec-
tors

Rn = n1a1 + n2a2 + n3a3, (A1)

where n1, n2 and n3 take integer values. For example,
for the simple case of an orthogonal lattice, the primitive
vectors are given by

a1 = a1x̂, a2 = a2ŷ, a3 = a3ẑ, (A2)

where a1, a2 and a3 are the lattice constants defining the
distance between the atoms in different unit cells along
the orthogonal directions. More complicated primitive
vectors to describe different types of materials are exten-
sively covered in the literature [138, 139].

The primitive unit cell defines a volume that fills all the
space without leaving gaps when it is translated through
all the vectors in a Bravais lattice. The conventional
unit cell fills the same space when translated through
some subset of the vectors of the lattice. It is typically
larger than the primitive cell and contains the crystal
symmetry. The primitive cell with the full symmetry of
the lattice is known as the Wigner-Seitz cell, which is
defined by the space bounded by the planes that bisect
the lines joining one site of the lattice with all its closest
neighbors [138].

On the other hand, the concept of a reciprocal lattice
is fundamental for both analytical and numerical tech-
niques to simulate periodic systems. Consider a set of
points R constituting a direct lattice and a plane wave
eik·r. The set of all wave vectorsG that yield plane waves
with the periodicity of a given direct lattice is known as
its reciprocal lattice. This periodicity restriction implies
that the condition

eiG·(r+R) = eiG·r =⇒ eiG·R = 1, (A3)

applies for any r and for all R in the direct lattice. For
a given set of primitive vectors a1, a2, a3, the reciprocal
lattice can be generated by the primitive vectors

b1 = 2π
a2 × a3

a1 · (a2 × a3)

b2 = 2π
a3 × a1

a1 · (a2 × a3)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
, (A4)

which satisfy bi ·aj = 2πδij with i, j = 1, 2, 3. For exam-
ple, from Eq. (A2) it follows that the primitive vectors
bi for an orthogonal lattice are defined as

b1 =
2π

a1
x̂, b2 =

2π

a2
ŷ, b3 =

2π

a3
ẑ. (A5)

Using Eq. (A3) it can be shown that the reciprocal lattice
associated with a given direct lattice consists of all points
with position vectors

Gn = n1b1 + n2b2 + n3b3. (A6)

The Wigner-Seitz primitive cell of the reciprocal lattice
is called the first Brillouin zone.

2. Single-electron states in a periodic potential

In the independent electron approximation the effec-
tive potential felt by an electron in a crystal structure
has the periodicity of the underlying Bravais lattice:

U eff(r +R) = U eff(r). (A7)

It follows from Bloch’s theorem that the wave function
of a single electron in the periodic potential U eff(r) can
be chosen to have the form

φk(r) = eik·ruk(r), (A8)

where uk(r) has the periodicity of the Bravais lattice. By
imposing the Born-Von Karman boundary condition on
the wave function, it is straightforward to show that the
allowed values of k, known as k-points, are given by the
expression

k =

3∑

i=1

ni
Ni
bi, (A9)
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where Ni are integers of order N
1/3
cell and Ncell = N1N2N3

is the total number of unit cells in the crystal. In the
limit of the macroscopic crystal, k can be considered a
continuous variable which takes values in the first Bril-
louin zone of the reciprocal lattice.

In general, a wave function φ(r) that satisfies the
Schrödinger equation

Heffφ(r) =

[
−∇

2

2
+ U eff(r)

]
φ(r) = Eφ(r), (A10)

can be expanded in a set of plane waves that satisfy the
boundary conditions:

φ(r) =
∑

q

Cqe
iq·r. (A11)

Similarly, we can expand the effective potential U eff(r)
using a set of plane waves. Since U eff(r) is periodic in the
lattice, its expansion will only contain plane waves with
wave vectors that are vectors of the reciprocal lattice

U eff(r) =
∑

µ

U eff(Gµ)eiGµ·r, (A12)

U eff(G) =
1

Ω

∫

cell

drU eff(r)e−iG·r, (A13)

where Ω denotes the volume of the unit cell. Next, we use
Eqs. (A11) and (A12) to represent the Schrödinger equa-
tion in the basis of plane waves and define q = k +Gµ

to obtain the equation for the coefficients C representing
the single-electron states φn(r) in the plane wave basis,
Eq. (A11) [129]

∑

µ′

Heff
µµ′(k) Cµ′n(k) = En(k)Cµn(k), (A14)

where the Hamiltonian matrix is defined as

Heff
µµ′(k) =

||k +Gµ||2
2

δµµ′ + U eff(Gµ −Gµ′). (A15)

Summarizing:

1. Eq. (A14) is the Schrödinger equation in momen-
tum space, simplified by the fact that U eff(k) is
nonvanishing only when k is a vector of the recip-
rocal lattice.

2. For a fixed k, the set of equations for all reciprocal
lattice vectors G couple only those coefficients Ck,
Ck+G1

, Ck+G2
, . . . whose wave vectors differ from

k by a reciprocal lattice vector.

3. The eigenvalues En(k) and the eigenvectors Cµn(k)
are characterized by the discrete band index n.

4. The number of bands for each k-point is determined
by the number of plane waves entering the expan-
sion (A12).

5. In practice, the plane wave basis is truncated using
a cutoff value for the kinetic energy:

||k +Gµ||2
2

< Ecutoff . (A16)

6. The wave function φnk(r) is a superposition of
plane waves of the form:

φnk(r) =
1√

NcellΩ

∑

µ

Cµn(k)ei(k+Gµ)·r. (A17)

3. Hartree-Fock for periodic materials

The Hartree-Fock method is a mean-field approxima-
tion that considers a state of independent electrons.
These particles occupy orbitals that are optimized to
minimize the energy of the state. In first quantiza-
tion, they can be written as the anti-symmetric state
A(|p1,p2, . . . ,pη〉), which is a special case of Eq. (18).
States of this form are referred to as Slater determinants.

The standard approach for obtaining the Hartree-Fock
orbitals φ(r) is to express them as a linear combination
of basis functions χ(r) as

φi(r) =
∑

µ

Cµiχµ(r), (A18)

and optimize the coefficients Cµi. The optimal coeffi-
cients can be found by solving the generalized eigenvalue
equations [140–142]

FC = SCE, (A19)

where C is a coefficient matrix with entries Cµi, F is
known as the Fock matrix, S is the overlap matrix, and
E is a matrix of eigenvalues. The Fock matrix and over-
lap matrix depend on integrals over the basis functions,
as explained in Ref. [108]. The most expensive step in
the Hartree-Fock method is the construction of the Fock
matrix and the overall complexity of the algorithm scales
as O(N4) [143].

For periodic systems, it is important to ensure that
the Hartree-Fock orbitals respect the periodicity of the
system. From the Bloch theorem [138], it follows that
the wave function describing the state of an electron in
a periodic potential, e.g., the mean-field potential in a
crystal structure, has the form

φnk(r) = eik·runk(r), (A20)

where the wave vector k is the crystal momentum and
the function unk(r) has the periodicity of the underlying
crystal lattice. The allowed values of k, known as k-
points, are obtained by imposing the Born-Von Karman
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boundary condition on the wave function in Eq. (A20).
See the App. A 2 for more details and for a summary
of the general properties of electronic states in periodic
potentials.

The function unk(r) can be expanded using the basis
set of plane waves defined in Eq. (15), so the state φnk(r)
satisfies the Bloch theorem and is given by

φnk(r) =
1√

NcellΩ

∑

µ

Cµn(k)ei(k+Gµ)·r, (A21)

where Ncell is the number of unit cells in the macroscopic
crystal. Eq. (A19) can be solved for each k-point to ob-
tain the energies En(k) and the optimized coefficients
Cµn(k) which define the electronic band structure of the
material [144]. This is a feasible and straightforward ap-
proach, but the cost of the algorithm can become pro-
hibitive if the number of plane waves N is very large.

An alternative is to employ Bloch atomic orbitals as
the basis functions [145]. For an atom located at coordi-
nates Rµ with corresponding atomic orbitals χµ(r), we
define the Bloch atomic orbital

χµk(r) =
1√
Ns

Ns∑

i=1

eiTi·kχµ(r − Ti −Rµ), (A22)

where the sum runs over all Ns atomic sites and Ti is a
lattice vector. The atom-centered orbitals χµ are typi-
cally approximated by a set of primitive Gaussian func-
tions, which facilitates the calculation of the Fock matrix.
The Hartree-Fock orbitals are then expressed as a linear
combination of Bloch atomic orbitals

φnk(r) =
∑

µ

Cµn(k)χµk(r). (A23)

The advantage of this representation is that it is typ-
ically possible to work with much fewer Bloch atomic
orbitals than plane waves to achieve a similar quality of
the approximate ground state. Then, the Hartree-Fock
equations can be solved using the localized basis set and
transformed to the plane wave representation. It is im-
portant to note that quantifying the overlap between the
Hartree-Fock state and the ground-state of periodic ma-
terials is an open problem of great importance since it
directly affects the cost of quantum phase estimation.

B. Density functional theory

At present, first-principles calculations of the elec-
tronic structure of cathode materials are largely per-
formed using density functional theory (DFT) meth-
ods [18, 30]. In this section we explain the main concepts
of DFT and describe the most common approximations
used for battery simulations.

1. Basic concepts

Density functional theory has been the workhorse for
simulating the electronic structure of molecules and ma-
terials for more than two decades [146]. The core of this
success is that the quantity used in DFT to compute
the properties of an interacting electron system is the
ground-state electronic density n(r) (a function of three
variables), which is a much simpler object than the wave
function Ψ(r1, . . . , rη) (a function of 3η variables). The
ground-state wave function Ψ0 of the η-electron system
is a solution of the Schrödinger equation

HΨ0(r1, . . . , rη) = E0Ψ0(r1, . . . , rη), (B1)

where E0 is the ground-state energy and H = T + U +
V is the electronic Hamiltonian. Here T is the kinetic-
energy operator, U is a given potential operator, e.g.,
the electron-nuclei interaction, and V is the Coulomb
electron-electron interaction. These terms are defined as
follows:

T =

η∑

i=1

−∇
2
i

2
, (B2)

U =

η∑

i=1

u(ri), (B3)

V =
1

2

η∑

i 6=j=1

1

||ri − rj ||
. (B4)

The electronic structure problem defined above can be
recast in terms of the electronic density n(r), which is
given by

n(r) = η

∫
dr2 . . . drη||Ψ(r, r2, . . . , rη)||2. (B5)

The Hohenberg-Kohn theorem [28], one of the pillars of
DFT, proves that there is a one-to-one correspondence
between the potential u(r) and the ground-state elec-
tronic density n0(r) of the interacting system. This map-
ping is expressed by writing u(r) as a density functional
u[n0](r), which implies that the wave function Ψ0 com-
puted via the Schrödinger Eq. (B1) also becomes a den-
sity functional Ψ0[n0](r). Thus, the expectation value
of the Hamiltonian for a given potential u0 defines the
energy functional

Eu0 [n] = 〈Ψ[n]|T + U0 + V |Ψ[n]〉

=

∫
dr n(r)u0(r) + F [n], (B6)

where Ψ[n] is a wave function producing the density n(r)
and F [n] = T [n] + V [n] is the so-called universal func-
tional, since it is the same for any Coulomb system. Ap-
plying the variational principle, the ground-state elec-
tronic density n0(r) can be obtained by solving the Euler
equation
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/ Exponential |µ〉 • • • • •

/ H |νx〉 • • •

/ H |νy〉 • • •

/ H |νz〉 • • •

/ H |m〉 •

|0〉flag ν 6= −0

|0〉flag ν ∈ Bµ

|0〉flag (2µ−2)2M > m‖ν‖2

FIG. 8. Quantum circuit for momentum state preparation. The circuit for implementing a state with exponential
amplitudes is the same as in Fig. 11 in the main text. The controlled Hadamard gates correspond to the preparation of Cµ in
Fig. 14. There is also a register for the uniform superposition over |m〉, as well as the three tests. The later one checking the
condition (2µ−2)2M > m‖ν‖2 constitutes the key step in this procedure.

δ

δn(r)

[
Eu0 [n]− µ

∫
dr′n(r′)

]
= 0, (B7)

where µ is a Lagrange multiplier to ensure the cor-
rect number of electrons. In principle, Eq. (B7) al-
lows us to find the electronic density n0(r) and thus the
ground-state energy Eu0 [n0] without having to solve the
Schrödinger equation. However, the actual form of the
universal functional F [n] is unknown and must be ap-
proximated.

It was the later formulation proposed by Kohn and
Sham [147] which transformed DFT into a practical
computational scheme for simulations. The Kohn-
Sham approach assumes that for any interacting system
with ground-state density n(r) there is always a non-
interacting system, the Kohn-Sham system, which re-
produces the same density n(r). Since the Hamiltonian
of the non-interacting system contains no V operator,
Eq. (B6) for the Kohn-Sham system simplifies to

Eus [n] =

∫
dr n(r)us(r) + Ts[n], (B8)

where us(r) is an effective potential and Ts[n] is the ki-
netic energy functional for the non-interacting system. In
this case, the density n(r) can be found from the equa-
tion

δEus [n]

δn(r)
=
δTs[n]

δn(r)
+ us(r) = µ. (B9)

Solving the equation above still requires access to
the functional Ts[n], which is only approximately

known [148]. However, the many-body wave func-
tion for the non-interacting system is the product sate
φ1(r1)φ2(r2) . . . φη(rη), antisymmetrized under all possi-
ble particle exchanges (a Slater determinant [108]), where
the single-electron states φi(r) satisfy the equation

[
−1

2
∇2 + us(r)

]
φi(r) = εiφi(r), (B10)

where εi is the energy of the Kohn-Sham orbital φi(r),
and the electronic density n(r) can be computed as

n(r) =

η∑

i=1

||φi(r)||2. (B11)

In order to solve Eq. (B10) we need to know the effective
potential us(r). To that aim, we first rewrite the energy
functional Eu0 [n] in Eq. (B6), as

Eu0
[n] = Ts[n] +

∫
drn(r)u0(r) +EH[n] +Exc[n], (B12)

where

EH[n] =
1

2

∫
dr dr′

n(r)n(r′)
||r − r′|| , (B13)

is the classical Coulomb energy, and Exc[n] is called the
exchange-correlation (xc) energy functional defined as

Exc[n] = T [n]− Ts[n] + V [n]− EH[n]. (B14)

Then, by taking the derivative of the functional Eu0
[n]

in Eq. (B7) and comparing the result with Eq. (B9), we
find that the Kohn-Sham potential us(r) is given by

us[n](r) = u0(r) + uH[n](r) + uxc[n](r), (B15)
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where

uH[n](r) =

∫
dr′

n(r′)
||r − r′|| and uxc[n](r) =

δExc[n]

δ[n](r)
,

(B16)
are the Hartree and exchange-correlation potentials, re-
spectively. Eqs. (B10), (B11) and (B15) are known as
the Kohn-Sham equations, and the solutions of Eq. (B10)
(Kohn-Sham orbitals) for the exact exchange-correlation
functional can be used to compute the ground-state elec-
tronic density n0(r) of the interacting quantum system
and its total energy Eu0

[n0] given by [149]

Eu0
[n0] =

η∑

i=1

εi − EH[n0]

−
∫
drn0(r)uxc[n0](r) + Exc[n0]. (B17)

2. DFT approximations for simulating cathode
materials

In practice, we only have access to approximate
exchange-correlation energy functionals. Different strate-
gies included in the so-called Jacob’s ladder to DFT ap-
proximations [150] have been used to develop a diverse
landscape of available functionals [31, 146]. In general,
choosing the best possible approximation to simulate a
particular system is never straightforward and typically
requires expert knowledge for making the most adequate
choices. In particular, most DFT simulations of the bat-
tery properties described in the previous section rely on
the local-density (LDA) and generalized-gradient (GGA)
approximations [30]. Within the LDA approach, the ex-
change and correlation energies are computed from the
value of the electronic density at each point using analyti-
cal expressions derived for the uniform electron gas [151].
On the other hand, GGA functionals accounts for the in-
homogeneities of the electronic structure of materials by
including terms that depend on the gradient of the den-
sity.

DFT has been central to make progress in the atom-
istic simulation of materials even though it faces impor-
tant limitations in simulating key properties of batter-
ies. LDA and GGA functionals are extensively used in
materials science due to their favorable computational
performance. These approximations are affected by the
well known self-interaction error [33] which can lead to
very inaccurate values of the absolute energy of the quan-
tum system. However, most properties of molecules and
materials are obtained by computing total energy differ-
ences where these errors cancel as long as the electronic
structure of the system does not change drastically. This
is not the case when simulating the battery properties
described in the previous section.

Lithium insertion into the cathode material involves
an electron transfer from a metallic state in a lithium
anode to a localized state in the transition metal-oxide

cathode. Using DFT to compute the energy difference
between these two different electronic phases lacks error
cancellation and leads to large deviations of up to one volt
in the calculated voltages [30]. For the same reasons, it is
still challenging for DFT to compute accurate formation
energies for reliably predicting other stable phases of the
cathode materials.

The DFT+U method [34] has been used to partially
mitigate this problem of standard DFT approximations.
Inspired by the Hubbard model, this approach incorpo-
rates a Hubbard-like term to treat the strong on-site
Coulomb interactions between the electrons populating
the d or f orbitals [34]. However, the improvements
on the simulated quantities comes at the price of using
specific values of the Hubbard parameter U which are
strongly system-dependent. Alternatively, LDA/GGA
self-interaction error can also be reduced by using specific
hybrid functionals which incorporate a fraction of the ex-
act exchange from Hartree-Fock theory [35]. However,
hybrid functionals also contain an adjustable parameter
to select the amount of exact exchange to be included
in the calculation, and their computational performance
scales poorly with the system size. Overall, these cor-
rections to DFT approximations reduce the deviations in
the predicted cell voltages to about 0.2 volts [30, 36].

C. Electronic Hamiltonian in first quantization

We derive the matrix elements of the Hamiltonian in
first quantization given by Eqs. (C8)-(C10) in Sec. III A.
In first quantization, each term of the electronic Hamilto-
nianH = T+U+V can be projected on to the plane-wave
basis functions defined in Eq. (15) as follows:

T =

η∑

i=1

N∑

p,q=1

Tpq|p〉〈q|i, (C1)

U =

η∑

i=1

N∑

p,q=1

Upq|p〉〈q|i, (C2)

V =
1

2

η∑

i6=j=1

N∑

p,q,r,s=1

Vpqrs|p〉〈s|i |q〉〈r|j , (C3)

with |p〉i and |q〉i indexing momentum basis functions.
The matrix elements of the kinetic energy operator are
obtained from the integral

Tpq =

∫
drϕ∗p(r)

(
− ∇

2

2

)
ϕq(r)

=
‖Gq‖2

2

∫
drei(Gq−Gp)r = δp,q

||Gp||2
2

. (C4)

For computing the matrix elements of the electron-nuclei
and electron-electron interaction, we use that the Fourier
transform of the Coulomb potential 1/r is F [1/r] =
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4π/G2. The matrix elements of the one-particle oper-
ator

U =

η∑

i=1

L∑

I=1

− ZI
|ri −RI |

(C5)

are computed as

Upq=

L∑

I=1

∫
drϕ∗p(r)

(
− ZI
||r −RI ||

)
ϕq(r)

= − 1

Ω

L∑

I=1

ZI

∫
dr
e−i(Gp−Gq)·(r−RI)

||r −RI ||
ei(Gq−Gp)·RI

= −4π

Ω

L∑

I=1

ZI
ei(Gq−Gp)·RI

||Gp −Gq||2
. (C6)

In this equation, L is the number of atoms in the unit
cell, ZI is the atomic number of the I-th atom, and ri,
RI denote the positions of the electrons and nuclei, re-
spectively. Similarly, for the matrix elements of the two-
particle operator V we have

Vpqrs=

∫
dr1dr2

ϕ∗p(r1)ϕ∗q(r2)ϕr(r2)ϕs(r1)

||r1 − r2||

=
4π

Ω||Gp −Gs||2
∫
dr2e

i[(Gr−Gq)−(Gp−Gs)]·r2

=
4π

Ω

δGp−Gs,Gr−Gq
||Gν ||2

, (C7)

where Gν = Gp −Gs = Gr −Gq 6= 0. By inserting the
Eqs. (C4)-(C7) into the Eqs. (C1)-(C3), correspondingly,
we obtain the following Hamiltonian representation:

T =

η∑

i=1

∑

p∈G

‖Gp‖2
2
|p〉 〈p|i , (C8)

U = −4π

Ω

η∑

i=1

∑

q∈G

∑

ν∈G0
(q−ν)∈G

∑L
I=1 ZIe

iGν ·RI

‖Gν‖2
|q− ν〉 〈q|i ,

(C9)

V =
2π

Ω

η∑

i 6=j

∑

p,q∈G

∑

ν∈G0
(p+ν)∈G
(q−ν)∈G

1

‖Gν‖2
|p+ ν〉 〈p|i |q − ν〉 〈q|j .

(C10)

Note that in those equations, we require that ν ∈ G0.
This aliasing is commonplace in electronic structure
codes, and the error caused has the same asymptotic be-
havior as the basis error [97].

D. Hartree Fock state preparation

In this appendix we give a more detailed explana-
tion on the preparation of the Hartree-Fock state in first

quantization. It consists of two main steps: the anti-
symmetrization procedure from Ref. [41], and the basis
change method explained in Ref. [111]. Together with
our method to implement the Givens rotations required
by the latter, this fully explains how to prepare the ob-
jective state.

1. Antisymmetrization

First quantization and second quantization approaches
differ in one important aspect: in the former case, the
antisymmetry of fermionic systems appears in the state,
while in the latter it does so in the operators. There-
fore, it is important to describe how a quantum com-
puter can antisymmetrize the initial state. This proce-
dure will only need to be implemented once because the
particle exchange operator commutes with the Hamilto-
nian, meaning that quantum phase estimation preserves
the antisymmetry of the state.

The antisymmetrization procedure is mathematically
defined in Eq. (19). Ref. [41] introduced an efficient an-
tisymmetrization algorithm that relies on the concept of
a sorting network. The main idea is to employ the sort-
ing network on an equal superposition state of auxiliary
qubits, keep a record of the permutations made during
the sort, and use the record to reverse the sorting op-
erations on the state of the system. This results in an
equal superposition of all permutations of the input state.
The records can also be used to apply the corresponding
phase to the permutation, resulting in the desired an-
tisymmetrized state. More precisely, the algorithm of
Ref. [41] proceeds as follows (see Fig. 4):

1. Define the function f(η) = 2dlog(η2)e ≥ η2. Intro-
duce an auxiliary seed system of η registers each con-
taining dlog(η2)e qubits. Apply a Hadamard gate on all
qubits to create an equal superposition state

1√
f(η)η

f(η)∑

`1,...,`η=0

|`1, . . . , `η〉 . (D1)

2. Introduce a record register containing as many
qubits as there are sorting operations in the network and
initialize it to the all-zero state. The state of the seed
and record registers is

1√
f(η)η

f(η)∑

`1,...,`η=0

|`1, . . . , `η〉 |0〉 . (D2)

3. Apply the sorting network to the seed register and
save the information on which swaps were made in the
record register. The unnormalized state of seed and
record after sorting is

1√
f(η)η

∑

0≤`1≤...≤`η


|`1, . . . , `η〉

∑

σ∈Sη
|σ1, . . . , σT 〉`


 ,

(D3)
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where σ1, . . . , σT are the T swaps applied by the sorting
network that also decompose the permutation σ = σ1 ◦
· · · ◦ σT .

4. Project the state into the repetition-free subspace
span({|`1, . . . , `η〉 : `i 6= `j}). This projection is proba-
bilistically done via a measurement of the seed register.
The result is the state

|`1, . . . , `η〉
1√
|Sη|

∑

σ∈Sη
σ=σ1◦···◦σT

|σ1, . . . , σT 〉 . (D4)

If f(η) is chosen as in step 1, the projection succeeds
with probability greater than 1/2 [41]. The seed regis-
ter is disentangled from the system register and can be
discarded.

5. Using the information in the record register, apply
the inverse of the sorting network to the system with an
additional Z gate on each record qubit. Since the record
register is in a superposition over permutations in Sη,
this inverse sorting applies an equal superposition of all
possible permutations of η different elements, together
with an overall phase corresponding to the parity of the
permutation. We thus end up with an antisymmetric
state, as desired.

The cost of this antisymmetrization procedure can be
upper bounded by the use of up to three sorting net-
works: two for the sorting of the record register to ac-
count for the failure probability in the postselection, and
the final one for inverse sorting on the system register.
Calling a = blog ηc and b = dlog ηe, the number c of
comparison operators in the network is 2a−1a(a+1)/2 ≤
c ≤ bn/2cb(b + 1)/2. Each comparison operator can
be implemented with 2d(log η) + 1e or 2dlogNe Toffoli
gates [152], and half as many Toffolis are required to
implement the controlled swap operations. Overall, the
antisymmetrization can be performed using circuits with
O(polylog(η) log logN) depth.

2. Basis change

A common approximation to the ground-state is to
consider an optimized Slater determinant defined at the Γ
point (k = (0, 0, 0)) of the Brillouin zone (see App. A 1).
Each independent electron occupies an orbital repre-
sented as a linear combination of basis functions, as cap-
tured by Eqs. (A21) and (A23). This means that in a
plane-wave basis, the qubit representation of the first-
quantized Hartree-Fock state, which is a single Slater
determinant, is a superposition over the computational
basis states.

Despite this state being more complicated than in sec-
ond quantization, any single Slater determinant can be
efficiently prepared on a quantum computer by perform-
ing transformations at the level of fermionic ladder oper-
ators [111, 153, 154]. This allows us to choose an initial
basis of orbitals where the quantum states can be written

as computational basis states and then perform a basis
change into the optimized Hartree-Fock orbitals.

Any basis transformation of fermionic ladder operators
can be described as

ã†p =

N∑

q=1

upqa
†
q, (D5)

ãp =

N∑

q=1

u∗pqaq, (D6)

where a†q, aq are the ladder operators satisfying the
canonical anticommutative relations, and upq are entries
of a N ×N unitary matrix for a system with N orbitals.
Here p, q are indices that indicate which orbitals are being
considered. The entries of this unitary can be computed
from the inner product between the initial ϕ and final
orbitals φ

upq = 〈φq, ϕp〉 =

∫
drφ∗q(r)ϕp(r), (D7)

where in our case ϕp(r) corresponds to a plane wave de-
fined by Eq. (15) and φq(r) is a periodic Hartree-Fock
orbital.

In the full Hilbert space, the transformation corre-
sponds to a particle-preserving operation that can be
written as

U(u) = exp

(∑

pq

[log u]pq(a
†
paq − a†qap)

)
. (D8)

It was shown in Ref. [111] that this transformation can
be decomposed into a sequence of unitaries of the form

Rpq(θpq) = exp
(
θpq(a

†
paq − a†qap))

)
, (D9)

and that these unitaries fulfill

Rpq(θpq)U(u) = U(rpq(θpq)u), (D10)

where rpq(θpq) is a Givens rotation on the two-
dimensional subspace of row p and column q [155,
Sec. 11.3.1], i.e., only entries upp, upq, uqp and uqq are
affected by the rotation. It is possible to choose angles
θpq such that the lower-triangle components of the ma-
trix u are set to zero by the rotation. Repeating this for
each entry below the diagonal of the matrix effectively
diagonalizes u, and is equivalent to finding a QR decom-
position [111]. This results in


∏

p 6=q
Rpq(θpq)


U(u) =

N∏

p=1

eiφpn̂p , (D11)

which is a diagonal operator. Applying the inverse rota-
tions directly gives a decomposition of U(u):

U(u) =


∏

p 6=q
Rpq(θpq)



†
N∏

p=1

eiφpn̂p . (D12)
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There are precisely
(
N
2

)
entries below the diagonal in

matrix U(u), but clever implementations can lead to a
smaller number of rotations: since only rotations between
η occupied orbitals and N − η unoccupied orbitals need
to be performed, the actual number of rotations scales as
η(N − η). As we discuss in later sections, even though
the cost of preparing this state is non-negligible, for prac-
tical simulations of cathode materials the cost of the full
quantum algorithm is still dominated by quantum phase
estimation.

A further improvement is possible: in state preparation
we can work with a number of plane waves N ′ that is
smaller than the one used for the full algorithm. The
reason is that the error in approximating the ground state
does not impact the final accuracy of the algorithm, but
only its success probability by decreasing the overlap with
the true ground state. Therefore, while the full algorithm
is carried out on n = dlogNe, state preparation can be
performed on a subset of n′ = dlogN ′e qubits. This is
important because it mitigates the linear scaling in N of
state preparation, ensuring that its final cost is smaller
than the cost of running quantum phase estimation.

E. Quantum phase estimation circuit
implementation

1. Quantum Phase Estimation

We assume that we are given (i) a quantum circuit that
can implement a unitary operator U , and (ii) an input
eigenstate |ψ〉 of U such that U |ψ〉 = eiθ|ψ〉. The goal is
to estimate the phase θ with precision ε. If we can solve
this phase estimation problem, then it is also possible to
estimate eigenvalues Ek of an electronic Hamiltonian H.
This is done by choosing U to share eigenvectors with
H such that the eigenphases θk can be related to the
eigenvalues of H by an invertible function θk = f(Ek).
For example, a simple strategy to accomplish this is to
set U = e−iH .

The standard version of the quantum phase estimation
algorithm uses two registers, as sketched in Fig. 9. The
first register contains the qubits required to represent
the state |ψ〉, and the second register contains t auxiliary
qubits. The main strategy of the algorithm is to prepare
the state

|Ψ〉 =
1√
2t




2t−1∑

k=0

e2πiφk |k〉


 |ψ〉 , (E1)

where θ = 2πφ , 0 ≤ φ ≤ 1, and |k〉 denotes a compu-
tational basis state for t auxiliary qubits. In Eq. (E1),
the state of the auxiliary qubits is equivalent to applying
a quantum Fourier transform [44] to a state |bin(φ)〉 =
|φ1, φ2, . . . , φt〉 that encodes a binary representation of

φ as φ =
∑t
j=1 φj2

−j , where φj ∈ {0, 1}. Therefore,
applying an inverse quantum Fourier transform to the

U U2

· · ·

U2t|ψ〉





· · · |ψ〉





· · ·

|0〉 H • · · ·

QFT−1
|0〉 H • · · ·

...
. . .

...

|0〉 H · · · •

FIG. 9. Conceptual circuit diagram for the quantum
phase estimation algorithm. The system register is ini-
tialized in the eigenstate |ψ〉 of the target unitary. The auxil-
iary register consists of t qubits, initialized in the basis state
|0〉. After applying a Hadamard gate (H) on all auxiliary
qubits, increasing powers of the target unitary are applied
to the system register, controlled on the state of each aux-
iliary qubit. Concluding with an inverse quantum Fourier
transform (QFT−1) and measuring the output qubits gives a
binary string that can be processed to estimate the desired
phase.

auxiliary qubits of the state |Ψ〉 in Eq. (E1) will prepare
the state |bin(φ)〉:

1√
2t

2t−1∑

k=0

e2πiφk |k〉 |ψ〉 QFT−1

−−−−−→ |bin(φ)〉 |ψ〉 . (E2)

The auxiliary qubits can then be measured in the
computational basis to retrieve φ and thus the phase
θ = 2πiφ. The number of auxiliary qubits required to
approximate φ to an accuracy ε = 2−n with probability
of success 1−δ is at most t = n+

⌈
log
(
2 + 1

2δ

)⌉
[44]. Here

the logarithm is in base 2, a choice maintained through-
out this article.

The task of phase estimation can therefore be reduced
to preparing the state |Ψ〉 in Eq. (E1). A quantum
computer can prepare this state as follows. First, a
Hadamard gate is applied to all auxiliary qubits to cre-
ate an equal superposition over the computational basis
states:

|0〉 |ψk〉 →
1√
2t

2t−1∑

k=0

|k〉 |ψ〉 . (E3)

As shown in Fig. 9, we then apply U controlled on
the state of the first auxiliary qubit, U2 controlled on
the state of the second qubit, U4 controlled on the third

qubit, and so forth until applying U2t controlled on the
final qubit. Denoting the states of the auxiliary qubits
as |k〉 = |k0, k1 . . . , kt〉 such that the bit string k0k1 . . . kt
is a binary representation of the integer k, this sequence
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of operations transforms the state of both registers as

1√
2t

2t−1∑

k=0

|k〉 |ψ〉 → 1√
2t

2t−1∑

k=0

eiθ(
∑t
j=1 kj2

j) |k〉 |ψ〉

=
1√
2t

2t−1∑

k=0

e2πiφk |k〉 |ψ〉 , (E4)

as desired.
To perform simulations of materials, a system initial-

ization into the ground state of the Hamiltonian would
be required to carry out the algorithm as depicted above.
This is of course generally not feasible in practice. In-
stead, consider a general input state |ψ〉 =

∑
i ci |Ei〉

expressed in the eigenbasis of the encoded Hamiltonian,
where the eigenstate |Ei〉 has a corresponding eigen-
value Ei. After encoding the Hamiltonian into a suit-
able unitary, the algorithm produces an estimate of Ei
with probability pi = |ci|2. In particular, it provides
an estimate of the ground-state energy with probability
p0 = |c0|2 = | 〈ψ|E0〉 |2. Thus, it is extremely important
that the input state has a sufficiently large overlap with
the ground state since, on average, the quantum phase
estimation algorithm needs to be repeated O(1/p0) times
to calculate the ground-state energy with high probabil-
ity. It is often possible to use classical methods to com-
pute an upper bound on the ground-state energy which
is smaller than the first excited-state energy. Hence, the
accuracy of the phase estimation procedure can be grad-
ually increased, and as soon as the energy is estimated
to be above the upper bound with high probability, the
algorithm is restarted [41]. This alleviates the cost of
running the algorithm when failing to project onto the
ground state.

Applying the controlled unitaries is the most expen-
sive part of the algorithm because they can be compli-
cated operations that depend on all parameters of the
electronic Hamiltonian. Nevertheless, as we discuss in
more detail in Sec. III, the cost of applying these uni-
taries scales polynomially with the system size. Overall,
the quantum phase estimation algorithm applies the con-
trolled U operation a total of

∑t
j=1 2j = 2t+1 − 2 times

to achieve precision ε = 2−n = O(2−t). This means that
the number of calls to a circuit implementing U scales as
O(1/ε).

There are variants of quantum phase estimation that
substitute the quantum Fourier transform by classical
postprocessing and by iteratively refining the estimated
phase [156]. Iterative methods have several advantages
over standard quantum phase estimation, a notable one
being that they are straightforward to parallelize. One
of the best-performing examples is a Bayesian technique
called rejection filtering phase estimation [157]. The em-
pirical scaling of this method with respect to error is
4.7/ε, close to the optimum of π/ε [158].

In the next section, we describe the full quantum al-
gorithm for estimating ground-state energies of cathode
materials. This includes strategies for constructing the

Hamiltonian, preparing approximate ground states as in-
put, encoding Hamiltonians into unitaries, and perform-
ing quantum phase estimation.

Quantum phase estimation is performed on the qubiti-
zation operator of Eq. (23), which can be implemented
in terms of the PREPH and SELH operators of Eqs. (24)
and (25). We follow the optimized compilation strate-
gies pioneered in Ref. [43] to implement these operators.
This section is therefore largely a concise summary of the
results in Ref. [43, 50].

To understand the strategy behind the implementation
of those operators, we discuss qubitization at a more ab-
stract level, and leverage the concept of block-encoding.
For qubitization-based simulation to work, the operators
PREPH and SELH must satisfy certain properties [99],
chief among them the block-encoding identity

(
〈0|PREP†H · SELH · PREPH |0〉

)
|ψ〉 =

H

λ
|ψ〉 . (E5)

Importantly, it is not required that these operators have
the specific form in (24) and (25); although those are
preferred choices and can sometimes be realized.

We then observe the following fact: if the linear sum
of unitaries of H decomposes to H = A + B, then the
qubitization subroutines of H can be defined in terms of
those of A and B. For example, given the decomposition
H = T + (U + V ), we can define the state preparation
subroutine of H as
(√

λT
λ |0〉+

√
λU+λV

λ |1〉
)
⊗ PREPT |0〉 ⊗ PREPU+V |0〉,

(E6)

and the selection subroutine of H as

|0〉 〈0| ⊗ SELT ⊗ I + |1〉 〈1| ⊗ I ⊗ SELU+V , (E7)

and it is a straightforward calculation that the above defi-
nitions satisfy the block-encoding identity (E5). Note the
use of one additional qubit to distinguish the implemen-
tation of T and U +V subroutines. The same discussion
applies to PREPU+V and SELU+V , which decompose
into individual terms for U and V . As a consequence,
two qubits are needed to prepare a superposition with
the amplitudes λT , λU , and λV .

We also have to discuss how to implement the con-
trolled version of Hamiltonian simulation. In the stan-
dard formulation of quantum phase estimation, it is cus-
tomary to apply the target unitary controlled on the state
of an auxiliary qubit. However, it is also possible to in-
stead apply the inverse unitary when the auxiliary qubit
is in state |0〉 [159]. To do that, consider the reflection
operator

R = PREPH(2 |0〉 〈0| − I)PREP†H . (E8)

It satisfies the property

R Qn R = (Q†)n. (E9)
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This implies that multiple controls on Qn can be replaced
with a single control on whether R operations are imple-
mented before and after applying Qn. From Eq. (23),
both Q and R can be implemented as sequences of select
and prepare operators as well as the reflection operator
2 |0〉 〈0| − I, for which standard circuit implementations
are known [44]. Therefore, to determine how to imple-
ment the full quantum phase estimation algorithm, it suf-
fices to specify how to implement the prepare and select
operators. This is discussed next.

2. LCU Hamiltonian decomposition

To employ the qubitization approach for a fermionic
Hamiltonian in first quantization, it is necessary to ex-
press it as a linear combination of unitaries. This was
performed in Ref. [43] as follows. First assume that the
lattice constants satisfy a1 = a2 = a3 in Eq. (17), a
restriction that we lift in App. G. The kinetic energy op-
erator T can then be simplified by observing that

G2
p =

(
2πp

Ω1/3

)2

=
4π2

Ω2/3

∑

ω,r,s

2r+spω,rpω,s, (E10)

where pω,r denotes the r-th bit of the ω component of
the momentum vector. States with amplitudes defined
by the product of momentum components are difficult to
prepare, but they can be converted to phases by observ-

ing that pω,rpω,s = 1−(−1)pω,rpω,s

2 . Thus, the operator T
in Eq. (C8) can be rewritten as

T =

η∑

j=1

∑

w∈{x,y,z}

np−2∑

r=0

np−2∑

s=0

π2

Ω2/3
2r+s·

∑

b∈{0,1}

∑

p∈G

(
(−1)b(pw,rpw,s⊕1) |p〉 〈p|j

)
,

(E11)

where np = dlog(N1/3 + 1)e is the number of qubits
needed to store a signed binary representation of one
component of the momentum vector. We can identify
the amplitudes α`T and corresponding unitaries H`T in
the linear combination of unitaries expansion as

α`T =
π2

Ω2/3
2r+s, (E12)

H`T =
∑

p∈G
(−1)b(pw,rpw,s⊕1) |p〉 〈p|j , (E13)

where `T := (j, w, r, s, b). Similarly, the operators U and
V of Eqs. (C9) and (C10) can be rewritten as

U =
∑

ν∈G0

L∑

I=1

2πZI
Ω‖Gν‖2

η∑

j=1

∑

b∈{0,1}
∑

q∈G

(
−eiGν ·RI (−1)b[(q−ν)/∈G] |q − ν〉 〈q|j

) (E14)

with G0 the set formed from G by removing the point
(0, 0, 0), and

V =
∑

ν∈G0

π

Ω‖Gν‖2
η∑

i 6=j=1

∑

b∈{0,1}

∑

p,q∈G(
(−1)b([p+ν /∈G]∨[q−ν /∈G]) |p+ ν〉 〈p|i |q − ν〉 〈q|j

)
.

(E15)

Logical clauses such as [p+ ν /∈ G]∨ [q− ν /∈ G] indicate
multiplication by one if the clause is satisfied and mul-
tiplication by zero otherwise. We identify the respective
amplitudes and operators in the expansion as

α`U =
2πZI

Ω‖Gν‖2
, (E16)

H`U =
∑

q∈G
−eiGν ·RI (−1)b[(q−ν)/∈G] |q − ν〉 〈q|j , (E17)

α`V =
π

Ω‖Gν‖2
, (E18)

H`V =
∑

p,q∈G
(−1)b([p+ν /∈G]∨[q−ν /∈G]) |p+ ν〉 〈p|i |q − ν〉 〈q|j ,

(E19)

where we employ a similar indexing strategy `U :=
(I,ν, b, j) and `V := (ν, b, i, j). The phases
(−1)b[(q−ν)/∈G] and (−1)b([p+ν /∈G]∨[q−ν /∈G]) are designed
to cancel out the amplitudes of the Hamiltonian terms
where p+ν or q−ν lead to vectors outside of G. For ex-
ample, b = 0 and b = 1 give two opposite amplitudes for
|q − ν〉 〈q|j when q−ν /∈ G. Strictly speaking, the oper-
ators H`U , H`V are not unitaries, as their kernels include
any state |q − ν〉 or |p+ ν〉 outside of G. Nevertheless,
the qubitization procedure effectively implements these
operators thanks to block-encoding, as explained later in
App. E 6.

3. Prepare operators

We first explain how to prepare states with amplitudes√
α`T
λT

,
√

α`U
λU

and
√

α`V
λV

. This process is divided into

four parts. A high level overview is given in Fig. 10,
along with a summary at the end of this section.

1. Implementing PREPT . We aim to prepare the state

PREPT |0〉 =
∑
`T

√
α`T /λT |`T 〉. By explicitly speci-

fying all indices and assigning independent registers to
each index, this state is proportional to

2−(np−1)
∑

b,j,ω,r,s

2(r+s)/2 |b〉b |j〉d |ω〉 |r〉g |s〉h , (E20)

or equivalently

21−np |+〉b
η∑

j=1

|j〉d
2∑

ω=0

|ω〉f
np−2∑

r=0

2r/2 |r〉g
np−2∑

s=0

2s/2 |s〉h ,

(E21)
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|0〉 Ry (θ) (cos(θ) |0〉+ sin(θ) |1〉)a

|0〉 Ry (arccos θλ)
(√

λU
λU+λV

|0〉+
√

λV
λU+λV

|1〉
)
m

|0〉 / PREPT Eq. (E21)

|0〉 / extra PREPV
∑η
j=1 |j〉e |i

?
= j〉c

|0〉 / Momentum state
√

Pν
λν

|0〉j
∑
ν∈G0

1
‖ν‖ |ν〉k + |⊥〉

|0〉 / QROM 1√
λZ

∑L
I=1

√
ZI |RI〉l

FIG. 10. High-level representation of PREP subrou-
tine. The first two rotations can be attributed to the prepa-
ration of registers a and m in Eq. (E26). The joint circuit for
PREPT and the extra step of PREPV is shown in Fig. 12.
Finally, we have the preparation of the momentum state and
the QROM routine.

where |+〉 = (|0〉 + |1〉)/
√

2. A key step is to prepare a
state of the form

2−(np−1)/2

np−2∑

r=0

2r/2 |r〉 . (E22)

This can be performed with a circuit consisting of con-
trolled Hadamard gates as shown in Fig. 11. The overall
circuit for implementing PREPT is illustrated in Fig. 12.

2. Momentum state for PREPU+V . The chal-
lenge in preparing the target states PREPU |0〉 =
∑
`U

√
α`U
λU
|`U 〉 ,PREPV |0〉 =

∑
`V

√
α`V
λV
|`V 〉 is that

the amplitudes α`U , α`V both depend on 1
‖Gν‖ = 1

2π
1
‖ν‖ .

This common term means that the preparation of the
momentum state below is required for both prepare
operators:

1√
λν

∑

ν∈G0

1

‖ν‖ |νx〉 |νy〉 |νz〉 . (E23)

The detailed steps to prepare this state are summa-
rized in App. E 5, and we explain the high-level strategy
here. We start by preparing a uniform superposition over
acceptable values of |ν〉 and over auxiliary registers |m〉
and |µ〉:

np+1∑

µ=2

∑

ν∈Bµ

M∑

m=0

1

2µ
|µ〉 |νx〉 |νy〉 |νz〉 |m〉 , (E24)

whereM should be judiciously chosen, and the setsBµ :=
{ν ∈ G0 : 2µ−2 ≤ ‖ν‖∞ < 2µ−1} form a partition of
G0. An inequality test is then used to discard part of
the auxiliary state whenever m ≥ dM(2µ−2/‖ν‖)2e. As
shown in App. E 5, this corrects the amplitudes of |ν〉 as
desired.

The success probability of this procedure, dependent
on the inequality test, converges to 0.2398 with large M
and np [50, Eq. (29)]. There are a few alternatives on how

H • · · · X

H • · · · X

H · · · X
...

...
. . .

...
...

· · · • X

· · · H X

|0〉flag

FIG. 11. Preparation of a state proportional to∑
r 2r/2 |r〉, where r is encoded in unary. We prepare

exponentially decreasing amplitudes by using a sequence of
Hadamard and controlled-Hadamard gates. By flipping all
qubits, the desired state with exponentially increasing ampli-
tudes is obtained. The bottom qubit represents a flag qubit
that can be measured to project out the invalid all-zero state.

to deal with the failure case. One possibility is to first
reduce its probability via amplitude amplification [160]
and then, in the rare case of failure, simply apply the
identity operator. Since the effect of that is the addition
of an identity to the Hamiltonian, we can correct any
estimate made later on [50, Eq. (30)]. Another solution is
to use the failure case to apply the SELT operator. This
is done by modifying the subroutine equations and using
a rotated auxiliary qubit cos(θ) |0〉+sin(θ) |1〉, where θ =

arcsin(2
√

(λU + λV )/λ) [43]. When λT /(λU + λV ) <
3, the first approach decreases the leading term in the
resource estimation formula (derived later in Eq. (34)),
resulting in a lower total cost in certain regimes, such as
in our example application in Sec. IV.

Together with the steps described in the next
parts, we use PREP′U+V to denote the approximation to
PREPU+V that takes into account the failure probability.

3. Final step for PREPU . To finish PREPU , we

prepare a new state 1√
λZ

∑
I

√
ZI |RI〉 where |RI〉 is a

computational basis state encoding the position vector
RI and λZ is a normalization factor. For this purpose,
we employ a general state preparation technique called
QROM [159], although other methods for preparing
arbitrary states could be used since this leads to a small
overhead. The state |RI〉 will be used later in SELU to
apply −eiGν ·RI .

4. Final step for PREPV . In contrast, PREPV re-
quires creating an additional uniform superposition
state proportional to

∑η
i 6=j=1 |i〉d |j〉e. To prepare such a

state, we can use two uniform superpositions and a flag
qubit to indicate whenever i = j.

5. Summary. We collect all the states prepared so far.
Depending on whether the value of λT /(λU + λV ) is
greater or smaller than 3, the formula for the final
state may change slightly due to some failure auxil-
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|0〉 H |+〉

|00〉 / Uniform |ω〉

|0〉⊗ log η / Uniform |i〉 •

|0〉⊗ log η / Uniform |j〉 •

|0〉flag i = j

|0〉⊗(np−1) / Exponential |r〉

|0〉⊗(np−1) / Exponential |s〉

FIG. 12. Circuit representation of PREPT and
PREPV . The uniform superpositions can be implemented
with a series of single control rotations or with Hadamard
gates (H) and an inequality test. The creation of exponential

superpositions of the form
∑
r 2r/2 |r〉 are implemented as in

Fig. 11. The preparation of the uniform superposition over
|j〉 and the equality test with |i〉 is only required for PREPV ,
but we include it here due to its conceptual similarity to other
preparations in PREPT .

iary flag. For the purpose of illustration, we assume
λT /(λU+λV ) ≥ 3, which implies the following expression
for the PREP subroutine application:

(cos(θ) |0〉+ sin(θ) |1〉)⊗ PREPT |0〉 ⊗ PREP′U+V |0, 0〉 .
(E25)

Consequently, the final state that we aim to prepare
is [43, Eq. (48)]:

(cos(θ) |0〉+ sin(θ) |1〉)a |+〉b

(
1√
3

2∑

w=0

|w〉f

)

⊗ 1√
η


√η − 1 |0〉c

η∑

i 6=j=1

|i〉d |j〉e + |1〉c
η∑

j=1

|j〉d |j〉e




⊗
(

1

2np−1 − 1

np−2∑

r,s=0

2(r+s)/2 |r〉g |s〉h

)

⊗
(√

λU
λU+λV

|0〉+
√

λV
λU+λV

|1〉
)
m

(
1√
λZ

∑L
I=1

√
ZI |RI〉

)
l

⊗
(√

Pν
λν
|0〉j

∑

ν∈G0

1

‖ν‖ |ν〉k +
√

1− Pν |1〉j |ν⊥〉k

)
,

(E26)

where Pν is the probability of successfully preparing the
momentum state. We have used different subscripts to
denote different registers, which are explained below:

1. b, f, g, h are used for PREPT .

2. n, k are employed for the momentum state prepa-
ration, common to both PREPU and PREPV .

3. a is a rotated auxiliary register that allows us to
apply SELT when the momentum state preparation
fails.

4. m is used for selecting between PREPU and
PREPV .

5. l is exclusively used for PREPU in making the su-
perposition 1√

λZ

∑
I

√
ZI |RI〉.

6. c, d, e are used for PREPV , where d, e each contain
a superposition

∑η
i=1 |i〉, and c is a flag qubit to

indicate when i = j.

The overall cost of implementing PREPH is dominated
by the momentum state preparation, which includes the
possible amplitude amplification procedure.

4. Select operators

We now explain how to implement SELT , SELU and
SELV . The objective of these operators is to apply a
unitary operation conditioned on the state of an auxil-
iary qubit. In our case, these unitaries either apply a
phase or translate the corresponding momentum register
by a given vector. The most straightforward way to apply
SELH is to iterate over the states |pj〉 and apply the cor-
responding unitary operators H` controlled on the state
|j〉 of the auxiliary register. For example, an arbitrary
operation O can be applied as

η∑

j=1

|j〉
η⊗

i=1

|pi〉 7→

η∑

j=1

(
|j〉 ⊗ |p1〉 . . . O(|pj〉) . . . |pη〉

)
.

(E27)

Each controlled application of O on the right hand side
acts on a different register. This is problematic because
it requires many controlled operations. A more efficient
technique consists of using control-SWAP operations to
effectively transfer the target register to an auxiliary one
and then performing uncontrolled operations on those
registers before swapping them back [43, Eq. (72)]. We
now explain this procedure in more detail. The circuit
corresponding to this technique is shown in Fig. 13.

1. Implementing SELT . We implement a control-swap
gate (CSWAP) of the r-th and s-th bits of the ω-th com-
ponent of |pj〉 into the state of auxiliary qubits, as fol-
lows. First, the state |pj〉 is swapped into an auxiliary
register, controlled on the value of |j〉e (see Fig. 13).

|j〉e ⊗
⊗

i

|pi〉 ⊗ |0〉 7→

|j〉e ⊗
(
|p1〉 . . . |0j〉 . . . |pη〉

)
⊗ |pj〉 .

(E28)
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Then we apply yet another CSWAP gate to the ω-th
component of |pj〉 to a new auxiliary register, controlled
on |ω〉f , for ω ∈ {x, y, z}. Finally, we perform similar

CSWAPs moving the r-th and s-th bits of |pj,ω〉 into
two extra auxiliary qubits, controlled on |r〉g and |s〉h,
respectively.

Eventually, this results in a copy of |pj,ω,r〉 and |pj,ω,s〉
in a register with two auxiliary qubits. Next, we use them
as control of a controlled-controlled Z gate with target
register b, along with an additional Z gate on b. The re-
sult is the phase (−1)bpj,ω,rpj,ω,s+b = (−1)b(pj,ω,rpj,ω,s⊕1).
This implements the target phase in Eq. (E13). Finally,
we use CSWAP gates to return the components of p into
their original register. Overall, the action of this circuit
implementing the SELT operator can be written as

SELT : |b〉b |j〉e |ω〉f |r〉g |s〉h |pj〉 7→
(−1)b(pj,ω,rpj,ω,s⊕1) |b〉b |j〉e |ω〉f |r〉g |s〉h |pj〉 ,

(E29)

which makes use of the registers prepared in Eq. (E20).

|p1〉 / × ×
|p2〉 / × ×
...

|pη〉 / × ×

|0〉 / × × ×
O

× × ×

|a〉 /

|j〉 / • • • • • •

FIG. 13. Main technique used in the SEL operator.
The strategy used in SEL consists of (i) swapping the |pj〉
register into an auxiliary register, controlled on the value of
|j〉; (ii) performing the target uncontrolled operationO, where
some additional register |a〉 such as |ν〉 might intervene; and
(iii) reversing the swaps. Each |pj〉 contains three ω coordi-
nates x, y and z, each with np qubits. We use O to repre-
sent different potential operations applied during SELH . In
SELT , the operator O represents the application of a phase
(−1)b(pω,rpω,r⊕1). For SELU and SELV , it may similarly re-
fer to controlled phases or to arithmetic sums for computing
|q− ν〉 , |p+ ν〉.

2. Implementing SELU and SELV . The strategy for U
and V is similar to the one described above for T and
illustrated in Fig. 13. The main differences are that, from
Eqs. (E14) and (E15), to implement SELU and SELV we

need to: (i) perform controlled sums and subtractions
on the momentum registers, (ii) apply a phase to cancel
out the amplitudes of the states where p + ν /∈ G or
q − ν /∈ G (see the discussion after Eq. (E19)), and (iii)
apply a second phase for the −eiGν ·RI exponent, which
is only required for SELU . We describe these steps in
further details in App. E 6.

The controlled swaps are the most expensive procedure
in each step of quantum phase estimation; they are the
only part of the implementation of the qubitization op-
erator that scales linearly with the number of particles η.
This is because we have to swap the 3ηnp qubits repre-
senting the system state (see Eq. (18)) in and out of the
auxiliary qubits.

5. Preparation of the momentum state

The process of implementing PREPU and PREPV in-
volves the common step of preparing the momentum
state (E23) reproduced below:

1√
λν

∑

ν∈G0

1

‖ν‖ |νx〉 |νy〉 |νz〉 .

To prepare it [50, Pag. 4-5], the necessary steps as de-
picted in Fig. 8 are:

1. Use the same technique as in Fig. 11 for PREPT to
prepare a unary-encoded register

1√
2np+2

np+1∑

µ=2

√
2µ |µ〉 =

1√
2np+2

np+1∑

µ=2

√
2µ |0 . . . 1 . . . 1︸ ︷︷ ︸

µ

〉 .

(E30)

2. Prepare a uniform superposition state using con-
trolled Hadamards over registers |νx〉, |νy〉, and
|νz〉, which will take values from −2µ−1 + 1 to
2µ−1 − 1 as signed integers. These superpositions
can be written using a series of nested cubes Cµ
and their differences Bµ = Cµ\Cµ−1; see the circuit
depicted in Fig. 14.

3. The previous preparation contains both a repre-
sentation for |+0〉 and |−0〉. The latter is therefore
flagged as failure.

4. Similarly, to avoid double-counting, we should flag
as failure when ν, prepared for a given value of µ,
is also in the inner cube Cµ−1, i.e. ν /∈ Bµ.

5. Use Hadamard gates to prepare a superposition
over |m〉 from 0 to M , where M is a large power of
two.

6. Finally, this last register undergoes an inequality
test

(2µ−2)2M > m‖ν‖2. (E31)
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This test [43, Eq. (84)] yields

1√
M(2np+2)

np+1∑

µ=2

∑

ν∈Bµ

dM(2µ−2/‖ν‖)2e−1∑

m=0

× 1

2µ
|µ〉 |νx〉 |νy〉 |νz〉 |m〉 |0〉+ |Ψ⊥〉 ,

(E32)

with the desired amplitudes for each ν upon suc-
cess:

√
dM(2µ−2/‖ν‖)2e
M22µ(2np+2)

≈ 1

4
√

2np+2

1

‖ν‖ . (E33)

Note the amplitudes 1
2µ in (E32) come from the fac-

tor
√

2µ in (E30), as well as three factors of
√

2−µ

from the uniform superposition over |νx〉, |νy〉 and
|νz〉.

6. Implementing SELU and SELV operators

We explain in more depth the steps to implement
SELU and SELV , implied from (E14) and (E15): (i) con-
trolled sums and subtractions, (ii) a phase to cancel out
the amplitudes of the invalid states, and (iii) exclusively
for SELU , the phase −eiGν ·RI .

Following the procedure depicted in Fig. 13, sums and
subtractions are performed by the operator O. The de-
tails and cost involved in this arithmetic operation can
be found in [43, Sec. II.D].

The control-phase cancellations (−1)b[(q−ν)/∈G] and
(−1)b([p+ν /∈G]∨[q−ν /∈G]) are similar to the case discussed
for SELT . For example, if p + ν /∈ G, then one of the
three coordinates of p+ν has absolute value larger than
2np−1, which means that some extra auxiliary qubit will
take value |1〉. This qubit can be used to apply a multi-
controlled Z gate on |+〉b. In a further optimization,
this last phase implementation can be shown to be un-
necessary when p+ ν or q − ν are outside G, since the
extra auxiliary qubits are among those that are auto-
matically selected to be |0〉 in the block-encoding iden-
tity (E5) [43, Sec. II.D]. Notice how this selection also
enables the implementation of the non-unitary operators
H`U , H`V , since any state p + ν or q − ν outside of G
is projected to zero, which is how H`U , H`V act on these
states.

The phase −eiGν ·RI in SELU requires to multiply and
sum all three coordinates Gνi(RI)i. The inner product
can be done in the computational basis with standard
reversible quantum algorithms. Finally, the binary ex-
pression of

∑
iGνi(RI)i is used to perform controlled

RZ(π/2b+1) rotations, where b is the bit we are rotating.

Overall, we may describe the SELU operator as

SELU : |b〉b |j〉e |0〉m |ν〉k |RI〉l |qj〉 7→
|b〉b |j〉e |0〉m |ν〉k |RI〉l |qj − ν〉 7→

(−1)b[(q−ν)/∈G] |b〉b |j〉e |0〉m |ν〉k |RI〉l |qj − ν〉 7→
−eiGν ·RI (−1)b[(q−ν)/∈G] |b〉b |j〉e |0〉m |ν〉k |RI〉l |qj − ν〉 .

(E34)

Similarly, for SELV we apply the transformation

SELV : |b〉b |i〉d |j〉e |1〉m |ν〉k |pi〉 |qj〉 7→
|b〉b |i〉d |j〉e |1〉m |ν〉k |pi + ν〉 |qj − ν〉 7→

(−1)b([p+ν /∈G]∨[q−ν /∈G]) |b〉b |i〉d |j〉e |1〉m |ν〉k
⊗ |pi + ν〉 |qj − ν〉 .

(E35)

It can be seen from these two equations that the opera-
tion |qj〉 |ν〉 7→ |qj − ν〉 |ν〉 must be implemented in both
cases, so it can be implemented just once controlled on
the register that selects U + V instead of T .

F. Toffoli gate cost full equation

As mentioned in Sec. IV 1, below we reproduce the full
Toffoli gate cost equation of the qubitization-based quan-
tum phase estimation algorithm, while briefly outlining
the origin of each term in the expression:

⌈
πλ

2εQPE

⌉

︸ ︷︷ ︸
#(controlled-Q calls)

(
2(nT + 4nηZ + 2br − 12)︸ ︷︷ ︸
preparation qubit T/(U+V )

+

+ 14nη + 8br − 36︸ ︷︷ ︸
uniform i&j and i 6= j test

+ a[3n2
p + 15np − 7 + 4nM (np + 1)]

︸ ︷︷ ︸
preparation 1/|ν| amplitudes

+λZ + Er(λZ)︸ ︷︷ ︸
QROM

+ 2(2np + 2br − 7)︸ ︷︷ ︸
preparation over w,r&s

+ 12ηnp︸ ︷︷ ︸
swap p&q

+ 5(np − 1) + 2︸ ︷︷ ︸
SELT

+ 24np︸︷︷︸
|p±ν〉

+ 6npnR︸ ︷︷ ︸
eiGν ·RI

+ 18︸︷︷︸
selection between T,U,V

+

nηZ + 2nη + 6np + nM + 16︸ ︷︷ ︸
(2|0〉〈0|−1)

+ Õ(log ε−1)︸ ︷︷ ︸
Rotations

)
,

(F1)

The different terms of the form nx as well as the term br
denote qubits numbers. Importantly, all these quantities
are logarithmic in the precision derived from various error
sources. In addition, note that a = 3 or 1 depending on
whether or not amplitude amplification is used in the
preparation of 1/‖ν‖ amplitudes (see part 2 in App. E).



32




•
•

|µ〉 ...
•




H

H

|νi〉 H
...

...

H

|0〉flag

FIG. 14. Preparation of the superposition correspond-
ing to Cµ. The first register in |νi〉 is the sign qubit, using
controlled Hadamard gates. This procedure has to be re-
peated for i ∈ {x, y, z}. The last multi-controlled not can be
understood as part of the detection of ν having a −0 value in
one of the components.

G. Non-cubic unit cells

We explore what happens if the cell, instead of hav-
ing a cubic form, is a rectangular parallelepiped, i.e., the
primitive vectors of the cell are orthogonal but not or-

thonormal. Therefore, let us take the vectors of the di-
rect lattice (A1) to be (a1n1, a2n2, a3n3), where the co-
efficients ai are different.

Following the App. C formalism to find the Hamilto-
nian matrix elements, we observe that the Fourier trans-
form of the Coulomb potential 1/r still has the same
form, i.e. F [1/r] = 4π

||Gν ||2 . Thus, when expressing the

Hamiltonian operators in Eqs. (C8), (C9) and (C10), the
components ofGν (16) are rescaled appropriately. Notice
that p or ν do not change as they label the plane wave
basis along with only the vector space structure (17),
while the geometry is accounted for in Gν (16). This has
the following consequences for the algorithm:

• In PREPT , we previously created a uniform super-
position over w, with w indexing each component
of ν. Now such a superposition will not be done
uniformly, but according to the weights 1/ai.

• In PREPU+V , to prepare the momentum state∑
ν

1
‖Gν‖ |ν〉, each ‖ν‖ in the equations of App. E 5

needs to be replaced with ‖Gν‖. Thus, there
is a rescaling of the amplitudes in (E31), i.e.
(2µ−2)2M > m(ν2

x/a
2
1 + ν2

y/a
2
2 + ν2

z/a
2
3). The re-

maining inequality test can be carried out similarly
yielding the desired amplitudes. Notice that we
normalize the coefficients a−1

i . For our case-study
constants and after amplitude amplification, this
has the effect of increasing the asymptotic failure
probability from ∼0.1% to ∼5.5%.

Regarding the SEL operators, the only phase which could
have a change in its implementation is −eiGν ·RI . How-
ever, since the RI coordinates are those of the direct
lattice with coordinates (RI)iai, which have the inverse
weights of Gν ’s coordinates pi/ai, there is no change to
the implementation of this phase either.
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