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We propose a way to measure the qubit state of an arbitrary sub-ensemble of atoms in an array
without significantly disturbing the quantum information in the unmeasured atoms. The idea is to
first site-selectively transfer atoms out of the qubit basis so that one of the two states at a time is put
into an auxiliary state. Electromagnetically induced transparency (EIT) light will then protect most
states while detection light is scattered from atoms in the auxiliary state, which is made immune
to the EIT protection by angular momentum selection rules and carefully chosen light polarization.
The two states will be measured in turn, after which it is possible to recool and return the atoms
to a qubit state. These measurements can be the basis of quantum error correction.

I. INTRODUCTION

There has been substantial recent progress in develop-
ing neutral atom qubits. Along with better control of
atom locations and better vibrational cooling in systems
with >50 atom qubits [1–9], there have been advances
in high fidelity state detection [10, 11], single-qubit gate
fidelity [12–15] and two-qubit gate fidelity [11, 16–21].
Continued progress is necessary on all these technical
fronts, but it is not too early to think seriously about the
remaining element needed for universal quantum compu-
tation: the ability to correct errors [22–24]. Quantum
error correction (QEC) requires being able to measure
the states of selected qubits while preserving the quan-
tum information in the rest. One-way quantum compu-
tation, where entanglement is initially encoded into the
system, also requires site-specific measurements [25]. The
challenge on this front for neutral atoms, as well as for
trapped ions, is that their qubit states are typically de-
tected by scattering photons, which can be rescattered by
surrounding spectator atoms, randomly changing their
quantum states. The challenge is greater when the atoms
are more closely spaced and it is especially large in 3D
arrays, where there are typically atoms in the path of all
scattered photons.

A few ideas have been previously suggested for meet-
ing the selective measurement challenge. Two atomic
species can be used, one for computation and one for
measurement [26–28]. In ion systems, the quantum logic
clock is based on this concept and has yielded very pre-
cise state detection [29, 30]. But it has not been imple-
mented in systems with many qubits or in neutral atom
systems. Alkaline earth-like atoms present the possibil-
ity of storing qubit states in metastable triplet levels that
do not rescatter light from singlet scattering transitions.
These atoms could obviate the need for the type of spec-
tator protection proposed here, but perhaps at the cost
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of extra, routine manipulation of the states of spectator
atoms, which would come with its own error costs. An-
other viable approach that can be applied in some trap-
ping configurations, is to move the atoms to be measured
far enough away from the other atoms to sufficiently sup-
press rescattering when their states are being detected
[31, 32].

Spatially selective measurement of an alkali atom has
been demonstrated using EIT to suppress repumping
from all but well-localized spatial positions [33–35]. Such
an approach has not been adapted for qubit state mea-
surements. The idea that we propose here combines site-
selective state transfers and EIT to yield high fidelity
localized state detection while minimally affecting sur-
rounding quantum information. Such detection can be
lossless and allows for recooling the measured qubits.

The general approach we propose starts with identi-
fying a sub-sample of atoms to be measured and site-
selectively mapping the qubit states of those atoms onto
two auxiliary states. Then the two auxiliary states will
be detected in turn in the presence of EIT light that sup-
presses light scattering from all other states, including
the qubit basis. Having thus performed a state measure-
ment on the selected atoms, they can be transferred back
to one of the qubit basis states.

All the elements of this proposal have been previously
demonstrated with high fidelity except for this particular
use of an EIT protection beam. Starting with any appa-
ratus that is capable of implementing neutral atom quan-
tum computation, the experimental addition required to
implement this proposal consists only of adding an EIT
protection beam. As we will see, the required EIT power
can be easily achieved with existing technology and the
effect of the EIT light on the coherence and trapping of
the unmeasured atoms is minimal. Although it is rather
complicated to calculate all aspects of the performance
of the measurement approach proposed in this paper, the
experimental implementation of this proposal should be
straightforward.

In the next section we will expand on this overview
and the need for protection. Section III delves into the
core part of the procedure, the implementation of state-
selective EIT. Section IV describes how we numerically
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analyze the full model. In Section V, we characterize
the performance of an implementation that involves a
cycling transition, which we call Scheme 1. Our anal-
ysis takes into account all relevant hyperfine states. In
Section VI, we present a similar analysis for an imple-
mentation without a cycling transition, Scheme 2. The
lack of a cycling transition for detection adds some com-
plications, but also allows atoms to be cooled and reused.
Finally,in Section VII, we consider the effects of polariza-
tion imperfections and how they will impact real exper-
iments and thereby demonstrate the practical feasibility
of these proposals.

II. OVERVIEW

The proposed measurement starts with an array of
atomic qubits in arbitrary states, a 3D version of which
is shown in Fig. 1(a), where the blue spheres represent
atoms that can have any superposition in the qubit ba-
sis. Stage 1 of our approach will be to coherently map
the internal states of selected atoms, illustrated by the
red spheres in Fig. 1(b), out of the qubit basis into a basis
that includes a stretched state. Fig. 1(c) shows an exam-
ple, for Cs atoms, of possible states to use for both the
qubit basis and the new basis. To reach the new basis,
the atoms to be measured will first be transferred out of
the qubit basis using site-specific addressing [36], either
in series or in parallel. Once out of the qubit basis, one
qubit state will be mapped onto the stretched state, and
the other qubit state will be mapped onto an intermedi-
ate state, as shown in Fig. 1(c) (see Appendix A for a
particular example of a pulse sequence for making this
mapping). Since the intent is to measure the probability
of being in each initial state, it is not necessary to main-
tain the coherence between the two states during these
transfers.

Stage 2 is to detect atoms in and only in the stretched
state. The central idea is to use EIT to suppress the scat-
tering of detection light from all occupied magnetic sub-
levels in the upper hyperfine level except the stretched
state (and sometimes the adjacent sublevel), as illus-
trated in Fig. 1(c). The lower hyperfine states will be
protected by their detuning. There are several ways to
accomplish this state-selective EIT protection, which we
will discuss in the next section.

Stage 3 consists of using stimulated pulses, either mi-
crowave or Raman, to exchange the magnetic sublevels
into which the selected atoms were originally placed, as
shown in Fig. 1(d). The EIT-protected detection from
the stretched state can then be repeated. Detecting both
states allows atom loss to be monitored.

Finally, Stage 4 consists of a reversal of Stage 1, re-
turning each of the measured atoms to one of the qubit
states. The particular state each atom is returned to will
depend, in a known way, on the result of the measure-
ment. As in Stage 1, the transitions need only be made
site-specific for the final transfer.

FIG. 1. Overview of the measurement. (a) Initially, atoms
in a 3D optical lattice are in random superpositions in the
qubit basis (shown in blue). (b) A select group of atoms are
transferred to states out of the qubit basis (shown in red, with
a red beam going through them). (c) The qubit and non-qbuit
bases in the Cs ground state. The empty (filled) circle dark
blue states are transferred to the empty (filled) circle light
red states using a series of stimulated pulses. The red state
population in the dotted green sublevel is detected, the other
F = 4 states are EIT-protected, and the F = 3 states are
protected from light scattering by being far from resonance.
(d) Another series of stimulated pulses exchanges the empty
and filled circle red states, allowing the other state population
to be detected.

Before delving into the details of our proposed pro-
tection scheme, we will elaborate on the need for such
protection and its requirements. Direct illumination of
non-target atoms causes too large an error, even with
EIT protection, so it must be minimized. The main con-
cern is rescattering of the light emitted by imaged atoms,



3

although there may also be a small amount of stray de-
tection light due to imperfect beams or scattering from
surfaces. For resonant light, the reabsorption cross sec-
tion is given by [37]:

σ =
λ2

2π
(1)

The probability of rescattering resonant light by a sin-
gle Cs atom 5 µm away is 0.0004 per photon. The num-
ber of photons needed for detection, γ, depends on the
detection scheme. Using resonant cavities [38, 39] or
phase-sensitive imaging techniques [40, 41] allows atom
detection with tens of scattered photons, while more tra-
ditional approaches need at least several hundred scat-
tered photons [42–45]. Here we will assume that atom
detection can be achieved with 100 scattered photons;
the expected error in any particular experiment can be
rescaled accordingly. For γ=100, the error rate on the
adjacent atom is 0.04, obviously too high.

Since the spectator atom is not illuminated with the
detection light, rescattering can be decreased by increas-
ing the detuning of the detection light. However, the
reduction is proportional to the required detection light
intensity, making beam imperfection and surface scat-
tering a proportionally worse problem. Furthermore,
off-resonant detection leads to more hyperfine changing
spontaneous emission, compromising most state detec-
tion schemes. So generally, and by a large margin, pro-
tection against rescattering is needed.

A complete analysis of rescattering in an array would
have to take into account details like the specific geom-
etry of the array, the position of the target atoms inside
the array and the polarization of the imaging light. To
simplify the problem, we will assume that the imaged
atom is in the middle of the array and emits light spheri-
cally symmetrically. We will limit the discussion to large
enough 2D and 3D arrays that we can ignore the specific
lattice configuration and approximate the surrounding
distribution of atoms as shells.

It is useful to define a target maximum total er-
ror caused by imaging a single atom, E , which can be
E < 10−4, a conservative error rate for quantum error
correction [24]. If secondary rescattering can be ignored,
then the total error caused by rescattering can be ap-
proximated by the sum of the errors at all potentially
affected atoms, which is given by:

E =
∑

i∈spectators
pi γ (2)

where pi is the probability that a spectator atom i
rescatters a photon from the imaged atom. Assuming
spherical light emission, the equation can be recast as:

E =
∑
shells

σ

4πr2i
Ni γ (3)

where ri defines a shell of atoms at a given radius
around the imaged atom and Ni is the number of spec-
tator atoms in this shell.

We will characterize the effect of the EIT light with
the factor R, which is the suppressed scattering rate nor-
malized to the scattering rate with no protection. Thus
R is the suppression factor for the reabsorption of scat-
tered photons, which will be the main figure of merit
throughout the paper. The total error becomes:

E =
∑
shells

λ2

8π2r2i
RNi γ (4)

The number of atoms in a given shell depends on the
dimension of the array. For 2D arrays with lattice spac-
ing L, the number of atoms in a given radius is approxi-
mately:

Ni,2D =
2πri
L

(5)

so the total error in 2D is given by:

E2D =
∑
shells

λ2

4πriL
Rγ (6)

which grows with array size, but very slowly. A given
maximum allowed error dictates the maximum size the
array can have.

3D arrays offer benefits for quantum computation, such
as enhanced connectivity and favorable scalability [46].
The number of atoms in a shell in 3D is given by:

Ni,3D =
4πr2i
L2

(7)

so the error is given by:

E3D =
∑
shells

λ2

2πL2
Rγ. (8)

Each new shell adds the same amount of error, so that
the expression can be simplified further:

E3D =
λ2

2πL2
Rγ nshells (9)

Imaging single atoms in a 3D array is not possible with-
out direct illumination of spectator atoms, so columns of
atoms need to be addressed at a time. Because there is
no way for light to exit without passing through specta-
tor atoms, rescattering is more of a problem than in 2D,
making EIT protection even more necessary.

For Cs, scattering from the hyperfine state that is not
resonant with the imaging light is typically 3 to 4 orders



4

of magnitude lower than scattering from even the EIT-
protected resonant state. Therefore, the error rates due
to rescattering could be reduced by temporarily transfer-
ring all the spectator atoms from the typical qubit ba-
sis to a basis with states only in the off-resonant hyper-
fine manifold. However, this would come at the expense
of errors in the transfer and also errors accumulated in
this new basis, which would usually be more sensitive
to magnetic field noise. We will not further consider this
approach in this paper, but simply note it as a possibility.

III. STATE-SELECTIVE EIT PROTECTION

There are many ways to implement EIT protection for
this purpose, which can generally be categorized into two
types, those with and without cycling transitions for de-
tection. We will present detailed examples of a scheme of
each type. In our Scheme 1, the unprotected transition
used for detection is a cycling transition. Our Scheme
2 lacks a cycling transition for detection and so requires
the use of extra stimulated pulses to avoid dark states.
These extra stimulated pulses allow for a natural way to
incorporate cooling.

We consider ladder-type EIT systems in Cs. The
general configuration is as follows: a detection beam
is resonant with the transition between a ground state
(6S1/2, F = 4) and an intermediate state, which can be
either 6P3/2, F = 5 or 6P1/2, F = 4. An EIT protection
beam is resonant with the transition between the inter-
mediate state and an excited state, which can be either
7S1/2, F = 3 or 4. We will refer to the hyperfine states as
|F,mF 〉, with no prime for the ground state (e.g. |4, 4〉),
a single prime for the intermediate states (e.g. |4′, 4′〉)
and double prime for the excited state (e.g. |4′′, 4′′〉).
Our calculations are for particular electronic levels in Cs
atoms, but we expect the ideas to carry over to other
states and other systems.

Scheme 1 is shown in Fig. 2. The qubit states are |3, 0〉
and |4, 0〉. The transition |4, 4〉 to |5′, 5′〉 is not EIT-
protected, so atoms in |4, 4〉 can scatter light. The non-
resonant F ′ and F ′′ levels significantly impact EIT per-
formance, and sorting out their impact constitutes much
of this paper. Before addressing the real system, it is
useful to start with a stripped down toy Cs model, with
perfect polarization and only the F ′ = 5′ intermediate
state and the F ′′ = 4′′ excited state.

In this toy model there are 5 sublevels of primary in-
terest. The |4, 4〉 and |5′, 5′〉 sublevels form a closed
cycling transition for detection. The |4, 0〉, |5′, 1′〉 and
|4′′, 1′′〉 states form a ladder type 3-level system. The 3-
level Hamiltonian can be diagonalized after making the
rotating-wave approximation. On two photon resonance,
the (nearly) ”non-absorbing” energy eigenstate is given
by:

|ψ〉NA = cos θ |4, 0〉 − sin θ |4′′, 1′′〉 (10)

!EIT

!Image

7S1!2 F"4
F"3

6P3!2 F"5
F"4
F"3
F"2

6S1!2 F"4
F"3

2.18 GHz

0.25 GHz

9.19 GHz

FIG. 2. Scheme 1 EIT-protected detection on the D2 line.
The imaging light uses σ+-polarization and the EIT protec-
tion beam uses π-polarization. With this configuration all
F=4 sublevels are EIT-protected except |4, 4〉, which can be
imaged on the cycling transition |4, 4〉 −→ |5′, 5′〉. For clarity,
in this and all similar figures, we do not show the Zeeman
shifts of hyperfine levels. EIT protection is quite insensitive
to these shifts, as long as they are very small compared to
ΩEIT , which they are in the regime of interest. The wave-
length of the imaging light should be chosen to match the
imaging transition.

where,

tan θ =
ΩImage

ΩEIT
(11)

Here, ΩImage is the detection light Rabi frequency
and ΩEIT is the protection Rabi frequency. Light scat-
ters from the non-absorbing state to the extent that it
contains the finite lifetime excited state. In the limit,
ΩEIT >> ΩImage, the scattering rate from |ψ〉NA de-
creases linearly with protection beam intensity. Fig. 3(a)
shows 1−max{| 〈ψi|4, 0〉 |2}, the total intermediate and
excited state populations for the eigenstate that has the
highest projection onto the ground state, as a function
of the protection beam intensity (vertical axis) and the
detection beam detuning (horizontal axis). The detec-
tion beam detuning range between the two bright green
lines is the range where there is EIT protection against
absorbing the imaging light. Fig. 3(b) shows R as a func-
tion of EIT protection beam intensity when the detection
transition is resonant (along the red line in Fig. 3(a)). In
the limit of infinite protection intensity, there is perfect
EIT protection of |4, 0〉, while detection on the cycling
transition is unaffected.

In any real atom, the presence of other intermediate
and excited levels like hyperfine levels prevents this ideal
limit from being approached. The rest of this paper is
devoted to analyzing in detail the full model for Cs.
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FIG. 3. EIT-protection of an idealized 3 level-system. (a)
The non-ground state population of the EIT-protected qubit
state as a function of the detection beam detuning and the
protection beam intensity. The red dashed line marks where
the detection beam is resonant with the cycling transition.
(b) The suppression factor for the reabsorption of scattered
photons (R) as a function of intensity of the protection beam.

IV. METHODOLOGY

We use the QuTiP Python package [47] to solve the
master equation and extract populations in various mag-
netic hyperfine sublevels. For transition frequencies, en-
ergies and matrix elements, we adapted the ARC pack-
age [48] to include the hyperfine splittings. The atoms
are initially prepared in different sublevels depending on
whether we want to characterize protection or detection.
The simulation includes the full hyperfine structure of the
ground, intermediate and excited states in the presence
of the two light fields (detection and protection beams).
The Hamiltonian can be made time-independent by using
unitary transformations similar to the well known 3-level
EIT scheme and the rotating wave approximation. Only
one of the P fine structure manifolds is considered at
a time. Since this is not enough to account for the en-
tire spontaneous emission from the 7S1/2 state (which re-

quires the other 6P state), the spontaneous emission from
7S1/2 to the simulated 6P state is scaled up to match the
experimentally known lifetime of the 7S1/2 state. For all
simulations, we keep the detection beam intensity fixed
and vary the protection beam intensity. We used a beam
of 12.7µW/cm2 for the detection beam. This is an order
of magnitude below the saturation intensity, so all our
results for scattering rates scale linearly in this regime.

V. EIT PROTECTION SCHEME 1

In order to calculate the performance of the proposed
detection scheme, it is necessary to take into account all
64 states shown in Fig. 2. Since the light is far-detuned
for transitions from |3, 0〉, EIT is not needed for its pro-
tection. The main concern is the protection of |4, 0〉.
The full Hamiltonian can be diagonalized to obtain the
dressed states. Fig. 4(a) shows the extent of mixing of
|4, 0〉 with other short-lived states, as a function of both
probe beam detuning and protection beam intensity. It
is clear that the situation is considerably more compli-
cated than the simple three level EIT shown in Fig. 3(a).
In Appendix B, by adding one level at a time, we are
able to explain the various features. Since the detection
transition remains unaffected by the EIT protection, our
concern here continues to be the behavior of this graph
along the red dotted line.

While the dressed states accurately predict the be-
haviour for adiabatic preparation, we also solve the mas-
ter equation to further validate the result, as well as to
simulate a situation closer to actual experiments. To this
end we have performed the simulation with the popula-
tion starting in |4, 0〉 and letting the state evolve for up
to a few microseconds. The scattering rate from |4, 0〉 as
a function of time can be seen in Fig. 4(b). After an ini-
tial transient, within a few hundred nanoseconds the rate
settles to a constant on this timescale. The population
slowly leaks away from |4, 0〉 to |3, 0〉, |3, 1〉, |3, 2〉, |4, 1〉
and |4, 2〉.

The scattering from the detected state, |4, 4〉, follows
the behavior of a simple cycling transition (see Fig. 4(c)),
settling to a steady state value after an initial Rabi flop.
Combining the results of Figs. 4(b) and 4(c), we find R,
which is shown in Fig. 4(d) as a function of the protec-
tion beam intensity. There are two salient features: the
dramatic peak at 400 W/cm2 and the saturation of R
as the protection beam power is increased. The peak in
Fig. 4(d) corresponds to where the red dotted line crosses
the sloped line in Fig. 4(a), where the eigenstate has a
large fraction of population in the excited states. The
saturation in Fig. 4(d) is also visible in the uniform color
in Fig. 4(a) along the upper part of the dotted red line.

The best protection available in Scheme 1 is R =
8×10−5. Referring to Eqn. 6 and Eqn. 9, for a lattice
spacing of 5µm, γ = 100, and a total error per detection
of 10−4, the array size can be 62, 500 atoms in 2D and
only 125 in 3D. If 10−3 error per detection is allowed,
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FIG. 4. Scheme 1 simulation results. (a) The non-ground state population of the nominally EIT-protected qubit state as a
function of the detection beam detuning and the protection beam intensity. The red dashed line marks where the detection
beam is resonant with the cycling transition. (b) The scattering rate in the upper qubit state as a function of time for
different intensities. (c) The scattering rate of the population in the stretched state as function of time. All the curves overlap
completely since scattering on the cycling transition is unaffected by the EIT beam intensity. (d) The suppression factor for
the reabsorption of scattered photons (R) as a function of the intensity of the protection beam. The result is proportional to
the non-ground state populations shown along the red dashed line in (a).

a 3D geometry would support 157, 000 atoms, while in
2D, the array size would almost certainly never be lim-
ited by this source of error. Unlike in Scheme 2, there is
no straightforward way to incorporate cooling during the
detection.

From Fig. 4(d), we see that the EIT light intensity re-
quired to reach the best protection is 103 W/cm2. The
effect of EIT light on the undetected atoms is quite mod-
est. The off-resonant EIT light will cause spontaneous
emission from those qubit states and it will ac Stark
shift them. The spontaneous emission rate is a negligible
3mHz and the ac Stark Shift is 70kHz. The difference in
the ac Stark shift of the two qubit states is ∼ 5Hz, scaled
down from the total ac Stark shift by the ratios of the hy-
perfine splitting to detunings. The associated phase shift
on the qubit coherence is much smaller than typical trap-
ping shifts, and is easily corrected with a standard spin
echo sequence. Such spin echo sequences are necessarily
already part of any quantum computing sequence.

A 62, 500-atom 2D array would extend over 1.25 mm.

One could illuminate the atoms with an elliptical Gaus-
sian beam propagating in the plane of the array. We con-
sider an elliptical Gaussian beam with long (short) waist
of 1 mm ( 20 µm). For this beam, the power required
to protect all the atoms would be around 2.4 W, readily
achievable throughout the visible and infrared spectrum,
including for the 1470nm wavelength of the Cs EIT tran-
sition considered here. With this type of beam, the peak
intensities would be five times higher than what is re-
quired for optimal EIT protection; five times higher spon-
taneous emission rates and differential ac Stark Shifts are
still insignificant.

In the tightly-focused direction, the spring constant
from the EIT beam would be roughly 4 × 10−4 of the
typical axial trapping spring constant in tweezer arrays.
Turning the EIT beam on suddenly would only heat a
ground state atom by 3.3× 10−9 of a vibrational energy
spacing. Axial heating would thus be negligible for all
atoms, as would radial heating, which depends on the
much smaller curvature of the EIT beam in the long di-
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FIG. 5. EIT-protection Scheme 2. In this case both the
imaging and EIT protection light are σ+-polarized. The un-
protected state is |3, 3〉, with imaging on the open transition
|3, 3〉 −→ |4′, 4′〉. A set of stimulated pulses can be used to
get the population out of the dark |4, 3〉 and |4, 4〉 states in
order to continue imaging the atoms. These pulses can addi-
tionally drive sideband transitions to simultaneously cool the
atoms.

rection.
The beam considered here would protect over 60, 000

atoms, far larger than the number in state of the art in
neutral atom arrays. If need be, one could decrease the
required power with more elaborate illumination tech-
niques, like using flat-top instead of Gaussian beams.
Note also that, for comparable atom numbers in 3D, the
required EIT power is further reduced. In short, the EIT
protection beam can be readily implemented with no ad-
verse effect on stored quantum information.

VI. EIT PROTECTION SCHEME 2

Scheme 2, shown in Fig. 5, is an example of imaging
using an open transition. Here the |3, 0〉 −→ |4′, 1′〉 is
protected. We take 6P1/2 to be the intermediate state be-
cause the larger hyperfine splitting and the reduced num-
ber of hyperfine levels compared to 6P3/2 greatly reduce
multilevel effects. We note, however, that 6P3/2 could
also be used, albeit with worse performance. As can be
seen in Fig. 5, the imaging transition |3, 3〉 −→ |4′, 4′〉 is
not closed, so that for a long enough imaging time, all of
the population will end up in |4, 3〉 and |4, 4〉, which are
dark to the imaging light.

A. Imaging on an open transition

To repeatedly scatter photons from |3, 3〉, it is neces-
sary to recover the population from |4, 3〉 and |4, 4〉. The
idea is to image the atoms for some time τ , losing the

population to |4, 3〉 and |4, 4〉. Then stimulated pulses
can be used to shuffle the populations among the three
sublevels, before proceeding with the imaging again. In
particular, the sequence can be as follows:

1. σ+-polarized detection beam is turned on for some
time τ and scattering N photons. Since both
the signal and total error are proportional to each
other, the protection is independent of τ . Therefore
the pulse can be made long enough to significantly
deplete the population in |3, 3〉.

2. A pulse is applied to exchange the populations be-
tween |4, 3〉 and |3, 3〉. The imaging light is turned
on for τ , again depleting the population in |3, 3〉.
This can be repeated until the population is over-
whelmingly in |4, 4〉.

3. Another pulse is applied to exchange the popula-
tions between |4, 4〉 and |3, 3〉.

4. The entire sequence is repeated.

This sequence of steps leads to a closed-loop imaging,
where the atoms are effectively pumped to |4, 4〉 and the
imaging can be restarted, so that the atoms can be effi-
ciently detected. The key advantage of Scheme 2 is that
the reshuffling pulses can be used to drive sideband tran-
sitions to cool the atoms. Because cooling is compro-
mised when there are initially atoms in the final state,
it is best to significantly empty |3, 3〉. To steadily scat-
ter photons, the steady state population during detection
must be clearly above the vibrational ground state. But
once enough photons have been detected, a final cooling
sequence can focus on transferring only vibrationally ex-
cited atoms back to |3, 3〉, ultimately leaving most of the
atoms in the vibrational ground state of |4, 4〉. Having
this efficient way of cooling and ending with the atoms
in a well-defined state after detection allows atoms to be
reset for further quantum computation after the imaging.

We follow a similar methodology to the previous sec-
tion to characterize the EIT protection. As expected,
the population in |3, 3〉 settles to an exponential decay
after an initial Rabi flop, while the |3, 0〉 can be charac-
terized by a linear decay. |4, 4〉 and |4, 3〉 are both far
detuned from the imaging light and are therefore orders
of magnitude better protected than |3, 0〉. This means
that any population that ends in either of these states re-
mains there and any error caused by them can be safely
neglected. Using this information, we proceed to char-
acterize R as shown in Fig. 6. The similar performance
to Scheme 1 and the atom reusability make this scheme
the preferred choice despite it being more technically and
conceptually complicated.

Having an open transition for imaging allows for the
possibility of using a forbidden transition that offers bet-
ter protection of the qubit states from direct or stray
light. The idea is to, for example, protect through
the forbidden |4, 0〉 −→ |4′, 0′〉 and image on the open
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FIG. 6. Scheme 2 results. (a) The non-ground state popu-
lation of the EIT-protected qubit state |3, 0〉 as a function of
the detection beam detuning and the protection beam inten-
sity. The red dashed line marks where the detection beam is
resonant with the open transition for imaging. (b) The sup-
pression factor for the reabsorption of scattered photons (R)
as a function of intensity of the protection beam.

|4, 4〉 −→ |4′, 4′〉 transition [49]. The zero matrix el-
ement means that the qubits will be better protected
from the π-polarized detection beam. However, it doesnt
offer significantly better protection for randomly polar-
ized rescattered light, which we are mainly concerned
about here. In practical cases where direct/stray light is
a major problem, this protection could be beneficial. It
does come at the expense of a more elaborate detection
procedure and an extra source of protection errors. For
a longer discussion about this possibility, which we call
Scheme 3, see Appendix C.

The optimal EIT protection beam intensities are sim-
ilar for Schemes 1, 2 and 3. In all cases the beam can
be readily experimentally implemented and would mini-
mally affect the stored quantum information.

6S1!2

6P1!2

7S1!2

"3, 2! "3, 3!

"4', 3'! "4', 4'!

"4'', 4''!

Σ#

Σ#

Π

FIG. 7. Scheme 2 possible error caused by a small amount
of the wrong π-polarization in the protection beam. The π-
polarization (denoted by the thin red arrow), which would
otherwise resonantly couple |4′, 4′〉 to a bare |4′′, 4′′〉 (upper
right dashed grey line), is off-resonant due to the strong σ+

(denoted by the thick red arrow), which Rabi-splits |4′′, 4′′〉
(upper right solid black lines).

VII. POLARIZATION IMPERFECTIONS

In any real experiment, residual polarization errors
will compromise the proposed detection. Since Scheme
2 seems like the best choice, we will analyze this case.
There are two different types of polarization errors that
can affect the detection scheme, imperfect protection
beam polarization and imperfect detection beam polar-
ization.

For the first type of error (see Fig. 5), if some σ− or
π-polarized light is added, state |3, 0〉 remains protected.
However, π or σ−-polarized light could potentially cause
|3, 3〉 to become EIT protected, interfering with detec-
tion. A careful examination reveals that this will not
be a problem. Consider Fig. 7, where there is a lit-
tle bit of π-polarization. |4′, 4′〉 cannot be coupled to
|4′′, 4′′〉 because |4′′, 4′′〉 is already very strongly coupled
to |4′, 3′〉. The π-polarized light is prevented from acci-
dentally EIT protecting the detection transition because
it is itself EIT-protected on its own transition.

The main source of error comes from the fact there is
a possible four-photon Raman transition |3, 3〉 −→ |3, 2〉.
However, two of these transitions (|4′, 4′〉 −→ |4′′, 4′′〉
and |4′, 3′〉 −→ |3, 2〉) are single-photon off-resonant and
involve weak beams. As can be seen in Fig. 8(a), this 4th

order process causes only a small error.
Loss to |3, 2〉 can be suppressed by using a magnetic

field to make this four-photon transition off-resonant. In
order to characterize this source of error we have com-
puted the error as a function of fractional power in the
wrong π-polarization and in different magnetic fields, as
shown in Fig. 8. For an experimentally achievable frac-
tional power with the wrong polarization of ∼ 10−4, the
error can be kept below 10−4 even with no additional
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FIG. 8. Scheme 2 polarization error in EIT protection beam.
(a) A varying fractional power is applied in the wrong π-
polarization in the protection beams (with no magnetic field).
The main source of error is population transfer |3, 3〉 −→ |3, 2〉
through a four-photon Raman transition. (b) Keeping the
fractional power at 5× 10−4, a magnetic field of varying size
is applied in order to reduce the error.

magnetic field (again assuming 100 photons for imaging).
However, if the fractional power is significantly higher, a
magnetic field can be used to further suppress this source
of error.

Imperfect detection beam polarization does not cause
unwanted transitions to the intermediate state because
all those states are EIT-protected, nor does it lead to any
Raman transitions to the adjacent level. For the previ-
ous error, although the |3, 2〉 −→ |4′, 3′〉 is EIT protected,
the two-photon |3, 2〉 −→ |4′′, 4′′〉 transition can still hap-
pen, which enables the four-photon process. Here, on
the other hand, the |3, 2〉 −→ |4′, 3′〉 EIT light directly
suppresses the error. We see no such transitions in our
simulation with up to 5×10−3 of the wrong polarization.

From this discussion, it is clear that polarization im-
perfections only moderately impact the EIT scheme.
Residual effects can be mitigated by controlling ad-
justable experimental parameters like magnetic fields.

VIII. CONCLUSION

We have presented a way to measure the states of
selected qubits in an atom array while preserving the
surrounding quantum information. Such a capability is
needed for quantum error correction and one-way quan-
tum computation. To a first approximation, one can
detect selected atoms by only shining detection light at
those atoms. Our approach, EIT-protecting the unse-
lected atoms, addresses the problem that they can rescat-
ter detection light, as well as the limitation that imperfect
beam quality or scattering from surfaces can also lead to
some direct illumination of what are supposed to be the
spectator atoms. One type of scheme we consider allows
for cooling while detecting, so that the detected atoms
can be reused.

In summary, assuming that 100 scattered photons are
needed for detection, we find that for 2D arrays, EIT
protection is sufficient to allow for having >60,000 atoms
while maintaining an error per measurement below 10−4.
Only about 125 atoms can be used in a 3D array before
that measurement threshold is exceeded, at least for mea-
surement of the central atom. Relaxing the error thresh-
old to 10−3 would allow for >275,000 atoms in the array.
Without relaxing the error threshold, a similar number
of atoms can be used if the required number of scattered
photons needed for detection was reduced to 10, for in-
stance by phase contrast measurement techniques.

The EIT- protected measurement scheme proposed
here can be implemented in essentially any apparatus
capable of neutral atom quantum computing, using only
a single additional laser beam. There are other possi-
ble ways to selectively measure atoms, like using a sec-
ond species or moving atoms to a more distant location
for measurement. Even in the same apparatus, one can
imagine a role for each of these approaches.
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Appendix A: Mapping out of the qubit basis

For Cs, where the clock states (|3, 0〉 and |4, 0〉) are a
convenient qubit basis, a possible mapping proceeds as
in Fig. 9. The first step, to |4, 1〉 and |3, 1〉, is the only
one that requires spatial selectivity (sequentially or in
parallel). In 3D this can be accomplished as in [36], us-
ing microwave adiabatic fast passage (AFP) pulses and
a pair of crossed ac-Stark shifting addressing beams. In
1D or 2D, it can be accomplished either with microwave
pulses and a single addressing beam or with two-photon
Raman transitions. The frequency selectivity afforded
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FIG. 9. Selective transfer of an atom out of the qubit ba-
sis. The first step (1) in the sequence requires site-specificity,
while the remaining steps do not, as they are not resonant
with atoms in the qubit states.

by Zeeman shifts will then allow all subsequent trans-
fers to be accomplished using only microwaves. Two
pulses will map the states to |4, 3〉 and |3, 3〉. Then one
pulse will map |3, 3〉 −→ |4, 4〉. A final pulse will map
|4, 3〉 −→ |3, 2〉, where it will remain protected while the
first state is measured. After the measurement of the
first state, the two states will be swapped to measure the
second one. Although somewhat redundant, the mea-
surement of the second state will reveal if atoms have
been lost. After both measurements, the atom, now in a
known state, can be returned to a state in the qubit basis
by essentially reversing Fig. 9. The returning sequence
will again only necessitate one single spatially selective
transfer per atom.

Appendix B: Eigenstate calculations for simplified
systems

We numerically calculate the eigenstates of some sim-
pler Hamiltonians to get insight into the behaviour of
EIT protection. The essential features we would like to
explain are the saturation of the EIT protection, as well
as the scattering resonance that is observed in Fig. 4(d),
which is why for these calculation we use 6P3/2 as the
intermediate state. We calculate the eigenstates (ψi) for
several Hamiltonians with increasing complexity and plot
the quantity 1 − max{|〈ψi|4, 0〉|2}, i.e., the total inter-
mediate and excited state populations for the eigenstate
that has the highest projection on the ground state, while
varying the detection beam detuning and the protection
beam intensity. For adiabatic preparation, this quantity
is directly proportional to the scattering rate from the
ground state.

We start with a four level system containing only the
states |4, 0〉 , |4′, 1′〉 , |5′, 1′〉 , and |4′′, 1′′〉, and protection
and detection beam configurations shown by the black
levels in Fig. 10. Fig. 11 shows the results of this cal-
culation. As the protection beam intensity is increased,
the usual 3-level EIT splitting is observed until the EIT
window gets close to twice the hyperfine splitting of the
intermediate state (Fig. 11(a)). This is also evident in the
initial linear decay with a slope of -1 in the log-log plot
in Fig. 11(b) at zero detection beam detuning. The lin-

6S1!2

6P3!2

7S1!2

"4,0!

"4',1'!
"5',1'!

"4'',1''!
"3'',1''!

"3',1'!
"Image

"EIT

2.18 GHz

0.25 GHz

FIG. 10. Level diagram for simplified EIT-protection systems
discussed in this appendix. The basic four levels in solid black,
|4, 0〉, |4′, 1′〉, |5′, 1′〉 and |4′′, 1′′〉, are discussed in Fig. 11.
Fig. 12 adds in the dashed green level, |3′′, 1′′〉. Finally, Fig. 13
adds in another level in dotted brown, |3′, 1′〉.

ear decay is followed by a saturation of the excited state
population due to the existence of a constant ‘bright’
eigenstate at a fixed detuning from the detection beam.

One can get insight into this behavior by considering
the case where the two intermediate states are degener-
ate, in which case the two intermediate states and the
excited state themselves form a lambda type three level
system. The ‘dark’ state of this three level system is also
given by Eqn. 10, where the mixing angle, θ, is simply
the ratio of the matrix elements of the two intermedi-
ate states to the excited state (because they are coupled
by the same field). Since that ratio is fixed, this ‘dark’
state is also fixed. But in general this ‘dark’ state can
couple to the ground state in the presence of a detection
field. This reasoning can also be extended to the case of
a nonzero hyperfine splitting, δ. In the limit ΩEIT >> δ,
such a fixed state still exists, but is simply detuned from
the probe beam.

Next we add the state |3′′, 1′′〉 to the previous Hamilto-
nian (see the black and green levels in Fig. 10), with the
results shown in Fig. 12. Fig. 12(a) shows that the previ-
ously constant ‘bright’ state will be shifted into resonance
as the protection beam power is increased. The shift is
due to the competing (different sign of detunings) ac-
Stark shifts of the |4′, 1′〉 state due to the coupling with



11

2000 1000 0 1000 2000
Detection beam detuning (MHz)

250

500

750

1000

1250
Pr

ot
ec

tio
n 

be
am

 in
te

ns
ity

(W
/c

m
2 )

(a) 1-max{| i|4, 0 |2}

10 1 101 103 105

Protection beam intensity (W/cm2)

10 4

10 3

10 2

10 1

1-
m

ax
{|

i|4
,0

|2 }

(b)

10 6

10 5

10 4

10 3

10 2

10 1

100100

FIG. 11. EIT-protection of the 4 level-system with states
|4, 0〉, |4′, 1′〉, |5′, 1′〉 and |4′′, 1′′〉. (a) Compared to the results
in Fig. 3, the new bright state has constant detuning from the
resonant detection beam (red dashed line) at high protection
beam intensities. (b) The addition of the new level causes the
saturation of R.

the |3′′, 1′′〉 and |4′′, 1′′〉 states. Although the protection
beam is much further detuned from the |4′, 1′〉 to |3′′, 1′′〉
transition (1936 MHz) than the |4′, 1′〉 −→ |4′′, 1′′〉 tran-
sition (-250 MHz), since the matrix element for the for-
mer is larger, it eventually overpowers the Stark shift due
to the latter. Since the detuning is no longer fixed, the
linear decrease in error with protection beam intensity
is recovered after the peak. It is intriguing that one can
get this desired linear error decrease even for a five level
system. The lack of |5′, 1′〉 to |3′′, 1′′〉 coupling seems to
be critical. Unfortunately, the real Cs atom has another
relevant level. It would be possible to achieve this sit-
uation for a spin-1/2 atom with a P − D′ − P ′′ ladder,
which is not available in typical cold atom systems.

To explain the saturation in the full system the final
relevant level, |3′, 1′〉 needs to be added to the Hamilto-
nian (see all levels in Fig. 10). Fig. 13 shows that the
fixed ‘bright’ eigenstate is recovered, which yields a com-
bination of the two features previously explained.

2000 1000 0 1000 2000
Detection beam detuning (MHz)

250

500

750

1000

1250

Pr
ot

ec
tio

n 
be

am
 in

te
ns

ity
(W

/c
m

2 )

(a) 1-max{| i|4, 0 |2}

10 1 101 103 105

Protection beam intensity (W/cm2)

10 7

10 5

10 3

10 1

1-
m

ax
{|

i|4
,0

|2 }

(b)

10 6

10 5

10 4

10 3

10 2

10 1

100100

FIG. 12. EIT-protection of the five level system with the same
states as the previous four level system plus |3′′, 1′′〉. (a) The
new bright state compared to Fig. 3 has a varying detuning in
this case, with the positive slope causing it to cross 0 detuning
(red dashed line) at around 800 W/cm2 . (b) The addition
of the new level causes the peak of R at the crossing point in
(a).

Appendix C: Scheme 3

As mentioned at the end of Section VI, there ex-
ists the possibility to further suppress errors from direct
light through a variation of Scheme 2, which we will call
Scheme 3, that takes advantage of a forbidden transition.
For instance, when the intermediate state is F ′ = 4′ and
π-polarized detection light is used, the |4, 0〉 −→ |4′, 0′〉
transition is forbidden. EIT protection of the |4, 0〉 state
is only needed to protect against excitation due to im-
perfectly polarized light, such as rescattered light. EIT
also protects other mF levels, especially the |4, 3〉 state,
which gets populated because the imaging occurs on an
open transition. The best choice for the EIT protec-
tion transition is 6P1/2, F

′ = 4′ to 7S1/2, F
′′ = 4′′ with

a σ+-polarized beam, as shown in Fig. 14. Another
possible choice would be to use the 6P1/2, F

′ = 4′ to
7S1/2, F

′′ = 3′′ transition with a π-polarized beam, but
in that case, off-resonant scattering of the imaged state
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FIG. 13. EIT-protection of the six level system with the same
states as the previous five level system plus |3′, 1′〉. (a) There
are two new bright states compared to Fig. 3. One of these
two states has a constant detuning at high protection beam
intensities, while the other has a positive slope and crosses 0
detuning (red dashed line) at around 800 W/cm2. (b) The
combination of these two new bright states cause the peak
of R at the crossing point in (a) and the saturation at high
protection beam intensities.

from the 7S1/2, F
′′ = 4′′ state compromises the detection

fidelity.

For the detected atoms, as light is scattered on the
|4, 4〉 −→ |4′, 4′〉 transition, population accumulates in
|4, 3〉 and |3, 3〉. While |3, 3〉 is extremely well protected
because it is far off resonant, imperfect EIT protection of
|4, 3〉 means that population can find its way to mF < 3
levels, a loss from the qubit basis. Therefore we need
to characterize not only the scattering rate from |4, 0〉
for the spectator atoms, but also a new source of error
that comes from population loss from |4, 3〉 for the de-
tected atoms, which we call Eleakage. We follow a similar
methodology as in the main paper to characterize the
EIT protection. However, for this scheme, the exact cal-
culation of this error rate depends on the imaging time
τ , with different optima for minimizing the errors for de-
tected and spectator atoms. Here we show the result as-

!EIT

!Image

!stimulated

7S1!2 F"4
F"3

6P1!2 F"4
F"3

6S1!2 F"4
F"3

FIG. 14. EIT-protection using a forbidden transition. The
qubit state |4, 0〉 is protected from the π-polarized imaging
light by selection rules. All other F=4 states are EIT pro-
tected except |4, 4〉.

suming a τ that reasonably minimizes both errors. Also,
for |4, 0〉 we separate the protection between π-polarized
and any other polarization in order to show the enhanced
protection for direct/stray light. The results can be seen
in Fig. 15.

Assuming perfect π-polarization, the |4, 0〉 state does
not need EIT protection, although there is a small
amount of off-resonant scattering from |3′, 0′〉. Increas-
ing the EIT power initially enhances scattering from the
two-photon channel |4, 0〉 −→ |3′, 0′〉 −→ |4′′, 1′′〉. Ulti-
mately, EIT protection kicks in for that transition, and
the same kind of saturated EIT protection occurs as in
Scheme 2, but at a roughly 2.5 times lower error level.

The loss for other polarizations and for |4, 3〉 are sup-
pressed by EIT protection (red circles) and decrease with
increasing EIT intensity. Similar to the Schemes 1 and
2, the EIT suppression eventually saturates. Insight into
this saturation can be obtained from the structure of the
dressed states shown in Fig. 16. In both Figs. 16(a) and
16(b), the energy of the nearest dressed state with signif-
icant excited state populations reaches a fairly constant
value at high protection beam intensity, which can be
seen by the asymptotically vertical yellow lines at slightly
negative detuning. Therefore, the detuning of the reso-
nant detection beam from those states saturates, satu-
rating the EIT protection.

Since the EIT protection is not perfect for |4, 3〉, there
is a cost for keeping the imaging light on for too long. It
is best to image for only one period τ , apply a pulse to
exchange the populations between |4, 4〉 and |3, 3〉, and
then one to exchange the populations between |3, 3〉 and
|4, 3〉, and then re-image.

This sequence of steps eventually leads to a pseudo-
steady state, where the initial population in each of the
relevant sublevels after an iteration is roughly the same
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FIG. 15. Scheme 3 protection and leakage error results. (a)
The suppression factor for the reabsorption of scattered pho-
tons (R) as a function of intensity of the protection beam, for
|4, 0〉 with π-polarized light (in red, corresponding to the level
structure in Fig. 16(a)) and σ+ + σ− light (in blue). In gen-
eral, the protection will be some linear combination of these
results depending on the polarization of the scattered light.
(b) The leakage error from |4, 3〉 (corresponding to Fig. 16(b))
as a function of protection beam intensity.

as the previous one. The steady state depends on τ , the
exact optimization of which requires consideration of the
array geometry and the fraction of qubits measured. It
should also be noted that it may be possible to recover
the population loss associated with Eleakage by using a
repumping beam and microwave pulses, so that this error
could be mitigated. This is may also be true for the error
in Sec. VII.
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FIG. 16. Scheme 3 dressed states results. The non-ground
state population of the nominally EIT-protected states |4, 0〉
(a) and |4, 3〉 (b) as a function of the detection beam detun-
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