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Developing numerical methods to simulate efficiently non-linear fluid dynamics on universal quan-
tum computers is a challenging problem. In this paper, a generalization of the Madelung transform
is defined to solve quantum relativistic charged fluid equations interacting with external electromag-
netic forces via the Dirac equation. The Dirac equation is discretized into Discrete Time Quantum
Walks (DTQWs) which can be efficiently implemented on universal quantum computers. A variant
of this algorithm is proposed to implement simulations using current Noisy Intermediate Scale Quan-
tum (NISQ) devices in the case of homogeneous external forces. High resolution (up to N = 217 grid
points) numerical simulations of relativistic and non-relativistic hydrodynamical shocks on current
IBM NISQs are performed with this algorithm. This work demonstrates that fluid dynamics can be
simulated on NISQs, and opens the door to simulating other fluids, including plasmas, with more
general quantum walks and quantum automata.

INTRODUCTION

The so-called second quantum revolution is possibly
one of the greatest scientific and technological challenges
of the 21st century. One of the cornerstones of that rev-
olution is quantum computing, i.e., the possibility of us-
ing quantum properties of matter to outperform current
classical computers at least for several standard compu-
tations. Quantum simulation originated with Richard
Feynman [1], who suggested using quantum systems to
simulate efficiently other, more complex, quantum, and
possibly also classical, systems.

Simulating efficiently the dynamics of both classical
and quantum fluids, be they relativistic or not, is a long-
standing problem in applied mathematics and the ap-
plications in engineering and fundamental science can-
not be over-estimated. For example, non-quantum non-
relativistic hydrodynamics is necessary in studying pipe
flows and porous materials (including the earth, with
applications to, e.g., oil prospecting), as well as aero-
dynamics (with applications to the transport industry).
Traditional quantum hydrodynamics is necessary to de-
scribe superfluids and Bose-condensates [2–4]. Relativis-
tic (non-quantum) magnetohydrodynamics is useful to
the study of plasmas, both Earth- and space-bound —
for example, to describe accretion around a black hole
[5]. Finally, relativistic quantum magnetohydrodynam-
ics is useful in all situations where extreme plasmas come
into play, for example in astrophysical relativistic com-
pact objects like neutron stars [6].

The difficulty encountered in trying to simulate hydro-
dynamics on classical computers is perhaps best illus-
trated by the fundamental classical, non-quantum and
non-relativistic problem of fully developed incompress-
ible turbulence. In this case, the Reynolds number R
is the single relevant dimensionless number and the un-

known turbulent statistical laws one is interested in oc-
cur in the asymptotic regime R → ∞, see for example
[7]. It can be shown (see chapter 7 of [7]) that the typi-
cal amount of computer memory needed for the classical
simulation grows as O(R9/4) and that the total computa-
tional work needed to integrate the equations for a fixed
number of large eddies turnover times grows as O(R3).
These scaling laws clearly illustrate the difficulties en-
countered when one tries to understand the practical im-
portant problem of fully developed turbulence through
classical simulations. To have an idea of the current
state-of-the-art on classical computers see, e.g., [8]

In more complex hydrodynamical problems other di-
mensionless numbers are present, for example the Mach
number for compressible turbulence, and/or the mag-
netic Reynolds number for MHD turbulence, thereby
contributing to an even more challenging computational
problem.

It is therefore not surprising that the possibility of per-
forming quantum simulations of fluid and plasma dynam-
ics has already attracted considerable attention [9–19].
In essence, the methods investigated so far include: (i)
the quantum amplitude estimation algorithm to solve a
discretised Navier-Stokes equation [9] (ii) standard form-
encoding combined with quantum walks to simulate a lat-
tice Boltzmann approach [10] (iii) the quantum Fourier
transform to implement vortex-in-cell methods [11–13]
(iv) working with multiple copies of each state to imple-
ment non-linearity [14] (v) truncation and linearisation
methods to simplify non-linear terms [15–17] (vi) extend-
ing configuration space [18].

The aim of this article is to present a novel manner of
simulating both relativistic and non-relativistic quantum
fluids on existing and future quantum computers.

The Dirac equation [20] plays a pivotal role in this ap-
proach. On one hand, the Dirac equation can be mapped
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into relativistic hydrodynamics by a generalisation of the
so-called Madelung transformation initially developed for
the Schrödinger equation [21, 22] and later extended
to the Klein-Gordon equation [23–25] and quaternionic
quantum mechanics [26]. On the other hand, quantum
walks, which can be viewed as a quantum generaliza-
tion of classical random walks [27–30], are a universal
quantum primitive [31, 32]; every quantum algorithm
can be expressed as a quantum walk, and several quan-
tum walks, usually called Dirac quantum walks, admit
the Dirac equation as continuous limit [33]. The Dirac
equation can therefore be used as a bridge connecting
relativistic fluid dynamics to quantum walks and, thus,
to quantum simulation and quantum computing.

To make the presentation definite and to keep it as
simple as possible, we restrict ourselves to fluids moving
in (1+1) dimensional space-time. Having future applica-
tions to extreme, i.e., both relativistic and quantum plas-
mas in mind, we allow the fluid to be charged and experi-
ence an imposed but not necessarily constant or uniform
electric field (there is no magnetic field in (1 + 1) dimen-
sions). We therefore introduce a generalization of the
Madelung transformation which maps the charged Dirac
equation unto the hydrodynamics of a charged relativis-
tic quantum fluid, focusing on the conserved quantities,
i.e., charge and energy-momentum. Simulating quantum
relativistic flows of this fluid can then be carried out by
simulating the Dirac dynamics through Dirac quantum
walks.

In practice, the quantum walks are defined at all times
of interest on a spatial grid of N points and are composed
of two steps per time: a shift operation and a mix op-
eration. It is convenient to work in Fourier space where
the shift operation is easier to implement. Performing
a Fourier transform on a set of N = 2n data requires
O(N logN) operations using the Fast Fourier Transform
(FFT) algorithm [34], which poses exponential-in-n re-
quirements on the amount of classical memory needed to
perform the computation. On a quantum computer, the
data can be stored in n qubits and the Fourier Trans-
form can be efficiently implemented using the Quantum
Fourier Transform (QFT) algorithm, which needs only
O(n2) operations [35, 36] (the QFT can be even approx-
imately implemented using O(n log n) operations [37]).
Indeed, a quantum circuit on n qubits can be said effi-
cient when the total number of primitive quantum gates
to approach a given unitary Û with precision ε scales at
worst as O(poly(n, 1

ε )). Basic quantum walks can be ef-
ficiently implemented on a universal quantum computer
since the mix operation corresponds to a single quantum
gate [38].

Unfortunately, full fledged circuit-based quantum com-
puters do not exist yet so no direct quantum numeri-
cal simulation of quantum relativistic fluids can be per-
formed today. We nevertheless present, as an illustra-
tion, classical and NISQ-based hybrid simulations in the

simple situation where the electric field E is uniform,
using the gauge where E is entirely encoded in the time-
dependence of the vector potential. The different Fourier
components then evolve independently of each other. It
is then possible to quantum simulate each wave-number
separately on the maximum number of qubits which allow
to perform fault-tolerant computations. The simulation
is hybrid because the Fourier Transform is carried out
classically.

Both the classical and the NISQ simulations that we
present here are focused on shocks. There are several rea-
sons for this. First, shocks correspond to (near) disconti-
nuities appearing in the velocity field, and are thus noto-
riously difficult to simulate. Also, the precise, so-called
internal, structure of shocks is an important topic in the-
oretical hydrodynamics and statistical physics, especially
in the relativistic context (see for example [39, 40] for an
introduction to this and related topics). Third, shocks
are very important in practice. They are generated for
example by supersonic flight and are also the seed for
important astrophysical phenomena [41].

The final section sums up our results and discusses
possible extensions to other fluids, both classical and
quantum, with possible coupling to arbitrary Yang-Mills
and gravitational fields. Applications include in partic-
ular electromagnetic and quark-gluon plasma dynamics,
both for Earth-based and astrophysical problems. The
non-relativistic limit of our results is discussed in the
appendix. The general conclusion of this work is that
quantum walks can be used to simulate non-linear hy-
drodynamics on future quantum computers.

CHARGED DIRAC FLUID

It is well known that the Schrödinger equation can be
cast into an hydrodynamic form through the so-called
Madelung transformation [21, 22]. The Dirac equation
admits a charge current and a stress-energy tensor, as all
charged fluids do. The Madelung transformation for the
Dirac equation is best obtained by rewriting the Dirac
charge current and stress-energy tensor in terms of stan-
dard fluid variables. The Madelung transformation for
the (1 + 1)D Dirac equation without electric field has
been presented in [42]. We now demonstrate how those
results can be extended to situations where the charged
(1+1)D Dirac field is coupled to a non-vanishing electric
field.

Dirac equation

In (1 + 1)D flat space-time, the Dirac equation obeyed
by the two component wave-function ψ = (ψL, ψR)T of
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a spin 1/2 field can be written in the form

(iγ0D0 + iγ1D1)ψ −mψ = 0, (1)

where D0 = ∂t + iqA0, D1 = ∂x + iqA1 and γ0 = σX =(
0 1
1 0,

)
, γ1 = iσY =

(
0 1
−1 0

)
. The mass of the field is

m, its charge is q, and (A0, A1) are the two components
(in units c = 1, ~ = 1) of the vector potential acting on
the field. Since we are working in (1 + 1)D space-time,
there is no magnetic field and the electric field is simply
E = −∂xA0 + ∂tA1.

Charge current

The expressions for D0 and D1 entering the Dirac
equation above make clear that, geometrically speaking,
the potential Aµ, with µ = 0, 1, is a connection ensuring
the invariance of the Dirac equation under arbitrary local
phase translations. More precisely, equation (1) is invari-
ant under the transformation ψ(t, x) → exp(iqα)ψ(t, x),
A0(t, x)→ A0(t, x)−∂tα, and A1(t, x)→ A1(t, x)−∂xα,
where α(t, x) is an arbitrary function of time and space.
This invariance implies, through Noether’s theorem, the
conservation equation for the charge current J with com-
ponents J0 = qψ̄γ0ψ and J1 = qψ̄γ1ψ, where ψ̄ = ψ†γ0,
which reads

∂tJ
0 + ∂xJ

1 = 0. (2)

According to standard relativistic hydrodynamics, the
charge current J can be expressed in terms of the scalar
density n and the 2-velocity of the fluid by the sim-
ple relation J = qnu or, equivalently, nu = J/q = j.
Since u is normalized to unity, this relation translates
into n = (j.j)1/2 and u = j/(j.j)1/2 where a dot denotes
the Minkovski scalar product. In an arbitrary reference
frame, the current j decomposes into the fluid density
ρ = j0 in that frame, and into the spatial current density
ρv = j1 in the same frame. The density ρ in the proper
frame of the space-time grid on which the walk is defined
thus coincides, as it should, with |ψL|2 + |ψR|2. Note
that ρ coincides with n in the local proper frame of the
fluid/Dirac field.

Energy-momentum

The energy-momentum distribution of the (1 + 1)D
Dirac field in the presence of the electromagnetic field
A is described by its stress-energy tensor T , which reads
Tµν = i

4 (ψ̄γµ∂νψ−∂νψ̄γµψ)− 1
2A

µJν+(µ↔ ν) where J
is the conserved charge current. The stress-energy tensor
T obeys

∂µT
µν = F νµJ

µ, (3)

where F νµ = ∂νAµ − ∂µAν is the electromagnetic ten-
sor. The energy-momentum of the Dirac field is not con-
served because the fluid experiences the force created by
the electromagnetic field, and F νµJµ is indeed the den-
sity of the Lorentz 2-force. In particular F 1

µJ
µ = qρE

represents the density of the electric force exerted by the
electric field on the Dirac field, and F 0

µJ
µ represents the

power density of this force.
The other main thermodynamical variable entering the

macroscopic description of a relativistic fluid is the scalar
enthalpy density w. Identifying w in terms of wave-
function variables is not straightforward. The density
w makes the contribution wuµuν to the stress-energy
tensor Tµν of a perfect fluid. Considering the stress-
energy tensor of the Dirac field leads to the identification
w = mn cos(φ−) where φ− = φL − φR is the difference
between the phases of ψL and ψR. Using the Dirac equa-
tion, the stress energy tensor can then be written as

Tµν= wuµuν (4)

+
n

4
[(uµενα + uνεµα)∂αφ− + (εµα∂νφ− + ενα∂µφ−)uα] ,

where εµν is the Levi-Civita completely antisymmetric
tensor of rank two, with the convention ε01 = +1. The
first contribution on the right-hand side is standard for
relativistic perfect fluids. The other ones involve deriva-
tives of φ−. Because of the relation between φ− and the
enthalpy per particle w/n, one can write

dφ− = σ
1

m

(
1− w

mn

)−1/2

d
(w
n

)
, (5)

where σ is the sign of φ−. Thus, derivatives of φ− can be
rewritten as derivatives of the enthalpy per particle and
all the terms which follow the perfect fluid part wuµuν
in the expression of the stress-energy tensor are therefore
generalized ‘quantum pressure’ terms, whose appearance
is expected in the description of quantum fluids [3, 21,
22].

Equations of motion

The Dirac equation can be transcribed in terms of the
hydrodynamical variables. One obtains:

∂µ(qnuµ) = 0, (6)

w

n
uµ = −1

2

(
∂µφ+ + σεµν

1

m
(1− w

mn
)−1/2∂ν(

w

n
)

)
−qAµ,

(7)

εµα∂µ(nuα) = 2mn sin(φ−), (8)

where φ+ = φL + φR. The first equation is the continu-
ity equation expressing charge conservation. The second
equation is a generalization of the standard definition of
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potential flows for relativistic charged fluids in the pres-
ence of an electromagnetic potential A. The phase φ+/2
plays the role of the standard relativistic velocity poten-
tial, but there is an extra term involving the derivatives
of φ−, which can be expressed in terms of w/n and which
actually prevents the flow from being potential. The last
equation has no easy interpretation but is needed to form
a set of four independent equations for the four indepen-
dent hydrodynamical variables n, u1 (related to u0 via
u0 =

√
1 + (u1)2, w and the potential φ+.

NON-RELATIVISTIC FLOWS

In this section the Planck constant and the velocity of
light are not equal to unity, i.e., ~ 6= 1, c 6= 1, in order to
see more clearly the quantum and relativistic part of the
hydrodynamic equations.

The non-relativistic limit corresponds to a situation
where the velocity v of the fluid is much smaller than the
velocity of light c, implying that the energy of the parti-
cle is almost equal to the rest mass energy: E = E′+mc2

with E′ � mc2. The relativistic part of the wave func-
tion has to be extracted by writing φ+

2 = φ − mc2t
where we will see that φ is the non-relativistic velocity
potential. More details on the limiting procedure can
be found in the Supplementary Information. In the non-
relativistic regime, the two-components of the wave func-
tion become identical and the (1+1)D Dirac equation
degenerates into a single, one-component Schrödinger
equation. Then the relativistic fluid variables and equa-
tions defined in the previous section become the usual
Madelung transformation of the Schrödinger equation in
the presence of electromagnetic fields. The fluid den-
sity becomes n = 2r2 with r = |ψL| = |ψR|, while the
fluid velocity u1 becomes the usual generalized velocity
u1 = v = 1

m (∂xφ + qA1). Then the set of four indepen-
dent relativistic fluid equations (6,7,8) degenerate into a
set of two independent fluid equations: one expressing
the conservation of matter (or charge), and another the
generalization of Bernoulli equation for a potential fluid
in an electromagnetic potential V = cA0 and a quantum
(Bohm) potential Q = − ~2

2m
1√
n
∂2√n
∂x2 , (which vanishes in

the classical limit ~→ 0):

∂tn+ ∂x(nv) = 0, (9)

∂tφ+
1

2
mv2 + qV +Q = 0. (10)

The gradient of this Bernoulli equation leads to the in-
viscid Burgers’ equation for a charged fluid in an electric
field E = −∂xV + ∂tA1 and a quantum pressure force
FQ = −∂xQ:

m (∂tv + v∂xv) = qE + FQ. (11)

QUANTUM WALKS AS DISCRETISATIONS OF
THE DIRAC EQUATION.

DTQWs are defined in discrete space and discrete
time and have an internal degree of freedom usually
called the coin. In this article, we focus on DTQWs
defined in discrete 1D space. Having spectral simu-
lations in mind, we also take space to be N -periodic,
where N is a power of 2 and we label the grid points
by p ∈ Np = {−N/2,−N/2 + 1, ..., N/2 − 1}. Dis-
crete instants are labelled by l ∈ N. We also choose
the coin-space to be 2D and denote by (|L〉 , |R〉) an
arbitrary fixed orthonormal basis in that space. With
these conventions, the state of the walk at time l can
be written as |ψ〉l =

∑
p ψ

L
l,p |p〉 |L〉 + ψRl,p |p〉 |R〉 where

the set of complex numbers {ψLl,p, ψRl,p} with p ∈ Np

represents the two-component wave-function of the walk
at time l. At each time-step, the walk is advanced
through the successive action of two unitary operators,
one which acts in position-space and one which acts
in coin-space. The operator Ŝ acts in position-space
and is usually called the shift operator; it is defined by
Ŝ = |L〉 〈L|

∑
p |p− 1〉 〈p| + |R〉 〈R|

∑
p |p+ 1〉 〈p|. The

shift operator is thus a coin-conditioned spatial transla-
tion which moves every ψLl,p to the left by one unit and
every ψRl,p to the right, also by one unit. The operator Ĉl
acting in coin-space is allowed to depend on time l and, at
each point p, mixes the L and R components in a unitary
manner. This operator is defined by Ĉl =

∑
p Ĉl,p |p〉 〈p|

with Ĉl,p = e−iεq(A0)l,pRX(2εm)RZ(−2εq(A1)l,p), where

RX(θ) =

(
cos (θ/2) −i sin (θ/2)
−i sin (θ/2) cos (θ/2)

)
and RZ(θ) =(

e−iθ/2 0
0 eiθ/2

)
are primitive single qubit operations [35].

The potential vector A0 and A1 are arbitrary real num-
bers, as are the two real positive parameters ε and m.
It is useful to introduce the notation Ûl = ĈlŜ, which
makes it possible to write the evolution equation of the
quantum walks in the compact form |ψ〉l+1 = Ûl |ψ〉l.
The interpretation of these quantities becomes clear in
the continuum limit. The continuum limit can be investi-
gated by introducing the space-time coordinates xp = εp,
tl = εl and letting ε tend to zero [33]. The wave-function
of the walk then becomes a continuous function of x and
t which obeys the Dirac equation introduced earlier.

The current j can be determined from the wavefunction
of the DTQW using the formula (j0)l,p = |ψRl,p|2 + |ψLl,p|2

and (j1)l,p = |ψRl,p|2 − |ψLl,p|2 where l denotes a dis-
crete time coordinate and p a discrete space coordinate.
Thus, the fluid density reads nl,p =

√
(j0)2

l,p − (j1)2
l,p =

2|ψLl,p||ψRl,p| and the fluid velocity normalized to the speed

of light c reads (u
1

u0
)l,p =

(j1)l,p
(j0)l,p

.
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SIMULATIONS OF DIRAC FLOWS FOR
UNIFORM ELECTRIC FIELDS

Spectral formulation of the quantum walks

Let E be the constant uniform value of the electric
field. To make the computation simpler, we choose the
gauge A0 = 0, (A1)l = Elε where the vector potential
depends only on the discrete time l and so the coin op-
erator Ĉl,p = Ĉl. The classical and NISQ simulations
are accomplished in Fourier space where the shift oper-
ator entering the definition of the walks amounts to a
coin-controlled multiplication by a phase factor. More
precisely, let ψ̃l,k = 1√

N

∑N/2−1
p=−N/2 ψl,pe

−2iπkp/N be the
discrete Fourier transform of a function defined on the
discrete space-time grid. In Fourier space, the equations
of the walk, ∀l, k ∈ N×Np, read:

(
ψ̃Ll+1,k

ψ̃Rl+1,k

)
= Ĉl

(
e2iπk/N 0

0 e−2iπk/N

)(
ψ̃Ll,k
ψ̃Rl,k

)
, (12)

where the absence of spatial convolution is due to the
choice of gauge.

The full-quantum algorithm

In recent years, several circuit-based implementation
schemes for DTQW have been devised and experimen-
tally realised. The most recent implementation has been
made on a five qubit trapped-ion quantum processor [43].
In most cases, DTQWs are implemented by blocks of
multi-controlled Toffoli gates, typically of size O(n3) and
depth O(n2) [44], where n is the number of qubits. Quite
interesting is the recent scheme proposed by Asif Shakeel
[38], where the basic QWs are formulated in terms of
a simple Quantum-Fourier-Transform (QFT)-based cir-
cuit [36], polynomially improving the previous results in
terms of complexity. Indeed, it yields a highly efficient
and scalable, quadratic size, linear depth circuit for the
basic DTQW. This algorithm gives the full-quantum cir-
cuit needed to perform the simulations on n + 1 qubits
with a coin operator Ĉl. We also suppose that the initial
state ψ0 =

∑
p∈Np

ψR0,p |p〉 |R〉 + ψL0,p |p〉 |L〉 can be effi-
ciently implemented on the n+ 1 qubits following meth-
ods developed in [45–47].

In this full-quantum algorithm, the quantum advan-
tage is lost if one wants to determine the entire final
state after T steps. One can still efficiently measure a
finite number (small when compared to 2n) of averaged
values of local and global observables [48–50] such as the
energy, the momentum or the density.

However, this full-quantum algorithm is not NISQ-
compatible since the performances of the current quan-
tum processors do not allow to perform a large amount

of quantum gates on entangled qubits without too many
errors. For instance, latest implementations of Quantum
walks on NISQ quantum processors have shown signifi-
cant results for only a very few number of qubits (less
than five) and a very few number of steps (less than five)
[38, 51, 52].

The NISQ algorithm

We now present a hybrid quantum-classical algorithm
based on a Discrete Time Quantum Walk (DTQW) dis-
cretisation of the charged Dirac fluid taylor-made for
NISQ devices.

The main idea is to split the quantum operations on
sets of qubits which allow to perform fault-tolerant com-
putations. The minimum number of qubits needed to
perform this scheme is two but it can be increased de-
pending on the performance of the NISQ devices, in-
creasing at the same time the quantum advantage of this
method. In the following, we choose to develop the nu-
merical scheme in the limit of sets of two qubits where
the errors are small enough to get meaningful results.

FIG. 1: Quantum part of the NISQ algorithm for
DTQW to compute every |k〉T .

The algorithm is composed of two distinct parts. In
the first one we perform the FFT on the initial clas-
sical state ψ0,p, where p refers to the discrete space
p ∈ Np = {−N/2,−N/2 + 1, ..., N/2 − 1} with N a
power of 2, in order to get the Fourier-transformed ψ̃0,k

with k ∈ Np. In Fourier space, each ψ̃l,k, with l ∈ N
the discrete-time coordinate, evolves independently from
the others, allowing us to parallelise the computations
of each mode on the different sets of qubits. More-
over, ∀k, we need to memorize the normalization factor
n(k) =

√
|ψ̃L0,k|2 + |ψ̃R0,k|2 and the global phase Φ+

k for
further steps of the algorithm. In order to apply the
quantum circuit, we need to encode the above classical
information in a quantum state; this can be done effi-
ciently, as follows. At the beginning, for each mode, the
quantum state, represented by a qubit, is set to |0〉 in the
canonical basis. Then, we perform a quantum rotation
in the Bloch sphere:

|k〉0 = U(α0,k,Φ
−
0,k) |0〉 , (13)
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where

U(α0,k,Φ
−
0,k) =

(
cos(α0,k/2) − sin(α0,k/2)

sin(α0,k/2)eiΦ
−
0,k cos(α0,k/2)eiΦ

−
0,k

)
.

The encoded initial quantum state finally reads:

ψ̃0,k = n(k)eiΦ
+
0,k |k〉0 . (14)

As we show in Fig. 1, the total evolution of the walker
is achieved by the quantum sub-routine a), by performing
one quantum rotation Cl,k on each |k〉0 (see equation 12).
After T such rotations, the final qubit reads

|k〉T = eiΦ
+
T,k

(
cos(αT,k/2)

sin(αT,k/2)eiΦ
−
T,k

)
. (15)

Finally the state is successively measured into the
x,y,z-basis by choosing R0 = H,S†1H, I2, with H =

1√
2

(
1 1
1 −1

)
and S1 =

(
1 0
0 i

)
and by repeating the pro-

cedure until one gets enough statistics to determine the
coefficients αT,k and Φ−T,k. However, in order to imple-
ment the very last step of the algorithm, namely the in-
verse FFT, one needs also the global phase Φ+

T,k. This
can be done using the quantum circuit b), where a single
qubit controls the Cl,k rotations, allowing at the end to
measure the global phase by choosing R1 = H,S†1H and
R2 = I2. Finally, we can perform the classical inverse
FFT on

ψ̃T,k = n(k)ei(Φ
+
0,k+Φ+

T,k)

(
cos(αT,k/2)

sin(αT,k/2)eiΦ
−
T,k

)
(16)

to obtain the final state of the quantum walk ψT,p.

Simulations on IBM’s quantum processors

Simulations have been performed on classical proces-
sors (Figures 2 and 3), and on IBM’s publicly available
quantum processors (Figures 4 and 5). The initial con-
dition of the quantum walk is chosen such as to ob-
tain hydrodynamical shocks: the initial fluid density n
is constant, while the initial fluid velocity u1/u0 is anti-
symmetric with respect to x = 0.

More precisely, let us note ψ(x, t) =

eiφ+/2

(
|ψL|eiφ−/2
|ψR|e−iφ−/2

)
with |ψL| = 1√

2

√
j0 − j1 and

|ψR| = 1√
2

√
j0 + j1. In order to get a shock we need an

anti-symmetric initial velocity u1/u0, thus we choose a
global phase φ+ = 2mumax cos(x) with max a positive
number and a relative phase φ− = 0. Equation (7) im-
plies that j1 = −numax sin(x) and so u1 = −umax sin(x).
Then j0 = +

√
n2 + (j1)2 = n

√
1 + (umax sin(x))2 and

finally u1/u0 = j1/j0 is anti-symmetric. The fluid

density can be an arbitrarily chosen constant; we set
n = 1. These initial condition is inspired by similar
choices used to simulate the dynamics of a non-quantum
cosmological fluid [53], Bose-Einstein condensates of
axions [54] and quantum walk hydrodynamics [42].

In Figure 2, the fluid density and velocity are displayed
at three different times. The shock is characterised by a
peak in the fluid density n and a small region with a large
gradient in the fluid velocity u1/u0 at t=2.2. After the
impact, the front of the shock propagates to the left due
to the external electric field, yielding a non-trivial shock
structure at t=4.8. Figure 3 shows the fluid density and
velocity with respect to space and time for several values
of the electric field. The shocks are perfectly symmet-
ric around x = 0 in the absence of electric field. For
non vanishing electric fields, the shocks are accelerated
in the direction of the field. These results have been
successfully recovered using IBM’s quantum processors.
Figure 4 shows the first simulations of hydrodynamical
shocks using NISQ devices on a line of N = 32 nodes.
The same simulation has been performed on three differ-
ent quantum processors (ibmq_santiago, ibmq_manila,
ibmq_lima) and the results are compared with a simu-
lator of quantum devices (ibm_qasm_simulator) and a
classical computer. The performances of the different
IBM’s quantum processors are compared with the rela-
tive error defined as

e1 = 100

√
|ψLx,q − ψLx,c|2 + |ψRx,q − ψRx,c|2√

|ψLx,c|2 + |ψRx,c|2
, (17)

and the absolute error defined as

e2 =
√
|ψLx,q − ψLx,c|2 + |ψRx,q − ψRx,c|2, (18)

where q refers to the quantum devices and simulator and
c to the classical computer. Even if the relative errors
range from 3% to 24%, the results on the fluid density and
velocity are qualitatively accurate, showing the expected
shock. The finite number of measurements M = 8096
leads to statistical errors of the order of 3% as shown
by the relative errors of ibm_qasm_simulator. Figure 5
shows the results obtained on a grid of N = 217 points
with the ibmq_manila quantum processor showing first
that this hybrid algorithm allows to perform large sim-
ulations on NISQ devices. The velocity almost reaches
the speed of light u1/u0 ≈ 0.9993 at x ≈ − 3π

24 where
the density n almost vanishes, proving ultra-relativistic
behaviour in the shocks.

Let us conclude this section with two remarks. Be-
fore any computation on its quantum processors, IBM
automatically transpiles the quantum circuit in order to
reduce the number of primitive quantum operations and
the errors. However, the transpiler does not perform effi-
ciently in the case of circuit b) presented Figure 1, giving
completely noisy results. We found that this difficulty
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FIG. 2: Profiles of density n (left) and velocity u1/u0

(right) at different times as functions of the position x,
for an electric field E = 16, charge q = −1, mass

m = 64, and initial maximum velocity umax = 0.55. The
mesh size is N = 4096, ε = 2π/N , T is an arbitrary

time unit and L is an arbitrary length unit.

FIG. 3: Evolution of the shock’s density n (left) and
velocity u1/u0 (right) as functions of the position x and
time for different values of the electric field E = 0, 6, 12,

charge q = −1, mass m = 64, and initial maximum
velocity umax = 0.55. The mesh size is N = 4096,
ε = 2π/N , T is an arbitrary time unit and L is an

arbitrary length unit.

can be overcome if we transpile the quantum circuit a) be-
fore transpiling the control-circuit a) which is contained
in the circuit b).

The second remark relates to Figure 5. The simulation
on a grid of N = 217 points has been successfully per-
formed thanks to a compression of the wavefunction in
Fourier space. Indeed, the momentum is bounded by the
quantity mumax and the Fourier space is discretized with
a step ∆k = 2π

N∆x . By choosing ∆x = 2π
N , then ∆k = 1

and most of the Fourier components of the DTQW van-
ishes for k > kmax = mumax (~ = 1, c = 1), reducing
drastically the computations.
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FIG. 4: Shock’s profiles of fluid density n (upper left),
fluid velocity u1/u0 (upper right) as functions of the
position x computed on different IBM’s quantum
processors, ibm_qasm_simulator and a classical

computer, at t = 1.96 (arbitrary unit). The lower panels
show relative errors (lower left) and absolute error

(lower right) between the ideal results obtained on the
classical computer and the results obtained on the
quantum processors and simulator. The simulation

parameters are: electric field E = 0.6, charge q = −1,
mass m = 6, and initial maximum velocity umax = 0.92.

The mesh size is N = 32, ε = 2π/N and L is an
arbitrary length unit.

SUMMARY AND DISCUSSION

Summary

We have shown that present-day IBM’s NISQ de-
vices can simulate quantum-relativistic-charged fluids in
an electric field. Our approach is based on a novel
hybrid classical-quantum algorithm using DTQW with
continuous-limit Dirac equation mapped into relativis-
tic hydrodynamics by a generalization of the Madelung
transformation. We have also discussed several exten-
sions which may reasonably be carried out with success
in the near future. These include non-quantum fluids
and fluids coupled to arbitrary gauge fields. All in all,
this work opens the door to more efficient quantum sim-
ulation of quantum and classical hydrodynamics [55, 56],
with natural applications to quantum, possibly relativis-
tic plasmas [57–59].
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FIG. 5: High resolution shock’s profiles of fluid density
n (upper left), fluid velocity u1/u0 (upper right)
computed on ibmq_manila quantum processor,

ibm_qasm_simulator and classical computer at t = 2.5
(arbitrary unit), with N = 217 grid points, an electric
field E = 2, a charge q = −1, a mass m = 6, an initial

maximum velocity umax = 0.92, ε = 2π/N , L an
arbitrary length unit and relative errors (lower left) and
absolute error (lower right) between the ideal results
obtained on a classical computer and the results
obtained on quantum processors and simulator as

functions of the position x.

Discussion

Let us now discuss the results presented in this article,
focusing in particular on possible extensions.

All the results presented above address hydrodynamics
in (1+1) space-time dimensions, and should therefore be
extended to higher dimensions. We believe this extension
should be possible but is non-trivial either because (i)
the number of spinor components depends on the space-
time dimension (e.g. a spinor in (1+3) dimensions), and
(ii) the Madelung transformation for a non-charged Dirac
fluid is much simpler in (1+1) dimensions than in higher
dimensions.

In higher dimensions, a charged fluid can be coupled
not only to electric fields, but also to magnetic ones.
Moreover, these fields may not be uniform and constant,
as is the electric field considered in this work. More
generally, Dirac particles and their discrete counterparts,
i.e., DTQWs, can also be coupled to arbitrary Yang-Mills
gauge field [60, 61] and to relativistic gravitational fields
[62–64]. Extending the above results in these directions
would for example open up the possibility of simulating
quark-gluon plasmas and extreme astrophysical plasmas

on hybrid quantum-classical computers. DTQWs can
also be used as basis to build full fledged discrete gauge
theories. Can the hybrid algorithm presented above be
extended to simulate these discrete gauge theories? If
so, the extension would make it possible to simulate not
only fluids in external, imposed gauge fields, but also
self-consistent problems where the dynamics of the gauge
fields and the fluids are fully coupled, as in self-consistent
plasma dynamics.

Finally, the hybrid algorithm we propose should be ex-
tended to quantum and classical fluids with other equa-
tions of state. The key is to consider more general
quantum walks and quantum automata. Self-interacting
walks and automata [65–67] are of particular interest be-
cause they are a relatively easy tool to model arbitrary
equations of state and because several implementations
of QCAs have been suggested, including Rydberg states
[68]. Also, general equations of state can in principle be
implemented by using quantum information device as a
quantum system with effective non-linear dynamics like
Bose-condensates [69, 70].
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APPENDIX

Non-relativistic limit

Dirac equation

The Dirac equation iγµDµψ −mψ = 0 reads, in com-
ponent terms and in units where ~ 6= 1 c 6= 1:

1

c
(∂t + i

qV

~
)ΨL − (∂x + i

qA1

~
)ΨL = −imc

~
ΨR,

1

c
(∂t + i

qV

~
)ΨR + (∂x + i

qA1

~
)ΨR = −imc

~
ΨL. (19)

Each component obeys the same Klein-Gordon (KG)
equation:

1

c2
DttΨ

L/R −DxxΨL/R = −m
2c2

~2
ΨL/R, (20)

where Dtt = (Dt)
2 = (∂t + i qV~ )2 and Dxx = (Dx)2 =

(∂x + i qA1

~ )2

To determine the non-relativistic limit, we have to
extract out the relativistic part of the wavefunction
as ΨL/R = Ψ̄L/R exp

(
−imc

2

~ t
)

and consider Ψ̄L/R as
the wavefunction of the particle in the non relativis-
tic limit. The non relativistic energy of the particle
is E′ = E − mc2 with E′ � mc2. We therefore ex-
pect that |∂Ψ̄L/R

∂t | ∼ |
E′

~ Ψ̄L/R| � mc2

~ |Ψ̄
L/R|, |∂Ψ̄L/R

∂x | ∼
|kΨ̄L/R| = | p~ Ψ̄L/R| � mc

~ |Ψ̄
L/R|. The limit only works

if the potential Aµ is weak, i.e., |qAµ| � mc for µ = 0, 1.
We define the dimensionless ‘slow’ variables X = ν(mc~ )x

and T = ν2(mc
2

~ )t where ν is a positive real number.
The non-relativistic limit is recovered by letting ν tend
to zero while keeping ∂XΨ̄L/R = O(1), ∂T Ψ̄L/R = O(1),
V
ν2 = O(1) and A1

ν = O(1).
Injecting the above scaling in the KG equation for

Ψ̄L/R shows that Ψ̄L/R both obey the Schrödinger equa-
tion with electromagnetic fields when ν goes to zero. We
now also compute for future use the lowest order terms
in the difference Ψ̄L − Ψ̄R. The Dirac equation can be
rewritten as

Ψ̄R = Ψ̄L − iνDXΨ̄L + iν2DT Ψ̄L +O(ν3),

Ψ̄L = Ψ̄R + iνDXΨ̄R + iν2DT Ψ̄R +O(ν3). (21)

with DX = ∂X + i qA1

mcν and DT = ∂T + i qV
mc2ν2 .

Using the Schrödinger equation to replace the temporal
derivatives by spatial derivatives leads to

Ψ̄R = Ψ̄L − iνDXΨ̄L −
ν2

2
DXXΨ̄L +O(ν3),

Ψ̄L = Ψ̄R + iνDXΨ̄R −
ν2

2
DXXΨ̄R +O(ν3). (22)

Let us start the discussion by keeping only the terms of
order ν in Eq. (22). The two wave-function components

are equal at order 0 in ν and thus, at this order, have the
same moduli and phases. We want to compute the dif-
ferences between the moduli and the differences between
the phases at first order in ν. This is best done in the
following way.

Write Ψ̄L = r exp
(
i
~φ
)

and Ψ̄R = (r +

δr) exp
(
i
~ (φ+ δφ)

)
. Inserting this into Eq. (22) and

keeping only first-order terms leads to:

r exp

(
i

~
φ

)(
i

~
δφ+

δr

r

)
= −iνDXΨ̄L, (23)

from which one gets:

δφ = − ~
2r2

ν
(
Ψ̄∗LDXΨ̄L + (DXΨ̄L)∗Ψ̄L

)
. (24)

The difference δr can be obtained in the same manner:

δr

r
=

i

2r2
ν
(
Ψ̄∗LDXΨ̄L − (DXΨ̄L)∗Ψ̄L

)
. (25)

This transcribes into:

δφ = −ν ~
r

∂r

∂X
, (26)

and

δr

r
= νπ. (27)

with π = 1
~
∂φ
∂X + qA1

mcν .
It is straightforward (but tedious) to compute in the

same manner the differences in moduli and phases at sec-
ond order in ν. One finds:

δφ = −ν ~
r

∂r

∂X
− ~

2
ν2 ∂π

∂X
, (28)

and

δr

r
= νπ +

1

2
ν2

(
π2 +

1

r2

((
∂r

∂X

)2

− r ∂
2r

∂X2

))
.

Hydrodynamical variables

In the main text the Dirac wavefunction is defined as

ψ =
1√
2
e

i
~φ+/2

( √
j0 − j1e

i
~φ−/2√

j0 + j1e−
i
~φ−/2

)
. (29)

Thus, the definitions above lead to φ+ = 2φ+δφ−2mc2t
and φ− = −δφ.

At second order in ν the hydrodynamical variables de-
fined in the main text read:

n = 2r2 + 2r2νπ + ν2r2π2 + ν2

((
∂r

∂X

)2

− r ∂
2r

∂X2

)
,

(30)
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u0 = c

(
1 +

1

2
ν2π2

)
, (31)

u1 = c

(
νπ +

1

2r2
ν2

((
∂r

∂X

)2

− r ∂
2r

∂X2

))
, (32)

w = mc2
(

2r2 + 2r2νπ + ν2

(
r2π2 − r ∂

2r

∂X2

))
. (33)

Hydrodynamical equations

In units where ~ 6= 1 and c 6= 1, the relativistic fluid
equations can be written as

1

c
∂t(nu

0) + ∂x(nu1) = 0, (34)

w

nc
u0 = −~c

2

(
1

c
∂tφ+ + ∂x(φ−)

)
− qV, (35)

w

nc
u1 =

~c
2

(
∂xφ+ +

1

c
∂t(φ−)

)
+ qA1c, (36)

,

1

c
∂t(nu

1) + ∂x(nu0) = −2
mc2

~
n sin(φ−). (37)

By injecting the previous hydrodynamical variables in
these equations, one can determine their non-relativistic

limit. The set of four independent hydrodynamical rela-
tivistic equations become a set of two independent equa-
tions in the non-relativistic limit at second order in ν:

∂

∂T

(
2r2
)

+
∂

∂X

(
2r2π

)
= 0, (38)

1

~
∂φ

∂T
+

1

2
π2 +

qV

mc2ν2
− 1

2
√

2r2

∂2
√

2r2

∂X2
= 0. (39)

Then, in the normal x and t variables one gets the conti-
nuity equation and the Bernoulli equation of an inviscid
fluid of density n = 2r2 and velocity v = 1

m (∂xφ+ qA1)
in an electromagnetic potential V and a quantum poten-
tial Q = − ~2

2m
1√
n
∂2√n
∂x2 called the Bohm potential which

vanishes in the non-quantum limit ~→ 0:

∂t(n) + ∂x(nv) = 0, (40)

∂t(φ) +
1

2
mv2 + qV +Q = 0. (41)

The gradient of this Bernoulli equation leads to the
nonlinear inviscid Burger equation for a charged fluid in
an electric field E = −∂xV + ∂tA1 and a quantum pres-
sure force FQ = −∂xQ:

m (∂tv + v∂xv) = qE + FQ. (42)


