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Quantum information processing using linear optics is challenging due to the limited set of
deterministic operations achievable without using complicated resource-intensive methods. While
techniques such as the use of ancillary photons can enhance the information processing capabil-
ities of linear optical systems they are technologically demanding. Therefore, determining the
constraints posed by linear optics and optimizing linear optical operations for specific tasks under
those constraints, without the use of ancillas, can facilitate their potential implementation. Here,
we consider the task of unambiguously discriminating between Bell-like states using linear optics
and without the use of ancillary photons. This is a basic problem relevant in diverse settings, for
example, in the measurement of the output of an entangling quantum circuit or for entanglement
swapping at a quantum repeater station. While it is known that exact Bell states of two qubits
can be discriminated with an optimal success probability of 50% we find, surprisingly, that for
Bell-like states the optimal probability can be only 25%. We analyze a set of Bell-like states in
terms of their distinguishability, entanglement as measured by concurrence, and parameters of the
beam-splitter network used for unambiguous discrimination. Further, we provide the linear optical
configuration comprised of single photon detectors and beam splitters with input state-dependent
parameters that achieves optimal discrimination in the Bell-like case.

I. INTRODUCTION

Linear optical platforms are a promising route for
building quantum information processing devices in com-
putation [1], communication [2], and metrology [3]. On
one hand, qubits encoded into the quantum state of a
photon can have long coherence times [4, 5] and photonic
circuits can potentially be scalably integrated [6–9]. On
the other hand, there are fundamental limitations on the
type of operations that can be implemented without pro-
hibitive resource costs. A simple but important example
of this kind of limitation is in the case of discriminating
measurements on a set of mutually orthogonal entangled
pure quantum states. In other platforms, such as super-
conducting qubits [10] or ion traps [11], there are no fun-
damental limitations on perfectly discriminating between
the orthogonal states using measurements in arbitrary or-
thogonal bases. Whereas, in linear optical systems this
is no longer the case: It may not be possible to achieve
saturation of the quantum mechanically allowed statisti-
cal distinguishability among the given states using only
linear optical setups. A case in point being the set of the
four maximally entangled states of two qubits, or Bell
states, only two of which can be discriminated without
the use of ancillary photons.

In principle, given access to certain extra resources
such as prepared entangled quantum states and ancillary
photons, linear optical elements can be used to imple-
ment a universal set of operations for quantum informa-
tion processing [12]. In particular, with increasing use of
resources, Bell state discriminations can be implemented
with a success probability asymptotically approaching 1
[13, 14]. However, increasing the number of ancillary

photons to achieve the stated precision is technologically
challenging [1]. Without ancillary photons, only two of
the four possible Bell states can be unambiguously dis-
criminated, giving the protocol a maximum efficiency of
50% [15–17].

Generalizing this situation is the problem of unambigu-
ously discriminating between a set of mutually orthogo-
nal partially-entangled states of two qubits encoded into
four photonic modes, which we call the set of Bell-like
states. The formal structure of Bell-like states in terms
of the mode creation operators is identical to that of the
Bell states. However, the crucial difference is in the value
of their concurrence which is strictly less than 1, i.e.,
they are partially entangled. Obtaining the linear opti-
cal operation that optimally discriminates between Bell-
like states is, therefore, an important task since partially
entangled states are realistic in the practical scenario.
While conditions have been derived in order to deter-
mine whether a desired transformation is implementable
using linear optics [18–20], these results have limited util-
ity in determining the optimal transformation for specific
tasks.

The goal of this paper is to derive the efficiency of
optimal linear optical discrimination of Bell-like states
and the corresponding setup, i.e., a network of beam-
splitters and photon detectors which achieves the opti-
mal efficiency. Our focus is on the case where no an-
cillary photons are used. The approach is to derive con-
straints required by unambiguous discrimination between
the Bell-like states that allow us to construct feasible lin-
ear optical transformations under those constraints. The
transformations are then optimized to maximize their
probability of success. Completing these steps allows us
to design a general method for optimally discriminating
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any set of Bell-like states. We find that the efficiency, or
maximum success probability, of the optimal unambigu-
ous discrimination is only 25%, in contrast to the 50%
that can be achieved for Bell states [15–17].

The structure of our paper is outlined as follows. In
Sec. II, we review the basic mathematical framework
underlying linear optical setups for state discrimination.
Next, in Sec. III, we define the Bell-like states and pro-
ceed to derive the optimal unambiguous discrimination
achievable using linear optical setups. We show, in par-
ticular, that only two out of the four given states can
be successfully discriminated. In Sec. IV, we analyze
the optical network allowing the optimal unambiguous
discrimination between the Bell-like states showing the
25% efficiency of success. After presenting the results,
we conclude by discussing some possible follow-up direc-
tions.

II. LINEAR OPTICS FRAMEWORK FOR
STATE DISCRIMINATION

Let us consider the discrimination of two-qubit quan-
tum states, employing the dual-rail representation for
qubits [1, 21, 22]. The basic elements of this represen-
tation are single mode photons described by the Fock

states, |nm〉 ≡ â†nm√
n!
|∅〉, where â†m is the creation op-

erator for the m-th photon mode, nm is the number
of photons in that mode, and |∅〉 is the vacuum mode.
Qubit states in the dual-rail representation are given as:

|0〉 = |11, 02〉 = â†1 |∅〉 , |1〉 = |01, 12〉 = â†2 |∅〉. Adding
a second qubit can be represented by another photon in
two other modes, giving the following two photon states:

|00〉 = â†1a
†
3 |0〉 , |01〉 = â†1â

†
4 |0〉 , |10〉 = â†2a

†
3 |0〉 , |11〉 =

â†2â
†
4 |0〉. Therefore, the first qubit is represented by one

photon in the first two modes and the second qubit is
represented by one photon in the second two modes. It
is important to note that, by the nature of this repre-
sentation, the computational space is only a subset of all
possible states.

The relevance of this qubit encoding is that any trans-
formation allowed by linear optical elements, i.e., any
transformation using only beam splitter and phase shifter
generators, can be described by unitary transformations
on the creation and annihilation operators [23]. We can

define the output operators
{
b̂†i |i = 1 . . .m

}
in terms of

the input operators as b̂†i =
∑
j Uij â

†
j . Note that the

transformations allowed by linear optics only span an M -
dimensional Hilbert space, where M is the total number
of modes. The Fock space of n photons in M modes,

however, spans a Hilbert space with

(
M + n− 1

n

)
di-

mensions. Not all transformations in the full Fock space
are achievable through linear optical setups, and it is
this fundamental limitation that makes the perfect un-
ambiguous discrimination of the Bell and Bell-like states

impossible.
Now we describe the generalized measurement scheme

allowed by linear optical setups shown in Fig. 1.
At the input of the scheme are the photon modes{
â†i |i = 1 . . . 4

}
that can be coupled with auxiliary pho-

ton modes
{
â†i |i = 5 . . .m

}
. These input modes are con-

nected to the output modes
{
b̂†i |i = 1 . . .m

}
utilizing

beam splitters and phase shifters. Some of the output
modes can be detected by photon resolving detectors,
while the photons in the remaining modes can be treated
as a new states that can be used as an input for further
processing.

For the purposes of this paper, we restrict our consid-
eration to a special class of linear optical schemes, where
the auxiliary photon modes are empty. Additionally, we
focus only on the optimal measurement for a single iter-
ation, barring the use of conditional measurements.

FIG. 1. The general scheme for linear optical operations. The
input modes, â†i (the system, i = 1, 2, 3, 4) and the auxiliary
modes (the ancilla, i = 5, . . . ,m) are coupled via a network of
beam splitters and phase shifters to form the output modes.
The action of the linear optic network can be described by a
total unitary transformation U . At the output, some of the
modes are measured using photon resolving detectors, while
the remaining undetected modes can be used as input for
further processing.

III. BELL-LIKE STATES DISCRIMINATION

In order to derive the optimal unambiguous discrimi-
nation of Bell-like states using linear optical setups, we
will divide our analysis into 3 distinct sections. First,
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we will define the Bell-like states and give a general for-
mula for calculating the probability of any two photon
detections occurring as a function of both the input state
and the unitary that describes the linear optical network.
Specifically, define the unitary in terms of its orthonor-
mal column vectors, allowing us to calculate a detection
output probabilities as a function of the input state and
two columns of this unitary. Following this, we will look
specifically at the case of discriminating the |Ψ3〉 state.
We will be able to define specific constraints on what
orthonormal vectors can be used in order to produce a
detection result that can be used for unambiguous dis-
crimination. Finally, by using the derived constraints,
we will give the form a unitary that will result in the
unambiguous discrimination of |Ψ3〉 in one of the output
detections. By analyzing the remaining detection out-
comes, we will determine the parameters that will give
the optimal discrimination of 25% of the Bell-like states.

A. Defining Bell-like states and calculating
detection probabilities

Bell-like states can be defined as

|Ψ1〉 =
(
α1â

†
1â
†
3 + β1â

†
2â
†
4

)
|∅〉 , (1)

|Ψ2〉 =
(
β∗1 â

†
1â
†
3 − α∗1â†2â†4

)
|∅〉 , (2)

|Ψ3〉 =
(
α2â

†
1â
†
4 + β2â

†
2â
†
3

)
|∅〉 , (3)

|Ψ4〉 =
(
β∗2 â

†
1â
†
4 − α∗2â†2â†3

)
|∅〉 , (4)

where αi and βi are the complex coefficients normalized
by |αi|2 + |βi|2 = 1. The Bell states are recovered for

α1 = β1 = α2 = β2 = 1/
√

2.

As we mentioned above, the most general opera-

tion implementable by linear optics has the form b̂†i =∑M
j Uij â

†
j , and the inverse transformation yields â†i =∑M

j U∗jib̂
†
j . We should note that despite only having four

input modes with photons, we allow for the possibility
that our discrimination protocol can be improved by al-
lowing for t additional output modes, resulting in a to-
tal of M = 4 + t modes. Therefore we can define an
arbitrary two-qubit state as |e〉 =

∑
(j,k)∈σ αjkâ

†
j â
†
k |∅〉,

where σ ≡ {(j, k)|j = 1, 2; k = 3, 4}. It should be noted
that the form of |e〉 assumes that there are no ancillary
photon modes. Using these expressions we can write the

input modes in the basis of the output modes:

|e〉 =
∑

(j,k)∈σ
αjkâ

†
j â
†
k |∅〉 ,

=
∑

(j,k)∈σ
αjk

(
M∑

l

U∗lj b̂
†
l

)(
M∑

m

U∗mk b̂
†
m

)
|∅〉 ,

=

M∑

m

∑

(j,k)∈σ
αjkU

∗
mjU

∗
mk b̂

†
mb̂
†
m |∅〉 (5)

+

M,M∑

l<m,m

∑

(j,k)∈σ
αjk

(
U∗ljU

∗
mk + U∗mjU

∗
lk

)
b̂†l b̂
†
m |∅〉 .

Since the measurements are performed in the orthonor-
mal basis of photon modes, we just need to evaluate the
probabilities of detecting a various combination of two
photons for a given state. The probability of detecting
two photon in mode m is

| 〈2m|e〉 |2 = 2|
∑

(j,k)∈σ
αjkU

∗
mjU

∗
mk|2 = 2|

(
U∗NU†

)
mm
|2

= 2| 〈φm|N |φ∗m〉 |2

=
1

2
| 〈φm|

(
N +N>

)
|φ∗m〉 |2, (6)

while the detection probability of one photon in mode m
and another in mode n is

| 〈1m, 1n|e〉 |2 = |
∑

(j,k)∈σ
αjk

(
U∗njU

∗
mk + U∗mjU

∗
nk

)
|2

= |(U∗NU†)nm + (U∗NU†)mn|2
= | 〈φn|

(
N +N>

)
|φ∗m〉 |2, (7)

where N is an M × M matrix whose only nonzero el-
ements are Njk ≡ αjk for (j, k) ∈ σ. |φ∗m〉 is the mth

column of U†, and |φm〉 is the mth column of U>. From
the previous two equations, the probability of detect-
ing two photons in any mode for an input state |e〉 is
c| 〈φn|

(
N +N>

)
|φ∗m〉 |2, where c = 1− δmn

2 .
For easier analysis of this equation, it is helpful to note

that there is a linear transformation, π, that maps the
vectors |Ψµ〉 to matrices π (|Ψµ〉) such that π (|Ψµ〉) =
Nµ+N>µ . In order to understand this transformation, let
us define the following matrixAe that is a straightforward
transformation of |e〉:

Ae =

(
α13 α14

α23 α24

)
. (8)

This simple matrix is an element of the 4 dimensional
vector space of 2 × 2 complex matrices with the inner
product tr

(
A†B

)
. We can then explicitly give π (|e〉)

using this matrix:

π (|e〉) =




02×2 Ae 02×t
A>e 02×2 02×t
0t×2 0t×2 0t×t


 . (9)
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Here, we have defined 0t×t as a matrix of size t× t with
the elements of 0. It is helpful to note that the 0 elements
of this matrix correspond to the fact that there are no
ancillary input photons. This representation of π (|e〉)
makes it obvious that π (|e〉)> = π (|e〉). In order to see
how this operator acts on the 4 + t dimensional vector
|φ∗m〉, it is helpful to decompose |φ∗m〉 as a direct sum of
two two-dimensional vectors, |u∗m〉 ∈ H2 and |v∗m〉 ∈ H2

and one t dimensional vector, |w∗m〉 ∈ Ht: |φ∗m〉 ≡ |u∗m〉⊕
|v∗m〉 ⊕ |w∗m〉, where:

|u∗m〉 =

(
U∗m1

U∗m2

)
, |v∗m〉 =

(
U∗m3

U∗m4

)
, |w∗m〉 =



U∗m5

...
U∗mt


 .

(10)

Given this, we can see that π (|e〉) |φ∗m〉 = Ae |v∗m〉 ⊕
A>e |u∗m〉 ⊕ 0.

Using the linearity of the representation π and the def-
inition of the Bell-like states given in Eqs. (1) - (4), we
can determine the two photon detection probabilities for
these states:

c| 〈φl|π (Ψ1) |φ∗m〉 |2 = c|α1 〈φl|π (|00〉) |φ∗m〉
+β1 〈φl|π (|11〉) |φ∗m〉 |2, (11)

c| 〈φl|π (Ψ2) |φ∗m〉 |2 = c|β∗1 〈φl|π (|00〉) |φ∗m〉
−α∗1 〈φl|π (|11〉) |φ∗m〉 |2, (12)

c| 〈φl|π (Ψ3) |φ∗m〉 |2 = c|α2 〈φl|π (|01〉) |φ∗m〉
+β2 〈φl|π (|10〉) |φ∗m〉 |2, (13)

c| 〈φl|π (Ψ4) |φ∗m〉 |2 = c|β∗2 〈φl|π (|01〉) |φ∗m〉
−α∗2 〈φl|π (|10〉) |φ∗m〉 |2. (14)

B. Restrictions on transformations resulting in the
unambiguous discrimination of |Ψ3〉 in a detection

output

In the previous subsection, we derived a simple method
for calculating the probability of detecting one photon in
mode l and one photon in mode m, P (1l, 1m), for all
four Bell-like states. In order for such a detection to
contribute to the unambiguous discrimination of one of
the four input states, this probability needs to be zero for
three of the input states and non-zero for the remaining
state. If, e.g., we want this detection event to contribute
to the unambiguous discrimination of |Ψ3〉, we get the
conditions:

α1 〈φl|π (|00〉) |φ∗m〉 = −β1 〈φl|π (|11〉) |φ∗m〉 , (15)

α∗1 〈φl|π (|11〉) |φ∗m〉 = β∗1 〈φl|π (|00〉) |φ∗m〉 , (16)

〈φl|π (Ψ3) |φ∗m〉 6= 0, (17)

β∗2 〈φl|π (|01〉) |φ∗m〉 = α∗2 〈φl|π (|10〉) |φ∗m〉 . (18)

For completeness, Eq. (17) can be explicitly written as:

α2 〈φl|π ((|01〉) |φ∗m〉 6= β2 〈φl|π (|10〉) |φ∗m〉 . (19)

We first look at the consequences of the conditions,
Eqs. (15), (16), and (19), and will deal with the conse-
quences of the final conditions (18) in the next subsec-
tion. Multiplying Eqs. (15) and (16), and rearranging
the result slightly, yields

(|α1|2 + |β1|2) 〈φl|π (|00〉) |φ∗m〉 〈φl|π (|11〉) |φ∗m〉 = 0.
(20)

Due to the normalization condition |α1|2 + |β1|2 = 1, the
only way to satisfy this and both of Eqs. (15) and (16)
is for 〈φl|π(|00〉)|φ∗m〉 = 〈φl|π(|11〉)|φ∗m〉 = 0. We should
note that these two conditions hold for all values of α
and β, i.e., they hold unconditionally.

One convenient way of satisfying these conditions is
by choosing |φl,m〉 such that either π (|11〉) |φ∗m〉 = 0 or
π (|11〉) |φ∗l 〉 = 0. It is worth noting that if we choose
both of these options, the condition from Eq. (17)
(or (19)) cannot be satisfied. If we start by choosing
π(|11〉) |φ∗m〉 = 0 we get the following:

(
0 0
0 1

)
|v∗m〉 ⊕

(
0 0
0 1

)
|u∗m〉 = 0. (21)

In order to satisfy this equation, we require:

|v∗m〉 ∝
(

1
0

)
, |u∗m〉 ∝

(
1
0

)
, (22)

resulting in the following form for |φ∗m〉:

|φ∗m〉 = ϕm1

(
1
0

)
⊕ ϕm2

(
1
0

)
⊕ ϕm3 |w∗m〉 (23)

Here, |w∗m〉 is an arbitrary normalized t dimensional vec-
tor. The normalization of |φ∗m〉 is enforced by the con-

dition
∑3
i |ϕmi|2 = 1. Additionally, it is worth not-

ing that there exists one alternate solution where both
|v∗m〉 = |u∗m〉 = 0. However, with such a solution
Eq. (17) cannot be satisfied. Applying the same ap-
proach to 〈φl|π (|00〉) |φ∗m〉 = 0, we see that choosing
π (|00〉) |φ∗m〉 = 0 requires |φ∗m〉 = 0. This choice violates
the condition in Eq. (17) and, hence, cannot contribute
to unambiguous discrimination. This leaves us with set-
ting π (00) |φ∗l 〉 = 0, giving:

|φ∗l 〉 = ϕl1

(
0
1

)
⊕ ϕl2

(
0
1

)
⊕ ϕl3 |w∗l 〉 (24)

The orthogonality condition 〈φ∗l |φ∗m〉 = δlm is pre-
served by requiring that 〈w∗l |w∗m〉 = δlm. With
some simple substitution, we can see that the prob-
ability of successfully discriminating |Ψ3〉, given this
detection, is | 〈φl|π (|Ψ3〉) |φ∗m〉 |2 = |α2ϕl1ϕm2 +
β2ϕm1ϕl2|2. Using the triangle inequality, we get
| 〈φl|π (|Ψ3〉) |φ∗m〉 | ≤ |αϕl1ϕm2|+ |β2ϕm1ϕl2|. Using the

normalizations
∑3
i |ϕmi|2 = 1 and

∑3
i |ϕli|2 = 1, it is

clear that this term is maximal when ϕl3 = ϕm3 = 0.
From this point, we can confidently state that the optimal
solution is to reduce our total number of output modes to
4. Despite allowing for additional output modes, we can
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conclude that without allowing for ancillary input pho-
tons, additional output modes will not assist in the un-
ambiguous discrimination of the Bell-like states. At this
point, by considering the requirements of unambiguous
discrimination from a single detection, we have derived
significant restrictions on the form the unitary must take
if the network it represents will have an output detection
that will contribute to the unambiguous discrimination
of |Ψ3〉. If we, without loss of generality, choose that a
measurement of |11, 12〉 (m = 1, l = 2) should unambigu-
ously discriminate |Ψ3〉, we can use this to determine the
first two columns of the unitary as follows:

U† =




cosω1 0 · · · · · ·
0 cosω2 · · · · · ·

sinω1e
iρ1 0 · · · · · ·

0 sinω2e
iρ2 · · · · · ·


 . (25)

In this equation, we have satisfied the condition |ϕi1|2 +
|ϕi2|2 = 1 by defining ϕi1 = cosωi and ϕi2 = eiρi sinωi
for i = 1, 2. The 3rd and 4th columns of this unitary will
be determined in the next section.

Finally, we are left to consider the consequences of the
final condition, Eq. (18). Using the condition from Eq.
(18), we get that if we want a measurement of |11, 12〉 to
unambiguously discriminate |Ψ3〉 then we need

β∗2 cosω1 sinω2e
iρ2 = α∗2 cosω2 sinω1e

iρ1 . (26)

This gives us one of two equations that we will use to
determine the final unitary.

C. Unambiguous discrimination from other
detection results

Having considered the consequences of requiring the
measurement of |11, 12〉 to contribute to the unambiguous
discrimination of |Ψ3〉, we can now focus on the useful-
ness of the remaining outputs, for instance, |11, 14〉. As-
suming that we want our detector to be able to succeed
for more than one of the input states, we need to look
at using this output to discriminate a different state. If
we choose the output |11, 14〉 to unambiguously discrim-
inate |Ψ4〉, we can use the analysis above to require that
Eq. (24) also apply to |φ∗4〉. If we do this, it is straight-
forward to show that Eqs. (15) and (16) are already
satisfied. This fixes the full form of our unitary:

U† =


cosω1 0 − sinω1e
−iρ1 0

0 cosω2 0 − sinω2e
−iρ2

sinω1e
iρ1 0 cosω1 0

0 sinω2e
iρ2 0 cosω2




The only other condition, which can be derived in the
same fashion as Eq. (26), that needs to be satisfied is:

α2 cosω1 cosω2 = β2 sinω1 sinω2e
i(ρ1−ρ2). (27)

Solving equations (26) and (27) simultaneously gives
cosω1 = sinω1 = 1√

2
and α2

β2
= tanω2e

i(ρ1−ρ2). ρ1 is

not fixed by these equations and we can, without loss
of generality, choose ρ1 = 0. Combining everything we
derive the following unitary:

U† =




1√
2

0 − 1√
2

0

0 β∗2 0 −α2
1√
2

0 1√
2

0

0 α∗2 0 β2


 . (28)

This unitary is fixed, other then a total phase factor of
eiρ1 , and all that is left is to determine whether any of
the remaining detections of photons contribute to the
unambiguous discrimination of any state. Using the uni-
tary above, we can see that the detections of |12, 13〉 or
|13, 14〉 could only contribute to the unambiguous dis-
crimination of |Ψ3〉 or |Ψ4〉 when either |α2|2 = |β2|2 or
α2β2 = 0. Thus, it is clear that these two detections
can only be useful in unambiguously discriminating ideal
Bell states or separable states. Similarly, we can see
that any of the remaining detections will only ever be
useful for the unambiguous discrimination of either |Ψ1〉
or |Ψ2〉 when the input states are separable. For Bell-
like states, only detections of photons in the |11, 12〉 and
|11, 14〉 will result in successful unambiguous discrimina-
tion. The probabilities of measuring photons in these de-
tectors when their associated states are sent can be calcu-
lated as | 〈φ1|π (|Ψ3〉) |φ∗2〉 |2 = | 〈φ1|π (|Ψ4〉) |φ∗4〉 |2 = 1

2 .
If we assume that each state will be sent with equal prob-
ability, this unitary will successfully discriminate |Ψ3〉
and |Ψ4〉 with an optimal probability of 25%.

What we have ultimately shown in this section is that
there is no linear optical setup that will enable better
then a 25% probability of successfully discriminating any
set of Bell-like states. In order to reach this conclusion,
we first gave a general calculation of the probability of
two photon measurement occurring for each of the Bell-
like states in Eqs. (11) - (14). Following this, we fo-
cused specifically on |Ψ3〉 and derived, in Eqs. (23) and
(26), specific restrictions on the unitary defining the lin-
ear optical transformation in order for it to allow for the
unambiguous discrimination of |Ψ3〉 in one of the two
photon measurements. Finally, after choosing for the
|11, 12〉 mode contribute to unambiguous discrimination,
we analyzed what remaining detection outcomes could
be used for successful unambiguous discrimination. Our
specific choices of the |11, 12〉 and |11, 14〉 measurements
was arbitrary, and a similar analysis would follow if we
started by choosing any other modes. A permutation of
the above unitary would be derived, which would cause
different two photon detectors to be useful for the unam-
biguous discrimination task. Similarly, instead of hav-
ing started from trying to unambiguously discriminate
|Ψ3〉, we could have started from any other state. For
instance, following similar arguments as above, we could
have found the following unitary, which unambiguously



6

discriminates |Ψ1〉 and |Ψ2〉 with a probability of 25%:

U† =




β∗1 0 0 −α1

0 1√
2
− 1√

2
0

0 1√
2

1√
2

0

α∗1 0 0 β1


 . (29)

Ultimately, we conclude that the optimal probability of
unambiguous discrimination of Bell-like states in linear
optical systems is 25%, when no ancillary photons are
introduced.

IV. IMPLEMENTATION AND ANALYSIS

In the previous section, we provide a rigorous proof of
the optimal method of discriminating between Bell-like
states. In this section, we explicitly provide and ana-
lyze the optical setup. Specifically, our goal is to better
understand the relationship between the entanglement of
the input states and the success probability of unambigu-
ous discrimination. First, without loss of generality, we
can, for convenience, choose all of four parameters in Eqs.
(1)-(4) to be real and rewrite the possible Bell-like states
in the form:

|Ψ1〉 =
(

sin θ1â
†
1â
†
3 + cos θ1â

†
2â
†
4

)
|∅〉 , (30)

|Ψ2〉 =
(

cos θ1â
†
1â
†
3 − sin θ1â

†
2â
†
4

)
|∅〉 , (31)

|Ψ3〉 =
(

sin θ2â
†
1â
†
4 + cos θ2â

†
2â
†
3

)
|∅〉 , (32)

|Ψ4〉 =
(

cos θ2â
†
1â
†
4 − sin θ2â

†
2â
†
3

)
|∅〉 . (33)

We can also use concurrence as an entanglement measure-
ment for these states, calculating concurrence for these
states as follows: C1,2 = | sin (2θ1) |, C3,4 = | sin (2θ2) |.
The unitary in Eq. (28) can be implemented by two beam
splitters. Before looking explicitly at the optimal solu-
tion, it is first helpful to consider any general two beam
splitter strategy:

(
b̂†1
b̂†3

)
=

(
cosφ1 sinφ1
− sinφ1 cosφ1

)(
â†1
â†3

)
, (34)

(
b̂†2
b̂†4

)
=

(
cosφ2 sinφ2
− sinφ2 cosφ2

)(
â†2
â†4

)
. (35)

This setup is depicted in Fig. 2 (a), while the setup
in Fig. 2 (b) requires mapping 3 ↔ 4 in the previous
equations. In order to simplify our analysis, we will fix
the first beam splitter to being a 50/50 beam splitter,
φ1 = π

4 .
Using this, we calculate the probabilities of measuring

each possible outcome for each possible input state. In
Table I, P (m,n) is the probability of detecting one pho-
ton in detector m and one photon in detector n. If we
swap the two beam splitters, then we get the same table,
but with 1 ↔ 2 and 3 ↔ 4. If we swap the interactions,

4

â†1 1

â†2 2

â†3

3

â†4

4

η2

η1

(a)

â†1 1

â†2 2

â†3

3

â†4

4

η2

η1

(b)

FIG. 2. Discrimination of Bell-like states, with two beam
splitters defined by the parameters η1 and η2. In (a), modes
1 and 3 interact in the first beam splitter and modes 2 and 4
interact in the second. In (b), modes 1 and 4 interact in the
first beam splitter and modes 2 and 3 interact in the second.

succeeding when |Ψ1〉 is sent. Assuming that we want our
detector to be able to succeed for more than one state,
we need to look at using this output to discriminate |Ψ2〉.
It is straightforward to show that Eqs. (13) and (14) are
already satisfied. The only other condition that needs to
be satisfied is:

α1 cos θ1 cos θ2 = β1 sin θ1 sin θ1e
i(ϕ1−ϕ2) (17)

Solving these two equations simultaneously gives
cos (θ1) = sin θ1 = 1√

2
and α1

β1
= tan θ2e

i(ϕ1−ϕ2). Com-

bining this we derive the following unitary:

U† =




1√
2

0 − 1√
2

0

0 β1 0 −α1

0 α∗1 0 β∗1
1√
2

0 1√
2

0


 (18)

This unitary will successfully discriminate |Ψ1〉 and |Ψ2〉
with an optimal probability of 25%. While our initial
choice of having the |11, 14〉 mode contribute to unam-
biguous discrimination was arbitrary, at this point the
problem is completely fixed and no other output modes

can contribute to unambiguous discrimination. If we
chose a different output, for instance |12, 13〉, we would
end up deriving a permutation of the above unitary that
also can only succeed in discriminating the states with a
25% probability.

IV. IMPLEMENTATION AND ANALYSIS

In the previous section, we provide a rigorous proof of
the optimal method of discriminating between bell-like
states. In this section, we explicitly provide and analyze
the optical setup. Without loss of generality, we can, for
convenience, choose all of our parameters to be real. In
this case we can give the 4 possible states as:

|Ψ1〉 =
(

sin θ1â
†
1â
†
3 + cos θ1â

†
2â
†
4

)
|0〉 , (19)

|Ψ2〉 =
(

cos θ1â
†
1â
†
3 − sin θ1â

†
2â
†
4

)
|0〉 , (20)

|Ψ3〉 =
(

sin θ2â
†
1â
†
4 + cos θ2â

†
2â
†
3

)
|0〉 , (21)

|Ψ4〉 =
(

cos θ2â
†
1â
†
4 − sin θ2â

†
2â
†
3

)
|0〉 . (22)

We can also easily find the concurrence of these states:
C1,2 = sin (2θ1), C3,4 = sin (2θ2). The unitary in Eq.
(18) can be implemented by two beam splitters. Before
looking explicitly at the optimal solution, it is first helpful
to consider any general two beam splitter strategy:

(
b̂†1
b̂†3

)
=

(
η1

√
1− η21

−
√

1− η21 η1

)(
â†1
â†3

)
(23)

(
b̂†2
b̂†4

)
=

(
η2

√
1− η22

−
√

1− η22 η2

)(
â†2
â†4

)
(24)

This interaction is depicted in Fig. 2 (a), while the setup
in Fig. 2 (b) requires mapping 3 ↔ 4 in the previous
equations. In order to simplify our analysis, we will fix
the first beam splitter to being a 50/50 beam splitter,
η1 = 1√

2
, and parameterize the second beam splitter by

some angle φ, η2 = cosφ.

Using this, we can calculate a table of the probabilities of measuring each possible outcome for each possible input
state:

TABLE I. Probability of each possible combination of photon detections for each input state.

In/Out P (1, 1) P (2, 2) P (3, 3) P (4, 4) P (1, 2) P (1, 3) P (1, 4) P (2, 3) P (2, 4) P (3, 4)

|Ψ1〉 cos2 θ1 sin2(2φ)
2

sin2 θ1
2

cos2 θ1 sin2(2φ)
2

sin2 θ1
2

0 cos2 θ1 cos2 (2φ) 0 0 0 0

|Ψ2〉 sin2 θ1 sin2(2φ)
2

cos2 θ1
2

sin2 θ1 sin2(2φ)
2

cos2 θ1
2

0 sin2 θ1 cos2 (2φ) 0 0 0 0

|Ψ3〉 0 0 0 0 cos2(θ2−φ)
2

0 cos2(θ2+φ)
2

sin2(θ2−φ)
2

0 sin2(θ2+φ)
2

|Ψ4〉 0 0 0 0 sin2(θ2−φ)
2

0 sin2(θ2+φ)
2

cos2(θ2−φ)
2

0 cos2(θ2+φ)
2

In this table, P (m,n) is the probability of detecting one
photon in detector m and one photon in detector n. If we

swap the two beam splitters, then we get the same table,
but with 1 ↔ 2 and 3 ↔ 4. If we swap the interactions,

FIG. 2. Discrimination of Bell-like states, with two beam
splitters defined by η1 and η2. As described in Eqs. (34) and
(35), in (a) modes 1 and 3 interact in the first beam splitter
and modes 2 and 4 interact in the second. In (b), modes 1
and 4 interact in the first beam splitter and modes 2 and 3
interact in the second.

as depicted in Fig. 2 (b), such that the first beam splitter
has the 1 and 4 modes as its input and the second beam
splitter has 2 and 3 as it’s input, we also get a similar
table, but with the first two and the last two rows of
this table swapped and with θ1 ↔ θ2. For each output,
we can use Bayes’ Theorem to calculate the confidence
[24, 25]:

P (|Ψi〉 |m,n) =
P (m,n| |Ψi〉)p (|Ψi〉)∑
i P (m,n| |Ψi〉) p (|Ψi〉)

, (36)

D (m,n) = max
i
{P (|Ψi〉 |m,n)} . (37)

Here, we have defined P (m,n| |Ψi〉) as the probability of
a given detection outcome of one photon in the m de-
tector and one photon in the n detector for the input
state |Ψi〉. The confidence P (|Ψi〉 |m,n) is the probabil-
ity that the input state was |Ψi〉 given that a detection
of one photon in each of the m and n detectors occurred.
D (m,n) is the maximum confidence for this measure-
ment. In addition, we have assumed that all Bell-like
states are sent with equal probability: p (|Ψi〉) = 1

4 . One
final note is that Eq. (36) only holds when the denomi-
nator is non-zero.

This calculation of confidence gives us a clear way to
relate the entanglement of the input states to the ability
to use specific detection measurements for unambiguous
discrimination. The maximum confidence D (m,n) is a
measure of how well a detection of one photon in mode
m and one photon in mode n can be correlated to one
of the input states. When the maximum confidence is 1

4
there is no correlation between the detection and any in-
put state and when the maximum confidence is 1 there is
perfect correlation between the detection and the associ-
ated input state. In the case where maximum confidence
is 1, that detection results in the unambiguous discrimi-
nation of one of the input states. From all the columns of
the table we only get 3 different equations for maximum
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TABLE I. Probability of each possible combination of photon detections for each input state (setup described in Figure 2
(a)). When φ2 = θ2 then a detection of |11, 12〉 unambiguously discriminates |Ψ3〉 and a detection of |11, 14〉 unambiguously
discriminates |Ψ4〉.
In/Out P (1, 1) P (2, 2) P (3, 3) P (4, 4) P (1, 2) P (1, 3) P (1, 4) P (2, 3) P (2, 4) P (3, 4)

|Ψ1〉 sin2 θ1
2

cos2 θ1 sin2(2φ2)
2

sin2 θ1
2

cos2 θ1 sin2(2φ2)
2

0 0 0 0 cos2 θ1 cos2 (2φ2) 0

|Ψ2〉 cos2 θ1
2

sin2 θ1 sin2(2φ2)
2

cos2 θ1
2

sin2 θ1 sin2(2φ2)
2

0 0 0 0 sin2 θ1 cos2 (2φ2) 0

|Ψ3〉 0 0 0 0 cos2(θ2−φ2)
2

0 sin2(θ2−φ2)
2

cos2(θ2+φ2)
2

0 sin2(θ2+φ2)
2

|Ψ4〉 0 0 0 0 sin2(θ2−φ2)
2

0 cos2(θ2−φ2)
2

sin2(θ2+φ2)
2

0 cos2(θ2+φ2)
2

confidence:

D (1, 1) = D (2, 2) = D(3, 3) = D(4, 4) = D (1, 3) ≡ D1

D (1, 2) = D (1, 4) ≡ D2.

D (2, 3) = D (3, 4) ≡ D3.

D1 =
1 +

√
1− C2

1

2
. (38)

D2 =
1 + |

√
1− C2

3 cos (2φ2) + C3 sin (2φ2) |
2

. (39)

D3 =
1 + |

√
1− C2

3 cos (2φ2)− C3 sin (2φ2) |
2

. (40)

D1 is the maximum confidence for any detection of
two photons in the same mode, while D2 and D3 are the
confidences gained by the detection of photons in either
{|11, 12〉 , |11, 14〉} or {|12, 13〉 , |13, 14〉}, respectively. In
Fig. 3, we illustrate a plot of both D2 andD3 as functions
of C3 and φ2. Since unambiguous discrimination is only
achieved when the maximum confidence is 1, we can see
that since D1 = 1 is only satisfied for C1 = 0, detections
of two photons in the same mode only contributes to
unambiguous discrimination when the first two states are
separable. In order to satisfy either D2 = 1 or D3 = 1,
or equivalently for the associated detections to contribute
to unambiguous discrimination, we only need to choose
φ2 = θ2 or φ2 = π

2 − θ2 respectively, which is the optimal
solution derived in the previous section and results in the
unitary given in Eq. (28) up to a simple permutation of
the unitary. For both D2 = 1 and D3 = 1 to be satisfied,
we either need C3 = 1 and φ2 = π

4 , which is the case for
Bell states, or C3 = 0 and φ2 = 0, which is the case for
separable states.

This analysis makes it clear that the unambiguous
linear optical discrimination of Bell-like states is not a
monotonic function of entanglement, or equivalently, con-
currence. Rather, for all Bell-like states, only one of
D2 = 1 or D3 = 1 can be satisfied, and therefore the Bell-
like states can only be successfully discriminated with a
probability of 25%. We can see this from Table II. If we
choose π

4 > θ1, θ2 > 0, we can see that |Ψ3〉 is unambigu-
ously discriminated when one photon is measured in each
of modes 1 and 2. |Ψ4〉 is unambiguously discriminated
when the one photon is measured in each of modes 1 and
4. |Ψ1〉 and |Ψ2〉 are never successfully discriminated,
while |Ψ3〉 and |Ψ4〉 are successfully discriminated half of
the time they are received, giving a total success rate of

(a)

(b)

FIG. 3. A plot of the confidences (a) D2 and (b) D3 as a
function of the concurrence C3 and the beam splitter param-
eter φ.

25%. For Bell states, both D2 = 1 and D3 = 1 can be
satisfied, allowing for a success probability of 50% for the
discrimination and reproducing the results in [15–17]. In
Table II, we can see this result by choosing θ1 = θ2 = π

4 .
Similar to the Bell-like case, |Ψ1〉 and |Ψ2〉 are never
successfully discriminated. However, |Ψ3〉 is successfully
discriminated upon a detection of one photon in each
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TABLE II. Probability of each possible combination of photon detections for each input state when the beam splitter in Eqs.
(34) and (35) are set such that φ1 = π

4
and φ2 = θ2

In/Out P (1, 1) P (2, 2) P (3, 3) P (4, 4) P (1, 2) P (1, 3) P (1, 4) P (2, 3) P (2, 4) P (3, 4)

|Ψ1〉 sin2 θ1
2

cos2 θ1 sin2(2θ2)
2

sin2 θ1
2

cos2 θ1 sin2(2θ2)
2

0 0 0 0 cos2 θ1 cos2 (2θ2) 0

|Ψ2〉 cos2 θ1
2

sin2 θ1 sin2(2θ2)
2

cos2 θ1
2

sin2 θ1 sin2(2θ2)
2

0 0 0 0 sin2 θ1 cos2 (2θ2) 0

|Ψ3〉 0 0 0 0 1
2

0 0 cos2(2θ2)
2

0 sin2(2θ2)
2

|Ψ4〉 0 0 0 0 0 0 1
2

sin2(2θ2)
2

0 cos2(2θ2)
2

of modes 1 and 2 or one photon is detected in each of
modes 3 and 4. |Ψ4〉 is successfully discriminated when
one photon is detected in each of modes 1 and 4 or one
photon is detected in each of modes 2 and 3. In total, for
Bell states when either |Ψ1〉 or |Ψ2〉 are received the dis-
crimination fails, while when |Ψ3〉 and |Ψ4〉 are received,
the discrimination succeeds, giving a success rate of 50%
for the total protocol. For completely separable states,
D1 = D2 = D3 = 1 can be satisfied, allowing for com-
plete discrimination between the four states. We can see
this from Table II by setting θ1 = θ2 = 0. In this case we
see that a detection of one photon in each of the modes
2 and 4 will unambiguously discriminate |Ψ1〉, while a
detection of two photons in mode 1 or a detection of two
photons in mode 3 will unambiguously discriminate |Ψ2〉.
|Ψ3〉 and |Ψ4〉 can be unambiguously discriminated, as in
the previous example.

V. CONCLUSION

In this paper we have derived the optimal efficiency
of unambiguous discrimination between Bell-like states
possible with linear optical setups without the need for
ancillary photons. We have explicitly shown that the
optimal efficiency for Bell-like states is only 25%, as op-
posed to the 50% success rate possible for Bell states.
The reduced symmetry of the Bell-like states results in
fewer outputs that can be useful for unambiguous dis-
crimination. When analyzed in terms of the entangle-
ment measure of the set of states, the optimal efficiency

shows a discontinuity between the set of Bell-like states
and exact Bell-states. The main conclusion is that the
upper bound for the success probability of unambiguous
discrimination between Bell-like states is 25%. This re-
sult is independent of the concurrence C of the states for
0 < C < 1, while C = 0, separable states, and C = 1,
maximally entangled states, emerge as singular points.
Previous works on Bell states simply prove that the pro-
posed transformation is optimal, in this paper we ob-
tained specific constraints on the unitary and used these
constraints to derive and construct the optimal discrim-
ination protocol. The systematic approach presented in
this paper has the potential to assist in optimizing other
types of linear optical discrimination problems. In follow
up work, we intend to consider more general classes of or-
thogonal entangled states. In addition, there is still room
to explore optical setups for unambiguous discrimination
that make use of ancillary photons. One final possible
extension of this work is using this approach to derive
the optimal minimum error discrimination, or even more
general strategies, allowed by linear optical setups.
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