
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Librational feedback cooling
Charles P. Blakemore, Denzal Martin, Alexander Fieguth, Nadav Priel, Gautam

Venugopalan, Akio Kawasaki, and Giorgio Gratta
Phys. Rev. A 106, 023503 — Published  3 August 2022

DOI: 10.1103/PhysRevA.106.023503

https://dx.doi.org/10.1103/PhysRevA.106.023503


Librational Feedback Cooling

Charles P. Blakemore,1, ∗ Denzal Martin,1, † Alexander Fieguth,1

Nadav Priel,1 Gautam Venugopalan,1 Akio Kawasaki,1, 2, ‡ and Giorgio Gratta1, 2

1Department of Physics, Stanford University, Stanford, California 94305, USA
2W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, California 94305, USA

(Dated: June 21, 2022)

Librational motion, whereby a rigid body undergoes angular oscillation around a preferred direc-
tion, can be observed in optically trapped, silica microspheres. We demonstrate the cooling of one
librational degree of freedom for ∼ 5 µm diameter spheres that have been induced to rotate with an
external electric field coupled to their electric dipole moment. Cooling is accomplished by adding a
phase modulation to the rotating field. The degree of cooling is quantified by applying a π/2 shift
to the phase of the electric field and fitting the resulting exponential decay of the librational motion
to obtain a damping time, as well as estimating a mode temperature from the observed libration in
equilibrium. The result is an important step in the study of the dynamics of trapped microspheres,
crucial to cooling the mechanical motion to its ground state, as well as providing insights regarding
the charge mobility in the material at microscopic scales.

I. INTRODUCTION

Classical mechanical systems akin to the canonical
mass-on-a-spring have been used to study oscillator dy-
namics under a wealth of different conditions, allowing
for these systems to serve as underlying models for a
variety of complex physical processes. In the flourish-
ing field of optomechanics [1], restoring forces are often
generated by optical interactions such as radiation pres-
sure, and can thus be controlled with great precision.
Indeed, translational motion of optomechanical oscilla-
tors has been cooled to the level of single quanta of the
associated potential [2–4].

To date, much less attention has been given to the rota-
tional degrees of freedom. These have been manipulated
primarily with two mechanisms: transfer of angular mo-
mentum via the interaction between the polarization of a
confining optical field and a birefringent particle so con-
fined [5–8], or coupling an external rotating electric field
to the electric dipole moment within the trapped parti-
cle [9, 10]. Other methods of control are also possible
including spin-mechanical coupling [11].

For the electrostatic technique, the particle must have
an electric dipole moment, which has generally been ob-
served in silica microspheres (MSs) synthesized via the
Stöber process [7, 9, 10, 12]. As the dipole moment (and
thus the MS carrying it) is driven into rotation by the
electric field, its orientation oscillates about the instan-
taneous direction of the field, which we refer to as “li-
bration”, in analogy with the more familiar astronomical
phenomenon [13].

We present the first demonstration of feedback cool-
ing of a librational degree of freedom, using an optically
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trapped silica MS in vacuum. The MS is first transla-
tionally confined with active feedback, electrically neu-
tralized, and then induced to rotate at a fixed, but freely
chosen, angular velocity, by application of a rotating elec-
tric field. For sufficiently small oscillations, the libra-
tional degree of freedom can be described as a damped
harmonic oscillator. Feedback is provided by first detect-
ing the phase of the MS’s rotation from the polarization
of transmitted light, sensitive to the rotation of the MS’s
birefringent axes, and subsequently modulating the phase
of the rotating electric field.

The rotational motion of microscopic objects may
provide systems with inherently low levels of damp-
ing [14, 15], offer gyroscopic stabilization of the rotor’s
translational degrees of freedom [5, 9, 16], as well as possi-
bly mitigate systematic effects observed in precision force
measurements with optically levitated systems [12, 17–
19].

II. EXPERIMENTAL APPARATUS

The optomechanical system implemented in this work
consists of a vertically-oriented optical tweezers in vac-
uum. Silica MSs [20] with diameter (4.70± 0.08) µm [21]
are trapped at the focus of a linearly-polarized laser beam
with vacuum wavelength 1064 nm and focused with nu-
merical aperture of NA = 0.12, generated by a Yb:doped
fiber laser and manipulated by a combination of both
fiber and free-space optics. Translational motion of the
MS in the horizontal plane is observed in the deflection of
transmitted light, while vertical motion is derived from
the phase of light retroreflected by the MS. Active sta-
bilization of the translational degrees of freedom is ac-
complished using linear feedback with piezoelectrically-
driven deflection of the trap position for the horizontal
degrees of freedom, as well as power modulation of the
trapping beam for the vertical degree of freedom. We
observe negligible coupling between the translation and
rotation of the MS, that are quite separated in frequency,
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FIG. 1. A schematic depiction of the central features of the
apparatus including the optical trap, the surrounding elec-
trode structure, and parts of the imaging system. The lower
right inset demonstrates a typical electric field configuration
when driving a trapped MS to rotate. The upper right inset
is an idealized version of the expected signal from the cross-
polarized light monitor as the MS is rotating with angular
velocity ω0. Note that the coordinate pair relevant for the
inset are different from those in the main panel. A complete
description of the apparatus can be found in Ref. [22]

O(10 Hz to 1000 Hz) for translation and O(10 kHz) for
rotation. The investigation of such a coupling may prove
interesting for future work.

Six identical electrodes form a cubical cavity around
the focus of the trapping beam, whilst also allowing me-
chanical and optical access via central bore holes through
each electrode. This architecture allows one to set both
the value of the electric field and its gradient at the lo-
cation of trap. By applying an individually phased si-
nusoidal voltage to four of the six electrodes, such that
the chosen four lie within the same plane, a rotating
electric field of constant magnitude can be generated.
The orientation of the MS electric dipole moment then
aligns with the electric field, and the angular position can
be actively driven by phase-modulating the driving volt-
ages. A schematic depiction of the optical trap is shown
in Fig. 1. More details on the apparatus are given in
Refs. [22, 23].

The rotational degrees of freedom of a rotating MS are
monitored by taking advantage of the residual birefrin-
gence present in Stöber process silica MSs [7, 9, 10]. A
birefringent MS couples some of the linearly polarized
trapping light into the orthogonal linear polarization fol-
lowing the relation P⊥ = P0 sin2 (µ/2) sin2 (θ), where P0

is the incident power, µ ∝ ∆n is the phase retardation

between the two axes of the birefringence, and θ is the
angle between the projection of the fast axis into the ro-
tation plane and the incident polarization [24]. Thus, a
birefringent MS driven to rotate with angular velocity
ω0 will generate cross-polarized light with an intensity
modulation at 2ω0.

The cross-polarized light is separated from the trans-
mitted light with a polarizing beamsplitter (PBS) and
projected onto a photodiode. The modulating pho-
tocurrent is first converted to a voltage, amplified,
digitized, digitally filtered around 2ω0, and finally
digitally-demodulated, following the technique described
in Refs. [22, 25]. The digitization, filtering, and
demodulation operations are performed with a field-
programmable gate array (FPGA, NI PCIe-7841) in or-
der to derive the feedback signal, while the amplified
photodiode output is also digitized in parallel by a sec-
ond analog-to-digital converter (ADC, NI PXI-6259) op-
erated at 500 kHz, and stored for offline analysis with
monitor signals of the four driving voltages. A schematic
view of the feedback architecture is shown in Fig. 2.

The drive voltages are first generated by the FPGA
configured to operate as a direct digital synthesis (DDS)
waveform generator. Full digital control allows the gen-
eration of four distinct signals from a single DDS: the
sin, cos, − sin, and − cos components. By phase mod-
ulating the top-level DDS, the angular position of the
resultant electric field vector is necessarily modulated.
While the internal structure of the DDS is clocked at
40 MHz, the digital-to-analog converters (DACs) are up-
dated at 1 MHz, and for the data presented here, the
rotation velocity was fixed to 25 kHz. The four DDS out-

FIG. 2. Block diagram of the feedback architecture, where all
of the elements within the dotted border are integrated with
the FPGA, such that the entire module is mutually clocked by
the same top-level oscillator. The power of the cross-polarized
light incident on the photodiode is modulated at angular fre-
quency 2ω0 for a MS rotating at ω0. The 2ω0 carrier is de-
modulated by phase-locked sampling, yielding φ, the angular
position of the dipole moment relative to the electric field.
The derivative can then be computed, and scaled by an arbi-
trary and user-controlled gain parameter Kd. The quantity
φext represents an arbitrary user-defined phase that can be
added to the phase modulation, φm, of the electric field.
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puts are amplified (Tabor 9400) to O(100 V) before driv-
ing the electrodes. A finite element analysis (FEA) of the
electrode structure suggests that electric fields of order
100 kV/m are possible with this hardware configuration.

Note that all components within the FPGA module are
clocked by the same top-level oscillator, ensuring a phase-
lock between signal generation and subsequent sampling
and demodulation.

III. THE LIBRATIONAL DEGREE OF
FREEDOM

Silica MS produced via the Stöber process posses
an electric dipole moment d [9, 12, 26, 27] which,
for otherwise identical spheres, can vary in magnitude
by more than a factor of 10 [22, 26]. If the MS is
subject to a rotating electric field of the form E =
E [sin (ω0t)x̂ + cos (ω0t)ŷ], where the choice of ẑ as the
rotation axis is arbitrary, the orientation of the MS’s elec-
tric dipole moment tends to align with the direction of the
electric field due to the torque d × E. Additionally, the
MS is subject to a drag torque proportional to it’s angu-
lar velocity, and a randomly fluctuating thermal torque,
both a result of collisions with residual gas molecules. By
defining φ′ as the angle between the electric field vector
E and the orientation of the dipole moment d, and re-
stricting the analysis to the plane of rotation (xy-plane),
the angular momentum, L of the MS is governed by the
following equation of motion:

∂L

∂t
=

E d sin (ω0t− φ′)︸ ︷︷ ︸
driving torque

− βrot
∂φ′

∂t︸ ︷︷ ︸
drag torque

+
√
Sthη(t)︸ ︷︷ ︸

thermal torque

 ẑ,

with d = |d| being the magnitude of the MS electric
dipole moment, βrot being the rotational drag coefficient
of the MS, Sth = 4kBTβrot being the single-sided power
spectral density of the thermal torque noise with kB the
Boltzmann constant and T the temperature of the resid-
ual gas, and with η being a time-domain representation
of a stochastic Wiener process, such that F [η]F [η] = 1
with F being the Fourier transform operator, and ( ) in-
dicating complex conjugation. A derivation of Sth and
βrot is detailed with great care in both Refs. [28, 29].

Now transform the equation of motion to the frame
co-rotating with the electric field by defining the an-
gular coordinate φ = φ′ − ω0t and recognizing that
L = Iφ̇′ where I is the MS moment of inertia. The
result has an equilibrium solution, found by setting
φ̈ = φ̇ = 0 and momentarily ignoring the stochas-
tic drive. Physically, the equilibrium solution is in-
duced by the overall gas drag from the rotation and
is given by φeq ≈ − arcsin (βrotω0/E d), relative to
φframe = ω0t. The numerical value can be estimated
by considering the residual gas pressure and species,
in the present data, is dominated by ∼2× 10−6 hPa of
H20, as well as typical values of the dipole moment,

100 e µm to 2000 e µm, and chosen electric field condi-
tions, E ∼ 10 kV/m to 100 kV/m and ω0 = 2π(25 kHz).
We find φeq ≈ −1.3× 10−7 rad to −2.6× 10−5 rad, and
thus, the constant term is dropped from the formalism.

The effect of active feedback via modulation of the
phase of the rotating electric field would change the ar-
gument of the sin in Eq. (1) to (ω0t + φm − φ′). Im-
plementing pure derivative gain, to mimic the effect of
damping, of the form φm = −Kdφ̇ with Kd a tunable
constant, and linearizing the equation of motion, we ar-
rive at the result:

∂2φ

∂t2
+ γ

∂φ

∂t
+ ω2

φφ = −Kdω
2
φ

∂

∂t
(φ+ ξ) +

√
Sth

I
η (1)

with ξ representing the measurement noise necessarily
injected by the feedback, and where we have defined a
damping coefficient γ and natural frequency ωφ:

γ ≡ βrot

I
ωφ ≡

√
E d

I
(2)

recognizing the usual equation of motion for a damped
harmonic oscillator with forcing terms. Computational
delays inherent to the feedback architecture are such that
the calculated value of φ̇+ ξ̇ in the feedback forcing term
is in fact delayed in time, i.e. φ̇+ ξ̇ = φ̇(t−tfb)+ ξ̇(t−tfb)
for the term proportional to Kd, with tfb ∼ O(100 µs).

A. Step Response - Homogeneous Solution

Consider the response of the system to a step function,
such as would result from a discrete change in the orienta-
tion of the rotating electric field. If the step is sufficiently
fast compared to the length of one librational period, it
can be modeled as an instantaneous effect. Further ig-
noring the thermally driven portion of the solution and
assuming that any transients have been fully damped,
the step response can be derived by integrating Eq. (1)

subject to the initial conditions φ(0) = φ0 and φ̇(0) = 0,
where a step of magnitude φ0 is assumed at time t = 0.

A proper treatment would consider the full functional
form of the potential well (U ∼

∫
sinφdφ instead of

∼ φ2), include anomalous dissipation generated by the
feedback-injected noise ξ, and account for the causal limi-
tation represented by tfb, but for the purpose of this first
demonstration of librational cooling, we appeal to the
approximated case with a quadratic potential and with
ξ = 0 as well as tfb = 0. The accuracy and limitations of
the approximation will be discussed below. Integrating
the simplified equation of motion φ̈+(γ+kd)φ̇+ω2

φφ = 0,
subject to the aforementioned initial conditions and with
kd ≡ Kdω

2
φ defined for brevity, φ(t) is obtained as:

φ(t) = φ0e
−γdt/2 cos

(√
ω2 −

γ2
d

4
t

)
(3)

where γd ≡ γ+kd. The time-constant of the exponential
envelope τ = 2/γd is determined by the combined effect
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of the system’s intrinsic damping γ, assumed to be dom-
inated by collisions with residual gas, and the feedback-
induced damping kd, allowing the effect of the feedback
to be quantified.

The analytic solution given by Eq. (3) can be evalu-
ated against a numerical solution obtained by integrat-
ing the full form of the sinusoidal potential. A Runge-
Kutta integrator was used for this purpose, with a few
different electric field amplitudes and effective damping
coefficients γd, chosen to span the approximate range of
both parameters. A comparison between the exponential
fits to the decaying envelopes of oscillation for both the
analytic solution of the approximate potential, and the
numerical solution of the full potential (with otherwise
identical E, d, I, γd) is used to estimate the systematic
bias associated with the approximated solution above.
As expected, an exponential fit to the amplitude enve-
lope of the analytical solution of the linearized equation
of motion yields the correct answer: (τ̂)linear ≈ τtruth.
The same exponential fit to the amplitude envelope of
the numerical solution of the full sinusoidal potential sys-
tematically underestimates the true value of the damping
time by a fixed multiplicative factor: (τ̂)full ≈ 0.91τtruth.

B. Thermal Steady State

The thermally-driven steady state motion of the MS
librational degree of freedom should also depend on the
level of the applied feedback. An expression for the ex-
pected power spectral density of the librational motion
can be derived by considering the Fourier transform of
Eq. (1), with kd = Kdω

2
φ as before. We generally fol-

low the extensive formalism presented in the Supplemen-
tary Material of Ref. [30]. Let φ̃(ω) ≡ F [φ(t)] and recall
that for individual Fourier component solutions, we know
F [φ(t − tfb)] = e−iωtfb φ̃ and F [φ̇] = iωφ̃, with tfb as be-
fore. We find that:

φ̃ =

√
Sth/I − ikdωe−iωtfb ξ̃[

ω2
φ − ω2

]
+ iω [γ + kde−iωtfb ]

, (4)

with ξ̃ being the Fourier transform of the measurement
noise. We can compute the expected power spectral den-
sity of the librational motion directly:

Sφφ = φ̃φ̃

=
Sth/I

2

G(ω)
+
k2
dω

2Sξξ
G(ω)

,
(5)

with denominator G(ω) = [ω2
φ − ω2 + ωkd sin (ωtfb)]2 +

ω2[γ+ kd cos (ωtfb)]2 the inverse of the effective mechan-
ical susceptibility in the presence of feedback, and where
it has been assumed that ξ and η are uncorrelated.

Solving for the quantity φ̃ + ξ̃, we can compute the
expected power spectral density of the libration, as ob-

served from the in-loop detector:

SIL = (φ̃+ ξ̃)(φ̃+ ξ̃)

=
Sth/I

2

G(ω)
+

[(ω2
φ − ω2)2 + γ2ω2]Sξξ

G(ω)
,

(6)

with G(ω) as before.
The intended effect of the feedback is to introduce ad-

ditional damping. However, due to the fixed temporal
phase shift tfb associated to this particular feedback im-
plementation, the effect on the observed power spectral
density is nontrivial. Importantly, there is a noise in-
jection term proportional to Sξξ, but suppressed at the
resonance, and the denominator G(ω) induces a clear
asymmetry in the observed spectral density. The for-
mer effect is the well-understood result of noise cancella-
tion in the detector induced by the feedback system, and
is often referred to as noise squashing [30–32]. Systems
with both in-loop and out-of-loop detectors can circum-
vent the noise squashing, but the signal level in this first
iteration of librational cooling was not sufficient for dis-
tribution to multiple detectors.

The parameter kd can be extracted by fitting Eq. (6)
to the observed spectra, and together with the known
values of I, ωφ, and γ, an effective temperature of the
librational motion can be estimated. From equipartition
and Parseval’s theorem, maintaining the convention of
single-sided PSDs, the effective mode temperature can
be calculated:

kBTeff = Iω2
φ〈φ2〉

= Iω2
φ

1

2π

∫ ∞
0

Sφφdω

≈
Iω2

φ

4

[
Sth/I

2

ω2
φ(γ + kd)

+
k2
dSξξ

γ + kd

] (7)

where in the final line it has been assumed that tfb = 0 in
order arrive at a closed form expression for Teff . Clearly,
any estimation via the expression in Eq. (7) will have
limited accuracy since it is known that tfb 6= 0. The ac-
quired spectra will be numerically integrated in future
iterations of the apparatus, taking advantage of both im-
proved signal-to-noise and a dedicated out-of-loop sensor.

IV. RESULTS

Librational feedback cooling was demonstrated with
three distinct MSs, all from the same lot with diameter
(4.70± 0.08) µm and each trapped for approximately one
month. A variety of different derivative gain values, Kd,
were used, as well as few different electric field amplitudes
so that effective values of kd span roughly 4 orders of
magnitude. The degree of cooling for a specific choice
of parameters was quantified via two distinct methods:
application of a step, and thermalization.
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FIG. 3. The amplitude envelope of the libration in response
to an applied step, for a variety of derivative gain values,
including kd = 0, where distinct colors (and lightness values)
distinguish different values of derivative gain. A dashed line
indicates the result of exponential fitting, with the extracted
damping time showing in the legend. (inset) an example of the
underlying oscillation of the librational motion for the largest
value of derivative gain. Some filtering artifacts are present
immediately following the step, and are excluded from the
exponential fit.

A. Discrete Phase Step

As the driving voltages that source the rotating electric
field are generated by a single top-level DDS, it is pos-
sible to apply arbitrary phase steps by propagating the
phase of each of the four output sinusoids simultaneously.
As a result, the applied electric field rapidly changes ori-
entation. Electric field phase changes of ∆φ = ±π/2
in this system, corresponding to drive voltage ampli-
tude changes of (1/2) the peak-to-peak voltage, have
been measured to have rise times trise < 2 µs. This is
consistent with both the 50 kΩ termination resistance
and 30 pF electrode-to-ground capacitance as well as the
∼500 kHz full-scale bandwidth of the driving amplifier.
The frequency of libration can be controlled by tuning
the electric field, and usually has values ωφ =

√
E d/I ∼

O(2π × 1 kHz), so that ωφtrise . 0.01 rad, and thus the
finite rise time of the step has a negligible effect on the
dynamics. This is sufficiently fast that it is effectively
instantaneous relative to the O(1 kHz) fundamental fre-
quency of the libration.

For the measurements presented here, a step of ∆φ =
±π/2 was applied to the rotating electric field (where the
± indicates that the phase offset was applied alternately
in the ‘forward’ and ‘backward’ directions), and the sub-
sequent ringdown of the MS’s librational motion was ob-
served. Between successive measurements, the feedback
gain and electric field amplitude were first altered to their
new values, and then the motion was allowed to thermal-
ize for > 3000 s, following the expected torsional damp-
ing times (dependent on the base pressure of the vacuum
chamber) observed previously on the same system [10].
A few examples of the measured response to such a step

FIG. 4. Summary of the libration phase step measurements.
The damping time extracted from exponential fits is plotted
as a function of the applied derivative gain. Different colors
(lightness values) indicate different electric field amplitudes,
while different marker shapes indicate distinct MSs. (left)
Damping times in the absence of applied feedback, showing
a clear dependence on both drive amplitude and MS, with
the former being a monotonic relation. Data from distinct
MSs has been offset horizontally to aid their visibility. (right)
damping times with feedback on. Dashed lines indicate fits
to the expected scaling relation τ̂ = 2/(γ + Ckd), where C is
an arbitrary scaling constant found to be necessary to match
the observed relation between kd and τ̂ .

are shown in Fig. 3, for one specific MS.

The libration is extracted from the cross-polarized light
signal, first by Hilbert transforming the primary rotation
signal at 2ω0 = 2× 2π(50 kHz), which yields 2φ′, the an-
gular position of the MS in the lab frame. Using the
known drive frequency ω0, the libration is then recon-
structed as φ = φ′−ω0t. Finally, the amplitude envelope
of the libration is extracted by a second Hilbert transform
of the reconstructed φ.

A damping time is inferred by downsampling the am-
plitude envelope, and then fitting the result with a de-
caying exponential, including a constant offset to ac-
count for the RMS amplitude of the thermal motion
after the transient response has fully decayed. The fit
of the amplitude envelope is constrained to the domain
[t0 + 0.1τ0, t0 + 2.0τ0] where t0 indicates when the step
was applied and τ0 is an initial estimate of the e-folding
time obtained from the mean of data samples that cross
φ ∼ (π/2)e−1 after the step. From Sec. III and the
aforementioned numerical integrations of the full poten-
tial (rather than the harmonic approximation), we know
that the decay time, τ ≈ 2/γ, will be systematically un-
derestimated by the näıve exponential fit to actual data,
but by a fixed multiplicative constant. Regardless, the
scaling of the decay time from the fit τ̂ as a function of
kd still allows characterization of the cooling.

A summary of all step response measurements is shown
in Fig. 4, with the extracted τ̂ plotted as a function of the
derivative gain. When the derivative gain is sufficiently
small, there is some intrinsic damping that dominates.
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Interestingly, the zero-feedback damping times observed,
O(10 s to 100 s), are inconsistent with the expected value
of τ ≈ 2/γ ≈ 2I/βrot ∼ 4000 s [9, 10] given the base pres-
sure achieved in this vacuum system. This may be the
result of phase noise either in the top-level DDS sourcing
the electric field, or in the synchronization of the vari-
ous ADCs, DACs, and digital demodulation operations.
It may also be symptomatic of non-linearities, such as
those that might arise from higher-order charge distribu-
tions present in the MS.

From Sec. III, the exponential damping time might be
expected to follow the relation τ̂ = 2/(γ + kd). The
data are inconsistent with this expectation, instead be-
ing described by the relation τ̂ ∼ 2/(γ + Ckd) with C
a positive scaling constant. The constant C is different
for distinct MSs, but consistent across drive voltage for
each MS. For the three whose data are presented here:
C1 = 0.29±0.03, C2 = 0.53±0.05, and C3 = 0.24±0.03.
As was noted in Sec. III, a systematic bias in the estimate
of τ̂ is expected from fitting a näıve exponential to the
ringdowns within the sinusoidal potential, but this factor
of τ̂ → 1.1τ̂ does not explain the observed deviation, nor
would it be different between MSs, under the construc-
tion presented here. This is discussed further in the next
section.

B. Thermalization

Immediately prior to a phase step measurement, but
after the long 3000 s thermalization time, 200 s of libra-
tional motion are monitored and digitized, in 20 continu-
ous 10 s integrations. For each integration, the libration
φ is extracted with the same Hilbert transform discussed
in the previous section, and the power spectral density is
estimated by squaring the Fourier transform of the digi-
tized signal. The observed motion is sufficiently small so
that the approximation sinφ ≈ φ is valid.

An exemplary pair of two such 200 s datasets with one
MS are shown in Fig. 5, where the PSD of a few indi-
vidual 10 s are shown, as well as the PSD of the con-
catenated signal. Between successive integrations, the
central frequency of the librational motion ωφ appears to
change by O(0.1 Hz), and as a result, the PSD of the con-
catenated signal appears anomalously broadened. Fur-
thermore, under identical conditions, but ∼5 h later, the
central frequency continued to drift by >2 Hz. Both ef-
fects can hinder the estimations of damping, given that
γ̂d = γ + kd is extracted from the width of the observed
spectral feature. Dividing the data into smaller blocks,
effectively implementing shorter integration times, pro-
vides little improvement given the fixed sampling rate
and frequency resolution implied the Nyquist-Shannon
sampling limit [33, 34].

In order to mitigate the effect of this drift, first, the
central frequency of libration ω̂i, of each of the i integra-
tions is estimated by fitting the spectral feature to Eq. (5)
with Sξ = 0 and tfb = 0, but an added constant offset

FIG. 5. PSDs of the librational motion depicting a drifting
central frequency. Each panel contains one 200 s dataset, with
5.4 h between the two. The power spectral density of each
full dataset is shown in light gray, while the power spectral
densities of individual 10 s integrations within the datasets
are shown in curves of varying lightness and color. It appears
that some of the observed spectral width is driven by slow
fluctuations in the center frequency, distinct from additive
dissipation and subsequent line-broadening.

to account for detector noise. From these estimations, a

mean central frequency can be defined ω ≡ (1/N)
∑N
i ω̂i.

The librational motion in each integration is then fre-
quency shifted by ∆ω = ω − ω̂i. The frequency shift
is accomplished by assuming the filtered signal φ(t) can
be represented by φ(t) = A(t) cos [ωit+ θ(t)], as well as
the implicit requirement that A(t) and θ(t) change slowly
relative to ωi. The analytic representation of the signal
can then be constructed from the Hilbert transform, H,
as φa(t) = φ+ iH[φ] = A(t) exp {i[ωit+ θ(t)]}, so that a
frequency shift can be implemented simply via the mul-
tiplication φa · exp (i∆ωt).

The real part of the frequency-shifted analytic signal is
then the desired librational motion, which is constructed
separately for each individual integration. The average
PSD of all such integrations for one 200 s measurement is
fit to Eq. (6) in order to estimate γd, kd, and Sξ, where
the value of γ is loosely constrained to 2/τ(kd = 0), i.e.
the level of intrinsic damping observed during ringdown
measurements when the effect of the active feedback is
negligible. A few examples of the average PSDs together
with their fits are shown in Fig. 6.

As with the step response, the thermal behavior of the
system in the absence of feedback is inconsistent with
the assumption that residual gas dominates the observed
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FIG. 6. A few examples of the mean PSDs of the librational
motion of one particular MS, where distinct colors (and light-
ness values) distinguish different values of derivative gain. For
measurements with kd 6= 0, each PSD shown is the mean of
the PSDs of 20 individual and consecutive 10 s integrations,
following the averaging procedure discussed in the text. The
dashed lines indicate fits of the PSD to the expression in
Eq. (6), with the extracted value of γ̂d = γ + kd and the
ratio of the effective mode temperature from Eq. (7) to the
zero-feedback mode temperature both shown in the legend.
For the data with kd = 0, there are 10 distinct PSDs from 10
measurement series all plotted together, where each PSD is
again the mean of 20 consecutive integrations, with an O(1 h)
delay between each measurement series to ensure thermaliza-
tion of the system. The dashed line for kd = 0 represents
the mean of the fits to each of the 10 measurement series,
and is used to derive an estimate of zero-feedback damping
γ, whereas the zero-feedback mode temperature is derived
from a direct integration of the spectra and the assumption
of equipartition.

damping. For these specific MSs, we would näıvely ex-
pect the effective librational mode temperature in the
absence of feedback and at the base pressure of the vac-
uum system to be around 0.5 K, following the formalism
in Refs. [28, 29]. Direct integration of the measured spec-
tra in the absence of feedback (where the signal-to-noise
is sufficient to do so) together with the equipartition the-
orem, imply the zero-feedback mode temperature T0 is
approximately T0 ≈ 260 K, for the particular MS and
electric field drive conditions pertinent to the data shown
in Fig. 6. The apparently elevated mode temperature is
qualitatively consistent with the shorter than expected
zero-feedback damping times observed in Sec. IV A.

Given this observation, Teff from Eq. (7) is calcu-
lated for each measurement series by assuming the sys-
tem is driven with a torsional power spectral density
Sth = 4kBT0γI, where T0 is computed by direct inte-
gration of the zero-feedback thermal spectra for a par-
ticular MS and electric field drive, and γ is derived by
fitting the zero-feedback spectra with Eq. (6) while fix-
ing kd = Sξ = 0 to eliminate feedback terms. A sum-
mary of all the fitting results is shown in Fig. 7, with

the ratios Teff/T0 and k̂d/kd, plotted as a function of kd.
The ambiguity associated with assuming some arbitrary

FIG. 7. Summary of the libration thermalization measure-
ments, where, as before, different colors (and lightness val-
ues) indicate different electric field amplitudes, while differ-
ent marker shapes indicate distinct MSs. (upper) Ratio of the
effective mode temperature calculated via Eq. (7) to the zero-

feedback mode temperature, with the values of ωφ, γ, k̂d, Sth,
and Sξ extracted from fitting Eq. (6) to the observed PSDs.
The re-heating observed for large kd is consistent with broad-
band noise injection from the feedback loop as the gain is
increased. (lower) Ratio of the extracted value of k̂d, relative
to the expected value kd = Kdω

2
φ.

thermal bath driving the librational motion suggests the
mode temperature under the influence of feedback is best
provided as a ratio relative to the system’s mode tem-
perature in the absence of feedback. Over the range of
parameters tested in this work, zero-feedback mode tem-
peratures T0 were observed in the range 220 K to 350 K.

C. Anomalous dissipation

The formalism presented in Sec. III suggests that
ωφ =

√
E d/I, which would normally be assumed con-

stant for a fixed electric field magnitude. Clearly, the
measurements presented here are inconsistent with that
assumption, and there is not only a source of anoma-
lous dissipation for the librational degree of freedom, as
was shown in Sec. IV A, but also slow drifts in the cen-
tral frequency, as seen in Sec. IV B. The magnitude of the
electric field is measured to be constant within ±50 V/m,
consistent with the absolute accuracy of the DACs sourc-
ing it, ∼0.03% of their full scale, as reported by the man-
ufacturer over both 24 h and 1 year timescales [35].

This naturally implies that some combination of the
MS electric dipole moment d and moment of inertia I
are fluctuating. For the MSs used [20], electric dipole
moments over the range 100 e µm to 2000 e µm have been
observed [22]. The underlying mechanism that gives rise
to these dipole moments is not fully understood and it
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has been observed that ionization of residual gas in close
proximity to a trapped MS can greatly affect the magni-
tude of the dipole moment [10].

It is natural then to suggest that both the the anoma-
lous dissipation and slow drifts of the central frequency
are a result of a changing charge multipole within the MS.
Using one of the three MSs presented in this work, two
dedicated dipole moment measurements following the
procedure first established in Ref. [9] and separated by
O(1 month) yielded 1804± 39(stat.)± 84(sys.) e µm ini-
tially, and then 1094± 24(stat.)± 51(sys.) e µm, a very
significant change for what has often been assumed a
persistent physical characteristic of the MSs. Indeed,
multiple physics searches with this and similar appa-
ratuses have encountered systematic effects consistent
with electromagnetic interactions that slowly fluctuate
in time [18, 19].

V. CONCLUSION

We have successfully demonstrated feedback cooling of
a librational degree of freedom of an optically trapped sil-
ica microsphere in vacuum. In this first implementation
of librational cooling, feedback was accomplished primar-
ily with damping constructed from the derivative of the
libration. The level of feedback was tuned over roughly
four orders of magnitude for an individual microsphere,
characterized by applying both a step and observing the
resulting transient, as well as analyzing the steady-state
motion once it has thermalized with the environment.
Transient damping times scale inversely with the applied
derivative gain, as expected, although with an overall

systematic bias that is distinct across individual micro-
spheres, and is as of yet unexplained. Thermally-driven
power spectral densities of the libration have widths con-
sistent with the applied derivative gain when the latter
is sufficiently large.

Both the step response and steady-state measurements
presented suggest some source of anomalous dissipation
in this system, as well as drifts of the physical proper-
ties of optically trapped microspheres. The librational
damping time and thermal spectral width in the absence
of feedback are inconsistent with expectation from fluc-
tuations driven by residual gas, although this is likely a
symptom of noise in the driving the electronics given the
observed scaling with drive amplitude, and furthermore
it can be tested in the future with improved hardware.
At the same time, large drifts in the fundamental fre-
quency of the libration are observed, suggesting the ratio
(d/I) is changing by up to a factor of two. Any such
changes would have consequences for precision measure-
ments limited by electrostatic backgrounds.
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