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We analytically derive the transport tensor of thermal conductivity in an ultracold, but not
yet quantum degenerate, gas of Bosonic lanthanide atoms using the Chapman-Enskog procedure.
The tensor coefficients inherit an anisotropy from the anisotropic collision cross section for these
dipolar species, manifest in their dependence on the dipole moment, dipole orientation, and s-wave
scattering length. These functional dependencies open up a pathway for control of macroscopic gas
phenomena via tuning of the microscopic atomic interactions. As an illustrative example, we analyze
the time evolution of a temperature hot-spot which shows preferential heat diffusion orthogonal to
the dipole orientation, a direct consequence of anisotropic thermal conduction.

I. INTRODUCTION

Ultracold gases of spin-polarized magnetic atoms, such
as dysprosium or erbium, have led to a wealth of novel
phenomena in the quantum degenerate regime, as re-
viewed recently in Ref. [1]. Far less studied is the regime
of such gases just above the temperature of quantum de-
generacy. In this regime, a small magnetic field can as-
sure that the atoms remain polarized, whereby the clas-
sical fluid equations of motion inherit anisotropy due to
this polarization. In particular, the transport coefficients
– the thermal conductivity and the viscosity – inherit an
anisotropy from the microscopic collision dynamics of the
scattering dipoles.

In certain cases, the results of this collisional
anisotropy are well known. They have already been
shown to result in anisotropic thermalization in normal
phase ultracold gases, and can be used as a tool for mea-
suring scattering lengths [2–10]. These experiments have
been modeled using perturbation theory around the equi-
librium Boltzmann distribution of a gas, an analysis that
has proven highly successful. Following on such success,
it seems worthwhile to present the systematic derivation
of the continuum fluid equations of motion for the ultra-
cold paramagnetic gas. The present paper takes the first
step in this program, by deriving the anisotropic thermal
conductivity tensor from the differential cross section in
dipolar lanthanide gases [11]. This is done by means of
the Chapman-Enskog formalism [12], leading to density
independent coefficients valid in the dilute regime [13].

We focus here on Bosonic samples, which also offer
a quantum mechanical s-wave scattering length as [14],
tunable via a multitude of Fano-Feshbach resonances.
Thus the anisotropy of the heat conduction tensor is un-
der direct experimental control. We note that our re-
sults here are unlike studies where anisotropic transport
tensors arise due to internal degrees of freedom or long-
ranged interactions [15], such as in systems of dilute plas-
mas [16–19] and ferrofluids [20, 21].

The remainder of this manuscript is organized as fol-
lows: In Sec. II and III, we analytically derive the
anisotropic transport tensor of thermal conductivity
emergent from dipolar collisions. The continuum conser-

vation equations are introduced in Sec. IV, permitting a
model for fluid dynamic studies in ultracold gases. This
model is used to study a simple experimental scenario
of thermal diffusion of a temperature hot-spot in Sec. V.
Finally, discussions and concluding remarks are drawn in
sec. VI.

II. THE CHAPMAN-ENSKOG PROCEDURE

The study of transport phenomena is mature and ex-
tensive, having applications to all fields of science and
engineering [22–25]. Central to the analysis of transport
are the equations of conservation and constitution, which
describe the dynamics of state variables (e.g. mass, flow-
velocity and energy) and their response to external stim-
uli. If only weakly perturbed, the response of a system is
completely described by linear constitutive relations and
the associated, medium-specific, transport coefficients.

In the present context, we consider an ultracold, dilute
gas of Bosonic lanthanide atoms, in their spin-stretched
ground state and in a sufficient magnetic field that they
remain in this ground state in spite of collisions. The gas
is then paramagnetic, with a preferred spatial axis de-
termined by the field direction. Moreover, we explicitly
consider only temperatures above the critical tempera-
ture of Bose-Einstein condensation, whereby the thermo-
dynamics of the gas is governed by Maxwell-Boltzmann
statistics. While we focus on magnetic atoms here, the
results should of course be applicable to ultracold gases
of polar molecules.

In such a gas, local equilibrium occurs by means of
dipolar collisions parameterized by the scattering length
a, and magnetic dipole length ad = Cddm/(8π~2), where
Cdd = µ0µ

2 (µ0 is the vacuum permeability). We take
that all the dipoles are aligned along a dipole-alignment
axis Ê, by means of a large external field taken to lie
in the x, z-plane (illustrated in Fig. 1). We thus envision
experiments conducted in a fixed frame of reference, with
the polarization orientation free to be tuned relative to
this axis.

Close to local thermal equilibrium, re-equilibration
processes are encapsulated by transport coefficients (e.g.
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viscosity, thermal conductivity, etc) derivable from a mi-
croscopic picture by methods established by Chapman
and Enskog [12]. The development we present here close
follows that of [26].

FIG. 1. A visualization of dipoles (red) aligned with an

external field along the dipole-alignment axis, Ê (blue), in
the laboratory coordinate frame.

Within length scales on the order of the atomic mean-
free path, atomic interactions are dominated by colli-
sional processes. The local distribution of atoms in
flow thus has dynamics well described by the Boltzmann
transport equation [27, 28](

∂

∂t
+ vi∂i

)
f(r,v) = C[f(r,v)], (1a)

C[f ] =

∫
dΩ′

dσ

dΩ′

∫
d3v1|v − v1| (f ′f ′1 − ff1) , (1b)

where f(r,v) is the phase space distribution function and
C[f ] is the two-body collision integral. We adopt the con-
vention that all repeated indices are summed over unless
otherwise specified, and primes denote post-collision ve-
locities for pairs of atoms colliding with incoming ve-
locities v and v1. We also adopt the compact notation
f1 = f(r,v1) and f ′ = f(r,v′). The gas number density
is given by

n(r, t) =
ρ(r, t)

m
=

∫
d3vf(r,v, t), (2)

which at thermal equilibrium, is only dependent on tem-
perature n0 = n0(β). Thermal equilibrium also imposes
a Boltzmann velocity distribution

f0(u, β) = n0(β)c0(u, β)

= n0(β)

(
mβ

2π

)3/2

exp

(
−mβ

2
u2

)
, (3)

where β = (kBT )−1, u2 = ukuk, and u(r) = v−U(r) is
the peculiar velocity, defined as the molecular velocity v
relative to the flow velocity

U(r, t) =
1

n(r, t)

∫
d3vf(r,v, t)v. (4)

In close-to-equilibrium scenarios, we can consider the
out-of-equilibrium atomic distribution to take the form

f(r,u, β) ≈ f0(u, β)[1 + Φ(r,u, β)], (5)

with a perturbation function Φ, that must satisfy∫
d3uf0(u)Φ(r,u, β)m = 0, (6a)∫
d3uf0(u)Φ(r,u, β)mu = 0, (6b)∫
d3uf0(u)Φ(r,u, β)

1

2
mu2 = 0, (6c)

as a result of mass, momentum and energy conservation
respectively. Enskog’s prescription of successive approxi-
mations then renders the Boltzmann equation, to leading
non-trivial order, as(

∂

∂t
+ vi∂i

)
f0 ≈ C[f0Φ]. (7)

Physically, this approximation is motivated by establish-
ing a separation of scales between phenomena of inter-
est. We are concerned with the regime in which macro-
scopic fluid dynamics is governed by length scales λ (e.g.
wavelengths) much larger than the mean-free path L, of
its constituent atoms (i.e. the regime of small Knud-
sen number Kn = Lλ−1 � 1). Furthermore, the pe-
riod over which such dynamics occurs is much longer
than the timescales associated to collisions. Therefore,
Eq. (7) effectively makes an adiabatic approximation
that separates the macro and micro-scale phenomena.
We refer to the fluid dynamics as ocurring on “macro-
scales”, whereas collisional interactions are said to occur
on “micro-scales”.

Under the approximation described above, the left-
hand side of Eq. (7) evaluates to(

∂

∂t
+ vk∂k

)
f0 = f0

[
Vk∂k(lnT ) +mβWk`Dk`

]
. (8)

where

Vi(u) ≡
(
mβu2

2
− 5

2

)
ui, (9a)

Wij(u) ≡ uiuj −
1

3
δiju

2, (9b)

Dij(U) ≡ 1

2
(∂jUi + ∂iUj)−

1

3
δij∂kUk. (9c)

The derivation of this result is detailed in App. A. The
collision integral on the right-hand side of Eq. (7) is then

C[f ] ≈
∫
d3u1|u− u1|f0(u)f0(u1)

∫
dΩ′

dσ

dΩ′
∆Φ, (10)

where ∆Φ = Φ′ + Φ′1 − Φ − Φ1. Since Eq. (10) is linear
in Φ, and Eq. (8) is linear in the quantities ∂i lnT and



3

∂jUi, one can infer an ansatz for the scalar function Φ,
of the form

Φ(u, β) = Bk∂k(lnT ) +mβAk`Dk`, (11)

where B (vector) and A (2-rank tensor) are functions
of u and β. The ansatz above allows a separation of
Eq. (7) into an equation in velocity gradients, and those
in temperature gradients:

f0 Wk`Dk` ≈ C[f0Ak`]Dk`, (12a)

f0 Vk∂k(lnT ) ≈ C[f0Bk]∂k(lnT ), (12b)

which upon comparing terms, further motivate B and A
to be written as

Aij(u, n0, β) = Wk`(u)ak`ij(u, n0, β), (13a)

Bi(u, n0, β) = Vj(u)bji(u, n0, β), (13b)

where u = |u|, and the coefficients ak`mn(u, n0, β) and
bk`(u, n0, β) are introduced as variational ansatz. These
variational coefficients can, in general, be expressed as an
infinite linear combination of Sonine polynomials (a.k.a.
associated Laguerre polynomials). The assumption of a
low temperature gas however, allows us to approximate
a and b with only the first term in the summation series,
which is u-independent. Such an approximation has been
shown to give good accuracy (relative errors of ∼ 1%)
in computing transport coefficients for gases of isotropic
scatterers [28–30]. We are thus left with

Φ(u, β) = V`(u)b`k(n0, β)∂k(lnT )

+mβWij(u)aijk`(n0, β)Dk`. (14)

The coefficient a and b are determined for a particular gas
by the microscopic scattering theory of the constituents,
a task to which we now turn.

III. THERMAL CONDUCTIVITY IN
DIPOLAR GASES

Thermal conduction in a dilute gas arises through a
transfer of kinetic energy by kinetic transport of the
gaseous atoms, out of a region of fluid, resulting in a
heat flux [19]

Ji(r, t) =

∫
d3uf(r,u, t)

1

2
mu2ui. (15)

For a first-order approximation, we adopt the ansatz of
Eq. (11) to compute the integral above. The A associ-
ated term does not contribute to the heat flux integral,
leaving us with

Ji =
m

2

∫
d3uf0(u)[1 + Φ(u)]u2ui

=

(
kBmβ

2

∫
d3u f0(u)u2uiVkbkj

)
∂jT , (16)

where the local temperature T (r, t) is written in terms
of its kinetic definition,

3

2
kBT =

1

n(r, t)

∫
d3u f(r,u, t)

1

2
mu2. (17)

Additionally, we say that this flow of kinetic energy
occurs across a temperature gradient via Fourier’s law of
heat conduction

Ji = −κij∂jT, (18)

where κ is the thermal conductivity, a 2-rank tensor. A

comparison of Eq. (16) and Eq. (18), then tells us that
the thermal conductivity is found via the integral

κij = −
(
kBmβ

2

∫
d3u f0(u)u2uiVk

)
bkj

= −5n0kB
2mβ

bij , (19)

assuming knowledge of the coefficients bkj .

The transport of kinetic energy across a temperature
gradient is brought about by the flow of atoms mediated
by collisions, allowing use of the Boltzmann equation to
derive b(u), with the first-order Chapman-Enskog expan-
sion. Referring back to Eq. (12b), one finds that it is
formally mathematically inconsistent but holds in an av-
erage sense over the atomic distribution by multiplying
Eq. (12b) by Vi(u) and integrating over u. This gives

(∫
d3u f0(u)Vi(u)Vj(u)

)
∂j(lnT )

≈
(∫

d3u Vi(u)C[f0Vk]

)
bkj∂j(lnT ), (20)

whereby the coefficients of ∂j(lnT ) satisfy the relation

Nikbkj = δij , (21a)

where Nik ≡
2mβ

5n0

∫
d3u ViC[f0Vk]. (21b)

The integral terms above are made complicated by the
highly anisotropic differential cross section for dipolar
Bosons, for which the appropriately symmeterized scat-
tering amplitude is provided in closed-form as [11]
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fB (û′r, ûr) =
ad√

2

(
4

3
− 2as −

2(ûr · Ê)2 + 2(û′r · Ê)2 − 4(ûr · Ê)(û′r · Ê)(ûr · û′r)
1− (ûr · û′r)2

)
, (22)

where ur = u−u1. This provides us the differential cross

section via dσ/dΩ′ = |fB (û′r, ûr)|
2
, with which the Nik

terms are evaluated as

N11 = −256

15
+

256ad(3 cos(2Θ)− 1)

225a

− 512a2
d(3 cos(2Θ) + 13)

4725a2
, (23a)

N13 = −256ad sin(2Θ)

75a
+

512a2
d sin(2Θ)

1575a2
, (23b)

N22 = −256

15
+

512ad
225a

− 8192a2
d

4725a2
, (23c)

with the additional relations

N33(Θ) = N11(Θ− π/2), (24a)

N12(Θ) = N23(Θ) = 0, (24b)

Nij(Θ) = Nji(Θ), (24c)

where we have cast Nik in terms of the adimensional
functions

Nij =
1

a2n0

√
mβ

π
Nij . (25)

Details on the evaluation of these integrals are provided
in App. B, following the successful methods developed in
[4]. It then follows that the thermal conductivity tensor
is given as

κ(Θ) = − 5kB

2a2
√
πmβ

N−1(Θ) (26)

= − 5kB

2a2
√
πmβ


N33

N11N33−N 2
13

0 N13

N 2
13−N11N33

0 1
N22

0
N13

N 2
13−N11N33

0 N11

N11N33−N 2
13

 .

The structure of the tensor above along with Eq. (18),
imply that a temperature gradient along x could result
in a thermal flux along z, and vice versa. In the event
that the dipoles are aligned along ẑ, that is Θ = 0, the
Cartesian axes are the principal axes of κ. This situa-
tion leaves us with only two unique, nontrivial thermal
conductivities κxx = κyy 6= κzz.

We plot in Fig. 2, the coefficients of Eq. (26) with
values normalized by the isotropic coefficient κ/κ0 [31],
where

κ0 =
75kB

256r2
eff

√
πmβ

, (27)

where r2
eff = 2a2 + 8a2

d/45 is an effective isotropic radius
obtained from an angular average of the dipolar differen-
tial cross section. The coefficients are plotted with the

scattering and dipole lengths of native 164Dy (a = 92a0

and ad = 199a0, where a0 is the Bohr radius) [6], which
showcases the functional dependence on the angle Θ be-
tween the polarization and the laboratory z-axis.

FIG. 2. The unit-free thermal conductivity tensor elements
κ/κ0, as a function of the dipole-alignment angle Θ, as defined
in Eq. (26) for native 164Dy (a = 92 a0). The tensor elements
κ11/κ0 (solid, dark red), κ13/κ0 (dot-dashed, red) and κ22/κ0

(dashed, orange) display a sinusoidal Θ dependence, whereas
κ33/κ0 (dotted, yellow) is Θ-independent due to the coordi-
nate frame definition. The parameters considered here are for
164Dy with ad/a ≈ 199/92, taken from Ref. [6].

IV. EQUATIONS OF MOTION

Having derived the transport tensor of thermal con-
ductivity, macroscopic gas dynamics can now be studied
under the lens of a continuum fluid formulation. The
dynamics of fluids is characterized by spatial and tempo-
ral variations of macroscopic quantities such as the fluid
mass density ρ (2), flow-velocity U (4), and temperature

T (r, t) =
2

3n(r, t)kB

∫
d3vf(r,v, t)

1

2
mu2. (28)

The associated hydrodynamic phenomena are well mod-
eled, even in ultracold systems [32], by the continuum
conservation equations [19]

∂ρ

∂t
+ ∂j (ρUj) = 0, (29a)
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∂

∂t
(ρUi) + ∂j (ρUjUi) = ∂jσij , (29b)

∂

∂t
(ρT ) + ∂j (ρTUj) =

2m

3kB
(σij∂jUi − ∂jJj) , (29c)

where ∂i denotes a derivative with respect to coordinate
ri (i = 1, 2, 3), and m is the atomic mass. These equa-
tions are, in order, referred to as the continuity, Navier-
Stokes and energy balance equations. As we have seen
in the previous section, atom-atom collisions in the gas
result in thermal transport and viscous effects, included
into Eqs. (29) via the heat flux vector Jj , and pressure
tensor [33]

σij = −Pδij + τij , (30a)

τij = µijk`∂`Uk, (30b)

where P is the thermodynamic pressure, τij the viscous
stress tensor and µijk` is the viscosity tensor. For the
time being, we focus on the influence of thermal con-
ductivity by assuming that all second derivatives of the
flow-velocity are small, effectively rendering the viscous
stress terms negligible (i.e. τij ≈ 0). Consideration of
the anisotropic viscosity is left to future work.

V. DIFFUSION OF A HOT-SPOT

As an example of anisotropy due to the thermal con-
ductivity tensor, we consider a simple uniform gas exper-
iment where a localized temperature hot-spot is induced,
for example by heating the gas locally with a focused
laser, then allowed to diffuse. For simplicity, we assume
that the temperature field is excited perturbatively so
that the temperature dynamics is described by its de-
viation from the uniform background temperature T0,
T (r, t) = T0 [1 + ε(r, t)]. This permits a linearization of
Eq. (29c) to first-order in ε, which gives

∂ε

∂t
≈ −2

3
∂jUj +

2

3n0kB
κij∂i∂jε. (31)

At the onset of the hot-spot, the flow velocity U is taken
as negligible, thus rendering the heat equation as

∂ε

∂t
= Dij∂i∂jε, (32)

in terms of a thermal diffusivity tensor

Dij ≡
2

3n0kB
κij . (33)

We model the initial hot-spot as described by a Gaussian
of width σ,

ε(r, t = 0) = ε0e
− r2

2σ2 . (34)

Utilizing a Fourier expansion, one obtains the time-
dependent solution to Eq. (32)

ε(r, t) = ε0

∫
σ3d3K

(2π)3/2
e−

1
2K

2σ2

e−(KTDK)teiK·r. (35)

The integral above can be evaluated analytically to give

ε(r, t) =
ε0σ

3√
8 det (M)

exp

(
−r

TM−1r

4

)
, (36a)

M ≡ 1

2
σ2I + Dt, (36b)

where I is the identity matrix. The solution above is fur-
ther simplified if we assume that the dipoles define the
z-axis, which is done here without loss of generality. The
diffusion tensor is now diagonal with only 2 distinct ele-
ments, D11 = D22 and D33. Thus diffusion in the radial
(perpendicular to dipole alignment) and axial (parallel
to dipole alignment) directions occur with the respective
different characteristic time scales

τr ≡
σ2

2D11
=

128
(
315a2 − 42aad + 32a2

d

)
7875r2

eff

τ0, (37a)

τz ≡
σ2

2D33
=

128
(
315a2 + 84aad + 20a2

d

)
7875r2

eff

τ0, (37b)

with τ0 = σ2r2
effn0

√
πmβ, that dictate the Gaussian hot-

spot relaxation time along the radial and axial directions
respectively. These time scales are of course identical in
the limit of vanishing dipole moment ad = 0. Their dif-
ference is quite pronounced, however, as ad increases, as
illustrated in Figure 3. This figure uses the experimen-
tal parameters in Tab. I, and a hot-spot of initial width
σ = 5L ≈ 0.6 (mm). It is apparent the diffusion oc-
curs far more rapidly in the axial direction, when dipolar
scattering is significant.

TABLE I. Table of experimental parameter values. Da =
1.661 × 10−27 kg stands for Dalton (atomic mass unit), a0 =
5.292 × 10−11 m is the Bohr radius and µB = 9.274 × 10−24

J/T is the Bohr magneton.

Parameter Symbol Value Unit
Atomic mass number, A 164 Da
Magnetic moment µ 10 µB

Dipole length, ad 199 a0
Equilibrium number density, n0 1013 cm−3

Equilibrium gas temperature, T0 300 nK

With the dipoles aligned along ẑ, the explicit time evo-
lution of the hot spot is given by

ε(r, t) =

ε0 exp
(
− x2+y2

2σ2
(

1+ t
τr

) − z2

2σ2
(

1+ t
τz

))√(
1 + t

τz

)2(
1 + t

τr

) . (38)

Figure 4 visualizes the anisotropy of thermal relaxation
by showing the temperature field variation ε in the x, z-
plane. We plot the time evolution of ε in Fig. 4, up
to the geometric mean of the 2 time scales in 3 panels
(t = 0,

√
τrτz/2,

√
τrτz), where we have set a = 0 to ac-

centuate the dipolar anisotropy. With the parameters
in Tab. I, the time scales take values τr = 0.0667s and
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τz = 0.667s. The Gaussian hot-spot clearly elongates
along the x-direction over time, demonstrating an ob-
servable effect of anisotropic thermal conductivity during
thermal diffusion in the fluid. This could be observed in
ultracold atom experiments with time-of-flight imaging,
which extracts the gas momentum distribution. Excit-
ing such a temperature hot-spot would create additional
peaks in the momentum distribution that our theory pre-
dicts would thermalize anisotropically.

FIG. 3. Thermal relaxation time scales τr and τz, vs the
reduced dipole length ad/a. The axial time scale τz is seen
to be drastically larger than the radial time scale τr for large
values of the reduced dipole length.

VI. DISCUSSION AND CONCLUSION

Normal phase gases of ultracold dipolar atoms present
a vast arena for anisotropic dynamical phenomena. In

large enough samples, a continuum description of these
systems are warranted, permitting fluid dynamic studies.
The fluid equations of motion are, however, only com-
plete upon specification of the transport tensors, which
govern the finite-time dispersive processes in the fluid. In
this work, we have used the Chapman-Enskog procedure
to derive analytic expressions for the anisotropic trans-
port tensor of thermal conductivity, induced by collisions
between dipolar Bosons. By construction, each tensor
element is a function of the dipole-alignment angle, and
functionally dependent on the ratio of dipole length to
scattering length.

We then analyzed the anisotropic effects of these ther-
mal conductivities in the thermal relaxation of a Gaus-
sian hot-spot, where time-dependent solutions were de-
rived from a linearization of the viscous-free fluid equa-
tions. We find that an initially isotropic hot-spot would
disperse preferentially in a direction orthogonal to the
dipole orientation, opening the possibility for control of
heat transport with the dipole-alignment direction.

A comprehensive fluid description will of course re-
quire the transport tensor of viscosity to also be de-
rived. The analytic techniques presented here permit
this derivation, which will be a subject of future work.
Another possible extension of this work is to include
quantum statistical effects in computing the transport
coefficients, as done in Refs. [32, 34], but with the dipo-
lar cross section of Ref. [11]. These effects might be-
come relevant at temperatures closer to quantum degen-
eracy. Finally, we note that recent experiments have re-
alized long-lived 3-dimensional polar molecular samples
by microwave shielding [35, 36] or DC electric fields [37],
promising larger and tunable electric dipole moments in
collisional dipolar gases. These systems would serve as
ideal platforms for experimental investigations of dipolar
fluid dynamics.

FIG. 4. Stroboscopic evolution of the temperature field variation ε(r, t), at times t = 0, 0.106, 0.211s (plots left to right),
visualized along a 2D slice in the x, z-plane. The initial peak temperature fluctuation amplitude is set to ε0 = 0.25, and the
color scale for each plot is rescaled for visual clarity at each time instance.
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Appendix A: The First-Order Chapman-Enskog
Approximation to the Boltzmann Equation

This appendix section details the derivation for the
left-hand side of the Boltzmann equation under the
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Chapman-Enskog expansion to first-order [26]. We can
first write this expression as

(
∂

∂t
+ vi∂i

)
f0 = f0

(
∂

∂t
+ vi∂i

)
ln f0

= f0

(
D

Dt
+ ui∂i

)
ln f0, (A1)

where we defined the material derivative

D

Dt
≡ ∂

∂t
+ Uj∂j . (A2)

From Eq. (3), it follows that

ln f0 =
3

2
ln
m

2π
+ ln

(
n0β

3/2
)
− mβ

2
u2, (A3)

so (
∂

∂t
+ vi∂i

)
f0 (A4)

= f0

(
D

Dt
+ ui∂i

)[
ln
(
n0β

3/2
)
− mβ

2
u2

]
.

At local thermal equilibrium as prescribed by f0, the
equations of conservation [Eq. (29)] reduce to

(
D

Dt
+ ∂jUj

)
n0 = 0, (A5a)

(
D

Dt
+ ∂jUj

)
Ui = − 1

n0
∂i

(
n0

mβ

)
, (A5b)(

D

Dt
+ ∂jUj

)
β =

5

3
β∂jUj , (A5c)

from which the equations of continuity and energy bal-
ance can be combined to give the relation

D

Dt
ln
(
n0β

3/2
)

= 0, (A6)

identifying the quantity ln
(
n0β

3/2
)

as an adiabatic in-
variant. This simplifies the expression to(

D

Dt
+ ui∂i

)
f0 (A7)

= f0uj∂j ln
(
n0β

3/2
)
− f0

(
D

Dt
+ ui∂i

)
mβ

2
u2.

Applying the material derivative to the term in u2 gives

D

Dt

(
mβ

2
u2

)
=
m

2

(
u2Dβ

Dt
+ β

Du2

Dt

)
= mβ

(
1

3
u2∂iUi − ui

DUi
Dt

)
= mβ

[
1

3
u2∂iUi +

ui
n0
∂i

(
n0

mβ

)]
=

1

3
mβu2∂iUi + ui∂i ln(n0T ), (A8)

thus the left-hand side of the Boltzmann equation be-
comes

(
D

Dt
+ vi∂i

)
ln f0 = ui∂i

(
5

2
lnβ − mβ

2
u2

)
− 1

3
mβu2∂iUi

=
1

β

(
5

2
− mβ

2
u2

)
ui∂iβ +mβ

(
uiuj∂jUi −

1

3
u2∂iUi

)
=

(
mβ

2
u2 − 5

2

)
ui∂i(lnT ) +mβ

(
uiuj −

1

3
δiju

2

)(
∂jUi + ∂iUj

2
− 1

3
δij∂kUk

)
(A9)

which is the form presented in Eq. (8) of the main text.

Appendix B: Evaluation of the Collision Integral for
Thermal Conduction

The collision integral to be computed is written as

Nik =
2mβ

5n0

∫
d3uVi(u)C[f0Vk] (B1)

=
2mβ

5n0

∫
d3u Vi(u)

∫
d3u1|u− u1|f0(u)f0(u1)

×
∫
dΩ′

dσ

dΩ′
∆Vk. (B2)

In considering both the thermal motion of the atoms and
collisional processes, it is convenient to first define the
velocities in terms of center-of-mass (COM) and relative
(r) coordinates

uCOM =
u+ u1

2
, (B3a)

ur = u− u1, (B3b)
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which allows the product of equilibrium distributions to
be recast as

f0(u)f0(u1) = fCOM(uCOM)fr(ur), (B4a)

fCOM(uCOM) ≡ n0

(
mβ

π

)3/2

exp
(
−mβu2

COM

)
, (B4b)

fr(ur) = n0

(
mβ

4π

)3/2

exp

(
−mβ

4
u2

r

)
. (B4c)

Furthermore, the anisotropy of the dipolar differen-

FIG. 5. The collision frame (black) defined in the laboratory
frame (blue) via the relative velocities between 2 colliding
partners (red spheres). The angle α is defined as that between

the vectors ur and Ê.

tial cross section have us consider 2 distinct coordinate
frames: 1) the laboratory-frame (LF) defined by the

dipole-alignment axis Ê lying along the xLF, zLF-plane
(Fig. 1); and 2) the collision-frame (CF) defined by align-
ing the ẑCF-axis to the direction of relative incoming ve-
locities ur, for 2 colliding atoms (visualization in Fig. 5).
We perform the collision integral in coordinates defined
with respect to the lab-frame.

To transform between coordinate frames, we construct
a frame rotation matrix of direction cosines,

RCF→LF =

x̂LF · x̂CF x̂LF · ŷCF x̂LF · ẑCF

ŷLF · x̂CF ŷLF · ŷCF ŷLF · ẑCF

ẑLF · x̂CF ẑLF · ŷCF ẑLF · ẑCF

 , (B5)

that takes the vector û′r from the CF to the LF. The
differential scattering cross section is then also required

to be expressed in LF coordinates during integration of
the collision integral. To do so, we utilize the coordinate-
independent form of the scattering amplitude for Bosons
fB (22), and express that in terms of our desired coor-
dinates which allows us to compute the differential cross
section dσ/dΩ′. The above coordinate transformations
are sufficient for us to now compute the collision inte-
grals.

Expanding in terms of the COM and r coordinates of
Eq. (B3), the collision integral becomes

Nik =
2mβ

5n0

∫
d3uCOMfCOM(uCOM) (B6)

×
∫
d3urfr(ur)urVi(uCOM,ur)

∫
dΩ′

dσ

dΩ′
∆Vk.

Collisions result in the variation

∆Vk = ∆

[(
mβu2

2
− 5

2

)
uk

]
=
mβ

2
∆(u2uk), (B7)

where the velocity terms are written in terms of CF and
LF coordinates as

ui = uCOM,i +
1

2
ur,i, (B8a)

u1,i = uCOM,i −
1

2
ur,i, (B8b)

u2 = u2
COM +

1

4
u2

r + uCOM,jur,j , (B8c)

u2
1 = u2

COM +
1

4
u2

r − uCOM,jur,j , (B8d)

which gives the expansion

∆(u2ui) = u′2u′i + u′21 u
′
1,i − u2ui − u2

1u1,i

= uCOM ·
(
u′ru

′
r,i − urur,i

)
. (B9)

The integral over post-collision velocities is then per-
formed as∫

dΩ′
dσ

dΩ′
∆Vk ≡

mβ

2

∫
dΩ′

dσ

dΩ′
∆(u2uk), (B10)

which when plugged back into Eq. (B6) and evaluated,
gives the result of Eq. (23) and expressions thereafter.
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