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Abstract

We study bosonic systems in the regime in which the two-body system has a shallow bound

state or, equivalently, a large value of the two-body scattering length. Using the effective field

theory framework as a guidance, we construct a series of potential terms which have a decreasing

importance in the description of the binding energy of the systems. The leading order potential

terms consist in a two-body term, usually attractive, plus a three-body term, usually repulsive;

this last term is required to prevent the collapse of systems with more than two particles. At this

order, the parametrization of the two-body potential is done to obtain a correct description of the

scattering length, which governs the dynamics in this regime, whereas the three-body term fixes a

three-body datum. We investigate the role of the cut-off in the leading order description and we

extend the exploration beyond the leading order by including the next-to-leading order terms in

both, the two- and three-body potentials. We use the requirement of the stability of the N -body

system, whose energy is variationally estimated, to introduce the three-body forces. The potential

parametrization, as a function of the cut-off, is fixed to describe the energy of 4He clusters up to

seven particles within the expected accuracy. Finally, we also explore the possibility to describe at

the same time the atom-dimer scattering length.
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I. INTRODUCTION

In the last years many efforts have been directed to the study of systems existing at, or

close to, the unitary limit, a limit in which the two-body scattering length diverges. The

interest is based on the universal properties exhibited by such systems [1–3]. The energy

spectrum shows a scale invariance and can be effectively described by a limited number of

parameters, typically the scattering length a of the two-body system and the three-body

parameter κ∗, which gives the binding energy, E∗ = ~2κ2∗/m, of the three-body system at

the unitary point.

Examples of such systems come from nuclear physics, where the singlet- and triplet-

scattering lengths are both much greater than the typical interaction length, and from

atomic 4He, where the scattering length is much greater than the van der Waals length

`vdW, which represents the typical interaction length in atomic physics.

These systems have been historically described by potential models. In nuclear physics,

the first phenomenological potentials have been derived by parametrizing the most general

interaction allowed by the symmetries, and explicitly incorporating the long-range part, i.e.

the one-pion exchange. The strength of the different potential terms were fixed by a fitting

procedure designed to reproduce as best as possible the two-body scattering data and the

deuteron binding energy. In atomic physics, and for helium in particular, the potential

curves have been constructed by a mix of ab-initio calculations, taking into account the

repulsive interaction between the electronic clouds, and empirical parametrizations trying

to incorporate as many experimental data as possible, as the virials and the viscosity [4–

6]. Also in these cases the van der Waals long distance behavior induced by the electric

multipoles,
∑

λCλ/r
λ, λ = 6, 8, 10, is explicitly included.

Already in the old times, it had been realized that some low-energy observables were

insensitive to the details of the potentials. For instance, in nuclear physics the s-wave two-

body phase-shift up to energies of 10–15 MeV could be reproduced by any two-parameter

potential compatible with Bethe’s effective range expansion (ERE) [7, 8]. Other evidences

are the correlation between the triton binding energy and the neutron-deuteron doublet

scattering length, known as Phillips line [9], and the correlation between the triton and the

alpha-particle binding energies, known as Tjon line [10]. Correlations of this type have been

explained by V. Efimov showing that the three-nucleon system at low energies is governed
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by the three-body parameter κ∗. Moreover, using a zero-range model V. Efimov predicted

the Efimov effect, a remarkable property of the three-body system located at the unitary

limit [11–13].

The modern approach to describe these systems is the effective field theory (EFT) frame-

work, that exploits the small expansion parameter `/a � 1 describing the scale separation

between the range of the interaction ` and the scattering length a. In nuclear physics, such

a theory is known as pionless EFT [14–19], indicating that the pion degrees of freedom have

been integrated out. In this case, the short-distance scale of the theory is the inverse of

the pion mass ` = 1/Mπ ≈ 1.4 fm. The same theory has been used to describe atomic

4He [20, 21], where the short-distance scale is `vdW = 5.08 a0, with a0 the Bohr radius.

In order to use the EFT to compute observables, the theory must be first regularized, for

instance with a momentum cut-off Λ. The renormalization procedure allows to reduce the

dependence of physical observables on Λ at a level compatible with the neglected orders

of the small-parameter expansion. For so doing, a power counting has to be established

that allows to identify the operators entering at each order. To ensure approximate cut-

off independence, the subleading interactions are to be treated perturbatively, on the top

of a non-perturbative treatment of the leading order (LO) interaction, mandated by the

description of shallow bound states.

At the LO in the small parameter expansion of this EFT there are a two-body and a three-

body force whose strengths, the low energy constants (LECs), can be fixed to reproduce

a two-body datum, usually the scattering length, and a three-body datum, usually the

ground-state trimer energy. The promotion of the three-body force to LO is a characteristic

of this particular EFT and originates from the necessity of stabilizing the systems with

more than two particles against the Thomas collapse [22]. An interesting phenomenon that

characterizes this kind of systems is the emergence of a discrete scale invariance observed

in three- and four-boson systems close to the unitary limit, which reflects the existence of

limit cycle in the renormalization group flow.

The EFT can be used to inspire and organize the construction of potential models repre-

senting the interaction between particles. In the present case of systems with a large value

of the two-body scattering length, these potentials capture the system universal properties.

The potentials appear as a sum of terms ordered according to the power counting of the

EFT. Since the whole truncated potential is treated non-perturbatively, the Λ→ +∞ limit
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cannot be taken; rather, the cutoff is to be maintained of the order of the short-distance scale.

Within this limited range, the dependence of observables on the cutoff can still profitably

be scrutinized. Eventually, an optimized cutoff can be chosen, to improve the description of

a number of experimental data.

In particular, the following exploration can be carried out: after fixing the LO potential

by the two-body scattering length and by the binding energy of the three-body system, the

same potential can be used to compute the energy levels for systems with increasing number

of particles. We expect that the LO description, accurate at the percentage level given by

the ratio `/a, remains inside the same percentage level as the number of particles increases.

An analysis of this kind has been started in Refs. [23–25], where it has been shown that

there is a small range of cut-off values that extends the validity of the LO description to

larger systems. Here we further analyze this fact and extend the study to consider the

next-to-leading order (NLO). This term has been considered perturbatively in Ref. [21] up

to N = 6 with the conclusion that a subleading four-body force is needed to stabilize the

systems with N > 4.

In the present study we analyze the effects of the NLO potential terms in the description

of the N = 4, 5, 6, 7 systems and estimate the limit N → ∞. To this aim we consider a

system of equal bosons inside the universal window with the use of a Gaussian regulator

at LO and NLO. The atomic 4He system will be taken as a reference system to judge the

quality of the effective description. Very seldom experimental data exist for this system

with arbitrary number of particles. Essentially the dimer and trimer binding energies were

recently measured [26]. So, we use reference data results obtained by one of the widely used

helium-helium interaction, the LM2M2 potential. For the purpose of the present analysis the

numerical results of the LM2M2 for the binding energy of different clusters are considered

equivalent to experimental data. With the inspired EFT potential, we explore, at the LO

and NLO, both the few- and the many-body sectors; the description of each system should

be consistent with the expected accuracy order by order irrespectively of the number of

particles we are considering.

The paper is organized as follow. In Section II we introduce the LO potential and apply

it to describe atomic 4He clusters. Firstly, we take into account only the two-body force

and we explore its predictions in the few-body sector. In addition, we give a variational

description of the N → ∞ limit, pointing out the necessity of a LO three-body force in
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order to prevent the collapse of the system. Secondly, we explore the predictions with this

additional three-body force and show that the few-body sector can be described within the

expected LO accuracy for specific values of the force ranges.

In Section III we introduce the NLO potential. Following the same scheme as in the

previous section, we start considering the NLO two-body force. We give a brief description

of the running of the coupling constants and of the energies in the few-body sector as a

function of the two-body range. In addition, we show that at short ranges the potential

develops a repulsive barrier, however in the continuum limit (N → ∞) the system turns

out to be unstable in any case. Then, we proceed with the study of the systems including

the LO three-body force, we explore the dependence of the few-body binding energies on

the force ranges selecting those cases in which the description remains inside the expected

accuracy. It should be noticed that for some specific values of the two-body range the

binding energy of the three-body system is well reproduced indicating a null contribution

of the three-body force. We show that in those points the continuum system is unstable,

suggesting the existence of a subleading three-body (or eventually four-body) force. Finally

we introduce the NLO three-body force and study the atom-dimer scattering length together

with the binding energies of the N ≤ 7 systems.

In Section IV we summarize our findings and outline possible future explorations.

II. LEADING ORDER DESCRIPTION

In order to determine the LO potential we first study the structure of the two-particle

s-wave S-matrix inside the universal window. It displays a two-pole structure

S(k) =
k + i/aB
k − i/aB

k + i/rB
k − i/rB

, (1)

with the two poles on the imaginary axis, one fixed by the two-body energy E2 = −~2/ma2B,

corresponding to a true bound (a > 0) or virtual (a < 0) state, and the second one at

k = i/rB, with rB = a− aB, of a spurious character, due to the asymptotic behavior of the

wave function [27, 28]. It can be shown that rB ∼ 1/Λ, relating the value of the cut-off to

the second pole. Moreover, the S-matrix of Eq. (1) is equivalent to a second order ERE in

which all higher terms are equal to zero

k cot δ = −1

a
+

1

2
rek

2 , (2)
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with the effective range re completely determined by the relation

are = 2aBrB . (3)

The simplest local potential which reproduces such a basic S-matrix is the Eckart’s poten-

tial [29, 30]; however, it has been shown that inside the universal window all the two-body

local potentials are equivalent [3] because the shape parameters, determining the importance

of the successive terms, are very small [8, 31], and the ERE expression in Eq. (3) is fulfilled

up to second order in the re/a. This justifies the use of different forms for a LO potential, in

particular the Gaussian form has been extensively used. In particular this form was used to

characterize the universal window determining the paths along which very different systems

can be placed [3, 25, 32].

In the following we summarize the reference data we are going to use. They are generated

by the LM2M2 helium-helium potential [6] for which extremely accurate numerical results,

up to the four-body ground-state energy, exist [33]. For the five- and the six-particle ground

state energy we use the results of Ref. [34]. The mass used in all the calculations is ~2/m =

43.281307 Ka20. The two-body scattering length is ā = 189.415 a0, and the effective range

r̄e = 13.845 a0, resulting in the small parameter ε = r̄e/ā ≈ 7%. The two-body ground-state

energy fixes the binding length āB = 182.221 a0 and r̄B = 7.194 a0. These reference data

are summarized in Table I.

The few-body energies have been variationally calculated using a correlated Gaussian

basis. The basis has been selected using the stochastic variational method following the

implementation described in Ref. [35].

A. Two-body force

In the two-body sector, the LO description is given by a Gaussian potential

VLO(r) = V0 e
−(r/r0)2 . (4)

In the spirit of the EFT approach, the Gaussian range r0 represents the cut-off of the theory

and V0 the low-energy constant that can be fixed by one experimental datum, for instance

the scattering length ā. We can introduce the dimensionless constant C0 = V0/(~2/mr20) and

study its flow as the cut-off is removed r0/ā→ 0, i.e. in the scaling limit. This flow is shown
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TABLE I. Reference binding ĒN and excited Ē∗
N energies, in mK, for the 4He N -clusters obtained

for the LM2M2 potential [6]. The value of the mass is ~2/m = 43.281307 Ka20. The value of the

scattering length is ā = 189.415 a0, of the effective range r̄e = 13.845 a0, of āB = 182.221 a0, and

of r̄B = 7.194 a0.

N ĒN (mK) Ē∗
N (mK)

2 -1.30348

3 -126.40 -2.2706

4 -558.98 [33] -127.33 [33]

5 -1300 [34]

6 -2315 [34]

7 -3571 [34]

in Fig. 1 together with a quadratic fit. As already noted in Refs. [20, 36, 37], the scaling

limit is well defined C0 → −2.68402(3); moreover, at fixed r0, this is the value at which the

scattering length is infinite. Varying the ratio r0/ā, the effective range, the binding length,

and rB could differ from the LM2M2 values. For instance, in the scaling limit aB → ā with

rB ∼ 0.7179 r0 , (5)

and, as anticipated, the second pole of the S-matrix, which is proportional to 1/rB, is sent

to infinity. If we want to describe this pole, both the Gaussian strength and the range have

to be fine tuned

V0 = −1.22717064 K

r0 = 10.03018708 a0 ,
(6)

which corresponds,in Fig. 1, to the square point at r0/ā = 5.29535 ·10−2 and C0 = −2.85248.

Values of re and aB along the flux are shown in Fig. 2, where the red circles represent the

ratio of the binding length with respect to the LM2M one, aB/āB, while the blue square

points represent the ratio of the effective range with respect to the LM2M one, re/r̄e. The

gray band indicates the ε ≈ 7% departure from the LM2M2 value, that one could consider

the prediction strip for a LO description with a small parameter ε. The binding length is

predicted inside that zone all along the flux, while there is only a small range of r0/ā for

which also the effective range resides inside the LO 7% band. Inside this range, which is
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FIG. 1. Running of the dimensionless constant C0 = V0/(~2/mr20) as a function of r0/ā at fixed

scattering length ā = 189.415 a0. The points correspond to the calculated values, while the solid

line is a quadratic fit. The limit value for r0/ā → 0 is C0 = −2.68402(3), and it is in agreement

with the previous results in literature [20, 36, 37]. The square point shows the ratio at which āB

and r̄e are well reproduced.

represented by the two vertical-dashed lines in Fig. 2, there is the special point for which

the LO predictions exactly match the LM2M2 values.

We extend the exploration of the LO description to N -body clusters, limiting ourselves

to the two-body potential. In Fig. 3 we show the trend for the three-, four-, and five-particle

ground-state energies scaled with the LM2M2 values given in Table I. We clearly see that

as r0 → 0 (scaling limit), EN → ∞, because of the well known Thomas collapse [22]. We

also note that even if we fine-tune the value of the cut-off r0 inside the range marked by

the two vertical-dashed lines, where we reproduce the two-body observables, the three- and

four-body data are not reproduced within the LO. Moreover, we observe that the distance

from the LM2M2 value grows as a function of the size of the cluster even if we fix the value of

the cut-off. In fact, in the thermodynamical limit, N →∞ there is a collapse of the system

for all finite values of the Gaussian range r0. We can use the Hyperspherical Harmonics

(HH) K = 0 approximation to give a variational bound to the energy of the clusters in the
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re/r̄e
aB/āB

FIG. 2. The ratios aB/āB (red circles) and re/r̄e (blue squares) as a function of the Gaussian range

r0 (in units of ā). The gray band represent the ε = 7% departure from the LM2M value. The

binding length aB is always inside the LO-ε band, while there is only small range of r0/ā, identified

by the two vertical dashed lines, that allows the effective range to be inside that band. Inside this

range there is a special point r0/ā = 5.29535 · 10−2, identified by the vertical solid line, where ā,

āB, and r̄e are simultaneously reproduced.

N →∞ limit [38], the ground-state energy per particle is bounded from above by

EN
N

=
V0
2
N , (7)

showing that in this limit the system is unstable [39]. This can be taken as a complementary

evidence that in the LO description, even at finite cut-off, the theory needs a three-body

force to stabilize the continuum limit of the system.

B. Three-body force

From the above discussion we have observed that using a Gaussian potential to describe

the LO and taking the limit r0/a → 0, the three-body ground-state energy E3 diverges as

1/r20. Furthermore, if the Gaussian range is fixed to describe the two-pole structure of the

S-matrix choosing the values given in Eq. (6), we still observe the collapse given by Eq. (7)
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/Ē

N

N = 5
N = 4
N = 3

FIG. 3. The ratio of the LO ground-state energy with respect to the LM2M2 value for three E3/Ē3

(blue squares), four E4/Ē4 (red circles), and five E5/Ē5 (black stars) particle clusters. The gray

band represent the ε = 7% departure from the LM2M value. The vertical lines are the same as

in Fig. 2; the two dashed lines delimit the range where the effective range is reproduced within

the 7% and the solid line indicates the r0/ā value for which all the two-body LM2M2 data are

reproduced.

as N →∞. On the other hand we would like to see, using the inspired EFT potential at LO,

all the particle sectors up to the continuum limit described inside the LO prediction. For

instance, at the point fixed by Eq. (6) even the three-body bound state, E3 = −150.57 mK,

is outside the LO band, as one can see in Fig. 3. Following the EFT prescription we include

a three-body force at LO and proceed with computation of the ground state energies of the

N -body clusters. The three-body force is chosen of the following from

WLO = W0 e
−(r212+r

2
13+r

2
23)/ρ

2
0 , (8)

with rij the distance between particle i and particle j, W0 the strength, and ρ0 the range

of the force. The force is determined by one three-body datum, to this purpose we use the

E3 ground-state energy obtained with the LM2M2. It should be noticed that in EFT the

range ρ0 is sent to zero together with r0. In the following we analyze the dependence of EN

on different choices of r0 and ρ0. The resulting limit cycle in the renormalization group flow

has been recently studied [40]. Here we determine different combinations of (V0, r0) values,
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FIG. 4. The ratio E4/Ē4 as a function of ρ0/r0. In the figure, the specific case r0/ā = 0.037

is shown. For each value of ρ0, the three-body strength W0 has been fixed in order to verify

E3/Ē3 = 1. The ratio E4/Ē4 varies between two values, and if the minimum is below one, there is

a special value of the pair (W0, ρ0) for which E4/Ē4 = 1.

all of them reproducing the two-body scattering length ā. For each pair we associate a

family of pair values (W0, ρ0) leading to the same three-body binding energy E3. We would

like to show that inside these families of pairs there is a best choice which allows for the

optimum description of the multi-particle sectors, starting from the four-particle one [25, 41].

This can be seen in Fig. 4, where the ratio E4/Ē4 is calculated as a function of ρ0/r0; the

ratio has a bell-type shape and it varies between a minimum, which is usually attained for

ρ0/r0 ∼ 1, and a maximum in the limit of ρ0/r0 → +∞, where the three-body force tends

to be a constant (the difference between Ē3 and the three-body ground-state energy without

the three-body force). In the figure we have selected the value r0/ā = 0.037, however this

behavior is similar for different ratios and for different particle sectors.

In Fig. 5 we report the bands inside which the ratios E4/Ē4 and E5/Ē5 of four and five

particles respectively, can be found as the ratio ρ0/r0 varies from its lower to its maximum

value. We observe that for r0/ā values at the left of the special point given in Eq. (6), and

represented in Fig. 5 by the solid-vertical line, it is possible to fix the pair (W0, ρ0) in order

to reproduce either the four- or the five-body ground-state energy.
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FIG. 5. Range of variability of the ratios E4/Ē4 (left panel) and E5/Ē5 (right panel) as a function

of the two-body range r0/ā. For a fixed value of r0/ā, the range of variability is given by the

maximum and the minimum of the curve as given in Fig. 4 for one case. The vertical lines have

the same meaning as in Fig. 2. For r0/ā <∼ 0.053, on the left of the solid-vertical line, it is possible

to fix either E4/Ē4 = 1 or E5/Ē5 = 1 with a suitable choice of the (W0, ρ0) pair.

To analyze further this fact, we tune the pairs (W0, ρ0) to have E4/Ē4 = 1 whenever

is possible, namely for r0/ā <∼ 0.053. In the other cases the ratio E4/Ē4 is set as close as

possible to 1. With this prescription we calculate the ground-state energy for N = 5, 6, 7

clusters. The set of parameters used and the numerical results are given in Table II, while

in Fig. 6 we plot the results using dimensionless quantities. Analysing the figure from the

left to the right, we observe that the few-body ground-state energies tends to converge to

the LM2M2 data as we move toward the special value of r0/ā. Around this point, the

predicted energies are well inside the ε = 7% deviation from LM2M2 data maintaining the

LO accuracy. This point has been already noticed in Ref. [25] where a different helium

potential has been used as reference. Moreover, in Ref. [25] it has been shown that also

the saturation energy is predicted within the LO uncertainty. The present analysis extends

these findings showing that there is a small range of values of the cut-offs, r0 and ρ0, allowing

for a LO accuracy of the energy per particle EN/N .
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FIG. 6. The ratios EN/ĒN for N = 4, 5, 6, 7 are given as a function of r0/ā. The three-body force

has been fixed by imposing E4/Ē4 as close as possible to 1. The vertical lines are the same as

in Fig. 2, and the gray strip corresponds to the ε = 7% departure from LM2M2 data. When the

four-body energy E4 = Ē4, the five- and six-body clusters are found to be less bound than the

LM2M2 data, with the best description at the point given by Eq. (6), i.e. where the second pole

of the S-matrix is well described. In this point the predictions are all inside the ε-LO strip. For

r0/ā > 0.053 the opposite trend is verified.

III. NEXT-TO-LEADING ORDER DESCRIPTION

In this section we introduce the next-to-leading order (NLO) term of the EFT inspired

potential. At this order we expect to increase the accuracy of the description at the level of

ε2 ≈ 5h.

A. Two-body force

Following the same counting criterion of EFT [42], the two-body NLO potential is

VNLO(r) = V0 e
−(r/r0)2 + V1

r2

r20
e−(r/r0)2 , (9)

where the additional term is proportional to the square-particle distance. In the following

the range of the two Gaussian functions are kept equal, but clearly this is not the only

13



TABLE II. Ground state energies EN , N = 4, 5, 6, 7, obtained by solving the Schrdinger equation

with the two-body potential Eq. (4) plus the three-body potential Eq. (8). The value of the

mass is ~2/m = 43.281307 K a20. For the indicated ranges of the two-body potential, r0, the

two-body strength V0 reproduces the two-body scattering length ā = 189.415 a0. The values of

the three-body parameters W0 and ρ0 have been tuned to reproduce the three-body ground-state

energy Ē3 = −126.40 mK and, as close as possible, the value of the four-body ground-state energy

Ē4 = −558.98 mK. These results are shown in Fig. 6.

r0(a0) V0(K) W0(K) ρ0(a0) E4(mK) E5(K) E6(K) E7(K)

5 -4.7879815426 0.805411 18.70 -559.097 -1.1563 -1.498 -1.039

7 -2.4728298174 0.389073 21.2945 -558.978 -1.2381 -1.978 -2.535

8 -1.9049337137 0.294546 20.82 -558.968 -1.2626 -2.108 -2.924

10.03018708 -1.22717064 2.78648 7.5 -560.206 -1.2927 -2.276 -3.468

11 -1.0265185006 64.995 3.0 -607.512 -1.5202 -2.878 -4.674

possible choice [43].

For different choices of the range r0, the NLO potential has two LECS, V0 and V1. There

is a whole family of strength values which allows to reproduce the structure of the S-

matrix given in Eq. (1). Introducing the dimensionless strengths C0 = V0/(~2/mr20) and

C1 = V1/(~2/mr20), we fix them as a function of the range r0/ā to reproduce both the

scattering length ā and the effective range r̄e. In Fig. 7 we trace the two strengths (or

LECs), C0 and C1 as a function of r0/ā. We observe that there is a special point, indicated

by the vertical-solid line (labeled LO), where C1 = 0 and the NLO description coincides

with the LO description of Eq. (6). In addition, there are two special points, marked by the

two vertical-dashed lines, where E3/Ē3 = 1. In this case the three-body force should give

a null contribution to the three-body ground state. Beyond these lines, we have the zone

where E3/Ē3 > 1 indicated by the gray strips, for which an attractive three-body force is

needed. The scaling limit of C0 and C1 is not finite; both LEC’s have an essential singularity

at r0 = 0, Ci ∼ exp[αi(ā/r0) + βi(ā/r0)
2], as can be clearly seen from Fig. 8 (αi and βi are

fitting constants).

The family of potentials having the same scattering length and the same effective range,

but different range, are not phase equivalents; they develop different shape parameters. In
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function of r0/ā at fixed scattering length ā = 189.415 a0 and effective range r̄e = 13.845 a0. The

gray zones correspond to E3/Ē3 < 1. The vertical-dashed lines indicate the two values of r0/ā

where E3/Ē3 = 1. The center-dashed line shows the C1 = 0 case, where the LO and the NLO

potentials coincide.
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FIG. 8. The log-behavior of the LECs as a function of ā/r0 for small values of r0. The two curves

can be fitted using a polynomial of degree two, showing that Ci ∼ exp(αi(ā/r0) + βi(ā/r0)
2.

15



Fig. 9 the two-body potential is plotted for three different values of r0, corresponding to

the cases where they give E3/Ē3 = 1 (left and right plot), and to the special LO point of

Eq. (6) (center plot) which is also NLO. Interestingly, as r0/ā→ 0, the potential develops a

repulsive core which mimics the LM2M2 one, however this feature is not enough to prevent

the collapse of the N → ∞ system. This behavior is illustrated in Fig. 10 where we show

EN/ĒN for N = 3, 4, 5, 6. As the number of particles grows, the ratio EN/ĒN increases

indicating the instability in the N → ∞ limit. In particular this is the case for the lowest

value analyzed, r0/a0 = 5.093, corresponding to the case E3/Ē3 = 1. This instability can

be further analyzed using, as before, the HH K = 0 approximation to estimate variationally

the energy per particle, EN/N , for large values of the number of particles. For the two-body

NLO potential, close to the extreme value r0 = 5.093 a0, the energy per particle reads [39]

EN
N

= −1

2

(3|V1| − 2V0)
5/2

55/2|V1|3/2
N , (10)

while close to the other extreme value, r0 = 15.445 a0, it results

EN
N

=
V0
2
N . (11)

In both cases the energy EN/N diverges as N → ∞. As the K = 0 approximation gives

an upper bound to the exact energy, this analysis demonstrates that for r0 ≥ 5.093 a0, the

NLO two-body potential is not able to prevent a collapse of the system. To be noticed that

the coefficient 3|V1| − 2V0 is always positive close to r0 = 5.093 a0.

B. Three-body force

Contrary to the LO case, the three-body ground state calculated with two-body NLO

potential does not collapse as r0 → 0. Approaching this limit the two-body potential

develops a repulsive core, a consequence of the two parameters, the scattering length and

the effective range, it has to reproduce. For r0/a values inside the region verifying E3/Ē3 ≥ 1,

the deepest energy corresponds to the particular case in which V1 = 0 and the LO and NLO

potentials coincide. This is true also for N > 3 as shown in Fig. 10 where the binding

energies for N = 3, 4, 5, 6, 7 are shown, in units of ĒN , as functions of the Gaussian range r0,

in units of ā. A demonstration of why the deepest energy is reach in that particular point

is given in the Appendix A.
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FIG. 9. Profile of the NLO potentials for the three different values of r0. The left and right panels

correspond to the two extreme cases where the NLO potential reproduce the three-body ground-

state energy. These two points are indicated by the vertical-dashed line in Fig. 7. The central

panel corresponds to the NLO-LO case (vertical-solid line in Fig. 7).

0.03 0.04 0.05 0.06 0.07 0.08
1.0

1.1

1.2

1.3

1.4

1.5

1.6

LO

r0/ā
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FIG. 10. The ground-state energy EN (in units of ĒN ) computed with the NLO two-body force

of Eq. (9). The vertical lines are the same as in Fig. 7.
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We proceed the study by considering the two-body NLO potential plus the LO three-

body force of Eq. (8). To this end we compute pairs of (W0, ρ0) values from the condition

E3/Ē3 = 1. We select the best pair of values by analyzing the four-body ground-state

energy and, using this choice, we calculate the N = 5, 6, 7 binding energies. The potential

parameters and the results are given in Table III, and in Fig. 11 we show the ratios EN/ĒN

for N = 4, 5, 6, 7 as functions of r0/ā inside the region in which the three-body force is

repulsive. Firstly we observe that, although E4 is very close to the exact value, it is not

possible to set E4/Ē4 = 1; the best value is obtained for the NLO-LO point given by Eq. (6)

and it is inside the ε2 = 5h deviation from the LM2M2 value. The E4/Ē4 ratio remains

close to 1 inside the region between the NLO-LO point and the lower value of r0/ā for which

the three-body binding energy is well reproduced by solely the NLO two-body potential. In

between these points, there is a special value of r0/ā ≈ 0.042 (and ρ0/r0 ≈ 7/8) such that

all the N -body systems (at least up to seven particles) have a ground-state energy which

is inside the NL0-ε2 strip. There is a similar point for the higher value r0/ā ≈ 0.063 (and

ρ0/r0 ≈ 7/12). At these two points, the binding energies, EN with N ≤ 7 are predicted

inside the 5h strip.

Now we look at the two points, r0/ā = 0.027 and 0.081, characterized by the fact that the

three-body binding energy is well reproduced by the two-body NLO potential. Accordingly

the contribution of the three-body force, in the three-body system, should be zero. However,

if we consider only the two-body NLO potential and use the HH K = 0 approach to estimate

the limit N →∞ we can show that the system is unstable [39]. Therefore we conclude that

the three-body force should have at least two terms that compensate each other to give

zero contribution in the three-body system but non-zero ones for N > 3 and stabilizes the

systems as N increases. To analyse this behavior we introduce the following NLO three-body

force

WNLO = W0e
−r2123/ρ20 +W1

(
r123
ρ0

)2

e−r
2
123/ρ

2
0 , (12)

where r2123 = r212 +r213 +r223. To be noticed that in a perturbative scheme the W1 term can be

absorbed by the LO term [44, 45]. In this case, and as discussed in Ref. [21], a subleading

four-body interaction could be introduced. Using a non-perturbative scheme, the two LECs

W0 and W1 are independent. In order to determine possible values of the additional LEC,

W1, we compute pairs of W0,W1 values obtained through the condition E3 = Ē3. Next, we

study the effects of the different pairs in the binding energies EN with N ≤ 7.
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We now extend the study to consider the complete NLO potential consisting in a two plus

a three-body term. The results, together with the set of potential parameters, are given in

Table IV, and are also shown in Fig. 12, where the ratios EN/ĒN are given as a function of

the gaussian range r0, in units of ā. From the figure we can conclude that the NLO force is

sufficiently flexible to describe accurately the EN binding energies inside the region in which

the three-body force has an overall repulsive contribution including the point in which it

has a null contribution to the three-body system. All the binding energies fall inside (or

very close to) the 5h strip. To obtain these results the three-body range ρ0 has been varied

and, for each value of r0, the selected value is the one that gives the best results. This fact

implies that the two ranges, r0 and ρ0, are correlated and need to be tuned simultaneously

to optimize the capability of the force to describe systems having different values of N . For

each value of r0 there is a particular value of ρ0 that produce the best results for the binding

energies. We infer that this value is not universal, it takes into account the short range

characteristics of the systems trying to adapt the (repulsive) three-body force in order to

reproduce the packing of the particles as N increases. It seems that this behavior, for one

specific value of r0, can be codified in one particular value of ρ0.

Finally we incorporate in the study the atom-dimer scattering length a2, which is cal-

culated by means of the Kohn variation principle in the framework of Hyperspherical Har-

monics as described in Ref. [46]. This observable will give additional information on the

capability of the NLO potential to describe the few-body dynamics. In Fig. 13 we report

a preliminary analysis of the ratio a2/ā2, where ā2 = 218.0 a0 is the LM2M2 atom-dimer

scattering length [47]. In the figure we show the results including the two-body NLO force

(green symbols), when the LO three-body force is also included (blue symbols) and when

NLO three-body is considered as well (red symbols). In the first case we see that there

is a parabolic behavior with the minimum just in the LO/NLO point corresponding to

r0/ā = 0.053. This behavior is maintained when the LO three-body force is included though

with less variation in all the region analyzed. When the NLO three-body force is included

the observable is well inside the expected error band. In this case a further fine-tune of the

potential parameters was necessary in some cases not compatible with the expected error for

the ground state energies. A simultaneous description of this observable, the ground-state

energies and the excited energies of the trimer and tetramer is at present under investigation.
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TABLE III. Ground state energies, EN , N = 4, 5, 6, 7, obtained by solving the Schrdinger equation

with the two-body potential Eq. (9) plus the three-body potential Eq. (8). The value of the mass

is ~2/m = 43.281307 K a20. For the indicated values of the range of the two-body potential, r0,

the two-body strengths V0, and V1 reproduce the two-body scattering length ā = 189.415 a0 and

effective range r̄e = 13.845 a0. The values of the three-body parameters W0 and ρ0 have been tuned

to reproduce the three-body ground-state energy Ē3 = −126.40 mK and, as close as possible, the

value of the four-body ground-state energy Ē4 = −558.98 mK. These results are shown in Fig. 11.

r0(a0) V0(K) V1(K) W0(K) ρ0(a0) E4(mK) E5(K) E6(K) E7(K)

5.093 23.69301715 -19.50171195 0 - -565.22 -1.335 -2.418 -3.786

6 5.10959963 -6.96483778 216.92578 4.0 -564.17 -1.327 -2.392 -3.745

8 -0.76169367 -1.10254347 3.65625 7.0 -562.30 -1.308 -2.325 -3.577

10.03018708 -1.22717064 0 2.78648 7.5 -560.21 -1.293 -2.275 -3.468

12 -1.11535226 0.26557436 3.44852 7.0 -563.28 -1.311 -2.330 -3.583

13.5 -0.9840318 0.32011607 5.27770 6.0 -570.91 -1.353 -2.449 -3.829

15 -0.86036661 0.32874362 13.00000 4.0 -586.38 -1.440 -2.697 -4.353

15.445 -0.82669759 0.32692415 0 - -594.65 -1.492 -2.867 -4.753

IV. CONCLUSIONS AND OUTLOOKS

We have studied in detail how the leading order and the next to leading order interactions

of a boson system can be built by looking to a few data. In the LO case we have looked at the

two-body scattering length and the trimer energy whereas at NLO we have considered the

effective range and the tetramer binding energy (or the atom-dimer scattering length). The

ranges of the associated potentials (of a Gaussian shape) have been varied inside certain

regions. At LO we have shown that, if we want to maintain similar level of accuracy in

the description of systems with increasing values of N , the possible values of r0 and ρ0 are

very few. In fact, as it is evident from Fig. 6, there is only one possible pair of values,

r0 and ρ0, that respects this condition. Moreover the value of r0 is the one that allows

a simultaneously description of the two-body scattering length and of the effective range.

This is an important finding since this particular value of r0 gives the correct description
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TABLE IV. Ground state energies, EN , N = 4, 5, 6, 7,obtained by solving the Schrdinger equation

with the two-body potential Eq. (9) plus the three-body potential Eq. (12). The value of the mass

is ~2/m = 43.281307 K a20. For the indicated values of the range of the two-body potential, r0,

the two-body strengths V0 end V1 reproduce the two-body scattering length ā = 189.415 a0 and

effective range r̄e = 13.845 a0. The values of the three-body parameters W0, W1, and ρ0 have

been tuned to reproduce the three-body ground-state energy Ē3 = −126.40 mK and, as close as

possible, the values of the few-body ground-state energies given in Table I. These results are shown

in Fig. 12.

r0(a0) V0(K) V1(K) W0(K) W1(K) ρ0(a0) E4(mK) E5(K) E6(K) E7(K)

5.093 23.69301715 -19.50171195 1.771 -0.8 12.0 556.17 1.296 2.322 3.600

8 -0.76169367 -1.10254347 2.7646139 -1.0 10.0 558.87 1.296 2.307 3.566

10.03018708 -1.22717064 0 5.68149 -1.6 8.0 560.31 1.300 2.309 3.560

12 -1.11535226 0.26557436 2.705304 -1.0 10.0 559.58 1.300 2.312 3.576

13.5 -0.9840318 0.32011607 0.78153008 -0.4 14.0 558.96 1.299 2.314 3.577

15.445 -0.82669759 0.32692415 0.73730 -0.5 16.0 555.46 1.301 2.351 3.703

of the two-pole structure of the S-matrix showing the strict correlation that this structure

introduces in heavier systems. Moreover, associated to that particular r0 value, there is a

particular value of the three-body potential range ρ0 that takes into account the correct

balance between attraction and repulsion along the energy curve EN as a function of N .

That particular value of ρ0 governs the transition from universal to non-universal effects in

which the short-range characteristic of the interaction prevents the system to collapse (see

the related discussions in Refs. [23–25, 38]).

The LO description establishes the level of accuracy required in the description of the

binding energies. A consistent improvement is expected once the next-to-leading order is

considered. The first finding in this analysis was the observation that the two-body NLO

potential produces a maximum (in absolute value) in the description of the binding energies,

EN , with N ≥ 3, located at the particular point in which the second LEC of the potential

V1 = 0. At this point the NLO potential consists in a single Gaussian, and by definition, its

range is the one needed to describe, in addition to the scattering length, the effective range.

As soon as r0 is varied from that value the trimer energy increases arriving to two values
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E
N
/Ē
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FIG. 11. The ratios EN/ĒN for N = 4, 5, 6, 7 as a function of r0/ā computed with the two-body

force at NLO and the three body force at LO. The three-body force has been fixed to have the

best E4/Ē4 ratio, which is always larger than 1. The vertical lines are the same as in Fig. 7. The

horizontal gray strip corresponds to the ε2 = 5h departure from LM2M2 data. The point where

E4/Ē4 is closer to 1 is the NLO-LO point given by Eq. (6).

at which the trimer energy is well described, E3 = Ē3. Beyond these values the three-body

force should be attractive, a situation that without other intervening mechanisms would

produce a collapse of the system. So, in the present analysis we have studied the NLO force

inside those limits.

The next step in this study was the introduction of the three-body potential. To start

with, in Fig. 11 we have analysed the NLO two-body force in conjunction with the three-body

force at LO. This analysis shows a limited improvement of the description, mostly around

two points, at r0/ā ≈ 0.042 and 0.063. At these two points the description of the binding

energies up to N = 7 remains inside the expected level of confidence. The final results are

shown in Fig. 12 in which the complete NLO force has been considered. Noticeably the

complete segment of r0/ā values allows for a description of the binding energies inside the

error strip. However, as mentioned before, at each point it was necessary to set the value of

ρ0. So we have shown that there is a strict correlation between the two-body range r0 and

the three-body range ρ0. Similar conclusions are obtained analysing the results for the atom-
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FIG. 12. The ratios EN/ĒN for N = 4, 5, 6, 7 as a function of r0/ā computed with the two-body

and three-body forces at NLO. The three-body force parameters have been fixed to have E3/Ē3 = 1

and the best E4/Ē4 ratio. The vertical lines are the same as in Fig. 7. The horizontal gray strip

corresponds to the ε2 = 5h departure from LM2M2 data. The results stay inside the expected

error band for values of r0/ā close to the LO vaue.

dimer scattering length. This fact has been observed at LO in fermionic systems [24, 48].

Studies along the inclusion of the NLO term in such systems are at present under way.
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/ā

2

FIG. 13. The atom-dimer scattering length, a2 (in units of the LM2M2 atom-dimer scattering

length ā2 = 218.0 a0), as a function of r0/ā. The calculations have been done using the tewo-body

NLO potential (green symbols), including the the LO three-body force (blue symbols) and the NLO

three-body force (red symbols). The vertical lines are the same as in Fig. 7, and the horizontal

gray strip gives the ε2 = 5h deviation.

Appendix A: Special point where the two-body force at LO and NLO are the same

We show why the binding energies calculated using the two-body force at NLO have

their minimum value at the particular r0 value in which V1 = 0 (see Eq.(9)). At that

point the two-body potential is the same at LO and NLO. To this end we first extend the

Hellmann-Feynman theorem

∂Eλ
∂λ

= 〈Ψλ|
∂Hλ

∂λ
|Ψλ〉 , (A1)

to be valid in the zero-energy case.

1. Hellmann-Feynman theorem for the scattering length

Here we demonstrate the validity of Hellmann-Feynman theorem in the case in which the

variation is done on the scattering length. We start from the Kohn variational principle for
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the scattering length functional [49]

[aλ] = aλ + 〈ψλ|Hλ|ψλ〉 , (A2)

where [aλ] is the second order estimate of the scattering length aλ and ψλ is the corresponding

zero-energy wave function normalized so that ψλ → F +aλG. Here F,G are the regular and

irregular asymptotic solutions which in the present case (s-wave scattering) correspond to

Bessel functions, j0 and y0 respectively. Now the variation of the functional with respect to

λ is
∂[aλ]

∂λ
=
∂aλ
∂λ

+ 〈∂ψλ
∂λ
|Hλ|ψλ〉+ 〈ψλ|

∂Hλ

∂λ
|ψλ〉+ 〈ψλ|Hλ|

∂ψλ
∂λ
〉 . (A3)

From the normalization condition we can observe that

〈∂ψλ
∂λ
|Hλ|ψλ〉 − 〈ψλ|Hλ|

∂ψλ
∂λ
〉 =

∂aλ
∂λ

(A4)

and therefore
∂[aλ]

∂λ
= 2〈∂ψλ

∂λ
|Hλ|ψλ〉+ 〈ψλ|

∂Hλ

∂λ
|ψλ〉 = 〈ψλ|

∂Hλ

∂λ
|ψλ〉 (A5)

where we have used that Hλ|ψλ〉 = 0. Accordingly, the extension of the Hellmann-Feynman

theorem to the case of a zero-energy state results to be:

∂[aλ]

∂λ
= 〈ψλ|

∂Hλ

∂λ
|ψλ〉 (A6)

2. Minimum of V0 for V1 = 0.

It is interesting to analyse why the minimum value of EN corresponds to the case in which

the LO and NLO two-body potentials are the same potential. In particular we observe that

at that point V0 has its minimum value. We start from the two-body NLO hamiltonian

HNLO
r0

= T + V NLO , (A7)

where we have made explicit the r0 dependence. Now we recall the Hellmann-Feynman

theorem
∂Eλ
∂λ

= 〈Ψλ|
∂Hλ

∂λ
|Ψλ〉 , (A8)

for a general dependence of the hamiltonian on the parameter λ and the corresponding wave

function Ψλ. Its extension to the case of the scattering length is

∂aλ
∂λ

= 〈ψλ|
∂Hλ

∂λ
|ψλ〉 , (A9)
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where now ψλ is the zero-energy wave function (a demonstration of the theorem for scattering

states is given above). In our case λ ≡ r0 and due to the constrains, E2 and a are maintained

constants as r0 is varied, the variations of E2 and a with respect to r0 are zero. Explicitly

∂E2

∂r0
= 0 = 〈Ψr0|

∂HNLO
r0

∂r0
|Ψr0〉 = 〈Ψr0|

∂V NLO

∂r0
|Ψr0〉

= 〈Ψr0|
(
∂V0
∂r0

+ 2V0
r2

r30

)
e−(r2/r20) +

(
∂V1
∂r0

r2

r20
− 2V1

r2

r30
+ 2V1

r4

r50

)
e−(r2/r20)|Ψr0〉 ,

(A10)

where Ψr0 is the bound state wave function. We are interested in the point in which V1 = 0,

therefore the equation is

∂V0
∂r0
〈Ψr0|e−(r2/r20)|Ψr0〉+

(
2V0
r0

+
∂V1
∂r0

)
〈Ψr0|

r2

r20
e−(r2/r20) + |Ψr0〉 = 0 , (A11)

and a similar equation for the zero-energy wave function, ψr0

∂V0
∂r0
〈ψr0|e−(r2/r20)|ψr0〉+

(
2V0
r0

+
∂V1
∂r0

)
〈ψr0 |

r2

r20
e−(r2/r20) + |ψr0〉 = 0 . (A12)

Since Ψr0 and ψr0 are orthogonal, the gaussian matrix elements cannot be linear depen-

dent and therefore the only possibility is that each coefficient is zero. In particular the

following condition is verified
∂V0
∂r0

= 0 , (A13)

together with 2V0/r0 + ∂V1/∂r0 = 0. These conditions indicate that when the variation is

performed on EN it results
∂EN
∂r0

= 0 (A14)

at the V1 = 0 point. This behavior can be observed in Fig.10 for N = 3, 4, 5, 6.
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