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Many quantum algorithms seek to output a specific bitstring solving the problem of interest—or a few if
the solution is degenerate. It is the case for the quantum approximate optimization algorithm (QAOA) in
the limit of large circuit depth, which aims to solve quadratic unconstrained binary optimization problems.
Hence, the expected final state for these algorithms is either a product state or a low-entangled superposition
involving a few bitstrings. What happens in between the initial N-qubit product state |0〉⊗N and the final one
regarding entanglement? Here, we consider the QAOA algorithm for solving the paradigmatic Max-Cut problem
on different types of graphs. We study the entanglement growth and spread resulting from randomized and
optimized QAOA circuits and find that there is a volume-law entanglement barrier between the initial and final
states. We also investigate the entanglement spectrum in connection with random matrix theory. In addition,
we compare the entanglement production with a quantum annealing protocol aiming to solve the same Max-Cut
problems. Finally, we discuss the implications of our results for the simulation of QAOA circuits with tensor
network-based methods relying on low-entanglement for efficiency, such as matrix product states.

I. INTRODUCTION

Entanglement is an essential component of quantum me-
chanics that makes quantum computers fundamentally differ-
ent from their classical counterparts. Quantum algorithms
leverage the ability to generate entangled quantum superpo-
sitions of states to bring quantum speedup. Two celebrated
examples are Shor’s algorithm for factoring integers [1] and
Grover’s for unstructured search [2]. Therefore, investigating
quantum algorithms through the prism of entanglement may
provide valuable information.

Indeed, entanglement is routinely used to characterize prop-
erties of quantum many-body states, see, e.g., Ref. 3 for a re-
view. By tracing out a subset of the degrees of freedom, one
obtains the reduced density matrix describing the remaining
subsystem. Its eigenvalue spectrum and corresponding Rényi
entropies contain key information on the system. They can
help diagnose symmetry breaking, chaos, topological, and lo-
calization features, to cite but a few. Looking at entanglement
growth and spread following a quantum quench on a product
state can help understand how quantum information settles in
the system, in connection, e.g, with thermalization and relax-
ation to equilibrium. This is precisely this last point that is
of interest in the context of quantum computing: How does
entanglement spread following consecutive layers of unitary
gates applied on the initial N-qubit state |0〉⊗N? In addition
and in connection with nonequilibrium quantum many-body
physics, entanglement growth in random circuits is subject to
extensive research [4–6]; see also Ref. 7 for a recent review
article.

Moreover, entanglement plays a critical role in the success
of classical approximate quantum simulators based on tensor
networks such as matrix product states (MPS) [8–10], pro-
jected entangled-pair states [11, 12], tree tensor networks [13],
the multi-scale entanglement renormalization ansatz [14], and
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two-dimensional isometric tensor networks [15]. They all have
a control parameter χ, the so-called bond dimension, which
governs the allocated classical computational power where
time complexity andmemory usage scale polynomiallywith χ.
Besides managing resources, χ has a physical interpretation:
It dictates the amount of entanglement that can be encoded
in the tensor network, i.e., S ∼ ln χ for MPS [8–10]. While
approximate simulators can accommodate exact calculations
if the bond dimension scales exponentially with the number of
qubits, i.e., χexact ≡ χ = 2N/2 for MPS, there are situations in
which the parameter needs to be effectively smaller than that.
For instance, many-body states in one dimension fulfilling the
area law contain finite entanglement S ∼ constant [16, 17],
which means they can be represented accurately as MPS with
finite χ, independently of N . Celebrated examples include the
ground state of gapped Hamiltonians and (many-body) local-
ized eigenstates at arbitrary energy. Studying the entanglement
generated by quantum circuits can help understand the limi-
tations of approximate simulators relying on low-entangled
quantum states: How does the entanglement scale versus the
number of qubits N? In turn, it sets the scaling of the bond di-
mension χwith N . In regard to quantumcomputing,MPShave
been used to simulate Shor’s algorithm [1, 18, 19], Google’s
Sycamore circuits [20], boson sampling [21], and the quantum
approximate optimization algorithm (QAOA) [22–26].
QAOAbelongs to themore general class of variational quan-

tum algorithmswhere one optimizes a parametric quantum cir-
cuit such that its output minimize a given cost function [27]. It
is designed to solve quadratic unconstrained binary optimiza-
tion problems [28], with applications in logistics, scheduling,
finance, traffic congestion, machine learning, and basic sci-
ence among others. It is largely regarded by the community
as a promising candidate for delivering a quantum advantage
to real-world problems in the near term and thus subject to
extensive research [22–25, 29–74].
Ref. 26 recently consideredmatrix product state simulations

of the QAOA algorithm. The authors explored how working
with a value of χ smaller than the one required for exact sim-
ulations modified the overall quality of the circuit execution.
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FIG. 1. (a) Sketch of the bipartite entanglement entropy S as a
function of the QAOA layer for solving a generic Max-Cut problem.
The initial state is a product state with S = 0. In the limit of a large
number of layers, QAOA solves asymptotically the combinatorial
problem of interest. Thus one expects the final state to be low-
entangled. In intermediate steps, optimized QAOA circuits generate
volume-law entanglement S ∼ N with N is the number of qubits.
(b) A QAOA circuit according to Eq. (2) with layers ` ≤ p. We
used Uβ` =

∏
j uβ` with uβ` acting on individual qubits according

to Eq. (3).

They assessed the output fidelity through the expectation value
of the cost function QAOA seeks to minimize and found that
a small bond dimension makes the cost larger than in the ideal
case. Because ln χ amounts for the maximum entanglement
that can be encoded by anMPS, the results suggest that QAOA
circuits generate a lot of entanglement that was being cut off
by restricting χ.

Here, we get an entanglement perspective on QAOA cir-
cuits. In the limit of large circuit depth, QAOA converges
asymptotically to the few bitstrings solving the optimization
problem of interest. Hence, the final quantum state is a low-
entangled superposition, which can be represented accurately
as an MPS with finite χ. What happens in between the ini-
tial and final low-entangled states? We find that there is a
volume-law entanglement barrier which requires χ ∼ exp(N),
see Fig. 1(a). Precisely, we study the bipartite Von Neumann
entanglement entropy and the entanglement spectrum resulting
from QAOA circuits for the paradigmatic Max-Cut problem.
We consider randomized QAOA circuits as well as optimized
QAOA circuits.

The rest of the paper is organized as follows. We present
definitions and methods in Sec. II. In Sec. III, we investigate
entanglement in randomized QAOA circuits, which is a typ-
ical starting point for variational quantum algorithms. We
repeat the analysis in Sec. IV for optimized QAOA circuits. In
Sec. V, we compare the entanglement in QAOA circuits with a
quantum annealing protocol where the circuit parameters are

fixed by the interpolation towards the cost function that one
seeks to minimize. Finally, we summarize our results and their
implications in Sec. VI.

II. DEFINITIONS AND METHODS

A. The Max-Cut Problem

Given an undirected graph G = (V, E)with vertex setV and
edge set E , where each edge {i, j} ∈ E has a weight wi j ≥ 0,
the Max-Cut problem seeks to find a cut maximizing the total
weight of cut edges. The problem is NP-hard, with no known
polynomial-time algorithms that will return the maximum cut
for general graphs.
Assigning a variable si = ±1 to each vertex i ∈ V of the

graph, the maximum cut corresponds to the configuration s =
(s1, s2 . . . sN ) minimizing [75],

C(s) =
∑
{i, j }∈E

wi j sisj, (1)

with the edge {i, j} ∈ E being cut if si , sj . In other words,
minimizing Eq. (1) is analogous to finding the two comple-
mentary sets of vertices {−1} and {+1} such that the total
weight of the edges between them is maximized. A configu-
ration with all the signs flipped, i.e., s → −s, corresponds to
the same cut.
Although solving the Max-Cut problem is NP-hard, there

exists efficient polynomial-time algorithms that find an ap-
proximate solution sapprox whose cost is at least as low as
rC(sexact) with high probability, where sexact is the exact so-
lution and r ≤ 1 the approximation ratio. While it remains
NP-hard to find a solution with r ≥ 16/17 ' 0.941 [76], the
Goemans-Williamson algorithm [77] guarantees, for instance,
an approximation ratio of r = 0.878 for general graphs, and
which can be improved in certain cases [78].

B. The Quantum Approximate Optimization Algorithm

The QAOA circuit on N qubits with p layers and 2p param-
eters is as follows [22–24],

��θ ≡ {
β, γ

}〉
=

(
p∏
`=1

Uβ`Uγ`

)
H⊗N |0〉⊗N, (2)

with H the Hadamard gate applied on the individual qubits,
where each of them corresponds to a vertex of the graph. The
parametrized unitaries are,

Uβ` =
∏

j
exp

(
−i
β`
2

Xj

)
and Uγ` = exp

(
−i
γ`
2

C

)
, (3)

with Xj the Pauli operator on qubit j and C the cost function
operator related to the Max-Cut problem on a graph G =
(V, E). It is diagonal in the computational basis,

C =
∑
{i, j }∈E

wi jZiZ j, (4)
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FIG. 2. Sketch of the graphs considered in this work with N = 8
vertices. (a) Linear graph. (b) A 3-regular graph. (c) Complete
graph.

with the sum running over the edges {i, j} according to Eq. (1).
Z j is the Pauli operator on qubit j. The unitary Uβ is a
collection of single-qubit rotations about the x axis of the
Bloch sphere. On a gate-based quantum computer, the global
unitary Uγ can be broken down into two-qubit gates acting on
nearest-neighbor qubits as per the underlying graph topology.
A circuit with layers ` ≤ p is displayed in Fig. 1(b).

Given the parametric circuit of Eq. (2), the goal is then
to classically optimize its parameters for the circuit output to
minimize the cost function of the Max-Cut problem,

Cmin = min
θ

〈
θ
��C��θ〉, (5)

which can be achieved by traditional optimization algorithms.

C. Graphs

We investigate QAOA for the Max-Cut problem on three
types of graphs:

(1) Linear graphs: First, we consider linear graphs with N
vertices where the first and last vertices are not connected.
Each of the N−1 edges carry a randomweight wi j ∈ [0, 1].
See Fig. 2(a).

(2) 3-regular graphs: Then, we consider 3-regular graphs with
N vertices where each vertex is connected to three other
and distinct vertices at random (there are no self-loops or
parallel edges). The graphs are uniform with unit weight
wi j = 1. See Fig. 2(b).

(3) Complete graphs: Finally, we consider complete graphs
(all-to-all connected) with N vertices and assign a random
weight wi j ∈ [0, 1] to the edges. See Fig. 2(c).

This choice is guided by the increased connectivity of the
graphs, which should favor entanglement spreading within the
system with each QAOA layer, which we seek to characterize.

D. Entanglement Spectrum and Entropy

The entanglement entropy quantifies the degree of quantum
entanglement between two subsets of qubits A and B of a sys-
tem defined over A ∪ B. For a pure state |θ〉, the reduced

density matrix ρA = trB |θ〉〈θ | of the subsystem A (respec-
tively B) associated with such a bipartition can be used to
compute the bipartite Rényi entropy of index q between A and
B, Sq = ln(trρq

A
)/(1−q). In the limit q→ 1, the Rényi entropy

approaches the bipartite Von Neumann entanglement entropy,

S = −tr (ρA ln ρA) = −
∑

k
λ2
k ln λ2

k, (6)

with {λ2
k
} the eigenvalues of ρA known as the entanglement

spectrum, and which fulfill
∑

k λ
2
k
= 1. We consider the

bipartite Von Neumann entanglement entropy of Eq. (6) in the
following.

E. Implementation

We perform the QAOA simulations using a state vector
approach, where |θ〉 from Eq. (2) is evaluated exactly. We
obtain results up to N = 22, corresponding to an Hilbert space
dimension 2N . We do not make use of the Z2 global qubit
inversion symmetry 0↔ 1 of Eq. (2), which would otherwise
reduce the size of the Hilbert space by a factor two.
The minimization is carried using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm [79–82]. For each prob-
lem considered, we repeat the optimization procedure for
≈ 103 random initialization of the parameters and only keep
the best result. The initial 2p parameters are drawn from
the uniform distributions: γ ∈ [0, 2π) and β ∈ [0, π) but the
optimization is unbounded. Two cases are considered: ran-
domized QAOA circuits with random parameters in Sec. III
and optimizedd QAOA circuits where parameters have been
optimized to minimize the desired cost function in Sec. IV.
When looking at the entanglement properties, the biparti-

tion is taken over two subsets of equal size N/2. On complete
and 3-regular graphs, the qubits entering A and B are ran-
domly chosen as there is no natural bipartition. On the other
hand, on linear graphs, we take A and B as two joint subsets
corresponding to the two halves of the graph. Entanglement
properties are computed from the Schmidt decomposition of
the state |θ〉. Noting the basis states {|s〉 ≡ |sA〉 ⊗ |sB〉}
with |θ〉 = ∑

{s} cs |s〉, we construct the matrix with entries
MsAsB = cs and perform a singular value decomposition. The
resulting singular values {λk} are the Schmidt coefficients en-
tering Eq. (6).

III. ENTANGLEMENT IN RANDOMIZED QAOA
CIRCUITS

Although strategies have been proposed to find a good ini-
tial guess for the QAOA parameters θ [47]—thus accelerating
the search of the global optimum—a standard starting point is
randomized parameters. Therefore, studying the role of entan-
glement in randomized QAOA circuits is relevant in evaluat-
ing the limitations of entanglement-based classical simulation
methods.
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FIG. 3. Data averaged over 103 problems and randomized QAOA
circuits. The statistical error bars are smaller than the symbols and
not displayed. (a) (b) (c) Growth of the bipartite Von Neumann
entanglement entropy S defined in Eq. (6) versus the number of
randomized QAOA layers `. (a) Linear graphs. (b) Complete graphs.
(c) 3-regular graphs. The straight dashed line corresponds to the
saturation value following Eq. (7). (a) For ` . N2, the entanglement
in the linear graphs shows a diffusive growth ∝

√
` with a size-

independent prefactor. (b) In complete graphs, the saturation happens
after a number of QAOA layers of order one. (c) Based on the
properties of 3-regular graphs, we expect the entanglement to saturate
for `sat ∼ ln N , corresponding to the average shortest path between
two vertices. (d) Average shortest path length in 3-regular graphs
as a function of the graph size N . Each data point is averaged
over 103 random graphs. For N → +∞, we observe that the average
shortest path grows as∼ ln N . For smaller graphs, the average shortest
path length is larger than the genuine thermodynamic behavior. (e)
For 3-regular graphs, at fixed `, we show the entanglement growth
as a function of the size N . Straight lines are linear fits of the
form a(`) + b(`)N with a and b `-dependent fitting parameters for
` . `sat. (f) Fitting parameter b(`) showing a behavior compatible
with a logarithmic dependence.

A. Entanglement Entropy

1. Entanglement saturation

We first consider the entanglement entropy S, as defined in
Eq. (6), as a function of the number of randomized QAOA
layers ` for increasing system size N . The data is averaged
over 103 problems. Results are displayed in Figs. 3(a), (b),

and (c) for the three different graphs considered. In all cases,
beyond a threshold value ` & `sat, the bipartite Von Neumann
entanglement entropy saturates to a volume law,

S
(
N, ` & `sat

)
= s0N + s1 +O

(
N−1), (7)

with s0 and s1 universal constants. On complete and 3-regular
graphs, one recovers the Page value [83] for random states,
where s0 = ln 2/2 and s1 = −1/2. For the linear graph, we
find values compatible with s0 ≈ 0.193 and s1 ≈ 0.077, cor-
responding to the average entanglement entropy of a random
Gaussian state [84–87].
This difference is specific to linear graphs, where the QAOA

unitaries of Eq. (3) are those of the time-evolution of a one-
dimensional transverse field Ising model, which maps to a
free fermionic model by a Jordan-Wigner transformation. In
that case, randomized QAOA circuits enter the category of
random free fermionic circuits [86]. The mapping makes the
classical simulation of QAOA circuits on linear graphs possi-
ble in polynomial time with the number of qubits rather than
exponential [88–90].

2. Entanglement growth

a. Linear graphs— Because of the special nature of ran-
domized QAOA circuits on linear graphs, the entanglement
growth before saturation is diffusive with the number of lay-
ers [86], i.e., S

(
N, ` . `sat

) ∼ √`, with a system-size indepen-
dent prefactor, see Fig. 3(a). It is much slower than a linear
growth, which is the maximum possible growth rate in a one-
dimensional system with short-range gates. The square root
scaling, in combination with the volume law for entanglement
saturation, leads to a number of layers required for saturation
scaling with the system size as `sat ∼ N2.
b. Complete graphs— On complete graphs, see

Fig. 3(b), the entanglement saturates extremely quickly, after
a number of QAOA layers of order one. This is understood by
the graph being all-to-all connected, making all qubits aware of
each others after one layer, thus favoring entanglement spread-
ing.
c. 3-regular graphs— Based on the topological proper-

ties of 3-regular graphs in the limit N → +∞, with the average
shortest path between two vertices scaling with the graph size
as ∼ ln N , see Fig. 3(e), we expect the entanglement entropy
to saturate for `sat ∼ ln N . Because we work with graphs
N ≤ 22 due to the exponential size of the Hilbert space with
N , it is not possible to verify this in practice. Instead, we
observe in Fig. 3(c) that the entanglement saturates at what
seems to be a size-independent depth `sat ≈ 20. Before reach-
ing saturation, the growth looks linear on a semi-log x scale,
meaning that the data suggests S

(
N, ` . `sat

) ∼ ln `. The
entanglement growth before reaching saturation is analyzed
further in Fig. 3(e) by looking at the entanglement versus N
for fixed QAOA circuit depths `. Although for ` . `sat the
entanglement entropy is not saturated, it still shows a volume
law scaling, i.e., S

(
N, ` . `sat

)
= a(`) + b(`)N with a and

b two constants. For the small sizes available, we find in
Fig. 3(f) that b(`) ∼ ln `, in agreement with the logarithmic
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growth of Fig. 3(c). However, we do not believe this is the
correct N → +∞ behavior, as it would mean `sat ∼ constant,
which is incompatible with the topological properties of the
graph. We attribute this inconsistency to finite-size effects
and expect that for larger system sizes N , the entanglement
will grow slower. To justify this as a finite-size effect, we see
in Fig. 3(d) that the ∼ ln N behavior for the average shortest
path length in 3-regular graphs is recovered at large N . For
smaller sizes (N . 50), the average shortest path is larger than
the expected genuine behavior ∼ ln N , potentially explaining
why entanglement spreads faster than expected in the small
3-regular graphs accessible.

B. Entanglement Spectrum

1. Structure of the entanglement spectrum

The nature of the quantum state following a randomized
QAOA circuit can be further characterized through its entan-
glement spectrum. From a random matrix theory perspective,
we expect the entanglement spectrum of a random state to
follow the Marchenko-Pastur distribution (up to normaliza-
tion) [92, 93] once the entanglement entropy reaches satura-
tion. For an equal bipartition in the limit N → +∞, and
rescaling the Schmidt coefficients index k = 0, 1, . . . 2N/2 − 1
to the interval x ∈ [0, 1], the Schmidt coefficients become a
continuous function of x [93, 94],

2N/2λ2(x) = 4 cos2 ϕ, with
π

2
x = ϕ − 1

2
sin

(
2ϕ

)
, (8)

where the value of λ2(x) can be evaluated numerically.
We analyze in Fig. 4(d) the entanglement spectrum once

entanglement entropy reaches saturation and average the data
over 103 problems. 3-regular and complete graphs follow
the Marchenko-Pastur distribution of Eq. (8) for all sizes N
considered (only shown for the largest one, N = 22). The
entanglement spectrum of linear graphs does not follow the
Marchenko-Pastur distribution, which is expected as the en-
tanglement entropy does not saturate to the Page value in this
case, due to the free-fermionic nature of the circuit. Instead, we
see in Fig. 4(d) that the entanglement spectrum decays much
faster for linear graphs, with finite-size effects. To the best of
our knowledge, there is no closed-form expression similar to
Eq. (8) in the case of free-fermionic circuit.

2. Level statistics of the adjacent gap ratio

Another tool from random matrix theory to characterize the
nature of the entanglement spectrum is the level statistics of
the adjacent gap ratio r [95, 96],

rk = max
(
δk, δk+1

) /
min

(
δk, δk+1

)
, (9)

with δk = λ2
k
− λ2

k−1 where {λ2
k
} are arranged in ascending

order such that δk ≥ 0 and rk ∈ [0, 1]. The free-fermionic
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FIG. 4. (a) (b) (c) Distribution P(r) of the adjacent gap ratio defined
in Eq. (9) for (a) linear graphs, (b) complete graphs and (c) 3-regular
graphs of size N = 18, 20, and 22, computed after saturation of the
entanglement entropy. (a) The distribution shows a Poisson law, ex-
pected for the output of a free-fermionic circuit, see Eq. (10). (b) (c)
The distribution shows a GUE law with Z2 symmetry [91]. (d) Av-
erage entanglement spectrum (note the scaling by 2N/2 of the x and
y axes, corresponding to the number of Schmidt coefficients) for the
different graphs considered, computed after saturation of the entan-
glement entropy. Data averaged over 103 problems and randomized
QAOA circuits. The statistical error bars are smaller than the symbols
and not displayed. The entanglement spectrum of the complete and
3-regular graphs are shown for N = 22 and follow the Marchenko-
Pastur of Eq. (8). The entanglement spectrum of linear graphs behave
differently due to the free-fermionic nature of the QAOA circuit in
that case. Finite size effects are visible (data shown for N = 18, 20,
and 22). (e) Average adjacent gap ratio r as a function of the system
size N . The Poisson value rPoisson = 2 ln 2 − 1 ' 0.38629 and GUE
value with Z2 symmetry rGUE−Z2 = 0.422085 [91] are also plotted.

nature of QAOA on linear graphs lead to a Poisson law for the
level statistics [95, 96],

PPoisson(r) = 2
/ (

1 + r
)2
. (10)

The distribution is plotted in Fig. 4(a), where one observes
that P(r) is in perfect agreement with the Poisson distribution
of Eq. (10). The corresponding average gap ratio r is shown
in Fig. 4(d). Despite the slow convergence with system size
N , the value is compatible with the Poisson value rPoisson =
2 ln 2 − 1 ' 0.38629 as N → +∞.
For 3-regular and complete graphs, the level statistics of

the adjacent gap ratio follows the Gaussian unitary ensem-
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ble (GUE). To observe genuine GUE, the Z2 symmetry of
the circuit needs to be considered by performing the Schmidt
decomposition and the level statistics analysis on the different
blocks independently. For aZ2 symmetry, the average gap ratio
when mixing the two different blocks is rGUE−Z2 = 0.422085,
as compared to rGUE = 0.60266 for genuine GUE if the blocks
were considered separately [91]. The distribution is plotted in
Figs. 4(b) and 4(c), where one observes that P(r) is in perfect
agreement with the GUE Z2 distribution. An analytical ex-
pression for P(r) is available in Ref. 91. The average gap ratio
as a function of the system size N is plotted in Fig. 4(d), com-
patible with the expected value. In the case of linear graphs,
the mixing of different blocks is not an issue as they both fol-
low a Poisson law, and mixing blocks is known to drive the
distribution toward Poisson, independently of their individual
nature [91, 97].

IV. ENTANGLEMENT IN OPTIMIZED QAOA CIRCUITS

We now investigate the entanglement generated by opti-
mized QAOA circuits. For a given problem, an optimized
QAOA circuit is obtained by running 103 simulations with
random initial parameters θ and only keeping the instance
resulting in the lowest cost.

In a QAOA circuit, see Eq. (2), the initial state H⊗N |0〉⊗N
before applying the parametric gates lead to a product state
with therefore no entanglement: S

(
` = 0

)
= 0. Assuming

the solution to a given Max-Cut problem is nondegenerate, an
optimized QAOA circuit in the limit of large depth will output
a cat state of the form

( |sexact〉 + eiφ |−sexact〉
)/√2, with φ an

angle (up to an irrelevant global phase). This state has an
entanglement S = ln 2, independently of the number of qubits
involved. The two extremum states have little or no entan-
glement, as compared to the randomized case of the previous
section where S ∼ N . Both states can be exactly represented
with matrix product states with a bond dimension χ = 2.
Therefore, it is legitimate to investigate what happens in be-
tween the initial and final layers by considering optimized
QAOA circuits.

A. Entanglement Entropy

1. Entanglement growth

We first set the system size to N = 16 and look how the
bipartite Von Neumann entanglement grows after each opti-
mized QAOA layer ` ≤ p for various QAOA depths p ≤ 10.
The results are plotted in Figs. 5(a), (b), and (c) for linear,
complete, and 3-regular graphs, respectively.

A first observation is that, in all cases, the entanglement
growth in optimized QAOA circuits is slower than in random-
ized circuits. A second observation is that on the linear and
3-regular graphs, increasing the QAOA depth p reduces the
amount of entanglement produced by each layer ` ≤ p. This
observation does not hold true for the complete graphs, and we
attribute this difference to the extensive connectivity of each
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FIG. 5. Data averaged over 102 problems. The statistical error
bars are smaller than the symbols and not displayed. (a) (d) Linear
graphs. (b) (e) Complete graphs. (c) (f) 3-regular graphs. Left
column: Average bipartite Von Neumann entanglement entropy as
defined in Eq. (6) versus the number of optimized QAOA layers
` ≤ p for various QAOA depths p. The system size considered is
N = 16. The entanglement in the case of randomized QAOA layer is
also displayed. Right column: The data displayed on the left column
is generated for various sizes N . For each curve (N, p), the maximum
value taken by the entropy S as a function of ` is extracted: It is
then plotted on the right column as a function of the system size N .
The value taken by the entanglement at saturation (p → +∞) for
randomized QAOA circuits, see Eq. (7), is shown for comparison.
Plain lines are linear fits of the form a(p)+ b(p)N with a(p) and b(p)
fitting parameters.

vertex ∼ N , which is constant for linear (two) and 3-regular
graphs (three). Note that for p = 10 in the 3-regular graph
case, we see that the maximum of entanglement happens after
an intermediate layer ` = 4, before decreasing, in line with the
sketch of Fig. 1(a).

2. Maximum of entanglement

We repeat the previous procedure for various system sizes
N ≤ 22. For each curve (N, p), the maximum value taken by
the entropy S as a function of ` is extracted. The valuemax`(S)
is plotted versus N for variousQAOAdepths p in Figs. 5(d), (e),
and (f) for linear, complete, and 3-regular graphs, respectively.
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FIG. 6. Data averaged over 102 problems. The statistical error bars
are smaller than the symbols and not displayed. (a) (b) (c) Average
entanglement spectrum for N = 16 computed at the end of optimized
QAOA circuits (p = `) for various QAOA depths p. The average
entanglement spectrum in the randomized QAOA case for N = 16
computed once the entanglement entropy has reached its saturation
value is also displayed. (a) Linear graphs. (b) Complete graphs. (c)
3-regular graphs. (d) Average entanglement spectrum for N = 16
and p = ` = 10 for the three different graphs considered in this work.
The dashed line corresponds to the Marchenko-Pastur distribution of
Eq. (8), where the curve has been vertically adjusted to fall over the
QAOA data.

a. 3-regular and complete graphs— The maximum of
entanglement generated by an optimizedQAOA circuit follows
a volume law with max`(S) = a(p) + b(p)N , with a(p) and
b(p) parameters. For the cases p ≤ 10 considered, the slope is
smaller than for randomized QAOA circuits for which b(p→
+∞) = ln 2/2, see Eq. (7). For the 3-regular graphs, the
observation that increasing the QAOA depth p reduces the
amount of entanglement produced by each layer ` ≤ p is also
observed in Fig. 5(f), with the slope b(p) decreasing with
increasing p.

b. Linear graphs— The behavior is totally different, see
Fig. 5(d): At fixed QAOA depth p, the maximum of entangle-
ment is roughly constant as a function of the system size. This
was also the case in randomized QAOA circuits of Fig. 3(a),
where the entanglement growth was diffusive ∝ √p with a
size-independent prefactor. There, as long as p . N2—which
is verified even for small system sizes since practical values of
p are unlikely to scale as the system size square—the entan-
glement shows no size dependence.

B. Entanglement Spectrum

1. Decay of the entanglement spectrum

We now turn our attention to the entanglement spectrum
generated by optimized QAOA circuits. We compute the en-
tanglement spectrumat the end of the circuit (p = `) for N = 16
and various values of QAOA depths p, see Figs. 6(a), (b), and
(c) for linear, complete, and 3-regular graphs, respectively.
The most noticeable difference between the three cases con-

cerns linear graphs. Here, the entanglement spectrum decays
extremely fast, with only a finite fraction of them entering the
computation of the bipartite Von Neumann entanglement en-
tropy via Eq. (6). Because of the topology of linear graphs,
where the entanglement grows at most linearly with the circuit
depth p in a light cone fashion, we do not expect the results to
change substantially for larger system sizes: Qubits outside of
a region of length p cannot be entangled, independently of the
system size N .
In the case of complete and 3-regular graphs, there is no such

strong decay for λ2
k
as a function of k. Nevertheless, when

compared to the random case, the first few λ2
k
decay much

faster, over several order of magnitudes. This is especially
visible for 3-regular graphs in Fig. 6(c) where the decay for
small k gets sharper as p increases. The opposite behavior is
observed for complete graphs: The decay rate gets smaller as p
increases. However, this can only be a transient effect since the
p→ +∞ limit should give the unique solution to the Max-Cut
problem, with only two nonzero values λ2

0 = λ
2
1 = 0.5, giving

the bipartite Von Neumann entropy S = ln 2.

2. Two-component structure

We compare in Fig. 6(d) the average entanglement spectrum
for N = 16 and p = ` = 10 for the three graphs. The plot
emphasizes the fast decay of linear graphs. For the complete
and 3-regular graphs, we find that the tail of the entanglement
spectrum follows theMarchenko-Pastur distribution of Eq. (8),
highlighting two different components in the spectrum at small
and large k. As the Marchenko-Pastur distribution arises for
random states, it reveals that the state resulting from an opti-
mized QAOA circuit at finite p still carries random features.
This is especially true for complete graphs, where the overlap
between the data and Eq. (8) holds for k/2N/2 & 0.5 while it
only holds for k/2N/2 & 0.9 in the case of 3-regular graphs. A
similar two-component behavior was reported [94] in highly
excited eigenstates of disordered one-dimensional Hamiltoni-
ans satisfying the eigenstate thermalization hypothesis [98–
100] (in the context of the many-body localization transition).
Although this problem and QAOA are unrelated, a parallel can
be drawn: There needs to be enough randomness to produce
a volume law scaling of the entanglement—albeit with a rate
lower than the Page value of Eq. (7)—, and yet both problems
have built-in processes that favor certain eigenvalues λ2

k
of

the reduced density matrix, i.e., the solution to the Max-Cut
problem versus the disorder configuration. The entanglement
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scaling in the context of optimized QAOA circuits is reported
in Figs. 5(e) and (f).

C. The Special Case of Linear Graphs

We emphasized the unique nature of QAOA circuits for lin-
ear graphs which map to free fermionic circuits. It has been
shown recently that arbitrary free fermionic circuits can be
compressed without loss in polynomial time (with respect to
their depth and number of qubits) such that their final depth
is at most linear in the number of qubits [101–103]. In par-
ticular, QAOA circuits for N qubits defined in Eq. (2) can be
compressed such that at most p = N . This means that for
linear graphs, there exists a QAOA circuit of depth at least
p = N solving the Max-Cut problem exactly.

V. ENTANGLEMENT IN A QUANTUM ANNEALING
PROTOCOL

QAOA and quantum annealing seek to solve the same class
of optimization problems from a different perspective. Quan-
tum annealing relies on quantum adiabaticity. One first pre-
pares a system in the ground state of −∑N

n=1 Xn, and then
interpolates over a period of time T between this initial Hamil-
tonian and the final one, i.e., the cost function C of which we
want to find the ground state. Here, C is defined in Eq. (4).
Formally the interpolation Hamiltonian can be written as,

H (
T, t

)
= −

(
1 − t

T

) N∑
n=1

Xn +
t
T

C, with t ∈ [0,T], (11)

with t the time. In the adiabatic limit, i.e., T → +∞, the time
evolution,

|t〉 = T exp
[
−i

∫ t

0
dt ′H (

T, t ′
) ]

H⊗N |0〉⊗N, (12)

will give a state |t = T〉 corresponding to the ground state of
C defined in Eq. (4). T indicates a time-ordered exponential.
Eq. (12) can be discretized by introducing a finite time-step δt
along with a Trotterization—which in the limit δt → 0 gives
back the continuous form of Eq. (12),

|t〉 =
(
t/δt∏
`=1

Uβ`Uγ`

)
H⊗N |0〉⊗N . (13)

The resulting quantum circuit is analogous to QAOA of Eq. (2)
with the unitaries defined in Eq. (3). The equivalent of QAOA
depth is Tδt−1 (≡ p) and the parameters in each layer `, evolv-
ing the state by a time step δt, are now simply given by the inter-
polation of Eq. (11), i.e., γ` = 2tδt/T and β` = −2δt(1− t/T).
There is no hybrid quantum-classical optimization involved.
Adiabatic computation requires that the total time evolution
scales as T ∼ ∆−2 with ∆ the minimum spectral gap [104]. ∆
is a property of the problem of interest, with no easy way to
determine it a priori.
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FIG. 7. Data averaged over 103 problems. The statistical error bars
are smaller than the symbols and not displayed. (a) (d) Linear graphs.
(b) (e) Complete graphs. (c) (f) 3-regular graphs. Left column:
Average bipartite Von Neumann entanglement entropy for N = 16
computed as a function of the time t for various total evolution times
T following Eqs. (11) and (13). Right column: The data displayed
on the left column is generated for various sizes N . For each curve
(N,T), the maximum value taken by the entropy S as a function of
t is extracted: It is then plotted on the right column as a function of
the system size N . The value taken by the entanglement at saturation
for randomized QAOA circuits (p → +∞), see Eq. (7), is shown
for comparison. Plain lines are linear fits of the form a(T) + b(T)N
with a(T) and b(T) fitting parameters. (g) Fitting parameter b(T) for
3-regular and complete graphs showing an algebraic decay ∝ T−α
with α ≈ 0.5

We investigate the entanglement properties of the quantum
annealing circuit of the discretized version of Eq. (12), using
a time step δt = 0.1.



9

A. Entanglement growth

First, at fixed system size N = 16, we compute the average
bipartite Von Neumann entanglement entropy as a function of
the time t for various values of total evolution timesT following
Eqs. (11) and (13). The data is shown in Figs. 7(a), (b), and (c)
for linear, complete, and 3-regular graphs, respectively. At t =
0, the state is a product state, thus unentangled with S = 0. At
finite but small time t, the entanglement grows algebraically as
∝ tκ with κ ≈ 2.7 in the three cases, independently of the total
evolution time T . The entanglement then takes a maximum
valuewhich, for regular randomand complete graphs, decrease
asT increases. Thismay suggest that in the adiabatic limit with
T → +∞, the entanglement generated by the time evolution
will not exceed the entanglement of the exact solution, i.e.,
S = ln 2 for Max-Cut problems with a unique solution. For
linear graphs, this observation seems to hold independently of
T .

B. Maximum of entanglement

In Figs. 7(d), (e), and (f), we repeat the previous analysis for
different system sizes N and consider for each curve (N,T) the
maximum of entanglement reached during the time evolution
t ∈ [0,T]. The results are plotted versus N for various total
evolution timesT . For linear graphs, we find that themaximum
of entanglement is independent of N . On the other hand, for 3-
regular and complete graphs, the maximum of entanglement
shows a volume law with a linear scaling of the form S =
a(T) + b(T)N with a(T) and b(T) fitting parameters. The
fitting parameter b(T) is plotted in Fig. 7(g). Its behavior is
compatible with an algebraic decay ∝ T−α with α ≈ 0.5.

VI. SUMMARY AND IMPLICATIONS

In this work, we investigated the entanglement growth and
spread generated by randomized and optimized QAOA circuits
for solvingMax-Cut problems on different types of graphs. We
also considered the entanglement spectrum in connection with
random matrix theory. In addition, we studied entanglement
production in a quantum annealing protocol aiming to solve
the same optimization problems.

In the later case, we found that for unit-weight 3-regular
and random-weight complete graphs, the maximum of entan-
glement grows as S ∼ NT−α with T the total evolution time
and α ≈ 0.5. For a given problem, a polynomial scaling of
the minimum spectral gap with the system size ∆ ∼ N−β with
β > 0 would imply that T should also scale polynomially
with N for the time evolution to be adiabatic, i.e., T ∼ N2β

versus T ∼ exp(2βN) for an exponential scaling. The entan-
glement scaling with N is favorable in the exponential case,
but it requires exponentially more time—layers of gates—for
the evolution to remain adiabatic. In the polynomial case, the
entanglement scaling with N is favorable if 2βα ≥ 1, mean-
ing that one can simulate the circuit with MPS using a finite

bond dimension χ and a polynomial number of layers. The
scaling of the minimum spectral gap with the system size is
problem dependent. See, e.g., Ref. 105 and references therein
for a review on quantum annealing applied to combinatorial
optimization problems.
QAOA attempts to circumvent the extensive circuit depth

required by an adiabatic time evolution by optimizing the cir-
cuit parameters instead. We found that both randomized and
optimized QAOA circuits generate volume law entanglement
S ∼ N . Although the prefactor is smaller in the optimized case,
suggesting that a smaller bond dimension χ would be required
to simulate optimized QAOA circuits versus random ones, it
does not help much as one still has to find the best QAOA
angles. Indeed, a typical starting point is random angles, and
if one were able to do better than that initially, optimization
algorithms need to explore the cost landscape in order to find
its minimum, meaning that the quantum state may need to
accommodate larger entanglement during intermediate steps.
We noted that linear graphs are special due to the mapping

of QAOA circuits to free fermionic circuits which can be sim-
ulated in polynomial time. Moreover, such circuits can be
compressed such that their final depth is at most linear in the
number of qubits [101–103].
In summary, we found that there is an entanglement barrier

S ∼ N to cross for large-depth QAOA circuits to go from an
initial product state S = 0 to a final statewith low-entanglement
solving the optimization problem of interest. This barrier
makes it difficult for entanglement-based simulation methods
like matrix product states to execute accurately QAOA circuits
with a finite bond dimension χ [26].
Note added: Near the completion of this work, we became

aware of Ref. 74 also investigating entanglement in QAOA
circuits.
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