
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum state preparation and nonunitary evolution with
diagonal operators

Anthony W. Schlimgen, Kade Head-Marsden, LeeAnn M. Sager-Smith, Prineha Narang,
and David A. Mazziotti

Phys. Rev. A 106, 022414 — Published 16 August 2022
DOI: 10.1103/PhysRevA.106.022414

https://dx.doi.org/10.1103/PhysRevA.106.022414


Quantum State Preparation and Non-Unitary Evolution with Diagonal Operators

Anthony W. Schlimgen,1 Kade Head-Marsden,2 LeeAnn M. Sager-Smith,1 Prineha Narang,2 and David A. Mazziotti1, ∗
1Department of Chemistry and The James Franck Institute,

The University of Chicago, Chicago, IL 60637 USA
2John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

(Dated: Submitted May 5, 2022; Revised June 23, 2022; Revised July 28, 2022)

Realizing non-unitary transformations on unitary-gate based quantum devices is critically important for
simulating a variety of physical problems including open quantum systems and subnormalized quantum states.
We present a dilation based algorithm to simulate non-unitary operations using probabilistic quantum computing
with only one ancilla qubit. We utilize the singular-value decomposition (SVD) to decompose any general
quantum operator into a product of two unitary operators and a diagonal non-unitary operator, which we show
can be implemented by a diagonal unitary operator in a 1-qubit dilated space. While dilation techniques increase
the number of qubits in the calculation, and thus the gate complexity, our algorithm limits the operations
required in the dilated space to a diagonal unitary operator, which has known circuit decompositions. We
use this algorithm to prepare random sub-normalized two-level states on a quantum device with high fidelity.
Furthermore, we present the accurate non-unitary dynamics of two-level open quantum systems in a dephasing
channel and an amplitude damping channel computed on a quantum device. The algorithm presented will be
most useful for implementing general non-unitary operations when the SVD can be readily computed, which is
the case with most operators in the noisy intermediate-scale quantum computing era.

I. INTRODUCTION

Recent advances in quantum computation have enabled
algorithm implementation on real quantum devices in the
Noisy Intermediate-Scale Quantum (NISQ) regime [1]. This
regime is defined by low-qubit counts where decoherence
times are relatively short and two-qubit gate errors remain
problematic. The noise experienced by the device presents
a challenge towards practical algorithm implementation that
has led to a plethora of research across chemistry, physics,
and engineering [2–7]. One area that has been gaining recent
attention is algorithm development for the non-unitary time
evolution of quantum systems. Current quantum devices are
typically unitary-gate-based, so non-unitary operators must
be cast as unitary in order to be practically implementable.
There are a variety of algorithms which have been devel-
oped to bypass this obstacle, including explicit mathematical
dilations [8–15], quantum imaginary time evolution [16], du-
ality [17, 18], the variational principle [19], collision mod-
els [20], analog simulation [21], and others [22–33]. The
majority of these algorithms rely on some form of dilation,
either mapping the operator to a larger Hilbert space, or
adding ancilla qubits. Another way to view this problem is
through the lens of non-normalized state preparation. Non-
unitary operations are not norm conserving, so evolution of
a state non-unitarily will result in a sub-normalized state.

Here, we present and demonstrate a dilation-based algo-
rithm using non-unitary diagonal operators. Diagonal op-
erators are relatively sparse, and have known circuit de-
compositions, which make them attractive for multi-qubit
calculations. We show that non-unitary diagonals can be
transformed to unitary diagonals with a one-qubit dilation.
The algorithm is probabilistic, but the success probability
of preparing the desired state can be improved with standard
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amplitude amplification techniques, because the desired state
is known. Finally, the exact preparation of the desired state
requires O(2k+1) one- and two-qubit gates, where k is the
number of system qubits. Importantly, diagonal gates can
also be implemented approximately with controlled error, re-
quiring only a polynomial number of gates with respect to
the number of qubits [34].

This dilation can be used for probabilistic state preparation
as well as non-unitary evolution of quantum states. Dilated
diagonals can be utilized to prepare both normalized and sub-
normalized states. While sub-normalized states can always
be normalized before a quantum simulation, the situation
often ariseswhere the state needs to bemanipulated further on
a quantum device in its sub-normalized form as, for example,
in preparing linear combinations with other un-normalized
states. In this work, we prepare a random selection of sub-
normalized states on an IBM quantum device and perform
a tomography of those states, demonstrating that we can
achieve high-fidelity state preparation.

Sub-normalized states also arise in the context of non-
unitary dynamics. Using the singular-value decomposition
(SVD), we show that any non-unitary operator can be written
in terms of two unitaries and a non-unitary diagonal operator,
which can be dilated to a unitary. The classical cost of the
algorithm is the cost of the SVD, which scales as O(r3),
where r is the size of the original operator. It is worth
noting that this is the most general case and does not preclude
the possibility for reduced classical scaling in special cases.
Our algorithm requires only one ancilla qubit for any size
operator, and the entangling operations between the state
and ancilla are reduced to a diagonal gate, which is efficient
to implement. In the limit of a large number of qubits,
our dilated algorithm is approximately double the cost of a
unitary propagation on the original Hilbert space in terms
of circuit depth. On the other hand, compared to a general
dilated unitary operator, our algorithm reduces the circuit
depth by approximately half.

We outline the non-unitary diagonal operator implemen-
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tation for state preparation in Section II A and the SVD algo-
rithm for non-unitary evolution in Section II B. The compu-
tational methodology is laid out in Section III then demon-
strated on the preparation of sub-normalized states and open
system dynamics in Sections IVA and IVB, respectively.

II. THEORY

A. Non-Unitary Diagonal Operators and Quantum State
Preparation

Due to their sparsity, diagonal operators are attractive
transformations for quantum simulation, and there are known
algorithms for efficient implementation of unitary diago-
nals [34, 35]. Here we show that non-unitary diagonals
can be implemented as unitary diagonal gates with only one
ancilla qubit. Consider a non-unitary diagonal operator, Σ̂
with complex entries σii on the diagonal, and assume the
magnitude of each element is less than or equal to unity. We
can directly construct a unitary diagonal operator,

ÛΣ̂ =

(
Σ̂+ 0

0 Σ̂−

)
, (1)

where,

Σ̂ii± = σii ± i
√

1− ||σii||2
||σii||2

σii. (2)

We also write Eq. 1 as ÛΣ̂ = Σ̂+⊕ Σ̂− where⊕ is the block,
or direct sum operator. We emphasize that 2Σ̂ = Σ̂+ + Σ̂−.
If the size of the non-unitary diagonal operator is r, then
the size of the dilated unitary ÛΣ̂ is 2r. This implies that the
dilated unitary can be implemented on a quantum device with
only one ancilla qubit, because we only need to double the
size of original Hilbert space. Importantly, the dilated unitary
is trivial to compute from the non-unitary diagonal, requires
no matrix operations to generate the unitary, and requires no
recursive decomposition to compute rotation angles.
We can achieve the probabilistic application of the non-

unitary diagonal operator by preparing the ancilla qubit in the
superposed state, and recombining the states after application
of ÛΣ̂, as shown in Figure 1. The algorithm is successful

|ψ〉
Σ̂+ ⊕ Σ̂−

|0〉 H H

FIG. 1. Circuit for implementing a non-unitary diagonal operator,
Σ̂, on |ψ〉 using only unitary gates with a one-qubit dilation. The
final gate on each rail is the measurement gate,H is the Hadamard
gate, and the multi-qubit gate is the diagonal operator in Eq. 1. The
algorithm is successful when the ancilla is measured in state |0〉.

when the ancilla qubit is in state |0〉, and the non-unitary Σ̂
is applied to the state |ψ〉. The desired state is known, so the

success probability can be increasedwith standard techniques
of amplitude amplification [36–39].

We show how to use this technique to prepare a known
quantum state,

|φ〉 =
∑
i

ci|i〉. (3)

First, generate the superposition of quantum states on k + 1

qubits, then apply ÛΣ̂, and lastly perform linear combinations
of Σ̂± applied to the superposed state. We can generate the
desired unitary ÛΣ̂ by defining the diagonal operator Σ̂ with
elements, Σ̂ii = ci. The amplitudes of the desired state are
encoded in the dilated Hilbert space, and generated with the
transformation,

|Ψ〉 = (I⊗k ⊗H)ÛΣ̂(H⊗k|0〉⊗k ⊗H|0〉). (4)

The desired state |φ〉 is encoded probablistically in the dilated
space as,

|Ψ〉 =
1

2
k
2 +1

(
(Σ̂+ + Σ̂−)|k̃〉
(Σ̂+ − Σ̂−)|k̃〉

)
, (5)

where |k̃〉 indicates the superposed state on k qubits. When
the ancilla qubit is in state |0〉 a state proportional to |φ〉 is
prepared, as desired. When the ancilla qubit is in state
|1〉, the algorithm does not prepare the desired state, and the
resulting state is not of interest. This has some similarity to
standard state initialization techniques, in that both utilize a
diagonal operator. Standard techniques, however, compute
the unitary required to take the ground state to the desired
state. Instead, we take the superposed state to the desired
state probabilistically, through a non-unitary transformation
with an ancilla qubit.

This approach can be used for preparation of sub-
normalized states as well as normalized states. An ensemble
state is characterized by a positive sum of density matrices,

ρ =
∑
i

piρi. (6)

While each ρi is a pure state and can be individually normal-
ized, it can be useful to prepare the sub-normalized states
piρi, which can be further transformed on a quantum device.
Probabilistic normalized state preparation in this form is thus
more expensive in terms of gate depth compared to standard
state initialization techniques due to the ancilla qubit and
larger diagonal operator. In contrast, the computation of the
diagonal operator needed for this state preparation is immedi-
ately available by the simple arithmetic in Eq. 2 and requires
no recursive decomposition. Furthermore, our probabilistic
approach allows for the preparation of non-normalized states,
and therefore the implementation of non-unitary operators.
We discuss the circuit complexity for diagonal operators in
the next section.

B. Non-Unitary Evolution

A quantum system represented by a density matrix, ρ,
undergoing non-unitary evolution can be characterized by
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unitary evolution in a dilated Hilbert space, where the state
is coupled to some environment, σB . This can be expressed
with Stinespring’s dilation, where the propagated densityma-
trix, ρ(t), is given by the partial trace of the unitary evolution
of the interacting system and environment [9, 40–42].

A more cost-effective method is the Sz.-Nagy dilation,
which was originally applied to contraction mappings and
requires only one ancilla qubit for implementation [10, 12].
The one-dilation for a non-unitary operator M̂ can be written
as,

ÛM̂ =

(
M̂

√
I − M̂M̂†√

I − M̂†M̂ −M̂†

)
, (7)

where the off-diagonal elements are known as the defect op-
erators. The dilation is guaranteed when M̂ is a contraction,
so the square root in the defect operator is defined, and any
bounded operator can be shifted to a contraction [10]. While
this dilation requires only one ancilla qubit, the dilated uni-
tary acts over the entire dilated space, which can lead to
quantum circuits with high gate counts when the system be-
comes large.
Consider instead the singular value decomposition (SVD)

for M̂ ,

M̂ = Û Σ̂V̂ †, (8)

where Û and V̂ † are unitary operators, and Σ̂ is a diagonal
operator of the singular values of M̂ , which are always real
and non-negative. Since Û and V̂ † are unitary, they can be
implemented on the space that is the same size as the origi-
nal operator M̂ , but Σ̂ is non-unitary and must be dilated, as
shown above. The SVD has been used to analyze non-unitary
operations in other quantum algorithms [43, 44]; however, we
show here that the singular value matrix can be implemented
efficiently as a diagonal operator, and is the only operator
that must span the dilated space. Importantly, the implemen-
tation of the non-unitary operation here does not depend on
an expansion parameter as in other works [14, 43, 44], so the
operation can be implemented exactly, so long as decompo-
sitions for U and V † can be performed.
The formulation of the singular values in Eq. 2 is inspired

by the Sz. Nagy dilation in Eq. 7, where the square root term
is reminiscent of the defect operator. Indeed the unitary in
Eq. 1 is related to the standard form of the Sz. Nagy dilation
by a rotation; however, the present formulation maintains
the diagonal structure of the singular value matrix, which
generally results in shallower circuits.

While the singular values are always real and non-negative,
Eq. 2 is suitable for any real or complex number so long as its
magnitude is bound by one. In the case of singular values of
magnitude greater than one, simply dividing Σ̂ by the largest
singular value will ensure that Eq. 1 remains unitary. In fact,
dividing by the largest singular value results in an operator
that is always a contraction, which guarantees an Sz. Nagy
dilation. This observation is related to that of Hu et al.
who showed that since every bounded operator is bounded
by its Hilbert-Schmidt norm, it can be shifted to an operator
that is always a contraction [10]. Shifting the operator, or

scaling it by the largest singular value, will effect the success
probability of the algorithm, but the success probability can
be driven towards unity with amplitude amplification.

Generating the singular values requires computing the sum
of Σ̂+ and Σ̂−. Linear combinations of unitary operators are
in general non-unitary; however, we can implement linear
combinations of unitary operators using the block sum, or
direct sum, approach, as in Eq. 1. The non-unitary prop-
agation of |ψ〉, including the linear combinations, can be
performed with the following transformation,

1

2

(
I I
I −I

)(
Û 0

0 Û

)(
Σ̂+ 0

0 Σ̂−

)(
V̂ † 0

0 V̂ †

)(
|ψ〉
|ψ〉

)
=

1

2

(
Û(Σ̂+ + Σ̂−)V̂ †|ψ〉
Û(Σ̂+ − Σ̂−)V̂ †|ψ〉

)
=

(
M̂ |ψ〉
M̂−|ψ〉

)
,

(9)

where we note that M̂ = 1
2 Û(Σ̂+ + Σ̂−)V̂ †, and define

M̂− = 1
2 Û(Σ̂+− Σ̂−)V̂ †. We again note that we discard the

states corresponding to M̂−|ψ〉. The linear combinations
are achieved through the final Hadamard gate on the ancilla
qubit, as discussed elsewhere [14, 45–47]. Finally, while
we have shown this transformation for a pure state, using
the eigendecomposition of a mixed state along with linearity
allows for the straightforward application of Eq. 9 to mixed
states. We show in the next section that, after assuming the
classical cost of the SVD, the decomposition in Eq. 9 can be
implemented on a quantum circuit, with minimal operations
spanning the entire dilated space. The SVD is typically
computed with a bidiagonalization and QR decomposition
approach, with a classical cost of O(r3), where r is the size
of the operator. Due to the special structure of the operators
in this work, their SVDs are available by inspection, so
numerical decomposition is not necessary in these cases.

III. METHODS

We show the general circuit for implementing Eq. 9 in
Fig. 2. The non-unitary propagation of a quantum state in
an r-dimensional Hilbert space, can be implemented on a
quantum circuit with k + 1 qubits, where k ≥ log2(r). This
circuit requires the implementation of two k-qubit operators,
V̂ † and Û , along with a (k + 1)-qubit diagonal operator,
ÛΣ̂ =Σ̂+⊕ Σ̂−. The following identities are useful to derive
Eq. 9,

Û ⊗ I =

(
Û 0

0 Û

)
I ⊗H =

1√
2

(
I I
I −I

)
(I ⊗H)(|ψ〉 ⊗ |0〉) =

1√
2

(
|ψ〉
|ψ〉

)
.

(10)

This formulation leads to reduction in algorithm complexity
because the only operator to act on the larger one-dilated
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space is a diagonal operator, which is in general less expen-
sive to implement, when compared to a dense one-dilated
operator.

|ψ〉 V̂ †
Σ̂+ ⊕ Σ̂−

Û

|0〉 H H

FIG. 2. Circuit for implementing the non-unitary operator M̂ on
|ψ〉 using only unitary gates with a one-qubit dilation. The final
gate on each rail is the measurement gate, and all other gates are
defined in the text. The only operator acting over the dilated space
is the diagonal operator, and the linear combinations are performed
using the Hadamard gates.

To see this reduction in cost, let the dilated space require
d = k + 1 qubits, and consider a general unitary that can be
decomposed intoO(d222d) one-qubit and CNOT gates [42].
The diagonal gate operating over d qubits can be exactly
decomposed into at most 2d+1 − 3 fundamental gates [48].
and the operators Û and V̂ † can each be implemented with
O((d − 1)222d−2) gates. To leading order, therefore, our
algorithm reduces the circuit depth by factor of two, resulting
in a complexity of O(d222d−1), compared to the dense d-
qubit operator.
As d becomes large, the cost of our algorithm is dominated

by the implementation of the unitaries Û and V̂ †, and the
cost of the dilated diagonal operator becomes negligible.
Seen in this way, our algorithm to implement a k-qubit non-
unitary operator is twice as expensive as a k-qubit unitary
operator, in the large-k limit. The exact implementation
of diagonal gates results in the gate counts above, however,
approximate polynomial implementations of diagonal gates
are also known [34]. If U and V † are k-local operators, then
the exponential scaling of the method can be avoided if the
diagonal operator is also implemented approximately [49].

IV. RESULTS

A. Preparation of sub-normalized states

Here we show the algorithm’s utility in preparing known
sub-normalized quantum states on quantum devices. Us-
ing a python seeded random number generator, we pseudo-
randomly generated 98 complex sub-normalized one-qubit
states, |ψ1〉, from normalized two-qubit states, |ψ2〉,

|ψ2〉 = a00|00〉+ a01|01〉+ a10|10〉+ a11|11〉
|ψ1〉 = a00|0〉+ a01|1〉.

(11)

The state |ψ1〉 is then prepared probabilistically using the
circuit in Fig. 1 and Eq. 2, i.e.,

Σ̂ =

(
a00 0
0 a01

)
. (12)

The average norm of the states |ψ1〉 is 0.67± 0.12.

For each state we prepared a two-qubit circuit, initializing
each qubit with a Hadamard gate, followed by implementing
the diagonal operator in Eq. 2, using the diagonal operator
decomposition available in Qiskit [48, 50]. We perform full
tomography of the state |ψ1〉〈ψ1| which requires 3 circuits,
then compute the fidelity and distance between the exact
classical state, ρE , and the state from device tomography,
ρS [42]. The fidelity is given by

F (ρS , ρE) = Tr
(√√

ρSρE
√
ρS

)2

, (13)

and the distance is the Frobenius norm of the difference
of the exact and simulated density matrices. The distance
is computed between the un-normalized states, while the
fidelity is computed with respect to the normalized density
matrices.

Table I shows the accuracy of the state preparation for
varying shot counts on the IBMLagos device, utilizing error-
mitigation techniques available in Qiskit [51]. With 26 sam-
ples, the fidelity is somewhat poor at 0.93; however, with only
210 samples the fidelity of the prepared states has converged
to be nearly exact at 0.99. The distance measure reveals the
same trends in accuracy.

Samples Distance Fidelity
26 0.17 ± 0.07 0.93 ± 0.06
28 0.09 ± 0.04 0.98 ± 0.02
210 0.06 ± 0.02 0.99 ± 0.01
212 0.06 ± 0.02 0.99 ± 0.01
214 0.06 ± 0.02 0.99 ± 0.01

TABLE I. Average error measures ± standard deviation for sim-
ulated sub-normalized one-qubit states for increasing simulation
sampling (shots), where the distance and the fidelity are defined
in the text. Results averaged over 98 randomly generated sub-
normalized states prepared on the quantum device IBMQ Lagos
with error mitigation.

Preparing these sub-normalized state probabilistically pro-
vides the groundwork for exploring non-unitary operations
on unitary-gate-based quantum devices. Initializing the sys-
tem as a superposition immediately provides the form of the
diagonal unitary required to prepare the state, without needed
recursive decomposition of rotation angles. Using this algo-
rithm, we have prepared known sub-normalized states which
would be the result of non-unitary operations. In the next
section, we demonstrate how to extend this algorithm to per-
forming the non-unitary action of a general operator on a
unitary-gate-based architecture.

B. Non-unitary evolution

The time evolution of an open quantum system can be
described by the operator-sum formulation in terms of the
Kraus operators,

ρ(t) =
∑
i

K̂iρ(0)K̂†i , (14)
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where the K̂i’s are the Kraus maps, and ρ(t) is the density
matrix at time t. In general, the Kraus maps are non-unitary;
however, they are always contraction mappings,∑

i

K̂iK̂
†
i ≤ I. (15)

Because the Kraus operators are always contraction map-
pings, their singular values are always bounded above by
one, which makes Eq. 2 directly applicable without rescal-
ing of the singular values. One can decompose each K̂i

using the singular-value decomposition and implement the
operator as described above, as two unitaries on the original
Hilbert space and a unitary diagonal on the dilated space.
Each Kraus operator is simulated in parallel and the propa-
gated density matrix is obtained classically by Eq. 14. While
we use Kraus operators in this work, the algorithm applies
to any problem where encoding the action of a non-unitary
operator on a quantum state is desired, and is not specific
to Kraus operators. Some other examples of non-unitary
operators include the Lindbladian superoperator in the un-
raveled Lindblad equation, and (non-unitary) operators with
observables.
Here, we simulate two single-qubit systems, whose Kraus

operators are either in diagonal or near-diagonal form, so the
SVD is readily computed analytically. We used IBM’s Lagos
device to simulate the dynamics, and perform full tomog-
raphy of the system density matrix. Each simulation was
performed once with the device maximum 32000 samples,
as well as in-built error mitigation protocols, in Qiskit. We
present the error mitigated data for all results. Each circuit
requires two qubits, one system qubit and one ancilla qubit.

For an initial example we simulate a two-level dephasing
channel, with a single qubit coupled to a one-qubit bath with
aZ⊗Z interaction. This results in diagonal Kraus operators,

K̂0 =
√
λ0

(
eiθt 0
0 e−iθt

)
K̂1 =

√
λ1

(
e−iθt 0

0 eiθt

)
,

(16)

where λ0 + λ1 = 1. Here we choose the dephasing angle
θ = 0.5 ps−1, with λ0 = 0.7 and λ1 = 0.3. It is clear
from Eq. 16 that K̂i/

√
λi is unitary and could be rescaled

by λi classically; however, here we simulate the non-unitary
operators K̂i on the device to show the non-unitary time
propagation on a unitary-gate-based architecture.
Figure 3 shows the time dynamics of the dephasing

channel, with the exact classical solution (lines) and results
from IBMQ Lagos (circles). The initial state is chosen as
1√
2
(|0〉 + |1〉), and the populations are not time dependent,

so only the coherence is shown. We performed tomography
of the density matrix to generate the coherences from the
quantum device, and the simulation is very accurate over the
time range.
Another way to visualize the time dynamics of this process

is with the Bloch sphere. Because the populations are not
time-dependent, the state stays in the z = 0 plane of the Bloch
sphere because of the choice of initial state. We show the
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Re(Coherence) Exact
Im(Coherence) Exact

Re(Coherence) Lagos
Im(Coherence) Lagos

FIG. 3. Real and imaginary parts of the off-diagonal element (co-
herence) of a two-level state in a Z ⊗ Z dephasing channel. The
results from the quantum device (dots) are accurate for all times in
the simulation, where the exact solution (lines) is generated classi-
cally. The results from the quantum computer are generated from
density matrix tomography.

x

z

y

Exact

IBMQ Lagos

FIG. 4. The trajectory of a two-level system undergoing dephasing
with a one-qubit environment is shown on a Bloch sphere with exact
results represented by the dotted line, and results from IBMQLagos
represented by dots. The trajectory is in the z = 0 plane represented
by the dark grey circle. One period is shown (about 60 ps), where
the initial state, 1√

2
(|0〉+ |1〉), is the first red dot on the right. The

system explores mixed states when it is in the interior of the sphere.

Bloch sphere for the Z ⊗Z dephasing process in Fig. 4. The
dotted line is the exact trajectory of the state, and the dots
are the simulated trajectory. Beginning in red with the initial
state, we show one period of the recurring dephasing process,
which is about 60 ps. The system is exploring the interior
of the sphere, which indicates the system is a mixed state at
those points.
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For the second example, we simulate the time evolution of
a two-level system in a zero-temperature amplitude damping
channel. The Kraus operators in this case are,

K̂0 =

(
1 0

0
√
e−γt

)
= I

(
1 0

0
√
e−γt

)
I

K̂1 =

(
0
√

1− e−γt
0 0

)
= I

(√
1− e−γt 0

0 0

)
X,

(17)

where we have emphasized the form of the SVD in the last
equality. Here I is the identity,X is the Pauli-X operator, and
γ is the decay rate. We use γ = 0.15 ps−1 for the simulations
here. The chosen initial state of the system ismixed and given
by,

ρ(0) =
1

4

(
1 1
1 3

)
. (18)

This state can be decomposed into |ψ0〉 = |1〉 and |ψ1〉 =
1√
2
(|0〉 + |1〉), which are prepared with an X gate and H

gate, respectively.
The results of the simulation of the two-level amplitude

damping channel are shown in Fig. 5. The experimental
results (dots) are in good agreement with the exact solution
(solid lines). The populations and coherences are all modeled
accurately, and demonstrate the non-unitary evolution of the
system as the system loses energy over time.

Description of non-unitary evolution through singular-
value decomposition of the Kraus maps allows for accurate
simulation of open quantum systems on unitary-gate-based
quantum computers. While the SVD has a classical cost if
computed numerically, in the cases presented here, the SVD
of the Kraus maps is immediately available by inspection.

V. DISCUSSION

Implementation of non-unitary operations on quantum de-
vices has important applications such as sub-normalized state
preparation and non-unitary dynamics. Here we presented
an algorithm based on diagonal non-unitary operators, which
simplifies the implementation of dense non-unitary opera-
tors. Constrained by the limited qubit number and possible
gate depths in the NISQ regime, many algorithms struggle
with scaling for practical implementation, due to the expense
of dense unitaries operating over the dilated Hilbert space.

Our algorithm implements a non-unitary operator with
two unitaries on the original Hilbert space, and a diagonal
operator on the dilated Hilbert space. We show that any
non-unitary operator can be implemented in this way using
the SVD. Assuming the classical cost of the SVD, and in
the limit of large system size, the circuit complexity of our
algorithm is approximately half as much as a dense dilated
unitary. Seen another way, our algorithm results in circuits
about twice as deep compared to a unitary on the original
Hilbert space.

We achieve this implementation by realizing a diagonal
unitary dilation for non-unitary diagonal operators. Any non-
unitary diagonal operator can be dilated to a unitary diagonal

operator with only one qubit, assuming themagnitude of each
element is bounded above by one. Computing the elements of
the dilated unitary is straightforward, and results in an exact
representation of the diagonal operator. Unitary diagonals
can be exactly implementedwith 2d+1−3 one- and two-qubit
gates, for d qubits; however, they can also be approximately
implemented with polynomial gate scaling. Future work will
include exploring how approximate implementation would
effect the accuracy of the overall simulation of non-unitary
processes.

Our algorithm is probabilistic in that it depends on the
measured state of the ancilla qubit. When the ancilla is in
state |0〉, the algorithm is successful, and we have exactly
prepared the state after application of a non-unitary diago-
nal. Future work could include implementing the algorithm
with amplitude amplification techniques, which improve the
success probability of the probabilistic algorithm. This helps
reduce the error fromnoise, or reduces the number of samples
required for accurate simulations.

We discussed applications of this algorithm in the context
of state preparation. While our probabilistic algorithm can
be used to prepare normalized states, it is better suited for the
preparation of sub-normalized states, which arise in the con-
text of non-unitary state transformations. We demonstrated
the preparation of one-qubit sub-normalized quantum states
on IBM’s quantum computer Lagos with high accuracy and
fidelity using our algorithm, and show the states can be pre-
pared accurately with a relatively modest number of samples
or shots.

We also applied our algorithm to two time-dependent open
quantum systems, which undergo non-unitary evolution. Us-
ing the SVD, we showed that any non-unitary operator can be
decomposed and implemented with one ancilla qubit using
the unitary diagonal construction for the singular values. We
used the SVD to decompose the Kraus operators for the dy-
namics; however, the algorithm is applicable to any operator.
We accurately reproduced the non-unitary dynamics of a two-
level dephasing channel and a two-level amplitude damping
channel using IBM’s Lagos quantum computer. Our algo-
rithm is particularly useful when the cost of the SVD is not
prohibitive, which is the case for most operators considered
in the NISQ era. Furthermore, because the diagonal unitary
dilation is exact, we can implement the entire non-unitary
process on one quantum circuit, which is useful when further
transformation of the state is desired.

Our algorithm is effective in implementing non-unitary
operations in quantum simulation in the NISQ era. Be-
yond state preparation and non-unitary dynamics, our algo-
rithm will also be useful in computing expectation values of
non-unitary observables without controlled unitaries in the
Hadamard test. Quantum-classical hybrid methods may also
benefit from our algorithm, when the SVD of the relevant
operators can be computed. Moreover, future work may be
able to exploit operator structure and symmetries to decrease
the computational cost of the classical decomposition, fa-
cilitating the application of our algorithm to larger systems
of interest. Our algorithm provides an intuitive look at the
action of non-unitary operators in the qubit space, and re-
duces the dilation problem to the implementation of a dilated
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