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Markovianity lies at the heart of communication problems. This in turn makes the information-
theoretic characterization of Markov processes worthwhile. Data processing inequalities are ubiqui-
tous in this sense, assigning necessary conditions for all Markov processes. We address here the prob-
lem of the information-theoretic analysis of constraints on Markov processes in the quantum regime.
We show the existence of a novel class of quantum data processing inequalities called here quan-
tum Markov monogamy inequalities. This new class of necessary conditions on quantum Markov
processes is inspired by its counterpart for classical Markov processes, and thus providing a strong
link between classical and quantum constraints on Markovianity. We go on to construct a family of
multitime quantum Markov monogamy inequalities, based on the process tensor formalism and that
exploits multitime correlations. We then show, by means of an explicit example, that the Markov
monogamy inequalities can be stronger than the usual quantum data processing inequalities.

I. INTRODUCTION

Markovianity plays a central role in the theory of clas-
sical information. This is enforced by describing the
asymptotic encoding-decoding scheme of a memoryless
channel used with no feedback by a Markovian stochas-
tic process [1]. This leads to the principal result in infor-
mation theory, the channel-coding theorem, stating the
maximum rate of classical bits reliably communicated
by a noisy channel to be equal to the mutual informa-
tion between the channel’s input and output variables
maximized over all input probability distributions. Fur-
thermore, the mutual information between variables of
any Markovian stochastic process is constrained accord-
ing to the so-called classical data processing inequali-
ties (CDPIs). Indeed, a CDPI is directly used in the
proof of the converse statement of the channel-coding
theorem, stating that any encoding-decoding of a noisy
channel with communication rate superior to its capac-
ity is not reliable [2]. While the classical data process-
ing theorems are widely studied [3–10], a wider range
of constraints on classical Markovian processes, the so-
called monogamy inequalities, were only discovered re-
cently [11] and conjectured to hold for quantum pro-
cesses as well.

With rising interest in quantum information theory,
classical data processing inequalities were extended to
the regime of quantum processes [12], setting an appro-
priate approach to define new constraints on quantum
Markov processes. Indeed, intense research has been
undertaken in this direction since then [13–21]. Natu-
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rally, the development of further constraints in terms of
information inequalities imposed by quantum Marko-
vian processes is of great interest in information theory,
and it is the main problem addressed in this paper.

Here, we prove the quantum Markov monogamy
inequality (QMMI) constraining any four-time-steps
Markov process. The QMMI is the quantum coun-
terpart of the classical Markov monogamy inequality
(CMMI) [11], and also is the main result of this study.
The QMMIs valid for six- and eight-time-steps Markov
processes are also provided. This leads to a conjecture
on the Markov monogamy inequalities for arbitrarily
long quantum Markov processes. Furthermore, the re-
sults presented here also further enforce the connection
between classical and quantum conditions on Marko-
vianity. Similarly to the case of classical stochastic pro-
cesses studied in [11], we apply the information inequal-
ities to the problem of witnessing non-Markovianity in
a quantum process. By considering a concrete exam-
ple, we show that there are quantum non-Markov pro-
cesses that can be witnessed by a QMMI, while not vio-
lating any quantum data processing inequalities (QDPI)
from [12]. Finally, we construct a larger set of QMMIs
that account for multitime quantum correlations using
the process tensor (or process matrix) formalism [22–26].

The paper is organized as follows. In Sec. II we review
the classical data processing theorems, and provide the
generalized version of the classical Markov monogamy
inequalities. In Sec. III we first review the quantum data
processing inequality from [12]. Then we present the
main result of this paper, the Markov monogamy in-
equality of a four-time-step quantum Markov process.
Furthermore, we provide the conjecture on the gen-
eral form of quantum Markov monogamy inequalities.
Sec. V deals with the extension of the quantum data pro-
cessing theorems, in particular the Markov monogamy
inequalities, to the process tensor formalism. Finally, in
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Sec. VI we make our final conclusions and discuss some
open problems.

II. CLASSICAL MARKOV PROCESSES AND
INFORMATION INEQUALITIES

Classically, any discrete stochastic process
{X1, . . . , Xn} is described by a probability distribu-
tion

p(x1, . . . , xn). (1)

A particularly important class of processes are those
called Markovian, for which the probability that the ran-
dom variable Xi takes a value xi at time ti is uniquely de-
termined, and not affected by the possible values of X at
previous times to ti−1. Mathematically, any Markovian
process must have conditional probability distributions
satisfying

p(xi|xi−1, . . . , x1) = p(xi|xi−1) ∀i. (2)

In practice, however, it is often the case that instead
of analysing the probability distribution, one is rather
interested in investigating its Shannon entropy, a funda-
mental building block in information theory [2], defined
for a random variable (or set of variables) X as

H(X) := −∑
x

p(x) log p(x), (3)

where the sum is taken over the support of X. Entropi-
cally, the Markov condition (2) is expressed as

H(Xi|Xi−1, . . . , X1) = H(Xi|Xi−1) ∀i, (4)

which in turn implies the paradigmatic data processing
inequalities

I(Xr : Xs) ≥ I(Xi : Xj) with i ≤ r < s ≤ j. (5)

Here, I(Xi : Xj) := H(Xi) + H(Xj)− H(Xi : Xj) is the
mutual information between variables Xi and Xj.

For the simplest Markov chain with n = 3, the only
entropic constraints implied by Markovianity are the
data processing inequalities given by [11]

I(X1 : X2) ≥ I(X1 : X3), I(X2 : X3) ≥ I(X1 : X3),

that is, we recover the usual data processing inequalities
that hold for a Markov chain.

For n ≥ 4, however, a new class of inequalities ap-
pears, generalizations of data processing called Markov
monogamy inequalities, that implies constraints on the
mutual information between different pairs of variables
along the Markov chain [11]. We present below a gen-
eralized version of the conjecture in [11], proven to hold
for particular cases of n.

Conjecture 1 (Classical Markov monogamy inequalities
(CMMI)). Consider the Markovian process Xn → · · · →
X1 → Y1 → · · · → Yn. The variables X1 and Y1 are to be in-
terpreted as input and output of a given channel, respectively.
The variables Xi and Yi, with i = 2, . . . , n, are interpreted as
pre-processed and post-processed variables, respectively. Then
for any bijective function f : {1, . . . , n} → {1, . . . , n}, it
holds that

n

∑
i=1

I(Xi : Yi) ≥
n

∑
i=1

I(Xi : Yf (i)), (6)

where I(X : Y) denotes the mutual information of random
variables X and Y.

The conjecture above has been checked for n up to 4,
that is, Markov chains with 8 random variables [27]. For
the case of n = 2, we have the Markov monogamy in-
equality

I(X1 : Y1) + I(X2 : Y2) ≥ I(X1 : Y2) + I(X2 : Y1), (7)

associated to the bijection f : {1, 2} → {1, 2} for which
f (1) = 2 and f (2) = 1. The remaining bijection
g : {1, 2} → {1, 2} for which g(1) = 1 and g(2) = 2
leads to a trivial inequality, nonetheless, a valid one.
Note that, independently of the number of random vari-
ables of a stochastic process, the CDPIs and CMMI are
only necessary conditions for Markovianity.

It is worth noting that the result presented in Eq. (7)
appeared in Ref. [28], while in Ref. [11], we found an
extended class of such inequalities. There we further
showed that while all of the above inequalities are de-
rived for Markov processes, they also hold for divisible
processes that are non-Markovian. We also showed that
there are non-Markovian processes that will also satisfy
all of the above inequalities, i.e., the inequalities are nec-
essary for any Markov process but not sufficient. Be-
low we will generalize the Markov monogamy inequal-
ities to the quantum case and for that we will employ
the coherent information [12]. Differently from the clas-
sical case, however, our approach will not rely on the
Shannon cone construction, mainly because of the non-
negativity of the coherent information and the fact that
the classical proof stands on the marginalization of a
joint probability distribution which is not available on
the quantum scenario.

III. QUANTUM MARKOV PROCESSES AND
INFORMATION INEQUALITIES

Central to our purpose are the quantum Markov pro-
cesses.

Definition 1. A sequence of quantum states {ρ1, · · · , ρn}
is a quantum Markov process with respect to the sequence of
quantum channels {Λ1, · · · , Λn−1} if the conditions ρi+1 =
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Λi(ρi), with i = 1, · · · , n− 1 are satisfied. This situation is
denoted by

ρ1
Λ1−→ ρ2

Λ2−→ ρ3
Λ3−→ . . .

Λn−1−→ ρn. (8)

A classical channel p(Y|X) transforms the classi-
cal state of the system X into the state of the joint
input-output system XY, that is, we have p(X, Y) =
p(Y|X)p(X). On the other hand, quantum processes
are defined in a very different way. That is, a quan-
tum channel Λ maps the state ρ1 of the input quantum
quantum system into the state ρ2 = Λ(ρ1) of the out-
put quantum system. Therefore, it is not entirely trivial
how one should characterize the temporal correlation in
a quantum process. The development of the quantum
data processing inequality provided great understand-
ing towards this direction. Importantly, it shows we
cannot directly compare classical and quantum informa-
tion inequalities on equal footing. In particular, as we
have stressed above, the derivation of the inequalities
follow a complete different route. The classical case be-
ing based on the existence of a joint probability distribu-
tion followed a marginalization executed via a Fourier-
Motzkin elimination. In turn, the quantum case com-
bines states and channels, and uses their properties to
arrive at the non-trivial quantum analogue of the infor-
mation inequalities.

With the goal of deriving conditions on quantum
Markov process we define the coherent information [12].
Here, we use Latin letters to denote both a quantum sys-
tem and its associated Hilbert space. The coherent in-
formation of the state ρ of a quantum system S1 with
respect to a quantum channel Λ : L(S1) → L(S2) is de-
fined by

Ic(ρ; Λ) := H(Λ(ρ))− H((idR ⊗Λ)(ψ)), (9)

where ψ ∈ L(R⊗ S1) is a any purification of ρ, and H(ρ)
stands for the von Neumann entropy of the quantum
state, defined as

H(ρ) := −Tr [ρ log ρ] , (10)

that reduces to the usual Shannon entropy (3) if we em-
ploy the spectral decomposition ρ = ∑x λx |x〉 〈x| of the
density operator. We will often denote the von Neu-
mann entropy H(ρ) by H(S)ρ, or even by H(S) when
it is implicitly known that the quantum system S is in
the state ρ. Generally, 1 denotes the identity operator,
and id denotes the identity channel.

A. Quantum data processing inequalities

Importantly, the coherent information replaces the
mutual information in the transition from CDPIs to
their quantum counterparts QDPIs [12]. For any quan-
tum state ρ of S1, and for any quantum channels
Λ1 : L(S1)→ L(S2) and Λ2 : L(S2)→ L(S3), it holds that

Ic(ρ1; Λ1) ≥ Ic(ρ1; Λ2 ◦Λ1). (11)

For completeness, we refer the reader to our Appendix 1
for the proof originally presented in [12]. Similarly to
the interpretation in the classical case, the quantum data
processing theorem states that coherent information is
monotonically decreasing under the action of noisy op-
erations.

Equivalently, instead of coherent information, it is
also possible to define the quantum data processing the-
orem in terms of the quantum mutual information. For
that, let I(A : B)ρ := H(A) + H(B) − H(A,B) denotes
the mutual information of a bipartite system A ⊗ B in
the state ρ, with ρA = TrB[ρ] and ρB = TrA[ρ]. Then, for
any quantum state ρ of the bipartite system A⊗ B and
for any quantum channel Λ : L(B)→ L(C), it holds that

I(A : B)ρ ≥ I(A : C)(idA⊗Λ)(ρ). (12)

So quantum data processing theorem equivalently
states that correlations between a bipartite quantum sys-
tem cannot increase under the action of a local noisy op-
eration. See Ref. [13] for a presentation and application
of the QDPI taking this form. For the sake of complete-
ness, we present a proof of the equivalence of this two
forms of the quantum data processing theorem in Ap-
pendix 1.

Now we move to derive the quantum version of
the four-time-steps monogamy inequality presented in
Eq. (7).

B. Quantum Markov monogamy inequality

In the following we prove a quantum version of the
Markov monogamy inequality (7). This is a crucial step
towards extending Conjecture 1, which is valid for clas-
sical variables, also to quantum Markov processes. As
such we consider the four-time-step quantum processes
of the form shown in Eq. (8).

Theorem 1 (Quantum Markov monogamy inequality
(QMMI)). For any quantum state ρ1 of a system S1, and for
any quantum channels Λ1 : L(S1) → L(S2), Λ2 : L(S2) →
L(S3) and Λ3 : L(S3)→ L(S4), it holds that

Ic(ρ1, Λ3 ◦Λ2 ◦Λ1) + Ic(Λ1(ρ1), Λ2)

≥ Ic(ρ1, Λ2 ◦Λ1) + Ic(Λ1(ρ1), Λ3 ◦Λ2).
(13)

Proof. Define a dilation of each quantum channel Λi —
with i = 1, 2, 3— by setting a unitary operator Ui : Si ⊗
Fi → Si+1 ⊗ Ei and a pure quantum state ϕi for which

Λi(ρ) = TrEi

[
Ui(ρ⊗ ϕi)U†

i

]
, (14)

for any operator ρ1 in L(Si). Fig. 1 provides a represen-
tation of the process for a purification ψ in L(R⊗ S1) of
the initial quantum state ρ1.
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FIG. 1. Diagram representing the purified process ρ1
Λ1−→

ρ2
Λ2−→ ρ3

Λ3−→ ρ4. The quantum state ψ is a purification of
ρ1. Thus, ρ1 is obtained from ψ by tracing out the R system.
The unitary operator Ui and the pure state ϕi provides a di-
lation of the quantum channel Λi, with i = 1, 2, 3, 4. The re-
maining quantum states ρ2, ρ3, ρ4 are obtained by acting the
unitary operations and tracing out the appropriate reference-
environment systems.

Now, note the definition of the coherent information
terms involved in (13), and given by

Ic(ρ1; Λ3 ◦Λ2 ◦Λ1) = H(S4)− H(R,S4); (15)
Ic(ρ2; Λ2) = H(S3)− H(R,E1,S3); (16)

Ic(ρ1; Λ2 ◦Λ1) = H(S3)− H(R,S3); (17)
Ic(ρ2; Λ3 ◦Λ2) = H(S4)− H(R,E1,S4), (18)

with ρ2 = Λ1(ρ1).
Then, consider the following equality of the entropy

terms due to the purity of the correspondent quantum
systems

H(R, S4) = H(E1,E2,E3); (19)
H(R,E1,S3) = H(E2); (20)
H(R,S3) = H(E1,E2); (21)

H(R,E1,S4) = H(E2,E3). (22)

Summing Eqs. (19,20,21,22), using the strong subad-
ditivity of quantum entropy [29],

H(E1,E2,E3) + H(E2) ≤ H(E1,E2) + H(E2,E3), (23)

and solving for (15,16,17,18), we have the desired in-
equality.

As proven in Appendix 3, the quantum Markov
monogamy inequality (QMMI) can equivalently be cast
as the monotonicity of the quantum conditional mutual
information. This is formalized in the theorem below.

Theorem 2 (Monotonicity of the quantum conditional
mutual information [30]). For any tripartite quantum state
ρ in L(A⊗B⊗C) and for any quantum channel Λ : L(B)→
L(D), it holds that

I(A : B|C)ρ ≥ I(A : D|C)(idA⊗Λ⊗idC)(ρ)
. (24)

We remark that our inequalities are completely gen-
eral and hold for arbitrary quantum processes (noisy or
noiseless). In particular, notice that a necessary con-
dition for non-Markovianity is the that the process is
non-unitary (thus, coupled to an enviroment). In this
sense, the noiseless case is not interesting from a non-
Markovianity point of view.

In any case, classical data processing inequalities are
directly associated with the effect of noise on the pro-
cesses. For instance, the classical data processing in-
equality I(X1 : X2) ≥ I(X1 : X3) is satisfied with equal-
ity whenever the postprocessing stage X2 → X3 is de-
fined by a deterministic bijective transformation.

A similar reasoning holds for quantum information
inequalities. That is, the quantum data processing in-
equality Ic(ρ; Λ1) ≥ Ic(ρ; Λ2 ◦ Λ1) is satisfied with in-
equality whenever the channels Λ1, Λ2 are determinis-
tic quantum unitary operations. Moreover, the quan-
tum Markov monogamy inequality in Eq. (13) is also
satisfied with equality whenever the quantum chan-
nels Λ1, Λ2, Λ3 are deterministic unitary quantum op-
erations. Once again, this enforces non-trivial links
between classical and quantum information processing
conditions.

C. Violation of the quantum Markov monogamy
inequality

Our aim here is to show that the QMMI in Eq. (13)
can be violated by non-Markovian processes even in sit-
uations where all QDPI (11) continue to hold. That is,
we will prove that the QMMI can witness quantum non-
Markovianity beyond what is possible relying solely on
quantum data processing inequalities.

For a four-time-step quantum Markov process of the
form of Eq. (8) the following quantities are positive
semi-definite,

DP1 :=Ic(ρ1; Λ1)− Ic(ρ1; Λ2 ◦Λ1); (25)
DP2 :=Ic(ρ1; Λ1)− Ic(ρ1; Λ3 ◦Λ2 ◦Λ1); (26)
DP3 :=Ic(ρ1; Λ2 ◦Λ1)− Ic(ρ1; Λ3 ◦Λ2 ◦Λ1); (27)
DP4 :=Ic(ρ2; Λ2)− Ic(ρ2; Λ3 ◦Λ2); (28)
M4 :=Ic(ρ1; Λ3 ◦Λ2 ◦Λ1) + Ic(ρ2; Λ2)

− Ic(ρ1; Λ2 ◦Λ1)− Ic(ρ2; Λ3 ◦Λ2), (29)
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FIG. 2. Markov monogamy violation. Markov monogamy is
the only inequality being violated in the region 0 ≤ λ ≤ 0.15.
Nevertheless, the converse situation is also possible. In the
region 0.85 ≤ λ ≤ 1, the monogamy inequality is not vio-
lated, while two data processing inequalities witness the non-
Markovian behavior of the evolution.

the first four corresponding to QDPIs of the same form
as in Eq. (11) and the last one corresponding QMMI in
Eq. (13).

We do not consider the quantum version of all pos-
sible CDPIs for a four-time-step process. For instance,
the quantum version of inequalities of the type I(X2 :
X3) ≥ I(X1 : X3) have not been considered. The rea-
son is twofold. Firstly, the toolkit related to the proof of
the QDPI —presented in Appendix 1— do not directly
applies to this case. Thus we leave it for future stud-
ies. Secondly, considering this type of QDPIs do not add
any new information to our example. That is because
inequalities of this form are not violated for the non-
Markovian process examined here. Appendix 2 pro-
vides a discussion on this two claims.

To generate non-Markovian correlations (one that
cannot thus be represented by the process represented
in Fig. 1), we exploit an initially correlated tripartite sys-
tem R⊗ S⊗ E, with each of its parts consisting of qubit
systems, and in the the pure state

|ψ〉 = 1√
3
(|1, 0, 0〉+ |0, 1, 0〉+ |0, 0, 1〉). (30)

The collection {|0〉 , |1〉} corresponds to the computa-
tional basis of the local systems.

On the system-environment part of this initial state,
we apply in sequence the unitary operation Uλ, with 0 ≤
λ ≤ 1, that in the computational basis is given by

Uλ =


0 −
√

1− λ
√

λ 0
1 0 0 0
0 0 0 1
0

√
λ

√
1− λ 0

 . (31)

Thus, we have the well-defined sequence of states of the

tripartite system R⊗ S⊗ E given by

γ1 = |ψ〉 〈ψ| ; (32)

γ2 = (1R ⊗Uλ)γ1(1R ⊗Uλ)
†; (33)

γ3 = (1R ⊗Uλ)γ2(1R ⊗Uλ)
†; (34)

γ4 = (1R ⊗Uλ)γ3(1R ⊗Uλ)
†. (35)

From the above sequence of states, diagrammatically
represented in Fig. 3, we can compute the QDPIs (de-
noted as DPi with i = 1, · · · , 4) and QMMI (denoted as
M4) witnessing the non-Markovianity of the local evo-
lution of the system S.

We now follow Equations (15-18), along with Equa-
tions (25-29), to compute the DPIs and QMMI. For the
inequality in (25), we need to compute entropies of
states TrR,E[γi] and TrE[γi] for i = 2, 3. The entropies
of the first terms, in Equations (15-18), are simply the
entropies of states TrR,E[γ3] and TrR,E[γ4]. The entropies
of the second terms in Equations (15,17) are with respect
to TrR[γ4] and TrR[γ3], respectively. The fact that R is
not a purification of the initial state of S, will play a cru-
cial role in violating the inequalities. In other words,
the initial correlations with E are a non-Markovian fea-
ture. On the other hand, the entropies of the second
terms in Equations (16,18) are with respect to the total
states γ3 and γ4, respectively. This is because, unlike
in a Markov process, E1 is the same as E, i.e., the to-
tal environment. This leads coherent interference of SE
correlations throughout the process, which too will play
a central role in violating the inequalities below. This
leads to

DP1 :=[H(S)− H(R, S)]γ2 − [H(S)− H(R,S)]γ3 ; (36)
DP2 :=[H(S)− H(R, S)]γ2 − [H(S)− H(R,S)]γ4 ; (37)
DP3 :=[H(S)− H(R, S)]γ3 − [H(S)− H(R,S)]γ4 ; (38)
DP4 :=[H(S)− H(R,S,E)]γ3

− [H(S)− H(R, S,E)]γ4 ; (39)
M4 :=[H(R,S,E)− H(R,S)]γ4

− [H(R,S)− H(R,S,E)]γ3 . (40)

The quantities above are presented in Fig. 2 for
the process represented by Equations (32,33,34,35).
We show there are processes for which the Markov
monogamy inequality is violated, and thus witnessing
non-Markovianity, while none of the QDPIs being effi-
cient in this task. We notice that the converse behavior
is also possible.

D. A conjecture on quantum Markov processes

At this stage we are ready to extend Conjecture 1 to
the quantum realm. We take the following notation to
simplify its statement. For any quantum Markov pro-
cess

ρ1
Λ1−→ ρ2

Λ2−→ · · ·
Λn−1−→ ρn
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FIG. 3. Non-Markov process. The non-Markovian behavior
considered here consists of initial system-environment correla-
tions, and environmental quantum memory through the uni-
tary system-environment evolution.

we define Ic(ρr : ρs) = Ic(ρs : ρr), with

Ic(ρr : ρs) := Ic(ρr;©s−1
i=r Λi), (41)

for r < s, where©s−1
i=r Λi := Λs−1 ◦ · · · ◦Λr.

Conjecture 2 (Quantum Markov monogamy inequali-
ties). For any quantum Markov process

ρn → · · · → ρ1 → σ1 → · · · → σn,

and for any bijective function f : {1, · · · , n} → {1, · · · , n},
it holds that

n

∑
i=1

Ic(ρi : σi) ≥
n

∑
i=1

Ic(ρi : σf (i)). (42)

In Subsection III B we have shown the case n = 2 to be
true. In Appendices 4 and 5 we show that the validity
of Conjecture 2 holds for n = 3, 4 as well.

IV. COMPARISON TO PREVIOUS RESULTS

The witnessing of classical and quantum non-
Markovianity is a key application of the classical
and quantum information inequalities presented in the
manuscript. Therefore, this perspective further enforces
the relevance and applicability of the novel quantum
Markov monogamy inequalities developed. In fact,
there are many indicators for non-Markovian quantum
phenomenon as discussed in Refs. [18, 26, 31]. How-
ever, all of these indicators, in one manner or another,
look for departures from the divisibility of the process,
see Ref. [26] for details. This includes the indicators in
Refs. [18, 32], as well as the quantum data processing
inequalities (QDPIs).

However, for a concrete comparison we note that it is
well-known that the non-Markovian indicator by Breuer
et al. [32] is strictly weaker than that due to Rivas et
al. [18]. However, our QDPIs already include the non-
Markovian indicator of Rivas et al. To see this, we can
rewrite Eq. (11) as

Ic(ρ; Λt) ≥ Ic(ρ; Λt+dt). (43)

This inequality may be violated for some non-
Markovian processes, i.e.,

Ic(ρ; Λt+dt)− Ic(ρ; Λt) > 0
⇒ non-Markovianity. (44)

Dividing the above equation by dt tells us that when the
derivative of the coherent information ∂t Ic(ρ; Λt) is pos-
itive we have non-Markovianity. Thus, we can define a
measure for non-Markovianity as

Nc := max
ρ

∫ T

0
nc(t) dt (45)

where the maximization is over all initial input states ρ,
and

nc(t) = max{0, ∂t Ic(ρ; Λt)}. (46)

This is precisely the definition of non-Markovianity by
Rivas et al. As there may be subtle differences in the
choice of metric, a detailed comparison requires a care-
ful study, which is beyond the scope of the present pa-
per. See Ref. [33] for a detailed comparison between the
works of Bruer et al. and Rivas et al.

The above results are obtained from only one of our
QDPIs. Thus, the QMMIs may be able to see non-
Markovianity where all indicators that are reliant on di-
visibility are blind.

We note that a similar reasoning can be applied to
the QMMI in order to define a new measure of non-
Markovianity. Similarly, our QMMI implies

[Ic(ρ; Λt+dt ◦Λs)− Ic(ρ; Λt ◦Λs)]

− [Ic(Λs(ρ); Λt+dt)− Ic(Λs(ρ); Λt)] > 0
⇒ non-Markovianity for t > s. (47)

Therefore, we can define the new measure for non-
Markovianity

Mc := max
ρ

∫
t>s

∫ T

0
mc(t)dsdt, (48)

with

mc(s, t)
:= max{0, ∂t[Ic(ρ; Λt ◦Λs)− Ic(Λs(ρ); Λt]}. (49)

The conjecture on QMMIs in Sec. III D suggests how
we can build novel non-Markovianity measures analo-
gously as above. In fact, there is a necessary and suffi-
cient condition on divisible processes [14].

The understanding on the limits on processing in-
formation in communication systems is of primal con-
cern in information theory. In this respect, data pro-
cessing inequalities have been shown to be of funda-
mental relevance in the development of main results
in classical information theory [28]. Precisely, the data
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processing inequality I(X1 : X4) ≤ I(X2 : X3) held
by four-time-step classical processes, is the mathemat-
ical result supporting the derivation of the converse
part of the channel-coding theorem: there is no reliable
asymptotic encoding-decoding scheme with communi-
cation rate larger than the channel capacity. Clearly, the
channel-coding theorem stems as a fundamental result
in information science, and therefore, makes sure the
relevance on the development of further information in-
equalities. In turn, the Markov monogamy inequalities
appears as constraints on information processing com-
plementary to data processing inequalities.

On the other hand, quantum processes differ funda-
mentally from their classical counterpart, and thus, de-
mand further understanding and analysis. In this sense,
the quantum data processing inequality is regarded as
a highly non-trivial result, and also as one of the pillars
in quantum information theory [34]. Therefore, it is not
clear beforehand that a given classical information in-
equality has a quantum counterpart. The same is true
for the Markov monogamy inequalities. The techniques
we had to employ to prove their quantum analogue are
completely different from what is used in the classical
case.

To see why this is the case, we notice that in the
classical case the proof of inequalities rely on the exis-
tence of a joint probability distribution p(x1, . . . , xn) that
marginalizes (via a quantifier elimination implemented
by the Fourier-Motzkin algorithm) to the pairwise dis-
tribution p(xi, xj) used in the definition of the mutual
information. In turn, in the quantum case, since we
are dealing with quantum states at different time steps,
there is a priori no joint description. Instead, we have to
rely on a ”mixed” description in terms of channels and
states, precisely the reason why we employ the coherent
information. Thus, even though our work is motivated
by the classical monogamy inequality, it is not a trivial
or natural extension of it and thus, develops a funda-
mental link between classical and quantum information
inequalities.

Furthermore, the quantum Markov monogamy in-
equalities display novel constraints on the processing
of quantum systems, being capable of witnessing non-
Markovianity in a regime where the paradigmatic data
processing inequalities (widely used in the literature)
would simply fail to do so.

Now, we consider multitime correlations indicators
based on the process tensor, which are able to also
see non-Markovian features in divisible processes [35].
In what follows, we show how our quantum Markov
monogamy inequalities (QMMIs) are written in terms of
multitime correlations and thus are stronger indicators
for quantum non-Markovian phenomena than the ones
due to Breuer et al. [32] and Rivas et al. [18].

V. QUANTUM STOCHASTIC PROCESSES

The CDPI and CMMI stem from a well-defined notion
of stochastic process, namely Eq. (1). The quantum in-
equalities, in contrast, are derived for family of quantum
channels. This raises the question if there is a quantum
equivalent of Eq. (1)? If so, can we derive a larger family
of inequalities than the ones given in the last section?

In this Section, we will work with the process tensor
framework, which is a natural generalisation of Eq. (1)
for quantum processes. With this we will derive an-
other family of QDPIs and QMMIs. Importantly, the
set of inequalities in the previous section will be satis-
fied by divisible processes [18], even when the process
is non-Markovian. This is because they only account for
two-time correlations, and neglect higher-order correla-
tions in the process [35]. In contrast, the forthcoming
family of inequalities account for multitime correlations
and will be capable of identifying the non-Markovian
features in such processes. We begin by first reviewing
the fundamental elements of this framework.

A. Process Tensor

We now discuss the structure of multitime correla-
tions in the quantum case by considering an initial
reference-system-environment state ψ. Before any dy-
namical evolution, an intervention with a control opera-
tion A1 can be made on the system alone: A1 : L(S1) →
L(S′1). Next, as before, the system-environment state
undergoes an evolution U1 : L(S′1 ⊗ F1) → L(S2 ⊗ E2)
and an intervention A2 is then made on the system S
alone. The process repeats and the total state once again
evolves due to U2, followed by a third intervention A3
on S alone, and so on up to a final intervention A4 is
performed following U3, see Fig. 4(a). Here, Si is iso-
morphic to S′i for any interventional time-step i = 1, 2, 3.

The interventions {Aj} are any physically imple-
mentable operation, which can be thought of a gener-
alised measurement with possible corresponding out-
comes {xj}. Mathematically, these are known as instru-
ments [36] and represented by a collection of completely
positive maps J := {Axj} such that ∑xj

Axj is trace pre-
serving.

The above machinery straightforwardly allows for the
calculation of the probability to observe a sequence of
quantum events (xk, . . . x1), corresponding to a choice
of instruments {Jk, . . . ,J1}, as

p(xk, . . . , x1 | Jk, . . . ,J1) =

tr[Axk Uk−1· · ·U1Ax1(ψ)].
(50)

This is depicted in Fig. 4(a). Here, the LHS is akin to a
classical joint probability distribution. We can identify
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FIG. 4. Process Tensor. The top panel shows a quantum cir-
cuit that accounts for multitime correlations for observables
A1, A2, A3, i.e. Eq. (50). The object in the bottom panel is called
process tensor, defined in Eq. (53). It is drawn in isolation in
the bottom panel, uniquely characterised the process.

FIG. 5. Markov process tensor. The top panel shows a quan-
tum circuit for a Markovian process, in presence of interven-
tions. This clearly reduces to what we posit a Markov process
in the previous section. The bottom panel shows a diagramatic
representation for Markov process tensors.

the quantum stochastic process by rewriting the RHS as

tr[Axk Uk−1· · ·U1Ax1(ψ)] = tr[Υk:1AT
k:1] (51)

with Ak:1 :=Axk⊗· · · ⊗Ax1 (52)
and Υk:1 := trB[Uk ? . . . U1 ? ψ] (53)

where T denotes transposition and ? denotes the link
product, defined as a matrix product on the space E
and a tensor product on space S [37]. Here, U and A
are the Choi operators of the corresponding transforma-
tions. The important feature here is the clear separation
of the interventions Ak:1 from the influences due to the
bath, which are packaged in the process tensor Υk:1 [22–
24].

The process tensor is depicted inside the red-dotted
line in Fig. 4(b), and usually denoted by its Choi state
Υk:1 [26]. It is the quantum generalisation of the joint
classical probability distribution and unambiguously
represents a quantum stochastic process [25], and re-
duces to the classical case in the right limits [38, 39]. It
contains all accessible multitime correlations [40–42].

An important result that stems from the process ten-
sor formalism is a necessary and sufficient condition for
quantum Markov processes [23, 24]. Namely, Marko-
vian processes are those satisfying the following prop-

erty: any k-time process tensor factorises as

Υk:1 = Lk−1 ⊗ · · · ⊗ L2 ⊗ L1 ⊗ ρ, (54)

where Lj are the Choi operators of the CPTP maps Λj as
before. See Fig. 5 for a graphical depiction.

It is possible to show that when a quantum process
is Markovian, and the interventions are rank-one pro-
jective measurements, then the resulting distribution in
Eq. (50) will be a Markovian distribution [43]. We read-
ily get an infinite family of CDPI and CMMI. We, of
course, also get the QDPIs and QMMI from the last sec-
tion.

The above Markov condition means that we can de-
duce a process to be non-Markovian by looking for cor-
relations. In the last section, the QDPIs and QMMI are
constructed by considering two-time correlations; but in
general, we can certainly look at higher-order correla-
tions. With this in mind, we aim to find a family of more
general inequalities by exploiting the structure of quan-
tum stochastic processes. In particular, we will show
that the inequalities of the last section cannot differenti-
ate divisible processes from Markovian ones. The forth-
coming inequalities will not have this limitation.

B. Choi state DPIs

We first consider a family of QDPIs for a four
step quantum process as before. However, we
now label the space of the process tensor as
(R0,S1,R1;S2,R2;S3,R3;S4), see Fig. 4 for an illus-
tration. The advantage we now have is that we can
intervene in a physically allowed form. For instance, at
a given time we may throw away the system, say S1,
and replace it with a new system with its own reference
R1. This allows us to construct DPIs on the future
dynamics without worrying about the output states of
the past dynamics.

This is clearly desirable in several situations. For in-
stance, consider a process where Λ1 is a fully depolaris-
ing process, but the subsequent process is rich in struc-
ture. In such cases, why should we limit ourselves to
only the output of Λ1? In such instances we would sim-
ply swap out the output of Λ1 with a more coherent
state.

We now construct a family of QDPIs based on the
Choi states of a Markov process. To do so, first note that
the mutual information of a bipartite state ρ can be ex-
pressed as a quantum relative entropy

I(A : B)ρAB = S[ρAB‖ρA ⊗ ρB]

= Tr[ρAB{log(ρAB)− log(ρA ⊗ ρB)}].
(55)

Next, note that quantum relative entropy is contractive
under the action of CPTP maps. We can thus derive the
following QDPIs when the process is Markov:

I(R1 : S2) ≥ I(R1 : S3) ≥ I(R1 : S4) (56)
I(R2 : S3) ≥ I(R2 : S4). (57)
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Here, we have allowed for interventions Ak at the inter-
mediate times.

The mutual information above is defined on any input
state. We now restrict ourselves to inserting one half of
a maximally entangled state in the first port and com-
puting the quantum mutual information between the
other half and what comes out at the final port. In other
words, we are restricting ourselves to the Choi states of
the process. Notice that this reduces to the usual classi-
cal case when we dephase in a local bases and the inter-
mediate operators Ak become the classical identity chan-
nels.

This allows us to derive another set of QDPIs by using
the fact that the quantum relative entropy is contractive
under CP maps [44]. Consider the process from R1 to S3
and compare that to the process from R2 to S3. The Choi
state for the former is Λ2 ◦A2 ◦Λ1(Ψ+). Graphically we
can represent this as top panel in Fig. 6, which we can
transform into the bottom panel by simply sliding the
boxes. Let us compare that to the process in the third
panel, which indeed the Choi state for the process from
R2 to S3. Since the two processes differ by actions of CP
maps on the the bottom leg we have

I(R2 : S3) ≥ I(R1 : S3). (58)

We have given a graphical proof in Fig. 6, and also see
App. 6. By same argument we can also derive

I(R3 : S4) ≥ I(R2 : S4) ≥ I(R1 : S4). (59)

By choosing the A’s to be rank-one projections we re-
cover classical processes. For all such processes we can
derive the Markov monogamy condition M4.

Note that for the quantum case we have twice the
number of legs than for classical case. In the classi-
cal case we just have {1, 2, 3, 4}, which means that we
have total of six mutual informations and fifteen pair-
wise relations between these mutual information. Most
of these are not independent, thus we wind up with
four QDPIs and QMMI. In the quantum case we have
{S1,R1;S2,R2;S3,R3;S4}. Therefore we have 21 mu-
tual informations. Of these six are vanishing because
of causality, i.e., I(Ry : Sx) = 0 for all y ≥ x [26].
For a Markov process we can require the R spaces to
be independent, leading to three more vanishing con-
straints, I(Rx : Ry) = 0. This requirement also means
I(Sx : Sy) = 0, that means six more vanishing mutual
information. We are then left with exactly the same six
non-trivial mutual informations as in the classical case.

C. Multitime quantum Markov monogamy inequalities

Here, we will present several families of quantum
Markov monogamy inequalities. Their importance is
highlighted by the fact that the QDPIs and the QMMI
presented in the last section would all be satisfied for
divisible non-Markovian processes. Here, we allow for

FIG. 6. Choi state data processing inequalities. We can derive
an anaologue of DPIs from the previous section by using con-
tractivity of quantum relative entropy and some identities of
actions of CPTP maps on the maximally entangled state Ψ+.
For instance, the quantum state represented in the top panel is
equal to the state in the botton panel (see App. 6).

interventions onto the process, which enables the detec-
tion temporal correlations that lie in divisible processes,
see Ref. [35] for explicit examples. To construct the fam-
ily of QMMI we will follow the circuits in Fig. 7.

The first family will be defined in terms of the follow-
ing definition of coherent information

Iq1(j; k) := H(Sj,Rj)− H(Sj,Rj,Sk). (60)

Again, the space relevant for entropies in the last equa-
tion are labelled in Fig. 7.

Theorem 3 (Multitime quantum Markov monogamy in
equality (MQMMI-1)). For any Markov process tensor Υ4:1,
it holds that

Iq1(1; 4) + Iq1(2; 3) ≥ Iq1(1; 3) + Iq1(2; 4), (61)

with the intervention Aj in Iq1(j; k) defined by the purifica-
tion of the system Sj.

Proof. The above theorem considers a setup that allows
for interventions Aj along the way. For simplicity, let us
first consider the interventions to be identity operations.

For Markov process we have H(Sj,Rj) = H(Sj) +
H(Rj) and H(Sj,Rj,Sk) = H(Sj) + H(Rj,Sk). Next, we
define a dilation of each quantum channel Λi as done
in Eq. (14). Now, note the definition of Iq in in Eq. (60)
becomes

Iq1(1; 4) = H(R1)− H(E1,E2,E3); (62)

Iq1(2; 3) = H(R2)− H(E2); (63)

Iq1(1; 3) = H(R1)− H(E1,E2); (64)

Iq1(2; 4) = H(R2)− H(E2,E3). (65)
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FIG. 7. Quantum Markov monogamy information with
memory. The variations in coherent information given in
Eqs. (60,70,71) account for the memory due to the past. This
figure displays how the spaces that one needs to account for.

The rest of the proof then simply follows as before as
long as the entropies in the second terms in each of
the above equations comes from an environment state
ρE1,E2,E3 . To ensure this we also require that ψi must be
purification of ρi, for i ∈ {1, 2}.

Now, let us consider the case where interventions Aj
are arbitrary (CPTP maps). Let αj be the Hilbert space
associated with the environmental system related to the
isometric extension of Aj. Then the second terms in the
last set of equations becomes

H(E1, α2,E2, α3,E3, α4)→ H(Ẽ1, Ẽ2, Ẽ3); (66)

H(E2, α3)→ H(Ẽ2); (67)

H(E1, α2,E2, α3)→ H(Ẽ1, Ẽ2); (68)

H(E2, α3,E3, α4)→ H(Ẽ2, Ẽ3). (69)

Here, we have redefine Ẽ1 := E1 ⊗ α2, Ẽ2 := E2 ⊗ α3,
and Ẽ3 := E3 ⊗ α4. Once we absorbed α1 into the initial
state, the rest of the proof then simply follows as before,
using the strong subadditivity of quantum entropy.

One might now wonder, why we had to redefine co-
herent information in Eq. (60) to accommodate interven-

tions. The reason is not new. If one wants to opera-
tionally witness QMMI given in Eq. (13), then the state
of the system must be swapped with an identical copy
whose purification remains in our possession. We can
of course do the same here to redefine coherent infor-
mation as

Iq2(j; k) := H(Sk)− H(Sj,Rj,Sk). (70)

Once again, ψi must be purification of ρi, for i ∈ {1, 2}.
The big difference is that we now also account for the en-
tropy of space Sj, which, for non-Markovian processes,
via initial correlations plays a non-trivial role. In this
sense, the last equation accounts for not just tripartite
correlations [20, 45], as before we only dealt with bipar-
tite correlations. Yet, another possibility is the following

Iq3(j; k) := H(Sj,Sk)− H(Sj,Rj,Sk). (71)

Here, too we must have that ψi must be purification of
ρi, for i ∈ {1, 2}. And here, again, we account for tri-
partite correlations thus this a more powerful version of
MQMMI. The proof for the MQMMI for the above two
equations follows the same path as the last two proofs
and we omit the details. Note that we could have kept
R0 in the above definition, and there are many other al-
ternatives.

A couple of remarks are in order at this stage. Firstly,
all of these MQMMI yield the same value for a Markov
processes, including the QMMI inequality from the pre-
vious section. All three version of the MQMMI above
require that a state fed into the process at an intermedi-
ate stage must be a purification of the previous output
state. This is required so that the strong-subaditivity in-
equalities can be applied. While this is the same require-
ment as the QMMI inequality in the previous section,
the last three version should be able to account for non-
Markovianity even in divisible processes [35]. This is
because, they are designed to account for multitime cor-
relations.

We can just as well construct multitime QDPIs with
the three definitions of coherent information above.
In fact, one can also use the above definitions in the
classical case. The key point is that these construc-
tions account for multitime correlations by allowing for
multitime entropies. In contrast to the classical case,
multitime entropies will be stronger indicators of non-
Markovianity when quantum entanglement in time [46–
48] is present in the process, which may serve as an im-
portant diagnostic tool.

D. Violation of the Multitime Quantum Markov
monogamy inequalities

Now we consider the interventional approach present
in the MQMMIs in order to witness the non-Markovian
beheviour of the process represented in Fig. 3.
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FIG. 8. Violation of the MQMMIs. Multitime quantum
Markov monogamy with respect to Iq1 is not violated only for
the region 0.30 ≤ λ ≤ 0.55. The MQMMIs with respect to Iq2

and Iq3 are violated for any value of λ, thus perfectly witness-
ing the non-Markovianity of the process considered.

Allowing for interventions, the non-Markovian pro-
cess represented in Fig. 3 is then described by the pro-
cess tensor represented in Fig. 4. Furthermore, we set
here a process tensor according to the bottom panel of
Fig. 4 by defining the initial state ψ as in Eq. (30) and
joint system-environment operations Ui(•) = Uλ(•)U†

λ,
for i = 1, 2, 3, with Uλ defined in Eq. (31).

The MQMMIs defined with respect to the quantities
in Equations (60,70,71) lead to the definition of the inter-
ventional witnesses of non-Markovianity:

M4qi := Iqi (1; 4) + Iqi (2; 3)− Iqi (1; 3)− Iqi (2; 4), (72)

with i = 1, 2, 3. The quantities defined above are posi-
tive semi-definite for any Markov process tensor, inde-
pendently of the interventional scheme adopted. Thus,
finding a negative value for any M4qi (i=1,2,3) implies
the process is non-Markovian. In Fig. 8 we present the
plot for the witnesses in Eq. (72) for the process tensor
mentioned above.

VI. CONCLUSION

Firstly, using the approach introduced in [12] we have
extended the conjecture on classical Markov monogamy
inequalities to the quantum case. We also proved that
the Markov monogamy inequalities may be violated
by a non-Markovian quantum process satisfying all the
quantum data processing inequalities. This is done by
considering concrete examples.

Secondly, we have also considered how to apply the
novel quantum Markov monogamy inequalities to the
process tensor formalism, which accounts for multitime
quantum correlations. This provides an interesting in-
terventional approach to quantum data processing, and
thus adding extra relevance to the results.

The resources involved within witnessing non-
Markovianity with QMMIs and MQMMIs are not
equivalent. Generally, characterizing non-Markov phe-
nomena with QMMIs involves assessing reference-
environment systems. Distinctly, the MQMMIs do not
requires this strong requirement, and only depend upon
the system’s properties. Nevertheless, it requires feed-
ing intermediate steps of the process with the purifica-
tion of the previous state of the system. Thus, we claim
it is not fair to compare the results relying this two ap-
proaches on an equal footing.

Quantum data processing theorems have been widely
studied in the theory of quantum information. In partic-
ular, the QDPI in Eq. (11) has been shown to have a rel-
evant interpretation: the local evolution of a quantum
system can be cast as a completely positive and trace
preserving operation if and only if the QDPI is satis-
fied [13]. A stronger operation interpretation for these
new inequalities is still missing so far, and is left for fu-
ture studies.

Finally, it is worthy mentioning that the quantum in-
formation inequalities we discovered have the potential
to be related with novel recovery operations. This is
supported by the existence of an operational interpre-
tation of the quantum data processing inequality. In
the original formulation in Ref. [12], the authors used
the quantum data processing inequality to show that,
given an initial state ρ and a quantum channel Λ, there
is a recovery operation R such that R(Λ(ρ)) = ρ if and
only if Ic(ρ; id) = Ic(ρ; Λ). Therefore, this suggests
the novel QMMIs could be also related to limits on the
quantum processing of information. One possible di-
rection would be providing similar operational mean-
ing to the quantum Markov monogamy inequalities in
terms of memory strength and quantum recovery proce-
dure [39]. We leave the study of operational properties
of the Markov monogamy inequalities to future work.
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APPENDIX

1. Proof of the data processing theorem and its
equivalence with the monotonicity condition of quantum

mutual information

We start by considering the proof of the quantum data
processing theorem in [12].

Theorem 4 (Quantum data processing inequality [12]).
Let ρ be a quantum state of S1, and Λ1 : L(S1) →
L(S2), Λ2 : L(S2) → L(S3) be quantum channels. It holds
that

Ic(ρ; Λ1) ≥ Ic(ρ; Λ2 ◦Λ1). (73)

Proof. Let the state ρ be purified to ψ in L(R⊗ S1). Let
the quantum channels be dilated according to

Λ1(σ1) = TrE1

[
U1(σ1 ⊗ ϕ1)U†

1

]
(74)

and

Λ2(σ2) = TrE2

[
U2(σ2 ⊗ ϕ2)U†

2

]
, (75)

for any operators σ1 and σ2 in L(S1) and L(S2), respec-
tively. The linear transformations U1 : S1⊗F1 → S2⊗E1
and U2 : S2 ⊗ F2 → S3 ⊗ E2 are unitary operators, and
the pure quantum states ϕ1 and ϕ2 are in L(F1) and
L(F2), respectively. Consider the following mathemat-
ical assertions with respect to the process represented in
Fig. 9.

R⊗ E1 ⊗ E2 ⊗ S3 is pure⇒ H(R,E1,E2) = H(S3); (76)

R⊗ E1 ⊗ S2 is pure⇒ H(R,E1) = H(S2); (77)

H(R,S2) = H(E1); (78)

H(R,S3) = H(E1,E2). (79)

Then, we have that the strong subadditivity inequal-
ity

H(R,E1,E2) + H(E1) ≤ H(R,E1) + H(E1,E2) (80)

and Equations (76,77,78,79) imply the desired data pro-
cessing inequality.

Now we are ready to prove the equivalence of Theo-
rem 4 with the monotonicity of quantum mutual infor-
mation under local operations. Nevertheless, we state
first a simple result considered in this derivation.

ψ ϕ1 ϕ2

U1

U2

R

R

R

S1

S2

S3

F1

E1

E1

F2

F2

E2

FIG. 9. Diagram representing the purified process ρ1
Λ1−→

ρ2
Λ2−→ ρ3. The diagram displays the pure final state ob-

tained by acting successively the isometric representations
Ui(• ⊗ |ϕi〉) of Λi (with i = 1, 2) on the purification ψ of ρ.

Lemma 1 (Proposition 2.29 in [49]). Let ψ be a pure state of
R⊗ S1, and let ρ be any state of R⊗ S2 for which TrS1

[ψ] =
TrS2 [ρ]. Then there is a quantum channel Λ : L(S1)→ L(S2)
such that ρ = (idR ⊗Λ)(ψ).

Proposition 1. The following sentences are equivalent:

(A) The data processing inequality (73) holds for any quan-
tum state ρ of S1, and for any quantum channels
Λ1 : L(S1)→ L(S2) and Λ2 : L(S2)→ L(S3);

(B) For any quantum state σ of a bipartite system A⊗B, and
for any quantum operation Λ : L(B) → L(C), it holds
that quantum mutual information is monotonically de-
creasing under the action of the local operation Λ. That
is,

I(A : B)σ ≥ I(A : C)(id⊗Λ)(σ). (81)

Proof. The assertion (B) ⇒ (A) is clearly true. Sup-
pose (A) is true. Then let ρ be the state of an arbi-
trary quantum system S1, and ψ be a purification with
respect to a bipartite system R ⊗ S1. Consider also
arbitrary quantum channels Λ1 : L(S1) → L(S2) and
Λ2 : L(S2) → L(S3). Since (A) is true by hypothesis,
and σ := (idR ⊗Λ1)(ψ) is a state of the bipartite system
R⊗ S2, we have

I(R : S2)σ ≥ I(R : S2)(idR⊗Λ2)(σ)
. (82)

Thus, subtracting H(R) from both sides of Eq. (82) we
have the desired inequality

Ic(ρ; Λ1) ≥ Ic(ρ; Λ2 ◦Λ1), (83)
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for arbitrary ρ, Λ1 and Λ2.
Now, let us prove (A) ⇒ (B) is true. So suppose (A)

is true. Following the derivation of (B) ⇒ (A) we see
that in order to prove its converse statement all we need
to do is to prove that all bipartite quantum states can be
written as σ := (idR ⊗ Λ2)(ψ) for some pure state ψ of
a bipartite system, and quantum channel Λ1. Then, we
can add H(R) to both sides of Eq. (83) and we are done.
So let ρ be an arbitrary quantum state of any bipartite
quantum system R⊗ S2. Take its marginal with respect
to the system R, that is, τ := TrR[ρ]. Now let ψ be a
purification of τ with respect to a purification system S1
such that ψ ∈ R⊗S1. Thus we have proved the existence
of a pure quantum state ψ for which TrS1

[ψ] = TrS2 [ρ].
Now, using Lemma 1 we make sure the existence of a
quantum channel Λ1 : L(S1) → L(S2) fulfilling the de-
sired property.

2. Quantum data processing inequalities for
four-time-step Markovian processes

We argue here on the possible validity of the data pro-
cessing inequalities not considered in Subsection III C.
We also show that the DPIs not appearing in Fig. 2 do
not witness the non-Marovianity of our example, and
thus are irrelevant in this case.

One would expect for each DPI to have a valid quan-
tum version in terms of coherent information. For in-
stance, it is expected that the inequality

Ic(Λ1(ρ); Λ2) ≥ Ic(ρ; Λ2 ◦Λ1) (84)

constrains three-time-step quantum processes. This
would be the quantum version of the CDPI given by
I(X2 : X3) ≥ I(X1 : X3), holding for any three-time-
step classical process. Equation (84) is clearly equivalent
to the condition

H(E1|E2) ≥ 0, (85)

where conditional entropy is computed on any quantum
state of the form presented in Fig. 9.

It is well known that the conditional quantum entropy
may be negative, in contrast to its classical counterpart.
This is indeed the case when the quantum state consid-
ered is maximally entangled, for instance. Although, it
is not clear that this behavior may appear from the quan-
tum state arising from a Markov process. The plot of
Fig. 10 shows that taking U1, U2 to be the operation of
Eq. (31), and quantum states ψ = Ψ+, ϕ1 = ϕ2 = |0〉,
the condition in Eq. (84) is satisfied for any value of
0 ≤ λ ≤ 1. That is, the quantity

DP5 := Ic(Λ1(ρ); Λ2)− Ic(ρ; Λ2 ◦Λ1) (86)

is positive for any value of λ.
We note there is no strong subaditivity solely imply-

ing Eq. (85), and we leave its proof as a future study.
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FIG. 10. Non-violation of DP5. The quantity defined in
Eq. (86) is non-negative for the Markov process in Fig. 9 with ψ
being the maximally entangled state, and U1, U2 the operator
defined in Eq. (31).

In Appendix 1, we have proved the quantities defined
in Equations (25-29) are non-negative for all four-time-
step quantum Markov processes. Now, supposing every
classical DPI has a valid quantum version, we would
have the following extra constraints:

DP6 :=Ic(Λ1(ρ); Λ2)− Ic(ρ; Λ3 ◦Λ2 ◦Λ1); (87)
DP7 :=Ic(Λ1(ρ); Λ3 ◦Λ2)− Ic(ρ; Λ3 ◦Λ2 ◦Λ1); (88)
DP8 :=Ic(Λ2 ◦Λ1(ρ); Λ3)− Ic(ρ; Λ3 ◦Λ2 ◦Λ1); (89)
DP9 :=Ic(Λ2 ◦Λ1(ρ); Λ3)− Ic(Λ1(ρ); Λ3 ◦Λ2). (90)

Moreover, for the example considered in Subsec-
tion III C, the DPIs in Equations (86,87,88) do not wit-
ness the non-Markovian behaviour of the process. See
Fig. 11. The remaining inequalities in Equations (89,90)
involve terms related to a bipartite environmental sys-
tem, and thus cannot be applied to our example.

3. Quantum Markov monogamy theorem as the
monotonicity of conditional quantum mutual information

Now the Markov monogamy inequalities are sub-
jected to close scrutiny. This section deals with the
monogamy inequality of four-time-step Markovian pro-
cesses.

Proposition 2. The following sentences are equivalent:

(A) The Monogamy inequality (13) holds for any quan-
tum state ρ of S1, and for any quantum channels
Λ1 : L(S1) → L(S2), Λ2 : L(S2) → L(S3) and
Λ3 : L(S3)→ L(S4);

(B) For any quantum state σ of a tripartite system A⊗ B⊗
C, and for any quantum operation Λ : L(B) → L(D),
it holds that conditional quantum mutual information is
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FIG. 11. Non-violation of DP5, DP6 and DP7 for the non-
Markov process considered in Subsec. III C. The quantities
defined in Eqs. (86,87,88) are positive for the processes de-
scribed by Eqs. (32,33,34,35) and represented in Fig. 3.

monotonically decreasing under the action of a local op-
eration Λ. That is,

I(A : B|C)σ ≥ I(A : D|C)(id⊗Λ⊗id)(σ). (91)

Proof. The proof is similar to the one of Proposition 1.
The sentence (B) ⇒ (A) is trivially true. To prove
(A)⇒ (B) we need to show that any tripartite quantum
state ρ can be written as ρ = (idA ⊗ Λ⊗ idC)(σ), with
σ = (idA ⊗ Φ)(ψ⊗ ϕ), where ψ is a state of a bipartite
system A⊗ D, ϕ is a pure bipartite state of a system E,
Φ : L(D⊗ E) → L(F⊗ C) is a unitary quantum channel,

and Λ : L(F) → L(B) is a quantum channel. It can be
done by using Lemma 1 twice as follows.

Let τ be the tripartite quantum state obtained by
swapping the systems B and C of ρ. Then define
the marginal state with respect to the bipartite system
A⊗ C, ω := TrB[τ]. By the same reasoning as in the
proof of Proposition 1, we know there are a pure bi-
partite state ψ ∈ L(A ⊗ D) and a quantum channel
Ω := L(D) → L(C) for which ω = (idA ⊗Ω)(ψ). Let
U : D ⊗ E → C ⊗ F be a dilation of Ω, such that for
some pure state ϕ of the system E we have Ω(•) =
TrF[U(• ⊗ ϕ)U†]. Then define the unitary quantum
channel Φ̃(•) = V(• ⊗ ϕ)V†, where V is the unitary op-
erator obtained by the action of U followed by the swap-
ping operation. Define the pure tripartite quantum state
η = (idA ⊗ Φ̃)(ψ ⊗ ϕ). The state η is a purification of
ω. Then we have TrF[η] = TrB[τ]. Thus, by Lemma 1,
there is a quantum channel Λ : L(F) → L(B) for which
τ = (idA ⊗ idC ⊗ Λ)(η). Moreover, take the swapping
of systems C and B of τ to recover

ρ = (idA ⊗Λ⊗ idC)(idA ⊗Φ)(ψ⊗ ϕ), (92)

with Φ(•) = U(•)U†.
4. Quantum Markov monogamy inequalities for n = 3

The following results deal with the Markov
monogamy conditions for six-time-step Markov
processes.

Theorem 5. For any Markov process

ρ1
Λ1−→ ρ2

Λ2−→ · · · Λ5−→ ρ6,

it holds the following inequalities:

Ic(ρ1 : ρ6) + Ic(ρ2 : ρ5) + Ic(ρ3 : ρ4) ≥ Ic(ρ1 : ρ4) + Ic(ρ2 : ρ6) + Ic(ρ3 : ρ5); (93)
Ic(ρ1 : ρ6) + Ic(ρ2 : ρ5) + Ic(ρ3 : ρ4) ≥ Ic(ρ1 : ρ5) + Ic(ρ2 : ρ4) + Ic(ρ3 : ρ6). (94)

Proof. Let the quantum channels Λi : L(Si) → L(Si+1) –
with i = 1, · · · , 5 – have isometric representation given
by Vi : Si → Si+1 ⊗ Ei. The proof are given by the
strong subadditivity inequalities relating the environ-
mental systems Ei such that added together imply the
desired Monogamy inequality.

In order to prove Eq. (93) add the strong subadditivity
inequalities

I(E1 : E5|E2,E3,E4) ≥ 0; (95)
I(E1,E2 : E4|E3) ≥ 0. (96)

Now, to prove Eq. (94) consider

I(E1 : E5|E2,E3,E4) ≥ 0; (97)
I(E1 : E4,E5|E3) ≥ 0. (98)

Now we consider how the Markov monogamy in-
equalities for six-time-step processes can be equiva-
lently stated in terms of conditional quantum mutual
information.

Proposition 3. The following sentences are equivalent:

(A) Theorem 5 holds;

(B) For any quantum state ρ ∈ L(R⊗ E1 ⊗ E2 ⊗ S4), and
for any quantum channels Λ4 : L(S4) → L(S5) and
Λ5 : L(S5)→ L(S6), it holds that

I(R : S4|E1,E2) ≥ I(R,E1 : S5|E2) + I(R : S6|E1); (99)
I(R,E1 : S4|E2) + I(R : S5|E1) ≥ I(R : S6|E1,E2).(100)
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The proof of Proposition 3 is similar to the one pre-
sented for Proposition 2, so we do not include it here.

5. Quantum Markov monogamy inequalities for n = 4

The following Theorems deal with the Markov
monogamy conditions for eight-time-step Markov pro-
cesses.

Theorem 6. It holds that for any Markov process

ρ1
Λ1−→ ρ2

Λ2−→ · · · Λ7−→ ρ8,

Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥ Ic(ρ1 : ρ5) + Ic(ρ2 : ρ8) + Ic(ρ3 : ρ7) + Ic(ρ4 : ρ6); (101)
Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥ Ic(ρ1 : ρ7) + Ic(ρ2 : ρ5) + Ic(ρ3 : ρ8) + Ic(ρ4 : ρ6); (102)
Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥ Ic(ρ1 : ρ6) + Ic(ρ2 : ρ8) + Ic(ρ3 : ρ5) + Ic(ρ4 : ρ7); (103)
Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥ Ic(ρ1 : ρ5) + Ic(ρ2 : ρ6) + Ic(ρ3 : ρ8) + Ic(ρ4 : ρ7); (104)
Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥ Ic(ρ1 : ρ7) + Ic(ρ2 : ρ6) + Ic(ρ3 : ρ5) + Ic(ρ4 : ρ8); (105)
Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥ Ic(ρ1 : ρ6) + Ic(ρ2 : ρ5) + Ic(ρ3 : ρ7) + Ic(ρ4 : ρ8); (106)
Ic(ρ1 : ρ8) + Ic(ρ2 : ρ7) + Ic(ρ3 : ρ6) + Ic(ρ4 : ρ5) ≥ Ic(ρ1 : ρ5) + Ic(ρ2 : ρ6) + Ic(ρ3 : ρ7) + Ic(ρ4 : ρ8). (107)

Proof. To prove Eq. (101) add

I(E1 : E7|E2,E3,E4,E5,E6) ≥ 0; (108)
I(E1,E2 : E6|E3,E4,E5) ≥ 0; (109)

I(E1,E2,E3 : E5|E4) ≥ 0. (110)

To prove Eq. (102) add

I(E1 : E7|E2,E3,E4,E5,E6) ≥ 0; (111)
I(E2 : E6,E7|E3,E4,E5) ≥ 0; (112)

I(E2,E3 : E5|E4) ≥ 0. (113)

To prove Eq. (103) add

I(E1 : E7|E2,E3,E4,E5,E6) ≥ 0; (114)
I(E1,E2 : E6|E3,E4,E5) ≥ 0; (115)

I(E3 : E5,E6|E4) ≥ 0. (116)

To prove Eq. (104) add

I(E1 : E7|E2,E3,E4,E5,E6) ≥ 0; (117)
I(E2 : E6,E7|E3,E4,E5) ≥ 0; (118)
I(E1,E2,E3 : E5,E6|E4) ≥ 0. (119)

To prove Eq. (105) add

I(E1 : E7|E2,E3,E4,E5,E6) ≥ 0; (120)
I(E2 : E6,E7|E3,E4,E5) ≥ 0; (121)

I(E3 : E5,E6,E7|E4) ≥ 0. (122)

To prove Eq. (106) add

I(E1 : E7|E2,E3,E4,E5,E6) ≥ 0; (123)
I(E1,E2 : E6|E3,E4,E5) ≥ 0; (124)
I(E2,E3 : E5,E6,E7|E4) ≥ 0. (125)

To prove Eq. (107) add

I(E1 : E7|E2,E3,E4,E5,E6) ≥ 0; (126)
I(E1,E2,E3 : E5,E6|E4) ≥ 0; (127)
I(E2 : E6,E7|E3,E4,E5) ≥ 0; (128)

I(E3 : E7|E4,E5,E6) ≥ 0. (129)

It follows the Markov monogamy theorems for eight-
time-step processes in term of conditional quantum mu-
tual information. Again, the proof of Proposition 4 be-
low follows the same steps as Proposition 2 and is left
absent here.

Proposition 4. The following sentences are equivalent:

(A) Theorem 6 holds;

(B) For any quantum state ρ ∈ L(R⊗ E1 ⊗ E2 ⊗ E3 ⊗ S5),
and for any quantum channels Λ5 : L(S5) → L(S6),
Λ6 : L(S6) → L(S7) and Λ7 : L(S7) → L(S8), it holds
that
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I(R : S5|E1,E2,E3) ≥ I(R,E1,E2 : S6|E3) + I(R,E1 : S7|E2) + I(R : S8|E1); (130)
I(R,E1 : S5|E2,E3) + I(R : S7|E1) ≥ I(R,E1,E2 : S8|E3) + I(R : S8|E1,E2); (131)
I(R,E1,E2 : S5|E3) + I(R : S6|E1,E2) ≥ I(R,E1 : S7|E2,E3) + I(R : S8|E1); (132)

I(R : S5|E1,E2,E3) + I(R,E1 : S6|E2) ≥ I(R,E1 : S7|E2,E3) + I(R : S8|E1,E2); (133)
I(R,E1,E2 : S5|E3) + I(R,E1 : S6|E2) + I(R : S7|E1) ≥ I(R : S8|E1,E2,E3); (134)

I(R,E1 : S5|E2,E3) + I(R : S6|E1,E2) ≥ I(R,E1 : S7|E2) ≥ I(R : S8|E1,E2,E3); (135)
I(R : S5|E1,E2,E3) + I(R,E1 : S6|E2) ≥ I(R,E1 : S7|E2) + I(R : S8|E1,E2,E3). (136)

6. Choi state of a CPTP map as an action of a CP map on the adjoint space

Below we show how the Choi state of a CPTP map is identical to the action of a unital CP on the adjoint space.

A⊗ id(Ψ+) =∑
ijk

Ak ⊗ 11 |ii〉〈jj| A†
k ⊗ 11 (137)

=∑
ijk

(
∑
mn

a(k)nm |n〉〈m| ⊗ 11

)
|ii〉〈jj|

(
∑
rs

a(k)∗rs |s〉〈r| ⊗ 11

)

=∑
ijk

(
11⊗∑

mn
a(k)nm |m〉〈n|

)
|ii〉〈jj|

(
11⊗∑

rs
a(k)∗rs |r〉〈s|

)

=∑
ijk

(
11⊗ A†

k |ii〉〈jj| Ak ⊗ 11
)T

=: id⊗A†(Ψ+) (138)

The adjoint channel will be unital if the A is trace preserving. Both channels are CP.
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