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The collective dynamics of two non-interacting two-level emitters, which are coupled to a struc-
tured wave guide that supports two-photon bound states, is investigated. Tuning the energy of
the two emitters such that they are in resonance with the two-photon bound state energy band,
we identify parameter regimes where the system displays fractional populations and essentially
undamped Rabi oscillations. The Rabi oscillations, which have no analog in the single-emitter dy-
namics, are attributed to the existence of a collective polaron-like photonic state that is induced by
the emitter-photon coupling. The full dynamics is reproduced by a two-state model, in which the
photonic polaron interacts with the state |e, e, vac〉 (two emitters in their excited state and empty
wave guide) through a Rabi coupling frequency that depends on the emitter separation. Our work
demonstrates that emitter-photon coupling can lead to an all-to-all momentum space interaction
between two-photon bound states and tunable non-Markovian dynamics, opening up a new direction
for emitter arrays coupled to a waveguide.

PACS numbers:

Multi-level emitters coupled to a radiation field in
a periodic structure are essential for delivering on the
promises surrounding the second quantum revolution.
Ongoing research is exploring a variety of platforms,
including nano-photonic lattices [1–5], plasmonic wave
guides [6], and superconducting resonator arrays [7, 8]
coupled to atoms [9–11], quantum dots [12], quan-
tum solid-state defects [13, 14], or superconducting
qubits [15–19]. Applications range from quantum infor-
mation processing to quantum networking to quantum
simulations [20–26]. Recent experimental milestones in-
clude the heralded creation of a single collective excita-
tion in a chain of atoms coupled to a waveguide [27] and
the demonstration of photon (anti-) bunching for weak
atom-photon coupling by taking advantage of dissipa-
tion [28]. Emitters coupled to a wave guide also con-
stitute a promising platform with which to study funda-
mental questions associated with open quantum systems,
with the emitters playing the role of the system and the
wave guide or electromagnetic modes playing the role of
the bath [29–34].

Building on the tremendous successes of cavity quan-
tum electrodynamics (QED), wave guide QED plays a
key role in a plethora of quantum technologies [35, 36].
The coupling of one or more excited multi-level emit-
ters to a continuum of electromagnetic modes leads, in
most cases, to irreversible correlated radiation dynam-
ics [37, 38]. Quite generally, the strong transverse con-
finement in a waveguide speeds up the radiation dy-
namics compared to the free case [39]. Moreover, the
directionality of a one-dimensional waveguide facilitates
the build-up of correlations (or anti-correlations) between
emitters that are separated by distances larger than the

natural wave length of the wave guide leading to super-
radiance, subradiance, and entanglement generation [40–
50]. The emergence of these characteristics can be ex-
plained in terms of constructive and destructive interfer-
ences. This work predicts long-lived oscillatory radiation
dynamics for a generic waveguide QED set-up that can
be realized experimentally with existing state-of-the-art
technology. The oscillatory radiation dynamics is dis-
tinct from the typically observed irreversible correlated
radiation dynamics.

We consider a structured or non-trivial bath, namely
a wave guide with non-linearity that supports a band
of two-photon bound states (or more generally, a band
of bound bath quantum pairs) [30]. Working in the
quantum regime, where the system contains just two
excitations, the influence of the non-trivial mode struc-
ture of the bath on the radiation dynamics is investi-
gated within a full quantum mechanical framework. Non-
Markovian dynamics is observed. Rather counterintu-
itively, a regime is identified where the radiation dy-
namics is described nearly perfectly by a two-state Rabi
model. An analytical framework that elucidates the un-
derlying physical mechanism is developed. It is shown
that two emitters separated by multiple lattice sites are,
in certain parameter regimes, glued together and coupled
to a wave guide with all-to-all momentum space interac-
tions. It is as if the band of two-photon bound states was
feeling a localized (in real space) impurity that leads to
the formation of a photonic polaron-like state with which
the two-emitter unit interacts, creating hybridized sym-
metric and anti-symmetric states that exchange popula-
tion, undergoing essentially undamped Rabi oscillations.

Figure 1(a) illustrates the set-up. The total Hamil-



2

tonian Ĥ consists of the system, tight-binding bath or
wave guide, and system-bath Hamiltonians Ĥs, Ĥb, and
Ĥsb [30],
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Ĥb = ~ωc

N
∑

n=1
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where ~ωe, ~ωc, J , and U denote the energy difference
of the excited and ground state of the emitter, the pho-
ton energy in the middle of the single-photon band, the
hopping energy, and the engineered or intrinsic onsite en-
ergy, respectively. Since the coupling energy g is small
compared to |U | and J , counterrotating terms are not
included in Ĥsb; throughout, positive g and J and neg-
ative U are considered (positive U yield the same re-
sults). The emitter operators σ̂z

j = |e〉j〈e| − |g〉j〈g|,
Îj = |e〉j〈e|+ |g〉j〈g|, σ̂+

j = |e〉j〈g|, and σ̂−
j = |g〉j〈e| act

on the jth emitter located at lattice site nj with ground
and excited states |g〉j and |e〉j . The bath operators â†nj

and ânj
create and destroy a photon at lattice site nj

(j = 1, · · · , Ne and nj ∈ 1, · · · , N). Throughout, we
consider Ne = 2 emitters with separation x, x = n1−n2,
and large number of lattice sites N . The bath Hamilto-
nian Ĥb supports, due to the Kerr-like nonlinearity U ,
a band of two-photon bound states, one bound state
with energy EK,b for each two-photon center-of-mass
wave vector K [51–56]. The existence of these bound
states has been confirmed experimentally in photonic and
cold atom optical lattice systems [57, 58]. Throughout,
the emitter energy is tuned such that 2~ωe is equal to
EK(0),b at the uncoupled resonance wave vector K(0).
Since we are interested in the two-excitation subspace
with K(0)a close to zero, the detuning δ is measured
from the bottom of the two-photon bound state band,
δ = 2~ωe − 2~ωc +

√
U2 + 16J2.

To describe the time evolution of the initial state
|e, e, vac〉, we expand the time-dependent wave packet
|Ψ(t)〉 as [30]

|Ψ(t)〉 = exp(−2ıωet)

[

cee|e, e, vac〉+
∑

K

cK,b|g, g,K〉

+
∑

k

c1k|e, g, k〉+
∑

k

c2k|g, e, k〉
]

, (4)

FIG. 1: (a) Schematic of the Hamiltonian Ĥ. The cavity array
and two-level emitters (2LE) are shown; the role of the differ-
ent energy terms is illustrated. (b) Illustration of the Hilbert

space structure of Ĥ (left), Ĥadia (middle), and Ĥ2-st. (right).
The matrix element Mb(k, n,K) is defined in Ref. [60]. Note
that the energy difference 2~ωe − EK,b, Stark shift 2∆e, and
polaron energy Epol are not shown to scale.

where cee(t), cK,b(t), c1k(t), and c2k(t) denote expan-

sion coefficients, and |k〉 = â†k|vac〉 and |K〉 = P̂ †
K,b|vac〉

single-photon states with wave vector k and photon-pair
states with center-of-mass wave vector K, respectively.
The operators â†k and â†n are related via a Fourier trans-
form. Our ansatz does not account for the two-photon
scattering continuum since it plays a negligible role for
the parameter combinations considered in this paper [59].

The solid lines in the left column of Fig. 2 show the
population |cee(t)|2 of the state |e, e, vac〉 as a function
of time for U/J = −1, g/J = 1/50, δ/J = 0.0431,
and x/a = 0, 5, and 10, obtained by propagating the
ansatz given in Eq. (4) using Ĥ . For this detuning,
|cee(t)|2 decreases approximately exponentially. This
is the Markovian regime, discussed in Ref. [30], where
propagation with the adiabatic Hamiltonian Ĥadia yields
quite accurate results (dotted, dashed, and dash-dash-
dotted lines show results for three different variants of
Ĥadia). The adiabatic Hamiltonian Ĥadia, which lives in
a reduced Hilbert space that excludes the single-photon
states |e, g, k〉 and |g, e, k〉, is introduced below [middle
of Fig. 1(b)]. The inset of Fig. 2(c) for x/a = 10 shows
that the short-time behavior of |cee(t)|2 deviates from a
pure exponential decay. This is due to the fact that the
dynamics is, for x/a ≫ 1, seeded by the creation of two
uncorrelated photons. For larger times, the fall-off is,
as for smaller separations, again governed by correlated
two-photon dynamics.

When the emitter energy is set such that |δ| is very
small (K(0)a ≈ 0), the radiation dynamics changes dras-
tically. The right column of Fig. 2 shows an example for
δ/J = 0.0011. For x = 0 [Fig. 2(d)], the propagation
under Ĥ (solid line) yields damped oscillatory behav-
ior. In the long-time limit, the system is characterized
by fractional steady-state atomic populations. This is
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FIG. 2: |cee(t)|
2 as a function of Jt/~ for the initial state

|e, e, vac〉, U/J = −1, g/J = 1/50, and δ/J = 0.0431 (left)
and δ/J = 0.0011 (right). Top, middle, and bottom rows
are for x/a = 0, 5, and 10, respectively. Black solid, red
dotted, blue dashed, and green dash-dash-dotted lines are ob-
tained using Ĥ, Ĥadia, Ĥadia with GK,K′ = 0, and Ĥadia with
GK,K′ = ∆e = 0, respectively.

analogous to the single-emitter case [31, 32], where the
emitter frequency is in resonance with the single-photon
scattering band. In the single-emitter case, the term frac-
tional steady-state atomic population is used to indicate
that the system is in a quasi-stationary state, which has
appreciable overlap with the state |e, vac〉 and the states
|g, k〉 [31]. By analogy, we use the term fractional steady-
state atomic population in our two-emitter case to indi-
cate that the system is in a quasi-stationary state, which
has appreciable overlap with the state |e, e, vac〉 and the
states |g, g,K〉. As the separation increases [Figs. 2(e)-
2(f) show results for x/a = 5 and 10, respectively], the
dynamics for the Hamiltonian Ĥ (solid lines) are charac-
terized by slower oscillations and weaker damping. For
x/a = 10, the oscillations resemble nearly perfect two-
state Rabi oscillations. Even though the emitters are cou-
pled to a bath, dephasing is essentially absent for large
separations. These undamped Rabi oscillations have no
analog in the single-emitter system [31, 32].

The oscillation frequencies in Figs. 2(d)-2(f) corre-
spond to the energy difference between the two en-
ergy eigenstates of Ĥ that have the largest overlap with
|e, e, vac〉 [solid lines in Fig. 3(a)]; we label these states
Ψ+ and Ψ−. For x/a & 5, Ψ± have an energy that is
smaller than EK=0,b, i.e., both states are bound with re-
spect to the g = 0 two-photon bound state band [solid
line in Fig. 3(b)]. For x/a . 5, the energy of Ψ+ remains
below the bottom of the two-photon band while that of
Ψ− lies in the continuum. The quantity |〈e, e, vac|Ψ+〉|2
increases from about 0.66 to 0.99 as x/a increases from
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FIG. 3: Static results (U/J = −1, g/J = 1/50, and
δ/J = 0.0011). (a) Black solid, red dotted, and magenta
dash-dotted lines show the eigenenergies corresponding to hy-
bridized states of Ĥ , Ĥadia, and Ĥ2-st., respectively, as a func-
tion of x/a. The gray dashed line shows (E − E0,b)/J = 0.
(b) The black solid line shows EK,b as functions of Ka/π
(main panel) and the state index (inset). The red circles show

the eigenenergies supported by Ĥadia
b (index 1 corresponds to

the polaron-like state). (c) The squares, circles, and trian-
gles show the dimensionless quantities Re[GK(0),K(0) (x)]/10,
Re[FK(0) ,b(x)], and Im[FK(0),b(x)] as a function of x/a for

K(0)a/π = 0.0152.

0 to 20 [upper solid line in Fig. 4(a)]; |〈e, e, vac|Ψ−〉|2, in
contrast, is comparatively small for x/a . 4, increases for
x/a = 5 to 7, and then slowly decreases as x/a increases
further [lower solid line in Fig. 4(a)].

To understand the emergence of the bound states
and their dependence on x, we adiabatically eliminate
the states |e, g, k〉 and |g, e, k〉, i.e., we assume that the
change of the expansion coefficients c1k(t) and c2k(t) in
Eq. (4) with time can be neglected [30]. This introduces a
Stark shift 2∆e as well as effective momentum space in-
teractions, proportional to N−1g2GK,K′(x)/J , between
two-photon bound states with wave vectors K and K ′.
Since the two-photon bound state with wave vector K is
coupled to two-photon bound states with other K ′, i.e.,
GK,K′(x) is non-diagonal, we refer to the effective in-
teraction N−1g2GK,K′(x)/J as an effective all-to-all mo-
mentum space interaction. The spread of GK,K′(x) over
a wide range of center-of-mass wave vectors is discussed
in detail in Ref. [61]; it plays a critical role when the ab-
solute value of the detuning δ is small. The structures of
Ĥ and the Hamiltonian Ĥadia after adiabatic elimination
are sketched, respectively, in the left and middle diagrams
of Fig. 1(b). For the larger δ considered in Fig. 2 (left
column), the 2∆e and GK,K′(x) terms have negligible ef-
fects on the radiation dynamics [the dotted, dashed, and
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dash-dash-dotted lines in Figs. 2(a)-2(c) agree well]; as a
consequence, Ref. [30] set them to zero in their reduced
Hilbert space description. For the smaller δ (right column
of Fig. 2), in contrast, both terms have a non-negligible
effect on the dynamics as evidenced by the fact that the
dotted, dashed, and dash-dash-dotted lines in Figs. 2(d)-
2(f) disagree.
The adiabatic Hamiltonian Ĥadia contains the system,

bath, and system-bath Hamiltonians Ĥadia
s , Ĥadia

b , and

Ĥadia
sb ,

Ĥadia
s = 2∆e|e, e, vac〉〈e, e, vac|, (5)

Ĥadia
b =

∑

K

EK,b|g, g,K〉〈g, g,K|

+
∑

K,K′

g2

JN
GK,K′(x)|g, g,K〉〈g, g,K ′|, (6)

and

Ĥadia
sb =

∑

K

g2

J
√
N

FK,b(x)|g, g,K〉〈e, e, vac|+ h.c. (7)

The analytical expressions for the effective interactions
g2N−1/2FK,b(x)/J and g2N−1GK,K′(x)/J are lengthy
and not reproduced here [30, 61]. The dotted lines in
Figs. 2, 3(a), and 4(a) show the results obtained by prop-
agating the initial state |e, e, vac〉 with Ĥadia. The dotted
lines agree quite well with the full calculation (solid lines)
for all detunings and separations considered, suggesting
that the reduced Hilbert space model captures the key
physics. Thus, we use it to develop physical intuition.
To start with, we analyze the K ≈ K ′ ≈ K(0) ≈ 0

portion of Ĥadia
b , which should govern the radiation dy-

namics when |δ/J | approaches zero. In this regime, the
imaginary part of GK,K′(x) is vanishingly small. In fact,
since GK,K′(x) is (excluding real overall factors) a sum
over products [Mb(k, n,K)]∗[Mb(k, n,K

′)], it is purely
real for K = K ′; here, Mb(k, n,K) measures the over-
lap between |K〉 and â†n|k〉 [61]. When K and K ′ dif-
fer, GK,K′(x) can be loosely thought of as an autocor-
relation function for the overlaps. Importantly, the real
part, shown for δ/J = 0.0011 by the squares in Fig. 3(c),
is negative and nearly independent of x. Considering
that the states |e, g, k〉 and |g, e, k〉 that are being elim-
inated adiabatically contain information on the emitter
locations, it is remarkable that Re[GK,K′(x)] is nearly in-
dependent of the emitter separation x/a. The behavior
of GK,K′(x) is discussed in detail in Ref. [61]. If we re-
place EK,b by E0,b (i.e., use a flat band) and GK,K′(x) by
GK(0),K(0)(x), then the eigenenergies of the bath Hamil-
tonian are E0,b−(N−1)g2N−1GK(0),K(0)(x)/J (one-fold
degenerate) and E0,b + g2N−1GK(0),K(0)(x)/J [(N − 1)-
fold degenerate]. The eigenstate of the one-fold degener-
ate bound state reads N−1/2

∑

K |K〉. This bound state
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FIG. 4: State composition of hybridized polaron-emitter
states (U/J = −1, g/J = 1/50, and δ/J = 0.0011). (a)
Projection of |e, e, vac〉 onto Ψ+ (upper three lines) and Ψ

−

(lower three lines) as a function of x/a. Black solid, red dot-

ted, and magenta dash-dotted lines are obtained using Ĥ ,
Ĥadia, and Ĥ2-st., respectively. (b)/(c) Projection of Ψ+ and
Ψ

−
onto |g, g,K〉 as a function of Ka/π for x/a = 10. The

line styles are the same as in (a); black solid and red dotted
lines are nearly indistinguishable on the scale shown.

can be interpreted as a bosonic quasi-particle that lives
in the Hilbert space of the dressed infinite cavity array,
with the dressing coming from the effective photon-pair–
photon-pair interactions that are introduced by the adi-
abatic elimination. Since the eigenstate of the bosonic
quasi-particle in the cavity array Hilbert space can be
written as a superposition of |K〉 states, we refer to it as
a polaron-like state.

While the flat band model overestimates the bind-
ing energy of the polaron-like bound state by a fair
bit, it shows that the attractive all-to-all interactions
g2N−1GK,K′(x)/J are responsible for the fact that the
band of bound photon pairs splits into a collective
polaron-like bound state and a band that is slightly
shifted upward compared to the GK,K′(x) = 0 case.
This interpretation continues to hold when a more ac-
curate treatment is employed. The band curvature
can be thought of as introducing a wave vector cut-
off (Leff)

−1. Taylor-expanding EK,b up to order (Ka)2,
making the ansatz |pol〉 =

∑

K dK |K〉 with dK =
2N−1/2(L−1

eff a/2)
3/2/[(Ka)2 + (L−1

eff a/2)
2], and treating

Leff as a variational parameter, the energy Epol of the
polaron |pol〉 can be found analytically. For the param-
eters considered in Fig. 3(b), the analytical result is in
excellent agreement with the lowest eigenenergy of Ĥadia

b ,
which is shown in Fig. 3(b) by the circle for state index
1.

Since GK(0),K(0)(x) is, for fixed δ/J and U/J , ap-
proximately independent of x, the separation depen-
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dence displayed in Figs. 2(d)-2(f) must enter through
FK(0),b(x). Figure 3(c) shows that Re[FK(0),b(x)[ (circles)
has a strong x dependence and is much larger, in mag-
nitude, than Im[FK(0),b(x)] (triangles). Throughout, we
work with parameter combinations where the resonant
wave number K(0) is much smaller than a, implying that
the oscillatory behavior of FK(0),b(x), encoded in sin(Ka)
and cos(Ka) terms, does not play a role [61]. This is in
contrast to earlier studies where the emitter was in reso-
nance with the single-photon band and where the oscilla-
tory nature of the coherent and dissipative dipole-dipole
interactions played a role (see, e.g., Ref. [29]). Rewriting
Ĥadia in the basis in which Ĥadia

b is diagonal, we find
that the state |e, e, vac〉 couples comparatively strongly
to the state |g, g, pol〉 and comparatively weakly to all
other bath states. The dynamics in the |δ/J | → 0 limit
is thus approximately described by the two-state Hamil-
tonian Ĥ2-st.,

Ĥ2-st. = Ĥadia
s + Epol|g, g, pol〉〈g, g, pol|+
(Geff|g, g, pol〉〈e, e, vac|+ h.c.). (8)

Using our variational expression for |g, g, pol〉, we find

Geff =
g3(U2 + 16J2)1/4

2J5/2
FK(0),b(x)|GK(0),K(0)(x)|1/2. (9)

The eigenenergies of the hybridized polaron-emitter
states Ψ+ and Ψ− supported by Eq. (8) for U/J = −1,
g/J = 1/50, and δ/J = 0.0011 [dash-dotted lines in
Figs. 3(a)] agree reasonably well with those of Ĥ when
x/a is large. State Ψ+ is symmetric (the coefficients of
|e, e, vac〉 and |g, g, pol〉 are both positive) while Ψ− is
anti-symmetric (the coefficients have opposite signs).

The two-state description deteriorates with decreasing
separation; the state composition of the more weakly
bound state Ψ−, which has a smaller overlap with the
emitter state |e, e, vac〉 [lower three lines in Fig. 4(a);
Fig. 4(c)] than the more deeply bound state Ψ+ [upper
three lines in Fig. 4(a); Fig. 4(b)], deviates notably from
that obtained by diagonalizing Ĥ. In fact, for x/a . 5,
the first excited state of Ĥ is no longer a simple super-
position of |e, e, vac〉 and |g, g, pol〉 but instead contains
multiple nearly degenerate energy eigenstates with en-
ergy close to EK=0,b. In the dynamics, this results in
dephasing, thereby explaining the damping observed in
Figs. 2(d)-2(e). We emphasize that the emergence of
the three different regimes (exponential decay, fractional
populations, and Rabi oscillations), illustrated in Fig. 2
for the separations of x/a = 0, 5, and 10, depends on the
values of U/J , g/J , and δ/J . For the same U/J and δ/J ,
the Rabi oscillation regime can be understood by analyz-
ing the interplay between Epol (which contains a term
that scales as −g4/J4), Geff (which is proportional to
g3/J3), and ∆e (which is proportional to g2/J2) within
the two-state Hamiltonian Ĥ2-st. [61].

In summary, our analysis shows that the essentially
undamped Rabi oscillations are associated with popu-
lation exchange between two hybridized polaron-emitter
states. These states are distinct from previously pre-
dicted hybridized states [29, 62–66]. For the parame-
ters considered in this paper, the more weakly-bound
hybridized state merges into the continuum for x/a . 5,
making the emergence of long-lived Rabi oscillations an
intriguing emitter separation-dependent long-range phe-
nomenon. When the emitters are close together, the radi-
ation dynamics, starting with |e, e, vac〉 at t = 0, leads to
quasi-stationary fractional populations. When the emit-
ters are spaced further apart, regular revivals are ob-
served. We emphasize the crucial role of the Stark shift
2∆e and the attractive all-to-all momentum space inter-
actions. Neglecting these terms yields the dash-dotted
lines in Figs. 2(d)-2(f). Setting 2∆e to the correct value
but using GK,K′(x) = 0 yields the dashed lines.

Our work illustrates that the structure of the bath
Hamiltonian with Kerr-like non-linearity can be mod-
ified non-trivially—introducing attractive all-to-all mo-
mentum space interactions—through the coupling to two
two-level emitters, resulting in qualitatively new radia-
tion dynamics. Continuing to work in the two-excitation
manifold, extension to arrays of regularly spaced emit-
ters where neighboring emitters have a fixed separation
(simple emitter lattice) or alternating separations (emit-
ter superlattice) offers the prospect of establishing non-
trivial bath-induced correlations between separated emit-
ter pairs. Taking an alternative viewpoint, this work
points toward utilizing emitters to create bath Hamilto-
nian with unique characteristics. Our analysis assumes
that losses from the wave guide can be neglected. Over
the time scales considered, this should be justified for
several state-of-the-art experiments.
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