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We revisit the idea of quantum nondemolitionmeasurement (QND) of optical quanta via a resonantly enhanced
Kerr nonlinearity taking into account quantum back action. We show that the monolithic microcavities enable
QND measurement of number of quanta in a weak signal field using a classical probe field spatially overlapping
with the signal. The phase of the probe field acquires information about the signal number of quanta without
altering it due to the cross-phase modulation effect. We find the exact solution to the Heisenberg equations of
motion of this system and calculate the measurement error, accounting for the optical losses in the measurement
path. We identify a realistic approximation to obtain the explicit form of the final conditional quantum state of
the signal field, accounting for the undesirable self-phase modulation effect and designing the optimal homodyne
measurement of the probe beam to evade this effect. We show that the best modern monolithic microcavities
allow achieving the measurement imprecision several times better than the standard quantum limit.

I. INTRODUCTION

QND measurement schemes involving coupling of two op-
tical waves by means of the cross-phase modulation (XPM)
effect resulting from the cubic nonlinearity of an optical mate-
rial were proposed more than 40 years ago [1, 2]. The experi-
mental work based on the idea started nearly at the same time
[3]. Whispering gallery mode (WGM) optical resonators were
considered as one of optimal venues for the QND realization
because of their high quality factors and small mode volumes
[4].
Self-phasemodulation (SPM) limits themeasurement sensi-

tivity in the proposed resonant schemes. Amethod eliminating
the SPM was proposed in Ref. [5]. The technique utilizes the
optimized detuning of both the signal and probe fields from
the corresponding resonance frequencies of a nonlinear mi-
crocavity. As it follows from that study, this approach cancels
not only the SPM in the probe beam, but also the perturba-
tion of the signal mode phase, which ultimately contradicts the
Heisenberg uncertainty relation (14).
In Ref. [6], a theoretical analysis of the optical modes cou-

pled by means of the XPM effect was done, showing that
strongly non-Gaussian quantum states of light can be prepared
using such systems. However, that work was aimed only at the
preparation of the signal mode quantum state for the particular
case of the initial coherent state with low intensity. Also, the
SPM effect was not taken into account, and only linearized
treatment was performed.
In this paper we study a feasibility of the QND measure-

ment of photon number in a modern nonlinear microcavity.
Following previous developments in the field, we (i) provide a
consistent quantum analysis of the two-mode QND measure-
ment scheme based on the 𝜒 (3) -nonlinearity, accounting for
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the SPM effect, and (ii) evaluate the prospects of experimental
implementation of this scheme using the recent achievements
in fabrication of the high-𝑄WGM resonators. As the result of
our analysis it becomes possible to conclude that the photon
number in the probe mode should exceed the photon number
in the signal mode to beat the SQL if the optical measurement
strategy is selected.
We also have perform a detailed analysis of an imperfect

measurement scheme, taking into account a limited efficiency
of the photon detection and attenuation of light. We analyze
these effects using a closed quantum system anzats as well as
a more rigorous Langevin approach. Both considerations let
us to arrive to the equivalent results.
This article is organized as follows. Section II describes the

basic principles of QND used throughout our paepr. The basic
principles and salient problems of the cross-phase modulation
based QND techniques are discussed in Sec. III. In Sec. IV,
we start with the simplified semi-classical treatment of the
measurement scheme and find the measurement sensitivity.
In Sec. V, we derive the exact solution of the corresponding
Heisenberg equations of motion and identify an important,
from the practical point of view, asymptotic case of this solu-
tion. In Sec. VI, we find the explicit forms of the final quantum
state of the signal mode and of the probability distribution for
the measurement results for this asymptotic case, accounting
for the SPM. We show that this distribution could be strongly
non-Gaussian. In Sec. VII, we estimate the sensitivity, achiev-
able with themodernWGMmicroresonators used for the QND
measurements. Finally, in Sec. VIII we summarize the results
of this work.

II. CRITERIA OF QND

According to the von Neumann’s reduction postulate [7],
any ideal (that is precise and free from technical imperfections)

mailto:sn.balybin@physics.msu.ru


2

quantummeasurement leaves the object in the eigen state of the
measured observable corresponding the eigen value obtained
as the measured result. If the object is already in such an
eigen state before the measurement, then this state remains
unchanged after the measurement. The majority of the real
worldmeasurement devices does not obey this rule and perturb
the measured observable.

Let us consider a problem of a non-disturbing detection of
a number of photons in a mode of a lossless optical resonator,
as an example. A standard tool for the measurement of the
number of photons, a photocounter, absorbs all the counted
photons, leaving the optical cavity field in the ground state.
An output of a phase-preserving linear amplifier [8], that also
can be utilized for the photon counting, depends on the two
non-commuting quadratures of an input mode and, due to
the Heisenberg uncertainty relation, disturbs them. It can not
measure the number of quanta 𝑛 in thismodewith the precision
better than the standard quantum limit (SQL)

Δ𝑛SQL =
√
�̄� , (1)

where �̄� is the mean number of quanta. Due to the same
reasons, it also perturbs 𝑛 by at least the same value. Therefore,
obtaining the sensitivity better than the limit (1), with the
photons number perturbation also below this limit, can be
considered as the minimal requirement for the “true quantum”
measurement.

A sufficient condition for implementation the ideal von
Neumann’s measurement was explicitly formulated by David
Bohm [9]. He showed that the eigen states of the measured
observable 𝑞 are not affected by the measurement if this ob-
servable commutes with the Hamiltonian �̂� of the combined
system:

[𝑞, �̂�] = 0 , (2)

where

�̂� = �̂�𝑆 + �̂�𝐴 + �̂�𝐼 , (3)

�̂�𝑆 , �̂�𝐴 are, respectively, the Hamiltonians of the object and
the meter, and �̂�𝐼 is the interaction Hamiltonian (it was as-
sumed in [9], that during the measurement, �̂�𝑆,𝐴 → 0, but
this assumption does not affect the main conclusion). The
term Quantum Non-Demolition (QND) measurements was
proposed for this class of quantum measurements in the late
70s [10, 11] and has become generally accepted since then.

The number of quanta in an electromagneticmode of a linear
cavity is an integral of motion, commuting with the Hamilto-
nian of the mode, [�̂�, �̂�𝑆] = 0 (the QND observable). In this
case, the condition (2) can be simplified to the commutativity
with the interaction Hamiltonian:

[�̂�, �̂�𝐼 ] = 0 . (4)

In other words, the coupling of the mode with the meter has to
be non-linear in the mode generalized coordinate represented
by the field strength.

III. ADVANCES AND PROBLEMS OF XPM-BASED QND

Following the initial semi-gedanken proposals [12–14], a re-
alistic scheme of QND measurement of electromagnetic pho-
tons number was proposed in Refs. [1, 2]. It uses two spatially
overlapping optical modes, the signal (object) and the me-
ter (probe) ones, interacting by means of the cubic optical
nonlinearity 𝜒 (3) arising due to the Kerr effect. During the
interaction, the phase of the probe mode is shifted by the value
proportional to the photon number in the signal mode. This
effect is called cross phase modulation (XPM). The photon
number of the signal mode is preserved during the interaction
in the ideal lossless case. The phase of this mode is perturbed
by the number of quanta uncertainty of the probe mode due
to the same XPM mechanism. This perturbation ensures the
fulfillment of the Heisenberg uncertainty principle meaning
that reduction of the uncertainty of a signal observable should
lead to increase of the uncertainty of an observable conjugated
to the signal.
Later on, a significant amount of experimental work based

on this idea was done, starting form the pioneering work [3],
see the reviews [15–17] for more detail. The sensitivity ex-
ceeding the SQL was demonstrated in these experiments, but
the single-photon accuracy limit was not reached.
In parallel, another class of the QND schemes, which uses

single atoms [18–20] or superconductive nonlinear circuits
(artificial atoms) [21] as nonlinear elements, was actively de-
veloped during the last decades. These, in essence lumped,
devices are capable of providing resonant cubic nonlinearity
many orders of magnitude larger than the electronic nonlin-
earity of the transparent dielectrics, which let to successful
measurements of a single photon.
An important disadvantage of the atom-based QND mea-

surements is their complexity. It is desirable to perform the
measurements on a chip, without involvement of bulky equip-
ment needed for the atomic systems. The superconductive cir-
cuits can be, and usually are, implemented on-chip, but they
operate in a microwave band and require cryogenic cooling.
In addition, both these measurement classes, while sensitive
to single or a few quanta, do not scale well to bright (multi-
quanta) states.
The main problem with the pure optical implementations

of QND is that the high optical nonlinearity is typically asso-
ciated with the high absorption. The promising way to over-
come this problem is the usage of whispering-gallery-mode
optical (WGM) microresonators [4, 22], which combine very
high quality (𝑄−) factors, exceeding 1011 in crystalline mi-
croresonators [23] and 109 in on-chip ones [24, 25], with high
concentration of the optical energy in the small volume of the
optical modes.
The WGM resonators have also a series of practical advan-

tages, which makes them perhaps the most promising QND
platform. Because of a broad-band nature of the total internal
reflection, their 𝑄-factor remains very high within an optical
wavelength range far exceeding an octave. Therefore, their
QND application is not tied to any specific wavelength, as in
atoms or resonators using dielectric mirrors, which allows for
a greater versatility. Furthermore, the WGM resonators have



3

a continuously tunable coupling rate. This allows for a fine
control over a parameter responsible for various QND regimes.
Another major problem, specific to the 𝜒 (3) nonlinearity,

is associated with the self phase modulation (SPM) effect re-
sulting in perturbation of the phases of both the probe and
signal modes by the energy uncertainties of the corresponding
modes [26]. It is not so crucial for the signal mode, because,
while distorting (squeezing) its final quantum state, it does not
affect the number of quanta in this mode. At the same time,
it introduces an additional uncertainty into the phase of probe
mode, proportional to the number of quanta uncertainty in this
mode, thus limiting the measurement precision (see details in
Sec. IV). This is so called quantum back action effect.
Two straightforward methods of cancellation of this ef-

fect were proposed in Ref. [26]: either using a resonant 𝜒 (3)

medium or passing the probe beam through a negative 𝜒 (3)

medium before the detection. More recently, implementa-
tions of optical QND measurements using rubidium atoms
in a magneto-optical trap were studied experimentally [27]. It
was also noticed that semiconductor quantum dots can provide
the negative nonlinearity of proper magnitude to compensate
for the SPM in experiments with quantum solitons [28].
Unfortunately, these methods can not be considered as sim-

ple ones. A more practical method based on the measurement
of the optimal quadrature of the output probe field instead of
the phase one, was proposed in Ref. [29]. This measurement
allows one to eliminate the major linear part of the SPM and
can be made using the ordinary homodyne detectors.
In what follows we develop a technique of the back action

avoiding QND measurement based on a WGM system. The
proposed here QND implementation is free of the problems
encountered by the previous propositions involvingWGM res-
onators.

IV. SIMPLIFIED ANALYSIS

Let us start with a simple intuitive semi-classical approach,
considering the classical equations of motion, but assuming
that the initial values of the involved observables have quantum
uncertainties. The validity of the approach will be justified in
the next section.
Within this approach, the evolution of the phases 𝜙𝑝 , 𝜙𝑠 of

the probe (p) and the signal (s)waves propagating in a nonlinear
media with a cubic (Kerr) nonlinearity in the rotating-wave
frame is described by the following equations:

𝜙𝑝 (𝑡) = 𝜙𝑝 + Γ𝑆𝑛𝑝 + Γ𝑋𝑛𝑠 , (5a)
𝜙𝑠 (𝑡) = 𝜙𝑠 + Γ𝑆𝑛𝑠 + Γ𝑋𝑛𝑝 , (5b)

where 𝑛𝑝,𝑠 are the photon numbers in these modes, which are
preserved during the interactions, 𝜙𝑝,𝑠 are the initial values of
the phases,

Γ𝑆,𝑋 = 𝛾𝑠,𝑥𝜏 , (6)

𝛾𝑠 , 𝛾𝑥 are the SPM and XPM nonlinearity factors, and 𝜏 is
the effective duration of the interaction. The last two terms in

Eqs. (5), proportional to Γ𝑋 , describe, respectively, the signal
phase shift in the probemode and the perturbation of the signal
mode phase:

Δ𝜙𝑠 pert = Γ𝑋Δ𝑛𝑝 , (7)

where Δ𝑛𝑝 is the initial uncertainty of 𝑛𝑝 .
Suppose that the output phase of the probe mode 𝜙𝑝 (𝑡)

is measured by a phase-sensitive detector. In this case, initial
uncertainties of both the phase and the number of quanta of the
probe mode contribute to the measurement error. The signal
photon number, 𝑛𝑠 , can be estimated with the uncertainty

Δ𝑛𝑠meas =
1
Γ𝑋

√︃
(Δ𝜙𝑝)2 + Γ2

𝑆
(Δ𝑛𝑝)2 ≥

Γ𝑆

Γ𝑋

Δ𝑛𝑝 . (8)

Since usually Γ𝑋 ∼ Γ𝑆 , we find that

Δ𝑛𝑠meas & Δ𝑛𝑝 . (9)

For the coherent initial quantum state of the probe mode

Δ𝜙𝑝 =
1
2
√︁
�̄�𝑝

, Δ𝑛𝑝 =
√︁
�̄�𝑝 , (10)

where �̄�𝑝 is the expectation number of probe quanta, Eq. (8)
results in

Δ𝑛𝑠meas =
1
Γ𝑋

√︄
1
4�̄�𝑝

+ Γ2
𝑆
�̄�𝑝 >

Γ𝑆

Γ𝑋

√︁
�̄�𝑝 . (11)

As it follows from this inequality, in order to overcome the
SQL (see Eq. (1)), there should be �̄�𝑠 & �̄�𝑝 , which makes
high-precision QND measurement of small number of quanta
impossible.
Let us consider now a measurement of the linear combina-

tion of the probe phase and photon number (see [26])

𝜙𝑝 (𝑡) − Γ𝑆𝑛𝑝 (𝑡) = 𝜙𝑝 + Γ𝑋𝑛𝑠 . (12)

In this case, the sensitivity is affected only by initial uncertainty
of the probe phase:

Δ𝑛𝑠meas =
Δ𝜙𝑝

Γ𝑋

, (13)

which could be arbitrary small, provided sufficiently big non-
linearity factor Γ𝑋 and the probe photon number.
It follows also form Eqs. (7, 13) that

Δ𝑛𝑠measΔ𝜙𝑠 pert = Δ𝜙𝑝Δ𝑛𝑝 ≥ 1
2
, (14)

that is, the uncertainty relation for the number of quanta and
phase of the probe mode directly translates to the uncertainty
relation for Δ𝑛𝑠meas and Δ𝜙𝑠 pert. The general form of the
number of quanta/phase uncertainty relations is much more
involved, see e.g. [30]. The simplified form of the uncertainty
relation (14) has good precision for the “practical” quantum
states with Δ𝜙 � 1 considered here.
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In the case of the coherent quantum state of the probe mode
(10),

Δ𝑛𝑠meas =
1

2Γ𝑋

√︁
�̄�𝑝

, (15a)

Δ𝜙𝑠 pert = Γ𝑋

√︁
�̄�𝑝 . (15b)

Finally, the necessary condition for a successful sub-SQL
measurement can be presented as Δ𝑛𝑠 meas <

√
�̄�𝑠 . With ac-

count for Eq. (15a), it corresponds to the following inequality:

2Γ𝑋

√︁
�̄�𝑝

√︁
�̄�𝑠 > 1. (16)

V. MEASUREMENT IMPRECISION

Using the rotating-wave approximation, the Hamiltonian of
the two modes system, considered in the previous section, can
be presented as follows:

Ĥ = −ℏ𝛾𝑆

2

∑︁
𝑥=𝑠, 𝑝

�̂�𝑥 (�̂�𝑥 − 1) − ℏ𝛾𝑋 �̂�𝑝 �̂�𝑠 , (17)

where ℏ is the reduced Plank constant,

�̂�𝑠, 𝑝 = �̂�†𝑠, 𝑝 �̂�𝑠, 𝑝 (18)

and �̂�𝑠, 𝑝 , �̂�†𝑠, 𝑝 are the annihilation and creation operators of
the signal and the probe modes (the peculiar form of the first
term is the normal-ordered one). It can be seen from this
Hamiltonian, that the numbers of quanta in both modes (in the
Heisenberg picture) are integrals of motion of the system:

�̂�𝑠, 𝑝 (𝑡) = �̂�𝑠, 𝑝 (19)

The corresponding Heisenberg equations of motion for the
annihilation operators are

𝑑�̂�𝑝 (𝑡)
𝑑𝑡

= 𝑖[𝛾𝑆 �̂�𝑝 (𝑡) + 𝛾𝑋 �̂�𝑠 (𝑡)]�̂�𝑝 (𝑡) , (20a)

𝑑�̂�𝑠 (𝑡)
𝑑𝑡

= 𝑖[𝛾𝑆 �̂�𝑠 (𝑡) + 𝛾𝑋 �̂�𝑝 (𝑡)]�̂�𝑠 (𝑡) . (20b)

Due to the photon number conservation (19) the closed form
of the solution of the set of equations can be easily found:

�̂�𝑝 (𝑡) = 𝑒𝑖 (Γ𝑆 �̂�𝑝+Γ𝑋 �̂�𝑠) �̂�𝑝 , (21a)

�̂�𝑠 (𝑡) = 𝑒𝑖 (Γ𝑆 �̂�𝑠+Γ𝑋 �̂�𝑝) �̂�𝑠 . (21b)

.
Let us consider now the homodyne measurement of the

quadrature �̂�Z of the probe mode, defined by the homodyne
angle Z :

�̂�Z =
1
√
2

[
�̂�𝑝 (𝑡)𝑒𝑖Z + h.c.

]
=
1
√
2

[
𝑒𝑖 (Γ𝑆 �̂�𝑝+Γ𝑋 �̂�𝑠+Z ) �̂�𝑝 + h.c.

]
,

(22)
where “h.c.” stands for “Hermitian conjugate”. The measure-

ment error for the number of quanta in the signal mode can be
calculated by standard error propagation formula:

(Δ𝑛𝑠)2 =
(Δ𝑋Z )2

𝐺2
, (23)

where

𝐺 =
𝜕〈�̂�Z 〉
𝜕𝑛𝑠

(24)

is the transfer function,

(Δ𝑋Z )2 = 〈�̂�2Z 〉 − 〈�̂�Z 〉2 , (25)

and momenta 〈�̂�Z 〉, 〈�̂�2Z 〉 are calculated for a given value of
𝑛𝑆 , that is for the Fock state |𝑛𝑠〉 of the signal mode.
If the probe mode state is prepared in a coherent state |𝛼〉𝑝 ,

the expectation value of the probe amplitude can be selected
to be real

𝛼 =
√︁
�̄�𝑝 . (26)

The exact value of the measurement error Δ𝑛𝑠 for this case is
calculated in the App. A, see Eqs. (A5).
In the case of weak non-linearity and strong probe field the

solution can be simplified. Let us assume that

|Γ𝑆 | → 0 , �̄�𝑝 → ∞ , but Γ𝑆 �̄�𝑝 remains finite. (27)

This approximation iswell-satisfied for the realisticwhispering
gallery mode (WGM) resonators (see Sec. VII). In this case
(see App. A)

(Δ𝑋)2 = 1
2
− Γ𝑆 �̄�𝑝 sin 2𝜑 + 2Γ2𝑆 �̄�

2
𝑝 sin2 𝜑 , (28a)

𝐺 = −
√
2𝛼Γ𝑋 sin 𝜑 , (28b)

where

𝜑 = Γ𝑆 �̄�𝑝 + Γ𝑋𝑛𝑠 + Z . (29)

These equations correspond to the ideal exact measurement
of �̂�Z . The losses in the measurement channel can be taken
into account by introducing its unified quantum efficiency [
(which includes, in particular, the finite quantum efficiency of
the homodyne detector) as

(Δ𝑋)2[ = [(Δ𝑋)2 + 1 − [

2
, (30a)

𝐺[ =
√
[𝐺 , (30b)

resulting in an expression for the measurement error for the
number of quanta in the signal mode:

(Δ𝑛𝑠)2 =
(Δ𝑋Z )2[
𝐺2[

=
1
Γ2
𝑋

[1 + (cot 𝜑 − 2[Γ𝑆 �̄�𝑝)2

4[�̄�𝑝

+(1−[)Γ2𝑆 �̄�𝑝

]
.

(31)
Following the reasoning of Sec. IV, we assume that cot 𝜑 =
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0, which corresponds to the maximum of the transfer function
as well as to the measurement of the phase quadrature of the
output probe beam. Following this path we arrive at

(Δ𝑛𝑠)2 =
1
Γ2
𝑋

(
1
4[�̄�𝑝

+ Γ2𝑆 �̄�𝑝

)
. (32)

In the ideal case of [ = 1, this equation reduces to Eqs. (11).
The minimum of the measurement error of the optimized

detection procedure described by (31)

(Δ𝑛𝑠,min)2 =
1
Γ2
𝑋

[
1
4[�̄�𝑝

+ (1 − [)Γ2𝑆 �̄�𝑝

]
, (33)

is achieved at the optimum angle 𝜑 given by

cot 𝜑 = 2[Γ𝑆 �̄�𝑝 . (34)

In the ideal case of [ = 1, the additional term in (Δ𝑛𝑠)2
vanishes, giving Eq. (15a).
Our reasoning contains a “vicious loop”: the value of Z ,

defined by Eq. (34), depends on the measured value 𝑛𝑠 , which
is unknown before the measurement. Let us consider an im-
portant, from the practical point of view, case of

|𝑛𝑠 − �̄�𝑠 | � �̄�𝑠 (35)

It includes the coherent a priory quantum state of the signal
mode. The "a priory" condition means that the expectation
value �̄�𝑠 is known by definition. In this case, Eq. (34) can be
replaced with the following condition:

cot �̄� = 2[Γ𝑆 �̄�𝑝 , (36a)

where

�̄� = Γ𝑆 �̄�𝑝 + Γ𝑋 �̄�𝑠 + Z . (36b)

It is shown in App. B, that under reasonable assumptions, the
condition (36) leads only to a minor correction to Eq. (33), see
Eq. (B6).
It follows from Eq. (33) that the optimal number of probe

mode quanta, equal to

�̄�
opt
𝑝 =

1
2Γ𝑆

√︁
[(1 − [)

, (37)

exists, which gives the following minimized measurement er-
ror:

(Δ𝑛opt
𝑠,𝑚𝑖𝑛

)2 = Γ𝑆

Γ2
𝑋

√︄
1 − [

[
. (38)

To validate the results presented above we study the lossy
system using the Langevin approach in Appendix D. The result
obtained with both methods led to the same conclusion: the
QND of the photon number is feasible if the imperfections of
the measurement system are small enough.
The Langevin approach also resulted in an interesting ob-

servation. It is possible to envision a scheme in which the
signal mode and the probe mode are coupled in different ways.
The signal is strongly undercoupled, so its attenuation is mini-
mized to a value defined by the intrinsic 𝑄-factor of the signal
mode. The probe mode can be overcoupled, to minimize the
attenuation of the probe light passing the cavity. Such a load-
ing difference is feasible if the signal and probe waves have
significantly different carrier frequencies. In that way one can
consider sequential QND measurements in the cavity.

VI. CONDITIONAL STATE OF THE SIGNAL MODE

Let us consider the wave function of the final quantum state
of the joint two-mode systems and assume for simplicity that
[ = 1. Using the Hamiltonian (17) we find for the final state

|Ψ〉 = Û |𝛼〉𝑝 ⊗ |𝜓〉𝑠 , (39)

where

Û = exp
Ĥ 𝑡

𝑖ℏ
= exp

[
𝑖Γ𝑆

2

∑︁
𝑥=𝑝,𝑠

�̂�𝑥 (�̂�𝑥 − 1) + 𝑖Γ𝑋 �̂�𝑝 �̂�𝑠

]
(40)

is the evolution operator.
Measurement of the probe mode quadrature �̂�Z reduces the

signal mode into the following quantum state

|𝜓(𝑋)〉 = Ω̂(𝑋) |𝜓〉𝑠√︁
𝑊 (𝑋)

, (41)

where 𝑋 is the measurement result,

Ω̂(𝑋) = 𝑝 〈𝑋, Z |Û |𝛼〉𝑝 =

∞∑︁
𝑛𝑠=0

𝑒𝑖Γ𝑆𝑛(𝑛−1)/2Ω(𝑋, 𝑛𝑠) |𝑛𝑠〉𝑠 𝑠 〈𝑛𝑠 |

(42)
is the reduction (Kraus) operator, |𝑋, Z〉𝑝 is the eigenstate of
�̂�Z with the eigenvalue 𝑋 ,

𝑊 (𝑋) = 𝑠 〈𝜓 |Π̂(𝑋) |𝜓〉𝑠 (43)

is the a priory probability distribution of 𝑋 ,

Π̂(𝑋) = Ω̂† (𝑋)Ω̂(𝑋) =
∞∑︁

𝑛𝑠=0
|Ω(𝑋, 𝑛𝑠) |2 |𝑛𝑠〉𝑠 𝑠 〈𝑛𝑠 | (44)

is the positive operator-valued measure (POVM) [31] for this
measurement, and

Ω(𝑋, 𝑛𝑠) = 𝑝 〈𝑋, Z | exp
[
𝑖Γ𝑆

2
�̂�𝑝 (�̂�𝑝 − 1) + 𝑖Γ𝑋𝑛𝑠 �̂�𝑝

]
|𝛼〉𝑝 .
(45)

The explicit form of the reduction operator Ω̂(𝑋) for the
asymptotic case of (27) is calculated in Appendix C, see
Eq. (C6). It follows from this result, that the conditional prob-
ability distribution of 𝑋 for a given number of quanta in the
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signal mode 𝑛 is equal to

|Ω(𝑋, 𝑛) |2 = 1√︁
2𝜋(Δ𝑋)2

exp
[
− (𝑋 −

√
2𝛼 cos 𝜑)2

2(Δ𝑋)2

]
, (46)

with the values of (Δ𝑋)2 and 𝜑 are given by Eqs. (28a, B1).
The a posteriori probability distribution for 𝑛𝑠 conditioned

on the measured value of 𝑋 , can be obtained form Eq. (46)
using Bayes’ theorem:

𝑊apost (𝑛𝑠 |𝑋) =
1

W(𝑋) |Ω(𝑋, 𝑛𝑠) |2𝑊apr (𝑛𝑠) , (47)

where𝑊apr is the a priori probability distribution and

W(𝑋) =
∞∑︁

𝑛=0𝑠

|Ω(𝑋, 𝑛) |2𝑊apr (𝑛𝑠) (48)

is the normalization factor, equal to the unconditional proba-
bility distribution for 𝑋 .
It interesting to note, that the function (46) is Gaussian in

𝑋 , but non-Gaussian in 𝑛𝑠 due to the dependence of 𝜑 on 𝑛𝑠 ,
see Eq. (29). Therefore, the probability distribution (47) is
also non-Gaussian (see also the brief discussion in the end of
App. B).
In Fig. 1, the probability distribution is plotted as a function

of 𝑛𝑠 . That picture was plotted using the distribution (47) and
assuming the condition (36). The initial probability distribu-
tion, whichwe assume to be the Poissonian one (corresponding
to the coherent initial state of the signal mode):

𝑊apr (𝑛) =
𝑒−�̄�𝑠 �̄�𝑛𝑠
𝑛!

(49)

is also shown for the comparison. Panel (a) illustrates the result
of QNDmeasurement with the parameters close to the realistic
experimental values discussed in Sec. VII. In the panel (b) we
used higher values of Γ𝑋 , �̄�𝑝 which give non-Gaussian shape
of the a posteriori distribution.

VII. DISCUSSION

Let us evaluate the efficiency and requirements of the QND
measurements performed with high-Q WGM resonators. The
factorsΓ𝑋 , Γ𝑆 [see Eq. (6)] for theXPMand SPMeffects based
on the electronic nonlinearity of the material can be estimated
as

Γ𝑋 = 2Γ𝑆 = 2𝑄load
𝑛2
𝑛0

ℏ𝜔0𝑐

𝑉eff
. (50)

where 𝑐 is the speed of light, 𝜔0 is the optical frequency, 𝑛0 is
the refractive index of the material, 𝑛2 is the cubic nonlinearity
coefficient,𝑉eff is the effective volume of themode, and𝑄load =
𝜔0𝜏 is the loaded quality factor. Note that one of the factors,

which constitute the unified quantum efficiency [, is equal to

[load = 1 −
𝑄load
𝑄intr

. (51)

where 𝑄intr is the intrinsic quality factor. Therefore, in order
to overcome the SQL by a significant margin, 𝑄load should be
smaller that 𝑄intr by 1-2 orders of magnitude.
We select CaF2 as the resonator host material in which

the highest quality factor 𝑄intr = 3 × 1011 was achieved so
far [23]. We assume the that the (vacuum) wavelengths are
close to _ = 2𝜋𝑐/𝜔0 = 1.55 `m for both the signal and
probe modes. At this wavelength, CaF2 is characterized by
the refractive index 𝑛0 = 1.44 and the nonlinearity factor
𝑛2 = 3.2 × 10−20m2/W. We assume also that the resonator
has 100 `m in diameter. The circumference of the resonator
is shaped in a sharp edge resulting in 2 `m × 3 `m mode
cross-section and, correspondingly, 𝑉eff ' 2 × 10−15m3 mode
volume.
For these parameters, the factorsΓ𝑋 andΓ𝑆 can be estimated

as follows:

Γ𝑋 = 2Γ𝑆 ≈ 0.85 × 10−6 × 𝑄load

109
. (52)

For a reasonably optimistic value of [ = 0.9, these parameters
translate to the following values of the optimal number of the
probe quanta and the corresponding measurement error, see
Eqs. (37, 38):

�̄�
opt
𝑝 ≈ 4 × 106 × 109

𝑄load
, (53)

(Δ𝑛opt
𝑠,min)

2 ≈ 2 × 105 × 109

𝑄load
. (54)

The pump power which is necessary to excite the intracavity
number of quanta (53), can be estimated as follows:

𝑃𝑝 =
ℏ𝜔20�̄�𝑝

2𝑄load
≈ 0.3 `W ×

(
109

𝑄load

)2
. (55)

This estimate shows that we overcome the SQL by almost
one order of magnitude using several times smaller number of
the signal photons (for example, �̄�𝑠 ≈ 106), than the number
of probe photons.
Possible conceptual implementations of the proposed mea-

surement are illustrated by Fig. 2a. We assume that wave-
lengths of the probe and signal waves are dissimilar enough
to allow their separation outside of the resonator. Probe wave
(laser output in a coherent state) is injected to the resonator by
means of a prism coupler. Part of the laser output is optimally
phase shifted and used as a reference. Signal wave is coupled
to the resonator using the same prism. A quadrature compo-
nent of the probe emitted from the resonator is measured using
a balanced homodyne detector. In order to preserve quantum
states of the signal and the probe the resonator modes are over-
coupled. Alternatively, classical probe wave can be injected
through an additional, weakly coupled channel, see Fig. 2b.
This later approach is preferable because the resonator filters
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FIG. 1. The a priori (49) and a posteriori (47) probability distributions for the number of quanta in the signal mode. (a) the parameters,
discussed in Sec. VII. (b) Slightly increased values of Γ𝑋 , �̄�𝑝 , giving non-Gaussian shape of the a posteriori distribution. In both cases, the
initial quantum state of the signal mode is assumed to be a coherent one.

FIG. 2. Possible experimental implementations of QND detection using WGM monolithic microresonators equipped with, (a), a single
evanescent field coupler and, (b), two couplers. The probing wave can be excited either in the same and in the opposite direction with the signal.

out the unwanted frequency aswell as spatial components from
the probe.

VIII. CONCLUSION

Sensing an optical signal by means of a probe wave via
cross-phase modulation in a nonlinear media paves a way to a
non-absorbing measurement of the signal quanta number with
the precision beating, under certain conditions, the standard
quantum limit. In this paper we obtained an exact solution
to the Heisenberg non-linear equations of motion of the sys-
tem and presented the careful formulation of the important,
from the practical point of view, linearized approximation of
this solution. We found the explicit form of the conditional
final state of the signal mode and shown that it could have a
non-Gaussian shape. Our analysis indicates that the self-phase
modulation does not limit the measurement accuracy. Though
these results are applicable to various systems, both resonant
and non-resonant, measurable response can be obtained if pa-
rameter Γ𝑋 is reasonably high (see Eq. (15)). This could limit
the sensitivity, because the nonlinearity of transparent mate-
rials is low while the measurement time 𝜏 is limited by the
losses. However, the state-of-the-art whispering gallery mi-
croresonators with Kerr non-linearity and record quality factor

may overcome this limitation.
We found that using a WGM resonator having 100 `m in

diameter, made of pure calcium fluorite, and interrogated with
microwatt level probe wave in the 1.5 `𝑚 telecom band al-
lows us to obtain the sensitivity several times smaller than the
limit √𝑛𝑠 if the mean number of quanta 𝑛𝑠 exceeds about one
million.
It is worth to note that the progress of CMOS-foundry-

fabrication of Si3N4 microresonators can make them an alter-
native platform for the QND measurement. While the best
achieved 𝑄 ∼ 109 [25, 32] is still inferior to crystalline res-
onators, it was improved by orders of magnitude during the
last three years.
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Appendix A: Calculation of the measurement error

The straightforward calculation gives that for the initial state
of the two-mode system, equal to |𝛼〉𝑝 ⊗ |𝑛〉𝑠 , the first two
momenta of 𝑋Z are equal to

〈�̂�Z 〉 =
√
2𝛼Re

[
𝑒𝑖 (Γ𝑋𝑛𝑠+Z )

𝑝 〈𝛼 |𝑒𝑖Γ𝑆 �̂�𝑝 |𝛼〉𝑝
]
, (A1a)

〈�̂�2Z 〉 = 𝛼2 Re
[
𝑒2𝑖 (Γ𝑋𝑛𝑠+Z+Γ𝑆/2)

𝑝 〈𝛼 |𝑒2𝑖Γ𝑆 �̂�𝑝 |𝛼〉𝑝
]
+ 𝛼2 + 1

2
.

(A1b)

Taking into that for any factor _,

〈𝛼 |𝑒𝑖_�̂� |𝛼〉 = exp[|𝛼 |2 (𝑒_ − 1)] , (A2)

see [33], we obtain:

〈�̂�Z 〉 =
√
2𝛼𝐸1 cos 𝜑 , (A3a)

〈�̂�2Z 〉 = 𝛼2𝐸2 cos(2𝜑 + Δ) + 𝛼2 + 1
2
, (A3b)

where

𝐸1 = exp[𝛼2 (cosΓ𝑆 − 1)] , (A4a)
𝐸2 = exp[𝛼2 (cos 2Γ𝑆 − 1)] , (A4b)
𝜑 = 𝛼2 sinΓ𝑆 + Γ𝑋𝑛𝑠 + Z , (A4c)

Δ = 𝛼2 (sin 2Γ𝑆 − 2 sinΓ𝑆) + Γ𝑆 . (A4d)

Therefore,

𝐺 = −
√
2𝛼Γ𝑋𝐸1 sin 𝜑 , (A5a)

(Δ𝑋Z )2 = 〈�̂�2Z 〉 − 〈�̂�Z 〉2 = 𝐴 + 𝐵 cos 2𝜑 − 𝐶 sin 2𝜑 , (A5b)

(Δ𝑛𝑠)2 =
(Δ𝑋Z )2

𝐺2

=
1

2𝛼2Γ2
𝑋
𝐸21

[(𝐴 + 𝐵) cot2 𝜑 − 2𝐶 cot 𝜑 + 𝐴 − 𝐵] , (A5c)

where

𝐴 =
1
2
+ 𝛼2 (1 − 𝐸21) , (A6a)

𝐵 = 𝛼2 (𝐸2 cosΔ − 𝐸21) , (A6b)
𝐶 = 𝛼2𝐸2 sinΔ . (A6c)

In the asymptotic case (27),

𝐴 → 1
2
+ 𝛼4Γ2𝑆 , 𝐵 → −𝛼4Γ2𝑆 , 𝐶 → 𝛼2Γ𝑆 , (A7)

which results in Eqs. (28, 29).

Appendix B: Accounting for the initial uncertainty of 𝑛𝑠

It follows from Eqs. (29, 36b), that

𝜑 = �̄� + Γ𝑋 (𝑛𝑠 − �̄�𝑠) . (B1)

Let us assume that

Γ𝑋 ∼ Γ𝑆 , �̄�𝑠 . �̄�𝑝 . (B2)

Taking into account the approximation (27) and the inequality
(35), one can obtain:

Γ𝑋 |𝑛𝑠 − �̄�𝑠 | � 1 . (B3)

Therefore,

cot 𝜑 ≈ cot �̄� − Γ𝑋 (𝑛𝑠 − �̄�𝑠)
sin2 �̄�

= 2[Γ𝑆 �̄�𝑝 − 𝜖 , (B4)

where

𝜖 = (1 + 4[2Γ2𝑆 �̄�
2
𝑝)Γ𝑋 (𝑛𝑠 − �̄�𝑠) . (B5)

Substitution of (B4) into Eq. (31) leads to

(Δ𝑛𝑠)2 =
1
Γ2
𝑋

[
1 + 𝜖2

4[�̄�𝑝

+ (1 − [)Γ2𝑆 �̄�𝑝

]
. (B6)

If the number of the probe mode quanta is equal to the optimal
one (37), then Eq. (B5) reduces to

𝜖 =
Γ𝑋 (𝑛𝑠 − �̄�𝑠)
1 − [

. (B7)

For the values of Γ𝑋 , �̂�𝑠 and [, introduced in Sec. VII, this
corresponds to

𝜖 ≈ 0.01 × 𝑛𝑠 − �̄�𝑠√
�̄�𝑠

. (B8)

Therefore, if the assumptions (27, 35, B2) are fulfilled and the
initial quantum state of the signal mode is close to the coherent
one, then 𝜖2 � 1, which reduces Eq. (B6) to (33). However, if
the measured value 𝑛𝑠 deviates strongly form the mean value
�̄�𝑠 , then the factor 𝜖 becomes significant, introducing depen-
dence on 𝑛𝑠 into Δ𝑛𝑠 and, therefore, making the a posteriori
distribution (47) non-Gaussian.

Appendix C: Calculation of statistics of the measurement results

Absorbing the regular phase shifts into |𝑋, Z〉, the kernel
(45) can be presented as follows:

Ω(𝑋, 𝑛) = 𝑝 〈𝑋, 𝜑| exp
{
𝑖Γ𝑆

2
[�̂�𝑝 (�̂�𝑝−1)−2𝛼2�̂�𝑝]

}
|𝛼〉 , (C1)

where

|𝑋, 𝜑〉𝑝 = 𝑒−𝑖 (Γ𝑆𝛼
2+Γ𝑋𝑛) �̂�𝑝 |𝑋, Z〉𝑝 (C2)
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and 𝜑 is given by Eq. (29). Then rewrite it as follows:

Ω(𝑋, 𝑛) = 𝑝 〈𝑋, 𝜑|D̂ (𝛼)

× exp
{
𝑖Γ𝑆

2
[(�̂�†𝑝 + 𝛼)2 (�̂�𝑝 + 𝛼)2 − 2𝛼2 (�̂�†𝑝 + 𝛼) (�̂�𝑝 + 𝛼)]

}
× D̂† (𝛼) |𝛼〉𝑝 , (C3)

where D̂ is the unitary displacement operator defined by

D̂† (𝛼)�̂�𝑝D̂(𝛼) = �̂�𝑝 + 𝛼 . (C4)

Assume the approximation (27). In this case, omitting the
non-physical factor 𝑒−𝑖Γ𝑆𝛼

4/2, we obtain:

Ω(𝑋Z , 𝑛) ≈ 𝑝 〈𝑋, 𝜑|D(𝛼) exp
[
𝑖Γ𝑆𝛼

2

2
(�̂�𝑝+�̂�†𝑝)2

]
D† (𝛼) |𝛼〉𝑝

= 𝑝 〈𝑋, 𝜑|𝑒𝑖Γ𝑆𝛼
2 (�̂�−𝛼

√
2)2 |𝛼〉𝑝 . (C5)

The kernel Ω(𝑋Z , 𝑛) can be calculated explicitly using the
position representation

Ω(𝑋Z , 𝑛) =
∫ ∞

−∞
𝑝 〈𝑋, 𝜑|𝑋〉𝑝𝑒𝑖Γ𝑆𝛼

2 (𝑋−𝛼
√
2)2

𝑝 〈𝑋 |𝛼〉𝑝𝑑𝑋

=
1√︁

𝜋1/2 (^ + 𝑖 cot 𝜑) | sin 𝜑 |
exp

[
1

^ + 𝑖 cot 𝜑

×
(
−1 + 𝑖^ cot 𝜑

2
𝑋2𝜑 +

√
2𝑖𝛼^
sin 𝜑

𝑋𝜑 − 𝑖𝛼2^ cot 𝜑
)]
, (C6)

where

^ = 1 − 2𝑖Γ𝑆𝛼
2 , (C7)

see [34], Sec. 4.4.2.

Appendix D: Sensitivity of the open system

A practical implementation of the QND involves detection
of the probe photons outside of the resonator mode as well as
attenuation of the pump and probe photons due to imperfection
of the system. One has to utilize a constant external pumping of
the mode to support the constant number of the probe photons.
Impact of these processes can be estimated using Langevin
approach.
Since the exact solution of the problem is rather involved,

we introduce several simplifications. Firstly, we expect that
the signal mode is isolated from the environment in such a
way that the decay from the mode can be neglected during
the measurement time. This is reasonable as the signal mode
can have a much higher 𝑄-factor than the loaded probe mode,
and the value of intrinsic Q-factor of a WGM resonator can
exceed 1011, while the loaded 𝑄-factor can be as small as 109.
Secondly, considering the probe mode, due to the same differ-
ence between the intrinsic and loaded 𝑄-factors, we assume
that the attenuation due to the controlled coupling with the

external pump prevails over the unwanted attenuation of the
probe. Thirdly, we expect that the pump and the signal have
significantly dissimilar frequencies, so that the signal is not
impacted by the probe coupling. This is reasonable as the cou-
pling element can be optimized for a particular wavelength.
Accounting for the aforesaid, we can assume that �̂�𝑠 = const
and we have to consider dynamics of the probe wave only.
Taking the assumptions listed above into account and using

the rotating with the external pump frequency 𝜔𝑐 picture,
equation of motion for the probe field can be presented as
follows [compare with Eq. (20a)]:

¤̂𝑎𝑝 (𝑡) = −[^ + 𝑖(𝜔𝑝 − 𝜔𝑐)]�̂�𝑝 (𝑡) + 𝑖𝛾𝑆 �̂�
†
𝑝 (𝑡)�̂�2𝑝 (𝑡)

+ 𝑖𝛾𝑋 �̂�𝑠 �̂�𝑝 (𝑡) +
√︁
2^𝑐𝐴 +

√
2^�̂�in (𝑡) . (D1)

Here 𝐴,𝜔𝑐 are the amplitude and the frequency of the external
pump,

^ = ^𝑐 + ^𝑙 (D2a)

is the the half-bandwidth of the probe mode,

�̂�in =
1

√
2^

(√︁
2^𝑐 �̂�𝑐 +

√︁
2^𝑙 �̂�𝑙

)
(D2b)

is the corresponding Langevine force, ^𝑐 , ^𝑙 are the compo-
nents of ^ imposed, respectively, by the coupling with the
transmission line and the losses, �̂�𝑐 , �̂�𝑙 are the corresponding
components of �̂�in.
We present the operators as sums of large classical com-

ponents and small zero mean value quantum uncertainties, in
particular:

�̂�𝑝 := 𝛼 + �̂�𝑝 , (D3a)
�̂�𝑠 := 𝑁𝑠 + �̂�𝑠 , (D3b)

with

𝛾𝑆

√︃
〈�̂�2𝑠〉 � ^ . (D4)

Without loss of generality, we assume validity of the condition
(26).
Using Eq. (D1) we derive for 𝛼

𝛼(^ + 𝑖𝛿 − 𝑖𝛾𝑋𝑁𝑠) =
√︁
2^𝑐𝐴 . (D5)

Here

𝛿 = 𝜔𝑝 − 𝜔𝑐 − 𝑖𝛾𝑆 �̄�𝑝 (D6)

is the probe mode frequency detuning,
In the linear approximation with respect of the noise terms

of the probe light we get, using the Fourier picture:

𝐿 (Ω)�̂�(Ω) − 𝑖𝛾𝑆𝛼
2�̂�† (−Ω) =

√
2^�̂�in (Ω) + 𝑖𝛾𝑋𝛼�̂�𝑠 , (D7)

where

𝐿 (Ω) = ^ + 𝑖𝛿 − 𝑖Ω − 𝑖𝛾𝑆 �̄�𝑝 . (D8)
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The solution to this equation is

�̂�(Ω) = 1
𝐷 (Ω)

{√
2^ [𝐿∗ (−Ω)�̂�in (Ω) + 𝑖𝛾𝑆 �̄�𝑝 �̂�

†
in (−Ω)]

+ 𝑖𝛾𝑋𝛼[𝐿∗ (−Ω) − 𝑖𝛾𝑆 �̄�𝑝]�̂�𝑠
}
, (D9)

where

𝐷 (Ω) = 𝐿 (Ω)𝐿∗ (−Ω) − 𝛾2𝑆 �̄�
2
𝑝 . (D10)

Correspondingly, for the output light we obtain

�̂�out (Ω) =
√︁
2^𝑐 �̂�𝑝 (Ω)− �̂�𝑐 (Ω) =

√
[�̂�out 0(Ω) +

√︁
1 − [ 𝑓 (Ω) ,

(D11)
where

[ =
^𝑐

^
(D12)

is the quantum efficiency,
√
2^ 𝑓 =

√︁
2^𝑐 �̂�𝑙 −

√︁
2^𝑙 �̂�𝑐 (D13)

is the effective noise, and

�̂�out 0(Ω) =
√
2^�̂�𝑝 (Ω) − �̂�in (Ω)

=
1

𝐷 (Ω)
{
[𝐿∗ (Ω)𝐿∗ (−Ω) + 𝛾2𝑆 �̄�

2
𝑝]�̂�in (Ω) + 2𝑖^𝛾𝑆 �̄�𝑝 �̂�

†
in (Ω)

+ 𝑖
√
2^𝛾𝑋𝛼[𝐿∗ (−Ω) − 𝑖𝛾𝑆 �̄�𝑝]�̂�𝑠

}
(D14)

is the value of �̂�out in the absence of losses ([ = 0). Note that
if �̂�𝑐 , �̂�𝑙 correspond to two independent vacuum fields, then
the same is true for �̂�in, 𝑓 .

Taking into account that within our approximation �̂�𝑠 =

const, the optimal data processing procedure is the DC fil-
tration of the output signal over the time � 1/^, which cor-
responds to the frequency band |Ω| � ^. We suppose also
that the pump is tuned in resonance with the modified eigen
frequency of the probe mode

𝛿 = 0 . (D15)

In this case, Eq. (D14) simplifies to

�̂�out 0(Ω) = (1 + 𝑖Γ𝑆 �̄�𝑝)�̂�in (Ω) + 𝑖Γ𝑆 �̄�𝑝 �̂�
†
in (Ω) + 𝑖

√︂
^

2
Γ𝑋𝛼�̂�𝑠 ,

(D16)

where

Γ𝑆,𝑋 =
2𝛾𝑆,𝑋
^

. (D17)

Let the quadrature of �̂�out defined by the homodyne angle
Z :

�̂�
Z

out (Ω) =
1
√
2

[
�̂�out (Ω)𝑒𝑖Z + �̂�

†
out (−Ω)𝑒−𝑖Z

]
= �̂�

Z

out noise(Ω) + 𝐺�̂�𝑠 (D18)
is monitored by the homodyne detector. Here

�̂�
Z

out noise(Ω) =
√
[[(cos Z − 2Γ𝑆 �̄�𝑝 sin Z)�̂�𝑐in (Ω)

− �̂�𝑠in (Ω) sin Z] +
√︁
1 − [ 𝑓 Z (Ω) (D19)

is the noise part of �̂�Zout,

𝐺 = −
√︁
[^�̄�𝑝Γ𝑋 sin Z (D20)

is the gain factor,

�̂�𝑐in (Ω) =
�̂�in (Ω) + �̂�

†
in (−Ω)√
2

, �̂�𝑠in (Ω) =
�̂�in (Ω) − �̂�

†
in (−Ω)

𝑖
√
2
(D21)

are the cosine and sine quadratures of �̂�in and

𝑓 Z (Ω) = 1
√
2

[
𝑓 (Ω)𝑒𝑖Z + 𝑓 † (−Ω)𝑒−𝑖Z

]
. (D22)

Taking into account our approximations, �̂�Zout noise is a white
noise with the spectral density, we obtain,

𝑆 =
1
2
(1 − 4[Γ𝑆 �̄�𝑝 cos Z sin Z + 4[Γ2𝑆 �̄�

2
𝑝 sin2 Z) . (D23)

Therefore, the measurement error is equal to

(Δ𝑛𝑠)2 =
𝑆

𝜏𝐺2

=
1

2^𝜏Γ2
𝑋

[1 + (cot Z − 2[Γ𝑆 �̄�𝑝)2

4[�̄�𝑝

+ (1 − [)Γ2𝑆 �̄�𝑝

]
, (D24)

where 𝜏 � 1/^ is the measurement time. Comparing
Eq. (D24) with Eq. (31) we conclude that the Langevin ap-
proach presented in this Appendix results in the same expres-
sion as was derived in the main body of the paper.
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