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The dark-mode effect is a stubborn obstacle for ground-state cooling of multiple degenerate mechanical
modes optomechanically coupled to a common cavity-field mode. Here we propose an auxiliary-cavity-mode
method for simultaneous ground-state cooling of two degenerate or near-degenerate mechanical modes by
breaking the dark mode. We find that the introduction of the auxiliary cavity mode not only breaks the dark-
mode effect, but also provides a new cooling channel to extract the thermal excitations stored in the dark mode.
Moreover, we study the general physical-coupling configurations for breaking the dark mode in a generalized
network-coupled four-mode optomechanical system consisting of two cavity modes and two mechanical modes.
We find the analytical dark-mode-breaking condition in this system. This method is general and it can be
generalized to break the dark-mode effect and to realize the simultaneous ground-state cooling in a multiple-
mechanical-mode optomechanical system. We also demonstrate the physical mechanism behind the dark-mode
breaking by studying the breaking of dark-state effect in the “N”-type four-level atomic system. Our results
not only provide a general method to control various dark-mode and dark-state effects in physics, but also pave
the way to the study of macroscopic quantum phenomena and applications in multiple-mechanical-resonator

systems.

I. INTRODUCTION

Considerable recent interest in cavity optomechanics [1—
3] has been paid to multimode optomechanical systems
involving two [4—14] or multiple [15-27] mechanical res-
onators; and particularly the two-mechanical-mode optome-
chanical systems have been realized in several experimental
platforms [7-14]. The study of multiple-mechanical-mode
optomechanical systems has significance in both fundamental
quantum physics [28] and modern quantum technologies [3].
For example, generation of macroscopic mechanical entan-
glement in multimode optomechanical systems has been
experimentally demonstrated [10, 11, 13, 14]. Multimode
optomechanical systems have also been considered to study
quantum many-body effects [24-26], high performance
sensors [29, 30], precise measurement [31], and nonreciprocal
phonon or photon transport [32-39].

The simultaneous ground-state cooling of multiple me-
chanical modes has become a desired task because it is a
prerequisite for the manipulation of macroscopic mechanical
coherence [28]. In particular, owing to the inherent struc-
tural features in multiple mechanical-mode optomechanical
systems, people prefer to implement the simultaneous cooling
of multiple mechanical resonators, rather than to cool these
resonators one by one using the single-resonator cooling
techniques. Though great success has been made in cooling a
single mechanical resonator in optomechanical systems [40—
51], it remains a great challenge to perform ground-state
cooling of multiple degenerate mechanical resonators coupled
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to a common cavity field, due to the mechanical dark-
mode effect [7, 52-55]. For the two-mechanical-mode case,
the dark-mode effect has been theoretically found [52] and
experimentally demonstrated [55]. Meanwhile, the dark
mode formed in optomechanical systems involving two cavity
modes and one mechanical mode has also been found [56—
59]. So far, theoretical proposals for optomechanical cooling
of multiple mechanical resonators coupled in-series have
been proposed [60, 61], and cooling of multimodes in a
resonator have been analyzed with the cold-damping feedback
method [62, 63]. In addition, ground-state cooling of multiple
mechanical resonators has been proposed based on synthetic
magnetism [64] and reservoir engineering [65]. Particularly,
we mention that considerable attention [66—69] has been paid
to the suppression of optomechanical backaction and to the
improvement of restrictions for effective cooling in multimode
optomechanical systems.

In this paper, we propose an auxiliary-cavity-mode method
for breaking the dark mode and further realizing ground-state
cooling of two degenerate mechanical modes. We also explore
the general coupling configurations for breaking the dark
mode in a generalized four-mode optomechanical system, in
which all the two-node couplings exist among two cavity
modes and two mechanical modes. We find the analytical
general conditions for forming and breaking the dark mode.
Moreover, we extend this method to break the dark modes and
realize the ground-state cooling of the multiple mechanical
resonators. Correspondingly, our scheme can also be used
to cool multiple degenerate or near-degenerate vibrational
modes in a resonator. We also describe the physical
mechanism for breaking the dark-state effect in the “N’-
type four-level atomic system. The physical mechanism of
our scheme is general and it can be generalized to control
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other dark-mode and dark-state effects in various branches of
physics. In this sense, our results not only open up a new
route to the realization of simultaneous ground-state cooling
of two degenerate or near-degenerate mechanical resonators
and enrich the technique of few-body resonator cooling, but
also initiate advances in dark-state engineering [70].

The rest of this paper is organized as follows. In Sec. II,
we introduce the physical model and present the quantum
Langevin equations. In Sec. I1I, we study ground-state cooling
of the two mechanical modes by calculating the final mean
phonon numbers. In Sec. IV, we obtain the universal dark-
mode-breaking conditions in a four-mode optomechanical
system consisting of two cavity modes and two mechanical
modes. We also analyze the quantum interference effect in
the energy-level transitions of the system. In Sec. V, we study
the simultaneous ground-state cooling of multiple mechanical
modes and the dark-mode breaking in a multiple-mechanical-
mode optomechanical system. In Sec. VI, we describe the
physical mechanism for breaking the dark-state effect in
the “N”-type four-level atomic system. Finally, we present
some discussions on the experimental implementation of our
scheme in Sec. VII and summarize this work in Sec. VIIIL.

II. PHYSICAL MODEL AND EQUATIONS OF MOTION

We consider an “N”-type four-mode optomechanical
system consisting of two cavity modes (an intermediate
cavity mode a and an auxiliary cavity mode ay) and two
mechanical modes (b; and b;), as shown in Fig. I(a).
Here, the intermediate cavity mode is coupled to the two
mechanical modes via radiation-pressure interactions. When
the frequencies of the two mechanical modes are degenerate,
a dark mode is formed in this linearized optomechanical
system [42]. This dark mode decouples from the intermediate
cavity mode, and hence the ground-state cooling of the two
mechanical modes is largely suppressed. To break the dark-
mode effect, we introduce the auxiliary cavity mode a,, which
is optomechanically coupled to the mechanical mode b;.
Moreover, two driving fields are applied to the cavity modes
to control the optical and mechanical degrees of freedom.
In a rotating frame defined by the operator exp[—i(wza’a +
a)daza_y)t], the system Hamiltonian is given by (i = 1)

Hy = Ad'a+Adla,+ ) [wb]bi+ gia'a(b] + b)]
=12

+gaalay(b] +by) +(Qa' + Qual + Hee), (1)

where A, = w, — wp (Ay = ws — wy) is the driving
detuning of the cavity frequency w, (w,) with respect to its
driving frequency w; (wg); a (a'), ay (al), and b, (b;)
are, respectively, the annihilation (creation) operators of the
intermediate cavity mode, the auxiliary cavity mode, and
the /th mechanical mode, with the corresponding resonance
frequencies w,, ws, and w;. The g;=1 2 (g51) term describes the
optomechanical coupling between the mechanical mode b= »
(b1) and the cavity mode a (a,). The parameters wy, (w,) and
Q (Q,) are the driving frequency and amplitude related to the
driving field of the cavity mode a (ay), respectively.
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FIG. 1. (a) Schematic of the “N”-type four-mode optomechanical
system. An intermediate coupling cavity mode a with the resonance
frequency w, is optomechanically coupled to two mechanical modes
by and b,, with the corresponding resonance frequencies w; and w;.
An auxiliary cavity mode a, with the resonance frequency wy is
optomechanically coupled to the mechanical mode b;. The coupling
strength between the cavity mode a (a,) and the mechanical mode
bi=15 (b)) is denoted by g;=12 (gs1). The cavity mode a (ay) is driven
with the driving frequency w; (wy) and the driving amplitude Q
(Qy). The decay rates of the intermediate cavity mode, the auxiliary
cavity mode, and the two mechanical modes are denoted by «, «;,
and y)-12, respectively. (b) The coupling configuration associated
with the approximate linearized Hamiltonian (11). The auxiliary
cavity mode da, (with driving detuning A}) is coupled to the two
hybrid mechanical modes B. (with resonance frequency w.) via the
effective coupling strengths G,.. The cavity mode da (with driving
detuning AY) is coupled to the hybrid mechanical mode B, via the
effective coupling strength G,. The phonon-hopping interaction
between the two hybrid mechanical modes is denoted by . In the
degenerate-mechanical-mode case and in the absence of auxiliary
cavity, i.e., { = 0 and G,. = 0, the hybrid mechanical mode B_ is
decoupled from both the cavity mode da and the hybrid mechanical
mode B,.

To include the dissipations in this system, we assume that
the two cavity fields are coupled to individual vacuum baths,
and that the two mechanical modes are coupled to individual
heat baths. Then the evolution of this system is governed by
the quantum Langevin equations

a=- (A +Ka—iQ—i Z gia(b} + b)) + V2kai,, (2a)
=12

as == (il + ky)ag — i[Q + gaa (b + b))l + V2,

(2b)
by == (y1 + iw))b; — i(glaTa + gslazax) + V2¥1b1n, (2¢)
by = = (y2 + iwy)bs — igad’ a + 2y2b2n, (2d)

where «, kg, and ;=1 » are the decay rates of the intermediate
cavity mode a, the auxiliary cavity mode a;, and the Ith
mechanical mode, respectively. The operators aj, (a:n), Asin

(azgm), and by, (bZin) are the noise operators associated with
the intermediate cavity mode, the auxiliary cavity mode, and
the /th mechanical mode, respectively. These noise operators
have zero mean values and obey the following correlation



functions [71, 72],

(@n(®al (1)) = 6t —1'), (3a)
(@} (Dain(?)) = 0, (3b)
(asin(Dal, (1)) = 6t = 1), (3c)
(@, (Dayn(?)) = 0, (3d)
(brin(D)b], (1)) = (B + 1D — 1), (3e)
by Ob1in(t)) = AS(t = 1), (3f)

for I = 1,2, where -1, is the average thermal-phonon
occupation number associated with the /th mechanical mode.

To cool the mechanical modes, we assume that the two
cavity modes are driven strongly, then the mean photon
numbers in the two cavities are large enough and this
four-mode optomechanical system can be processed by
the linearization procedure. In this way, the operators
o € {a, aT,aS,aI,b,,bZ} can be expressed as a summation
of steady-state average values and quantum fluctuation
operators, i.e., 0 = (0)ss + do. By separating the steady-
state average values and the quantum fluctuation operators, we
can obtain the linearized Langevin equations for the quantum
fluctuation operators

8a =~ (k+iN)oa—i Y [Gi(obs + b)) + V2kay, (4a)
=12

Sas = — (ky + iA)Sa, — iG41(Sby + 8b]) + \2k,asin,  (4b)

by = — (iwy +y1)0b; — iG}da — iGi8a’ — iG*,da
—iGg6al + \2yibyin, (4c)

6by = — (iwy + y2)8by — iG46a — iG26a" + \[2y2byn, (4d)

where the parameters A, = A, + 2g1Re[8;] + 2g2Re|3;] and
A, = A + 2gRe[B1] are, respectively, the effective driving
detunings of the cavity mode a and the auxiliary cavity mode
as, with Re[Sj=1 2] taking the real part of §;. The parameter
G = gia (Gy = gy @) is the linearized optomechanical-
coupling strength between the cavity mode a (ay) and the /th
mechanical mode (the mechanical mode b;). In the steady-
state case, the average values of the system operators can be
obtained as

—iQ

= SS — T a0 5
@ =a) K+iIA, (5a)
—iQ
s =Ug)ss = U 5b
@ =(ds) Ks + iA, (5b)
—igi|al? —igglal?
B1 =(b1)e = gilal .gnl sl (5¢)
Y1+ lwg
—igs|af?
Br =(bo)ys = —22 (5)
Y2 + lwy

For below convenience, we assume that the steady-state
values of @ and a, are real by choosing proper phases
of the driving amplitudes ©Q and Qg then the linearized

optomechanical-coupling strengths G;=;» and Gy are also
real.

Based on Eq. (4), we can derive an approximate linearized
Hamiltonian, which governs the dynamics of the system. For
implementing the cooling scheme, the system should work
in the red-sideband-resonance regime, in which the rotating-
wave approximation can be safely made. By discarding the
noise terms, the linearized optomechanical Hamiltonian can
be written as

Hrwa = ALda"a + N,da’da + G (8assh] + dalob)

+ " |wiob]sb, + Gy(sash] + 6a’sby|. (6
=12

To clearly see the dark-mode effect in this “N”-type four-
mode optomechanical system, we first consider the case
where the auxiliary cavity is absent, i.e., A} = 0 and G, = 0,
then Hamiltonian (6) becomes

Higs = A8a'6a+ " |widb]6bi + Gi(ash] + 5a'ob))| .
=12

)

In this case, two hybrid mechanical modes B, and B_ can be
introduced as

B, = (G15b1 + Gzébz), (8a)
\JGI+G3
1
(G20b1 — G16by). (8b)
\JGI+G3

Here, the new operators satisfy the bosonic commutation
relations [B+,Bi] =1 and [B_,Bi] = 1. By substituting the
operators B. (BI) and B_ (Bi) into Eq. (7), the Hamiltonian
Hpwa can be rewritten as

Higs = Alda’sa + w B B, + w_B'B_ + G.(6aB} + B.6a")
+((B'B_+ B'B,), 9)

where we introduce the resonance frequencies w. of the two
hybrid modes and the coupling strengths ¢ and G, which are
defined by

le% + szg

wy = s 10a
+ e (10a)
wG? + w,G?
w_ :#’ (10b)
Gl +G}

G, =4/G?+ G2, (10¢)
(w1 — w2)G1G2

=, 10d

T e G (10D

From Eq. (10) we can see that the two hybrid modes B_ and
B, are decoupled from each other ({ = 0) when w; = w;.
Moreover, the hybrid mode B_ also decouples from the cavity
mode a, which means that the hybrid mode B_ becomes a



dark mode. At this time, the ground-state cooling of the two
mechanical modes is largely suppressed.

To break the dark-mode effect in this optomechanical
system, we introduce an auxiliary cavity mode, which is
coupled to the mechanical mode b; via the radiation-pressure

interaction. By substituting operators B. (Bi) and B_ (B")
into Eq. (6), the Hamiltonian Hrwa becomes

Hrwa = A:.&ﬁ&a + A’Séazéas + a)+BiB+ +w_B' B_
+((B'B_ + B'B,) + G, (6aB! + B.6a")
+G,,(06asB’ + 6a'B,) + G,_(6a,B" +6aB_),

(11)

where we introduce two new coupling strengths G, and G_,

Gy = & (12a)
(G2 + G2
GG
G, = —172 (12b)

(G2 + G2

The coupling configuration associated with the approximate
Hamiltonian (11) is described by Fig. 1(b). Here,
the couplings are expressed in the representation of the
mechanical hybrid modes. We can see from Eq. (12) that
Gy > 0, i.e., the hybrid modes B. are always coupled with
the auxiliary cavity mode a;. Therefore, even if the hybrid
mode B_ is decoupled from both the intermediate cavity mode
a and the hybrid mode B, the ground-state cooling of the
two mechanical modes can also be achieved via the cooling
channel associated with the auxiliary cavity mode a;.

For studying quantum cooling of the mechanical modes,
we are interested in the steady-state properties of the system.
Therefore, we should analyze the stability condition of this
linearized system. To this end, we rewrite the linearized
Langevin equations (4) as the following contact form

u(s) = Au(r) + N(1), (13)

where u(f) = [6a, 6ay, b1, 6bs, ', 6al, 6b!, 66117 and N(r) =
V2[ Viain, VKstisins \VTb1ins \V2b2ins VK, NKsa! o 7T

b;in, \/ysz 17 are, respectively, the fluctuation operator

2,in- ) X
vector and noise operator vector with the matrix transpose
notation “7”. The coefficient matrix is defined by A =

( FI::* lg* ) with

K+ A, 0 iGy iGy

_ 0 ks +iN,  iGy 0
E==l ¢ i, y+iwm o | UV

lG; 0 0 Y2 + i(x)z

and F is defined by these nonzero elements Fi3 = —iGy,
Fi4 = —iG,, Fo3 = —iGy, F31 = —iGy, F3, = —iGyy, and
F4 = -iG,. The eigensystem of the coefficient matrix A

determines the stability of the system. By using the Routh-
Hurwitz criterion [73], we can find the stability condition. In

A fwr

A /wr

FIG. 2. (Color online) The final mean phonon numbers (a) [(c)]
n{ and (b) [(d)] né of the two mechanical modes versus the scaled
driving detuning A]/w; (A}/w;) and the scaled cavity-field decay
rate k/w; (ks/w). Here, the parameters A}, /w; = 1 and «x;/w; = 0.1
are used in panels (a) and (b), while the parameters A'L./wl =1 and
k/w; = 0.1 are used in panels (c) and (d). Other parameters used
are wy/wy = 1, yi/w) = y2/w; = 107, Gi/w; = Gy/w; = 0.05,
Gsl/a)l = 008, and n =n, = 1000.

the following derivation, all the parameters used satisfy the
stability conditions.

III. GROUND-STATE COOLING OF THE TWO
MECHANICAL MODES

In this section, we study the cooling performance of the
two mechanical modes by calculating the final mean phonon
numbers. The formal solution of the linearized Langevin
equations (13) can be obtained as

u(t) = M(Hu(0) + f M(z — s)N(s)ds, (15)
0

where we introduce the matrix M(f) = exp(Ar). The final
mean phonon numbers of the two mechanical modes can be
calculated by solving the steady state of the system.

Based on Eq. (15), we can obtain the final mean phonon
numbers by solving the Lyapunov equation [74]. To this
end, we introduce the covariance matrix V of the system by
defining the matrix elements as

1
Vij = 5 Kui(eoyuj(00)) + (uj(eoyui0))], 4, j=1-8. (16)

In the linearized optomechanical system, the covariance
matrix V satisfies the Lyapunov equation

AV + VAT = Q. (17)
Here, the matrix Q is defined by

Q= %(C +Ch, (18)



where C is the correlation matrix related to the noise
operators. The matrix elements of C are defined by

(Nk(N(s)) = Cri6(s = 5). 19)

In this work, we consider the Markovian dissipation case,
then the constant matrix C can be obtained with the nonzero
elements Cis = 2k, Cys = 2k, C37 = 2y1(; + 1), Cyg =
2yy(p + 1), C73 = 2yiy, and Cgq4 = 2y,7p. By solving
the Lyapunov equation, we obtain the covariance matrix V
defined in Eq. (16), then the final mean phonon numbers of
the two mechanical modes can be obtained as

1

n =(6b{6by) = Vi3 — 5 (202)
f t 1

ny =(0by6b2) = Vsa = 5. (20b)

where V73 and Vg4 are the matrix elements of the covariance
matrix V.

Here, we first consider the cooling performance in the two-
degenerate-resonator case (w; = wy). In Fig. 2, we plot the
final mean phonon numbers n{ and né as functions of the
scaled driving detuning A} /w; (A}/w;) and the scaled cavity-
field decay rate x/w; (ks/w;). To better analyze the influence
of the driving detuning and the sideband-resolution condition
on the cooling performance, here we choose the mechanical
frequency w; as the scale unit. In Figs. 2(a) and 2(b), we can
see that ground-state cooling of the two mechanical modes
can be realized in the resolved-sideband limit (k/w; < 1)
and around Al/w; ~ 1. Moreover, the cooling efficiency
of the first mechanical mode is much better than that of the
second one even in unresolved-sideband limit (x/w; > 1).
This is because the first mechanical mode is simultaneously
connected to two cooling channels and the coupling strength
between the auxiliary cavity mode and the first mechanical
mode is large enough (G, /w; = 0.08). For a given decay rate
k/wi, the optimal driving detuning is about A/./w; = 1, which
corresponds to the red-sideband resonance. In Figs. 2(c)
and 2(d), we can see that the ground-state cooling of the two
mechanical modes can be realized in the resolved-sideband
limit (x,/w; < 1), and the cooling performance is the best
at the optimal driving detuning A}/w; ~ 1. These results
are consistent with the sideband cooling results in typical
optomechanical systems [40, 41, 52]. In addition, we perform
numerical calculations with several sets of parameters when
AyJwy > 1 or ks/w; > 1. We find that though these
mechanical modes can be cooled significantly, but they cannot
be cooled to the ground state in the N-type optomechanical
system.

Next we analyze the influence of the frequency mismatch
between the two mechanical modes on the cooling efficiency,

in Figs. 3(a) and 3(b) we plot the phonon numbers n{

and ng versus the frequency ratio w,/w; and the scaled
cavity-field decay rate «/w; in the absence of the auxiliary
cavity mode (Gy/w; = 0). Here, we see that the final
mean phonon numbers in the two mechanical modes cannot
be efficiently decreased around w, = w;, which means
that the two mechanical modes cannot be cooled to their

0.8
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FIG. 3. (Color online) The final mean phonon numbers n{ and n];
versus the frequency ratio w,/w; and the scaled cavity-field decay
rate k/w; in both [(a) and (b)] the case of dark-mode-unbreaking
(Gs/wy = 0) and [(c) and (d)] the case of dark-mode-breaking
(Gs1/w; # 0). Other parameters used are A, = A}, = wy, k;/w; = 0.1,
Gl/wl = Gz/wl = 005, Gsl/wl = 008, yl/wl = ‘}/2/0)1 = 10_5, and
iy = ny = 1000.

ground states when their frequencies are degenerate or near-
degenerate (in a finite-detuning window). This phenomenon
can be explained according to the dark-mode effect. In
the degenerate-resonator case (w; = w,), a bright mode
and a dark mode are formed in this optomechanical system.
Physically, the two mechanical modes have an obvious
spectral overlap and become effectively degenerate in the
presence of dissipation, thus the dark-mode effect works in the
near-degenerate case. The dark mode decouples from both the
cavity mode and the bright mode, so the phonon excitations
stored in the dark mode cannot be extracted out through the
optomechanical-cooling channel [64]. However, the dark-
mode effect disappears when the two mechanical modes are
far-off-resonant, thus achieving ground-state cooling. In
Figs. 3(c) and 3(d), we plot the phonon numbers n{ and n§
versus the frequency ratio w,/w; and the scaled decay rate
k/w;, when the auxiliary cavity field is present (G, /w; =
0.08). Here the ground-state cooling of the two mechanical
modes can be achieved (”{,2 < 1) when the system works
in the resolved-sideband regime (k <« w;). Here the first
mechanical resonator has a better cooling efficiency (n{ < ng)
because it is connected to two cooling channels at the same
time.

Since the auxiliary cavity mode not only provides the
direct channel to extract the thermal excitations from the
mechanical mode b, but also provides a cooling channel
to extract the thermal excitations from the mechanical mode
by, the coupling strength between the auxiliary cavity mode
as and the mechanical mode b, is an important factor to
the cooling efficiency. To see this effect more clearly, in
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FIG. 4. (Color online) The final mean phonon numbers (a) n{ and
(b) né as functions of Gy, /w; when the scaled cavity-field decay rate
takes various values k;/w; = 0.4, 0.8, and 1.2. Insets: Zoomed-in
plots of the final mean phonon numbers as functions of G /w;, and
the horizontal axis ranges from 0.05 to 0.3. Other parameters used
are wz/wl = 1, A;/wl = A’S/wl = l, K/(,t)l = 01, '}/1/&)1 = ’}/2/(,()1 =
1073, Gy /w, = G»/w, = 0.05, and 71, = 71, = 1000.

Figs. 4(a) and 4(b) we plot the phonon numbers n{ and

ng as functions of the linearized optomechanical-coupling

strength G between the auxiliary cavity mode a; and the
mechanical mode b; when the scaled cavity-field decay rate
ks/w; takes various values. Here, we see that the phonon
numbers decrease with the increase of the coupling strength
Gy, which means that the increase of the coupling strength
Gy is beneficial to the ground-state cooling of the two
mechanical resonators. Moreover, the final mean phonon
numbers are smaller for smaller values of the decay rate
Ks1/w; under a certain parameter range, which is consistent
with the analyses of the cooling efficiency on the sideband-
resolution condition [40, 41, 52]. In addition, we can see
from Fig. 4 that the ground-state cooling can be realized in
the N-type optomechanical system, the cooling limit cannot
be broken compared with the single-resonator optomechanical
system under the same parameters.

IV.  GROUND-STATE COOLING AND UNIVERSAL
DARK-MODE-BREAKING CONDITIONS IN THE
FOUR-MODE OPTOMECHANICAL SYSTEM

In previous sections we have shown that, by introducing an
optomechanical coupling between the auxiliary cavity mode
a, and the mechanical mode b, the dark mode in this system
can be broken and then ground-state cooling of the two
mechanical modes can be realized. However, in practice, the
diverse interactions among these degrees of freedom in this
system are more complicated [25], so it is an interesting topic
to study the universal condition for breaking the dark-mode
effect in a more general four-mode optomechanical system.
In this section, we analyze the parameter conditions under
which the dark-mode effect works and study how to break
the dark mode by controlling the couplings in the four-mode
optomechanical system. We also analyze the interference
effect by studying the energy-level transition of this four-mode
optomechanical system.

FIG. 5. (a) Schematic of the network-coupled four-mode
optomechanical system consisting of two cavity modes and two
mechanical modes. In addition to the couplings and notations
introduced in Fig. 1(a), here we introduce three new couplings
marked by dashed lines: the phonon (photon)-hopping interaction
with the coupling strength 7 (J), the optomechanical-coupling
strength g, between the auxiliary cavity mode a, and the second
mechanical mode b,. (b) The coupling configuration associated
with the approximate linearized Hamiltonian (26). Here, we add
“tilde” to the couplings and notations introduced in Fig. 1(b). We
also introduce the photon-hopping strength J between the two cavity
modes.

A. Ground-state cooling in the general four-mode
optomechanical system

We now consider a network-coupled four-mode optome-
chanical system consisting of an intermediate coupling cavity
mode and an auxiliary cavity mode, which are both coupled to
two mechanical modes via the radiation-pressure interaction.
Here, the two cavity (mechanical) modes are coupled to each
other via a photon (phonon)-hopping interaction, as shown
in Fig. 5(a). In a rotating frame defined by the operator
exp[—i(wLaTa + wdazas)t] under w; = wy, the transformed
Hamiltonian becomes

Hy=Aaa'a+ Asazas + J(aTas + aia) + n(bIbz + b;bl)

+ Z [w;b;b, + gla?a(b; + b)) + gslazas(bj +b))]
=12

+(Qa" + Q' +H.c)), 21

where some operators and variables have been defined in
Eq. (1). We also introduce the g, coupling term, the J
coupling term, and the n coupling term, which correspond to
the optomechanical coupling between modes a; and b;, the
photon-hopping coupling, and the phonon-hopping coupling,
respectively.

Based on the Hamiltonian (21), we can obtain the Langevin
equations by adding the decay and noise terms into the
Heisenberg equations. Following the similar linearization
procedure as the one performed in Sec. II, we obtain the
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FIG. 6. Fourteen coupling configurations of the network-coupled four-mode optomechanical system, where J, g;, g (for [ = 1,2), and n
are the photon-hopping coupling strength, the optomechanical-coupling strength between the intermediate (auxiliary) cavity mode and the /th
mechanical mode, and the phonon-hopping coupling strength, respectively. Here, the two optomechanical couplings between the cavity mode
a and the two mechanical modes b; and b, are kept, and the other couplings can be closed on demand. Then there are fourteen different
coupling configurations. Concretely, the one-coupling-closed cases include: (a) The coupling channel J is closed (/ = 0); (b) The coupling
channel gy, is closed (g;; = 0); (c) The coupling channel gy, is closed (g, = 0); (d) The coupling channel 7 is closed (7 = 0). The cases
corresponding to two-coupling-closed include: (e) The coupling channels J and g, are closed (J = g, = 0); (f) The coupling channels J and
g2 are closed (J = go = 0); (g) The coupling channels J and n are closed (J/ = n = 0); (h) The coupling channels g,; and g, are closed
(gs1 = &2 = 0); (i) The coupling channels g,; and n are closed (g,; = 7 = 0); (j) The coupling channels g, and 1 are closed (g, = 7 = 0). In
addition, the cases in which three couplings are closed include: (k) The coupling channels J, g;;, and gy, are closed (J = g5 = g = 0); (1)
The coupling channels J, g1, and i are closed (J = g1 = 7 = 0); (m) The coupling channels J, g,,, and n are closed (J = g = 7 = 0); (n) The
coupling channels gy, g,», and i are closed (g;; = g2 = n = 0). We point out that the single-photon optomechanical-coupling strengths g, g2,
gs1, and g, are related to the linearized optomechanical-coupling strengths G, G,, Gy, and G, in the four-mode optomechanical system.

linearized Langevin equations where A = A; +2g1Re[B1]+ 2gRe[B,] is the renormalized
driving detuning of the auxiliary cavity mode a,. It should
oa == (k+iA)oa — iJoa, — i Z[G,((Sbl +6b))]+ V2kam, (222)  be pointed out that the parameter A’ and the linearized
=12 optomechanical-coupling strengths G; and G for [ = 1,2
Sas = — (ks + IA!)oa; — iJa — i Z[Gd(éb, + 6b,*)] + V2Ks@gin, have the same definition as those defined in Sec. II. However,
=12 the coherent displacements of the steady state «, ay, S, and
(22b) B, in the network-coupled four-mode optomechanical system

8by = — (iwy +y1)0b) — iG}da — iG,6a’ — iG*,a, — iG 6a’

= by + \2y1byin, (22¢)
8by = — (iwy + y2)0by — iG36a — iG26a’ — iGiyda, — iGpda)
— indby + \2yabyn, (22d)



10° ,[© T =0 10°
2 @ Unbreaking ®®®7 =0 10 °0e GiuGn=0 5 (e) | e 1,Gs1.Gsp=0
10 | —J=0 2 1 n,Gs1=0 10 J,G1 G2 =0
nf 10 -—J,G4=0 ---Jn,Ga =0
110 ce-Ga=0] o aas l;((=8 10 1 = J,Gor =0
| Breaking -—Gq =0 _ _ - 1
sy Y WHPE-L-Lefufut o
S T T T 1L‘.ll.llllllxll‘] e
0.1 0.1 0.1
0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6
3 3
10 — J,n =0] 10
3|(d) =
2 (b) Unbreaking eee 7 =10 10 IS ) (€3] [ c° 17,G1 Gy =0
10 ] —J=0 ) | - 7Ga=0110 J,G1 G =0
P 10 —-—J,Gy=0 - Jn.G =0
ny 10 O = a2a1,Go=0] 10 Y e
2 ‘ G =03 0 ‘ nem ] G=0 l re ol
! Breaking —-—- G, =0 LaAAdansd N ST
————_————— -3 A AL -="
—— o] 18 a8 annnunnns Sl
0.1 oqb—— - 1.1
0 0.2 0.4 0.6 0 0.2 0.4 06 0 0.2 0.4 0.6
K/, K/, K/,

FIG. 7. (Color online) The final mean phonon numbers n{ and n£ versus the scaled decay rate x/w, in various coupling configurations. Panels
(a) and (b) correspond to the cases where one coupling is closed, i.e., J = 0 (solid blue curves), n = 0 (red dots), G;; = 0 (dash-dot cyan
curves), and Gy = 0 (dashed green curves). Panels (c) and (d) correspond to the two-coupling-closed cases: J = i = 0 (solid blue curves),
Gy, = Gy = 0 (red dots), n = G5 = 0 (dashed green curves), J = G;; = 0 (dash-dot cyan curves), J = G, = 0 (brown squares), and
n = Gy = 0 (purple triangles). Panels (e) and (f) correspond to the three-coupling-closed cases: J = G, = Gy, = 0 (solid blue curves),
n =Gy = Gy = 0 (red dots), J = n = G5 = 0 (dash-dot brown curves), and J = 1 = Gy, = 0 (dashed purple curves). Other parameters
are taken as w»>/w; = 1, yi/w, = y»/w; = 107, k/w, = k;/w; = 0.1, J/w, = n/w, = 0.03, Aljwy = A Jwy =1, Gi/w = Ga/wy = 0.05,
Gy /w; = Gy /w; =0.08, and 1y = i1, = 1000. Note that the values of J, i, G, and G, presented here work when the corresponding coupling

channels are open.

should be replaced by the relations

—i(Jay + Q)
@ =a)ss = ¢ VL (23a)
K+iIA,
—i(Ja + Qy)
s = 5 = Y 2’
g =(ay)ss Ko + ZA;' ( 3b)
. 2 2
B1 =(b)s = i(nB2 +g1|a'|' + gs1lasl )’ (23¢)
Y1+ lwg
—i + gola? + gola,
By =(by)ee = (nB1 + &l |. gsolasl )_ 23d)
Y2 + 1wy

For studying quantum cooling of the mechanical modes,
the linearized Langevin equations (22) can be written as a
compact form a(f) = A’u(f) + N(¢), where the form of
the fluctuation operator vector u(f) and the noise operator
vector N(7) is the same as those defined in Sec. III, while the
coefficient matrix is given by A’ = ( Flj:,* l};’* ) with

—(k +iA)) —iJ —iGy —iG,
E = —iJ —(AY + k5) —iGg —iGy
- -iGy -iG, —(iwy + 1) —in ’
—iG; —iG, —in —(iwy +y2)
(24)
and F’ is defined by these nonzero elements Fj3 = —iGy,
Fiu = -Gy, Fa3 = -Gy, Fu = -iGp, F31 = -iGy,

F3 = —iGy1, F41 = —iGy, and Fyp = -iG

Following the same procedure as that performed in Sec. III,
we can also obtain the steady-state expression of the
covariance matrix V’, which is defined by A’V’ + VAT =
—Q, where Q is given by Eq. (18). Then the final mean
phonon numbers in the two mechanical resonators can be
obtained.

To clearly analyze the influence of these couplings in
the four-mode optomechanical system on the ground-state
cooling, below we consider various cases of different coupling
configurations, as shown in Fig. 6. To analyze the dark-
mode effect in this system when the frequencies of the two
mechanical modes are degenerate, we consider the case where
the two coupling channels g; and g, always exist. Then we
study various cases of coupling configurations by controlling
the four coupling channels J, g, g5, and . In Figs. 6(a)-
6(d) and Figs. 6(e)-6(j), we show that one or two coupling
channels of J, g1, g5, and n are closed, respectively. While
in Figs. 6(k)-6(n), three of the four coupling channels J, gy,
g2, and n are closed. Therefore, when the coupling channels
g1 and g, remain existing, there are fourteen cases of coupling
configurations, as shown in Fig. 6.

Corresponding to the fourteen cases depicted in Fig. 6, we
plot the final mean phonon numbers n{ and ng as functions
of the scaled decay rate «/w; in Fig. 7. We can see from
Figs. 7(a) and 7(b) that ground state cooling of the two
mechanical modes can (cannot) be realized in the cases of
Gy = 0orGyp =0 = 0orn = 0), which implies that
the dark mode can (cannot) be broken. In Figs. 7(c) and 7(d),



oc.l?{ ---17'2 =

3
(a) 1071) . 7
1.0 102 /2
o —n 1 1
0.5 4 3
1 !

0.1
06 0 04 08 1.2 1.6 2.0
Gs?/Gsl

0 0.2 0.4
K/w;

FIG. 8. (a) The final mean phonon numbers nlf and n,j versus the
scaled decay rate x/w; in the cases of G, /w, = 4Gy /w; = 0.08
(dashed blue curve and solid red curve) and Gy /w; = 4G /w, =
0.08 (red dots and blue rectangle). (b) The final mean phonon
numbers n{ (solid blue curves) and ng (dashed red curves) versus the
ratio G, /Gy when the linearized optomechanical-coupling strength
Gy /w; = 0.08. Other parameters used in this system are w,/w; = 1,
yilwr = y2/w; = 107, kjw; = k/wy = 0.1, J/w; = n/w; = 0.03,
A:/wl = A;’/wl = 1, G]/(u] = Gz/a)l = 005, and ny =np = 1000.

we plot the phonon numbers n{ and n{ as functions of x/w;
when two of the four coupling channels (J, g1, g5, and )
are closed. Based on the cooling performance, we know that
the dark mode cannot be broken when the coupling channels
J=n=0o0rGy =Gy = 0. In these four cases: J = G5 =0,
J=Gp =0,n=Gyg =0,and n = Gy = 0, the dark
mode can be broken. In Figs. 7(e) and 7(f), we also plot
the phonon numbers n{ and ng versus «/w; when three of
the four coupling channels are closed, corresponding to the
cases shown in Figs. 6(k)-6(n). Here, we can see that the dark
mode cannot be broken in the cases of / = G5 = Gy, = 0
orn = Gy = Gy = 0. However, in the two cases of
J=1n=Ggq =0o0rJ =n =Gy = 0, the dark mode can
be broken.

Based on the above discussions, we find that G; and Gy
play an important role in the breaking of the dark mode in this
system. Only when one of G, and Gy, is closed, the dark
mode can be broken. When both or neither of G and Gy,
are closed, the dark mode cannot be broken. In particular, the
breaking of the dark mode is independent of both the photon-
and phonon-coupling channels.

In order to better understand the influence of the linearized
optomechanical-coupling strengths G;; and Gy, on the final
mean phonon numbers, in Fig. 8(a), we plot the final

mean phonon numbers n{ and ng as functions of the scaled
decay rate k/w; when the linearized optomechanical-coupling
strengths take the values of Gy /w; = 4G4 /w; = 0.08 and
Gy /w) = 4G o /w; = 0.08. Here we can see that the ground-
state cooling of two mechanical modes can be realized in the
resolved-sideband regime. Besides, the values of n{ and ng
are approximately exchanged in these two cases, and this is
because the parameters of G5 and Gy in these two cases
are just antisymmetric. In Fig. 8(b), we plot the final mean

phonon numbers n{ and n§ as functions of the ratio G, /Gy
in the case of the linearized optomechanical-coupling strength
Gs/wy = 0.08. When Gy /Gy < 1 (Gyp/Ggi > 1), the

final mean phonon numbers of the two mechanical modes

increase (decrease) with the increase of the ratio Gy /Gy,
i.e., the cooling performance of the two mechanical modes
is exchanged at the point G4, /Gy = 1. Due to the dark-mode
effect, the ground-state cooling of the two mechanical modes
are unfeasible for finite values of the ratio G,,/G,. In this
case, the ground-state cooling can be realized by choosing
G/Gs <04,

B. The universal conditions for breaking the dark mode

In this section, we analyze the parameter conditions under
which the dark mode is formed in the network-coupled
optomechanical system. We also study the method for
breaking the dark-mode effect. Based on Eq. (22), we can
derive the approximate linearized Hamiltonian. By discarding
the noise terms, the linearized optomechanical Hamiltonian
under the rotating-wave approximation can be written as

Hyrwa = AL6d' 6a + N/ alda, + J(6a' da, + 6alda)
+ " [widb]sb, + Gi(Sasb] + 6a*sby)
I=1,2
+Gi(8a6b; + 6alsby)| + (6|6, + bLsby).
(25

By substituting the operators B, (BI) and B_ (B') into
Eq. (25), the Hamiltonian Hgrwa becomes [see Fig. 5(b)]
Hywa = A.6a'6a + N'5a6a, + J(6a'Say + Saléa) + @,B. B,

+@&_B'B_+ X(B'B_ + B'B,) + G.(6aB} + B,6a")
+G,.(6a,B + 6a'B,) + G,_(6a,B" +6a'B.), (26)

where the resonance frequencies of the two hybrid modes
should be replaced by

le% + a)ng + 27]G1G2

) (27a)
+ Gi
w1G? + w,G? - 21nG,G
_=12 PAS S 7712’ (27b)
G2
1

and the three new coupling strengths 7, G,,, and G,_ are
defined by

(w1 — w2)G1G2 + (G5 - GY)

> 1
= , 28a
¢ GG (282)
- GG+ GG
G, = 222 (28b)
,/G% + G%
. GuGy—-GuG
G. = GG —GnGi (28¢)

. 2 2
1/G1 +G;

From Eqgs. (26) and (28) we can see that the two hybrid
modes B_ and B, are decoupled from each other when w; =
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FIG. 9. (a) Part of the energy levels and transitions of the system in either the (a) absence or (b) presence of the auxiliary cavity mode a,. Here,
the states |m, j, k) and |m, n, j, k) correspond to the states |m, j, k)qp, 5, and [m, n, j, k)qa, b, .5, respectively. The states [m),, [7)q,, |/, , and [k),
denote the number states of the cavity mode a, auxiliary cavity mode a,, mechanical mode b;, and mechanical mode b,, respectively.

wy and n = 0 (G; = Gj,). Moreover, the hybrid mode B_
also decouples from the auxiliary cavity mode a; when G,_ =
0. In this case, the hybrid mode B_ becomes a dark mode,
and the ground-state cooling of the two mechanical modes can
not be realized. All in all, the parameter conditions for the
appearance of the dark mode are 7 = 0 and G,_ = 0, which
lead to the conditions:

(w1 = w2)G1G, + (G5 — G}) =0,
GGy, — GGy =0.

(29a)
(29b)

Therefore, the universal dark-mode-breaking condition is that
both Z and G,_ cannot be zero at the same time [see Fig. 5(b)].
In the following we analyze various cases in which the dark
mode appears or disappears in the degenerate-resonator case
(W = w). y

(1) In the case of n = 0, i.e.,, { = 0. It can be seen from
Eq. (28) that when G1G2 — GGy = 0 (G /Gy = G1/G2),
the hybrid mechanical mode B_ (the dark mode) decouples
from both the cavity mode a and the auxiliary cavity mode
a,. In this situation, the excitation energy is stored in the dark
mode and cannot be extracted through the cooling channel.
In this case, the parameter J has no effect on the breaking of
the dark mode effect. These analyses are consistent with the
results obtained by numerically calculations in Sec. IV A.

(ii) In the case of 7 # 0 and G| # G, i.e., Z # 0. we can
find that the dark mode can be broken regardless of whether
the auxiliary cavity mode appears or not (namely, there is no
dark mode).

(iii) In the case of n # 0 and G; = G», i.e., Z = 0, there
are two different situations. First, in the case of symmetric
coupling (G451 = Gy), we can see from Eq. (28) that G,_ =0.
At this time, the hybrid mechanical mode B_ decouples from
both the cavity mode a and the auxiliary cavity mode a,

i.e., B_ becomes a dark mode. However, in the case of
asymmetric coupling (G;; # Gy), i.e., G, # 0, we can
see that the two hybrid mechanical modes B_ and B, are
coupled with the auxiliary cavity mode a,. Even if the hybrid
mode B_ is decoupled from both the cavity mode a and the
hybrid mode B, at the same time, the ground-state cooling
of the two mechanical resonators becomes accessible through
the cooling channel associated with auxiliary cavity mode
as. Obviously, when one of the two coupling strengths Gy
and Gy, is 0, the dark-mode effect can naturally be broken.
These analyses are consistent with the results we obtained
in Sec. IV A. Generally speaking, to break the dark mode
formed in a three-mode optomechanical system consisting of
a cavity mode and two mechanical modes, the easiest way is
to introduce an auxiliary cavity mode to couple with one of
the two mechanical modes.

C. Analyzing the quantum interference effect in the
energy-level transitions of the optomechanical system

To clarify the physical mechanism behind the dark-
mode breaking, in this section we analyze the quantum
interference effect in the energy-level transitions of the
system. For the optomechanical system, the cavity modes
provide the cooling channels to extract the thermal excitations
from the mechanical resonators. However, when a single
cavity mode is used to cool multiple degenerate mechanical
resonators, the phonon modes decaying through the same
cooling channel will interfere with each other, similar to
the quantum interference effect in electromagnetic induced
transparency [75, 76]. In this case, some of the mechanical
normal modes are decoupled from the cavity mode, then the
cooling channel of these decoupled modes (dark modes) is



closed and the excitations stored in these mechanical dark
modes cannot be extracted. As a result, these dark modes
cannot be cooled to their ground states. When multiple
cooling channels exist, the phonon dissipation prohibited
by one cooling channel can take place via another cooling
channel, then the dark-mode effect is broken and the ground-
state cooling of multiple mechanical resonators can be
realized.

To further understand the quantum interference effect in
the energy-level transitions of the optomechanical system,
in Figs. 9(a) and 9(b) we plot the energy levels and
transitions of the system including two mechanical modes
in either the absence or presence of the auxiliary cavity
mode a;. For simplicity, we ignore the subscripts of the
basis vectors, i.e., denoting |m, j, k)ap, b, (M, 7, J, K)aa,b,.b,)
as |m, jky (Im,n, j,k)). As shown in Fig. 9(a), under the
red-sideband-resonance condition A, = w,,, the transitions
Im,j+ 1,k)y & [m+1,j,k)yand [m, jk+ 1) & [m+1,j,k)
are resonant, and the transition |m + 1, j,k) — |m, j, k) can
further occur through the cavity-field decay «. When the
mechanical modes b; and b, are degenerate, the phonon
modes decaying through the same cooling channel (cavity
mode a) will interfere destructively with each other, then the
ground-state cooling of the two mechanical modes cannot
be realized. To break the dark-mode effect in this system,
a natural and simple method is to introduce another cooling
channel to the mechanical resonators. As shown in Fig. 9(b),
under the red-sideband-resonance condition A, = w,,, except
for the transitions |m,n,j + 1,k) < |m + 1,n,j,k) and
|m,n, j,k + 1) & |m + 1,n, j, k) associated with the cavity
mode a, the transitions |m,n, j + 1,k) < |m,n + 1, j, k) and
Im,n, j,k+ 1) & |m,n+ 1, j, k) associated with the auxiliary
cavity mode a; can also occur. In this way, phonon dissipation
prohibited by the cooling channel a can be decayed via a new
cooling channel a;. Therefore, by introducing the auxiliary
cavity mode ay, the dark-mode effect can be broken and the
ground-state cooling of two mechanical resonators can be
realized.

We point out that the main innovation in this work is the
breaking of the dark-mode effect via the auxiliary cavity,
and that the underlying physical mechanism of this scheme
is the sideband cooling. Therefore, the system should work
in the resolved-sideband regime and a resonant red-sideband
driving is needed. In addition, though the dark mode appears
theoretically in the degenerate mechanical-resonator case, our
scheme works well even for near-degenerate resonators within
a detuning window with the width of the cavity-field decay
rate. Physically, the resonators with these detuned frequencies
cannot be distinguished via the cavity emission spectrum.

V.  GROUND-STATE COOLING AND DARK-MODE
BREAKING IN A MULTIPLE-MECHANICAL-MODE
OPTOMECHANICAL SYSTEM

In this section, we generalize the auxiliary-cavity-mode
method to realize the simultaneous ground-state cooling
of N mechanical modes in a multiple-mechanical-mode
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FIG. 10. (a) N-mechanical-mode optomechanical system consisting
of an intermediate cavity mode optomechanically coupled to N
mechanical modes. (b) Both the phonon-hopping interactions
between two neighboring mechanical modes and the optomechanical
interaction between the auxiliary cavity mode and the mechanical
mode b, are introduced into the N-mechanical-mode optomechanical
system.

optomechanical system, in which an intermediate cavity
mode is coupled to N (N > 3) mechanical modes [see
Fig. 10(a)]. Concretely, we introduce an auxiliary cavity
mode optomechanically coupled to the first mechanical mode.
We also introduce the phonon-hopping coupling between
all the neighboring two mechanical modes [see Fig. 10(b)].
Moreover, we analyze the parameter conditions for forming
and breaking the dark modes.

A. Simultaneous ground-state cooling of N mechanical modes

We consider a multiple-mechanical-mode optomechanical
system, which is composed of an intermediate cavity mode, an
auxiliary cavity mode, and N (N > 3) mechanical modes [see
Fig. 10(b)]. In a rotating frame defined by the transformation
operator exp[—i(wra‘a + wdazas)t], the Hamiltonian of this
system is written as

N
H;=Aada+ Z[w,b;b, + g,aTa(blT +b))]
I=1
N-1
£ b b + b, b)) + (Qa +Hee)
=1

+Asala + gsalay (bl + b)) + (Qal + He.), (30)

where the operators and variables for the cavity modes have
been defined before, and b, (b;) are the annihilation (creation)
operators of the /th mechanical mode. The parameter g; (gy)
denotes the single-photon optomechanical-coupling strength
between the intermediate (auxiliary) cavity mode and the /th
mechanical mode (mechanical mode b;). The cavity mode
a (ay) is strongly driven by the laser field with the driving
frequency wy, (wy) and the driving amplitude Q (€;).

Similar to the two-mechanical-mode case, the two cavity
fields are strongly driven by two laser fields, then the
dynamics of this system can be treated by linearization
method. Based on the Hamiltonian (30), the linearized



Langevin equations for the quantum fluctuations are given by
6a = —(k + iA)6a — i[g1a(dby + 6b)) + gra(5bs + 5bY)
...+ igna(Sby + b)) + V2kain,
das = —(ky + iA,)da — ig,as(5by + 6b)) + 2k,ayn,
6by = —(y) + iw))éb, — ig1a*6a — igiada’ — igsa,6a;

—igsasdal — in16by + 2161 jn,
8by = —(y2 + iw2)8by — igra*ba — igrada’ — in16b,

—ina6b3 + \2y2by i,
8by = —(y3 + iw3)db3 — igsa*6a — igzada’ — in,dby

—i773 o0by + Y, 2)’3 b3,ina

Sby-1 = —(yn-1 + iwn-1)0by_1 — igy-1a*5a — igy_1ada’

—inN-20by_2 — inn-16bN + \2YN-1DN-1 n,
Sby = —(yn + iwy)Sby — ignya*da — igyada’

—inn-10by_1 + V2YNDN,n, (31

where A, = A. + X0, g8 + B;) [A; = Ay + g4(B1 + B])] is
the effective driving detuning of the cavity mode a (ay), and
G, = gillo| (Gy = g,lay|) is the linearized optomechanical-
coupling strength between the cavity mode a (ay) and the /th
mechanical mode (mechanical mode b,).

Below we study the ground-state cooling of N mechanical
modes. The cooling performance of mechanical modes can
be verified by calculating the final mean phonon numbers.
Therefore, we rewrite the linearized Langevin equations (31)
as

ii(r) = Ai() + N(@), (32)
where we introduce the vector of
the quantum fluctuations u(r) =

[6a, 6ay, 8by, - -+, 6bn-1,8by, 8a’, 6al,8b, -, 6b,_,6b),
and the vector of the quantum noise N(t) =

V2[ Vatin, VKs@sins \¥1b1ins s VIN-1ON-1in> \YNDNin»
t t t t t
Vkay,, Vs NYVIDy s s VVN—le—Lin’ V~7NbN,in]T‘ The

]T

(33)

corresponding coefficient matrix A = ( _FE _FE* ) with
k+ih. 0 iG, iGy-1 iGy
0 «+iA, iGy - 0 0
- lGT lGi< Y1+ wy -+ 0 0
E= . : : ) . .
iGy_, 0 0 ©YN-1 Wy -
iGy, 0 0 MN-1 YN+ iwy
and
0 0 -iG, -+ —iGy-1 —iGyn
0 0 -iGs --- 0 0
. -iG; -iGy 0 - 0 0
F= : . ) ) (34
—-iGy-1 0 0 0 0
-iGy O 0 0 0
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The formal solution of Eq. (32) is given by
!
ii(r) = M(H)a(0) + f M(t — s)N(s)ds, (35)
0

where the matrix M(t) = exp(At). Note that our simulations
should satisfy the stability conditions, which can be obtain by
analyzing the Routh-Hurwitz criterion [73].

Based on Eq. (35), we can obtain the final mean phonon
numbers by solving the Lyapunov equation. For this reason,
we introduce the covariance matrix V of the system by
defining the matrix elements as

~ 1
Vij = 7 Ki(e0)j(00)) + (@1 (00)l;(c0))]. (36)

Under the stability conditions, the covariance matrix V is
determined by the Lyapunov equation

AV + VAT = -Q, (37)

where

Q= %(C +Ch, (38)

with C being the correlation matrix related to the noise
operators. In the Markovian-dissipation case, the correlation

matrix € can be obtained as C = 2(12 g), with
k 0 0 0 0
0 « 0 0 0
00 yy(mp+1) --- 0 0
P=| . . . .
00 0 < Yn-1 Ay + 1) 0
00 0 0 ‘)/N(i_lN-l- 1)
(39
and
00 O 0 0
00 O 0 0
00 ’ylfl] 0 0
R=|. . . . . - (40)
00 0 - yvainar O
00 0 0 ’)/NI_IN

According to the covariance matrix V defined in Eq. (36),
we can derive the final mean phonon numbers of the /th
mechanical mode as

<5b;5b1> = Vit — %, (41)
where VN+[+4’1+2 is the matrix element of the covariance
matrix V.

Below we study the cooling performance of the mechanical
modes when there are 3 or 4 mechanical modes in the
optomechanical system. For simplicity, we consider that
the resonance frequencies of all mechanical modes are equal
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FIG. 11. The final mean phonon numbers (a) [(b)] nlf as functions
of the scaled driving detuning A./w; in the dark-mode-unbreaking
(Gs/w; = 0 and 1;/w; = 0) or -breaking (G;/w; = 0.1 and 1;/w; =
0.06) cases for N = 3 (N = 4). The final mean phonon numbers
(©) [(D)] n,f as functions of the scaled cavity-field decay rate x/w
for N = 3 (N = 4). The parameter «/w; = 0.1 is used in panels
(a) and (b), the parameter A.Jw; = 11is used in panels (c) and (d).
Other parameters used are w;/w; = 1, Aj/w, = 1, k;/w; = 0.1,
mjw, = 0.06, y/w, = 107, G;/w; = 0.05, G;/w; = 0.1, and
i, = 1000.

(w; = wy, for I = 1,--- ,N). Similarly, the phonon-hopping
coupling strengths [ = n for I = 1,---,(N — 1)] and
optomechanical-coupling strengths (G; = G for/ = 1,--- ,N)
are also same.

As shown in Figs. 11(a) and 11(b), the final mean
phonon numbers n{ are plotted as functions of the scaled
driving detuning A./w,, in both the dark-mode-breaking case
(Gs/wy = 0.1 and n;/w, = 0.06) and the dark-mode-
unbreaking case (G;, = n; = 0). We can see that the
ground-state cooling cannot be realized for these mechanical
modes when the auxiliary cavity mode and phonon-hopping
interactions are absent (G; = i; = 0) [see the upper curves in
Figs. 11(a) and 11(b)]. This is because the thermal excitations
stored in the dark modes cannot be extracted out through the
cooling channel related to cavity mode a.

When the auxiliary cavity mode and the phonon-hopping
interactions are introduced, a new cooling channel is formed
and the dark modes are broken, then the ground-state cooling
of multiple mechanical modes can be realized, as shown in
Figs. 11(a) and 11(b). Moreover, in Figs. 11(c) and 11(d),
we plot the final mean phonon numbers nlf as functions of
the cavity-field decay rate «/w;. We find that the cooling
performance of the first mechanical mode is the best, because
it is directly connected to the auxiliary cavity mode. The
cooling performance of other mechanical modes is almost the
same, because all the other mechanical modes have similar
coupling connections with the cooling baths.

13
B. Parameter conditions for breaking the dark modes

To study the parameter conditions for breaking the
dark modes, we can derive the approximate linearized
Hamiltonian, which governs the dynamics of the system. To
implement the cooling scheme, the system should work in
the red-sideband resonance regime, in which the rotating-
wave approximation can be safely performed. By discarding
the noise terms, the linearized optomechanical Hamiltonian is
given by

N . N
H; = A’ da + Z wiSb] 5b; + Z G(8a*6b; + 5b!6a)
I=1 I=1
N-1
+A;saloas + ) [m(Sbiob
I=1
+G(8a! by + 6bday). (42)

T+ 0bui8b)]

To clearly see the dark-mode effect in the multiple-
mechanical-mode optomechanical system, we first consider
the situation where the auxiliary cavity and the phonon-
hopping interactions between two neighboring mechanical
modes are absent, i.e., A} = 0, 7 = 0, and G5 = 0 [see
Fig. 10(a)], then Hamiltonian (42) becomes

N N
Hj = Reoa'sa+ ) wobshy+ ) Gi(6a'sh,+6b]sa). (43)
=1 =1

For simplicity, we consider that all the mechanical modes
have the same resonance frequencies (w; = w,,), and the
optomechanical-coupling strengths between the intermediate
cavity mode and all mechanical modes are also the same (G; =
G). In this case, there are a bright mode B, = Zfi 1 0by/ VN
and (N — 1) dark modes decoupled from the intermediate
cavity mode. Therefore, the thermal excitations stored in
the dark modes cannot be extracted out though the cooling
channel of the cavity mode, and then the ground-state cooling
of these mechanical modes cannot be realized.

To break the dark mode and achieve the ground-state
cooling of N mechanical modes, we introduce an auxiliary
cavity mode optomechanically coupled to the mechanical
mode b; and phonon-hopping interactions between the
neighboring mechanical modes, as shown in Fig. 10(b). For
convenience, we consider the case where all the phonon-
hopping coupling strengths are same (7 = 7). Thus, the
Hamiltonian associated with these coupled mechanical modes
can be diagonalized as

N N-1
Hingh = @y > 6b]6b; + 1 )" (6bib],, + 6by15b])
=1 =1
N
= > BBy, (44)
k=1

where € is the resonance frequency of the kth hybrid
mechanical mode By, and € is defined by

km
Q. =wm+2ncos(N+1), k=1,2,3,...,N. (45



Meanwhile, the relationship between the hybrid mode By and
the mechanical mode db; can be expressed as

1< Ik
b = — i B 46
I D;SIH(N+]) s (46)
with D = +/(N+1)/2. When the auxiliary cavity mode
is absent, by substituting the hybrid mode Bj into the

Hamiltonian (42), we can obtain
=A.6a"6a + Y3, QB! By + Ha, (47)

where the optomechanical-interaction Hamiltonian H,; is
given by

N

G [ lkn
ZI;[B;““(NH

From Eq. (48) we can see that the coupling strength between
the cavity mode a and the hybrid mode By is determined by
the coefficient (G/D) {Zﬁ o sin[lkn /(N + 1)]}. Hence, we next
analyze the dependence of this coefficient on the variables k
and N.

First, we consider the situation of N = 2. In this
case, the system is reduced to the two-mechanical-mode
optomechanical system, which has been detailedly analyzed
in previous sections. When N = 2, the optomechanical
interaction becomes

)5aB,ﬁ+H.c. . 48)

wi = V2GéaB] + V2G*Bsa’. (49)

It is obvious that the hybrid mechanical mode B, becomes a
dark mode, which decouples from both the cavity mode a and
the hybrid mechanical mode Bj, so the ground-state cooling
of the two mechanical modes becomes unaccessible.

In the case of N > 3, the coupling coeflicient between the
cavity mode a and the kth hybrid mechanical mode By defined

in Eq. (48) is given by ¢ 2 p 1= Sin ( ]\Z,]Zr]) Since the forms of
the coupling coefficients are different when N is either an odd
number or an even number, below we will analyze two cases
corresponding to odd and even N, respectively. (i) When N is
an odd number, the form of the coupling coeflicient depends

on k. If k is also an odd number, we get < | sm(l\’,kfl) # 0.

If k is even, we obtain & Z =1 sm( X,’fl) = 0. (ii) For an even

N, when k is an odd number, we obtain £ 3V sin ( Ié’ifl) # 0.

When £ is also an even number, we get 3 & Zl 1 sm(Al,kfl) =0.

Based on the above discussions, we can find that for an
odd k, the coupling strength between the intermediate cavity
mode a and the kth hybrid mechanical mode By is nonzero.
However, when k is an even number, the intermediate cavity
mode a is decoupled from the kth hybrid mechanical mode
By. In this situation, all the even hybrid mechanical modes
are decoupled from the intermediate cavity mode. Thus, the
ground-state cooling of multiple mechanical modes cannot
be realized under the influence of the dark-mode effect.
Nevertheless, we can introduce an auxiliary cavity mode
as to break the dark-mode effect, which is coupled to the
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FIG. 12. (a) Schematic of the three-level system, which consists of
three states |e), |f), and |g), with the corresponding energies E., Ey,
and E,. The coupling strengthes of the transition processes |g) <
le) and |f) < |e) are, respectively, denoted by Q; and Q, with the
corresponding detunings A; and A,. (b) Schematic of the “N”-type
four-level system. In addition to the couplings and states introduced
in Fig. 12(a), we introduce an auxiliary state |d) coupled to the lower
state |f) with the coupling strength Q3 and the detuning A;.

mechanical mode b; via the radiation-pressure interaction.
By substituting the hybrid mechanical modes B; into the
optomechanical Hamiltonian Hyop, = Gs(éal'éb] +6b16a5), we
can get

)(sa*Bk +H. c} (50)

oo Sl

It can be seen from Eq. (50) that all the hybrid mechanical
modes By are coupled with the auxiliary cavity mode a;. Even
when the even hybrid mechanical modes are decoupled from
the intermediate cavity mode a, the ground-state cooling of
the N mechanical modes can still be achieved through the
cooling channel associated with the auxiliary cavity mode a;.

VI. PHYSICAL MECHANISM FOR BREAKING THE
DARK-STATE EFFECT IN THE “N”-TYPE FOUR-LEVEL
ATOMIC SYSTEM

To further investigate the generality of the physical
mechanism for breaking the dark-mode effect, in this section
we consider the dark-state effect in an atomic-level system.
Concretely, we demonstrate the dark-state effect in a Lambda-
type three-level system and show how to break this dark-
state effect by introducing an auxiliary state coupled to one of
the two lower states, namely, forming a “N”-type four-level
system (Fig. 12). For the three-level system, the Hamiltonian
reads

Hris(t) = E.le)el + Ef|f){f| + E¢lg)gl
+(Qqle)(gle ™" + Myle)(fle™™" + H.c.), (51)

where E,, Ef, and E, denote the energies of energy levels
le), |f), and |g), respectively. For convenience, hereafter we
assume the energy of the ground state is 0 (£, = 0). The two
atomic transitions |g) < |e) and |f) < |e) are, respectively,
coupled to the two monochromatic fields with the frequencies
w; and w; and the transition amplitudes Q; and Q,. In a
rotating frame with respect to wyle)e| + E¢|f){f] + E¢lg){gl,



the Hamiltonian in Eq. (51) becomes

Vi = Aile)el + Qu(le){gl + Ig)el) + Qa(le){f] + | f)eD,
(52)

where A; = E, —w; and A, = E, — Ef — w, are the transition
detunings.

To better study the eigenvalues and eigenstates of the
Hamiltonian (52), we introduce three basis states defined by
the following vectors

ley=(10 0), lg)=(0 0 1)

(53)
For demonstrating the dark-state effect in this three-level
system, we consider the single- and two-photon resonance

Ify=(0 10),

cases, i.e., Ay = A, = 0, then the Hamiltonian V; can be
written as
01 ¢
Vi=Q[ 1 00|, (54)
E00

where & = Q, /€, is the amplitude ratio.

The dark-state effect of this three-level system can be
analyzed by calculating the eigensystem of the matrix V;
given in Eq. (54). The eigen-equation of V; reads

Vildg) = A41dg),  s=1,2,3. (55)

The eigenvalues are given by 1; = 0, A, = =y +/1 + &2,
and A3 = Qy /1 + &€2. The corresponding eigenstates can be
obtained as

1

) = Ole) — ,

1) \/sz( le) = &1F) +1g))

) = ——— (— L+&1e) +1f) +§|g>),
2(1+&2)

|/13>=—( 1+§2Ie>+|f>+§lg>). (56)
2(1+&2)

To study the dark-state effect in this system, we can calculate
the probability of the excited state |e) in these eigenstates,

PU1 = (el (57)

By combining Eqgs. (56) and (57), we find that the probability
of the eigenstate |1;) is always zero, which means that the
eigenstate |1;) is the dark state.

To break the dark-state effect in the Lambda-type three-
level system, we introduce an auxiliary state coupled to
the lower states |f), namely, forming a “N”’-type four-level
system. The Hamiltonian of this system can be expressed as

Hris(t) = Hris(0) + Eqld){d] + Q3(1d)(fle™* + H.c.)(58)

where w3 is the frequency of the monochromatic field, and
|d) is the auxiliary state coupled to the lower state |f) with
the coupling strength Q3. In a rotating frame with respect to
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FIG. 13. (a) The probability P of the excited state |e) in these

three eigenstates versus the amplitude ratio Q; /€, in the three-level

system. (b) The probability pl* of these four eigenstates versus the

amplitude ratio €3/€), in the four-level system.

wile)el+E¢| Y f1+Eglg){gl+(E s +ws)ld){d|, the Hamiltonian
Hpp s becomes

V= AjleXel + Asld)(d] + Qi (le)(g] + |g)el)
+Q(le){(f1 + [/ )XeD + Qs(Id){f1 + |f}dD,  (59)

where A3 = E; — Ef — ws is the transition detuning.
By defining the four basis states with the following vectors

ley=(100 0),
lgy=(0010),

Ify=(0 10 0),
dy=(0 00 1),  (60)

the Hamiltonian V} can be expressed as

0110
1 00¢
Vi=Q@1 1000 61
000
Here, we introduce the parameter Q; = Q, = Q' and

Q3/Q = &, and consider the case A; = A3 = 0. Follow the
standard procedure as performed in the three-level system, we
can obtain the eigenvalues of the matrix V} as

. L 24 E7 £ Q2+ E?)? 487
Agm1034 = £Q \/ ¢ ¢ ¢ . (62)

2

The corresponding eigenstates are given by
) = BILA,(A7 =€ D)+ A7 1))+ (A7 =€ D)+ A€ I, (63)

where [6]> = 1/[(A2 + 1)(A2 = £2)? + 1222 + £€?)] is the
normalization constant. To check the dark-state effect in this
system, we alao calculate the probability of these eigenstates,

PEY = Kel )P, (64)

where p, is the probability of the excited-state |e) in the “N-
type four-level system.

In Fig. 13(a), we plot the probability PV of these three
eigenstates |[d;) (s = 1, 2, 3, and 4) as a function of the
amplitude ratio Q;/€), in the three-level system. We can find
that the probability PL“ is always zero no matter how the
ratio changes, which means that the eigenstate |1;) is the dark

state. In Fig. 13(b), we plot the probability PV of these four
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TABLE 1. Reported experimental parameters in the electromechanical system [11] and the scaled parameters used in our simulations. The
columns 1, 2, 3, and 4 present the notation, the remarks, the reported experimental parameters, and the used scaled parameters, respectively.

Notation Remarks Parameters in Ref. [11] Used parameters
w) frequency of the first mechanical oscillator 2 x 10 MHz frequency scale
Wy frequency of the second mechanical oscillator 27 %x 11.3 MHz wy/wy =1

K decay rate of the intermediate cavity field 2nx 1.38 MHz k/w; =0.1

Ky decay rate of the auxiliary cavity field ks/wp = 0.1
G effective optomechanical-coupling strength 27 % (0.1-0.5)MHz Gipy/wi =0.05
G2 effective optomechanical-coupling strength G52/ w1 = 0.08

ntlh phonon number in the first mechanical oscillator 41 1000

n’z’l phonon number in the second mechanical oscillator 30 1000

Y1 damping rate of the first mechanical oscillator 2n % 106 Hz Yi/w; =107

V2 damping rate of the second mechanical oscillator 271 X 144 Hz Y2 /w; =107

n phonon-hopping coupling strength n/w;, = 0.03-0.06

J photon-hopping coupling strength J/w, = 0.03

eigenstates I/l;,) as a function of the amplitude ratio Q3/<,
in the “N”-type four-level system. Here, we can see that the
probabilities pgl] and pEZ] are zero when the amplitude ratio
Q3/Q, = 0, which means that the two eigenstates |/l'l> and
I/l'z) are dark states when the transition channel between the
auxiliary state |d) and the lower state |f) is closed. However,
with the increase of ratio 3/Q,, the excited-state probability
of the four eigenstates are nonzero, which means that the dark-
state effect is broken when the auxiliary state is introduced to
the system.

VII. DISCUSSION ON EXPERIMENT IMPLEMENTATION

In this section we present some discussion on the
experimental implementation of this scheme. This system
only involves the linearized optomechanical couplings and
photon (phonon)-hopping coupling, which are experimentally
accessible in current optomechanical systems [2]. In the
simulations, we consider the model in the resolved-sideband
regime wj—1, > K5 and take the linearized coupling strengths
as G;/wy < 0.1 and Gy /w; < 0.1 for! = 1,2, which have been
realized in many optomechanical systems [2]. The photon-
hopping and phonon-hopping interactions have been experi-
mentally realized in optomechanical crystal circuits [35] and
double-microdisk whispering-gallery resonators [77]. All
these advances confirm the experimental feasibility of this
scheme.

Next, we present some parameter analysis based on the
circuit electromechanical systems [11, 13, 14, 44, 55], where
the two effective microwave cavities are two superconducting
circuits on a quartz substrate. They have the same resonance
frequency w, = w; = 21 X 4.2 GHz. The two mechanical
modes are two drum resonators that function as compliant
capacitances in the circuit. The mechanical position can
affect the resonance frequency of microwave cavity, then the
optomechanical interaction can be realized. Note that one of
the two microwave cavities acts as the intermediate coupling
cavity mode coupled to two mechanical modes, while the
other microwave cavity is only coupled to one of the two
mechanical modes. Here, the mechanical modes of two drums

have the resonance frequency w; = w; ~ 27 X 10 MHz. The
intrinsic energy decay rates of two microwave cavities and two
drum resonators are k = k; = 27 X 1 MHz and y; = y, = 27 X
100 Hz, respectively. The effective coupling rates between
the intermediate coupling microwave cavity and the two drum
resonators are G; = G, = 2m X 0.5 MHz, and the effective
coupling rates between the auxiliary microwave cavity and
the two drum resonators are Gy = Gy = 27 X 0.8 MHz.
In Table I we present the reported experimental parameters
in the circuit electromechanical systems [11] and the scaled
parameters used in our simulations. By comparing these used
scaled parameters and the experimental parameters, we find
that the experimental implementation of this scheme should
be within the reach of current or near-future experimental
conditions.

VIII. CONCLUSION

In conclusion, we have proposed an auxiliary-cavity-mode
method to realize simultaneous ground-state cooling of two
degenerate or near-degenerate mechanical modes. We have
also studied the general physical coupling configuration for
breaking the dark mode in the network-coupled four-mode
optomechanical system. The analytical parameter conditions
for breaking the dark-mode effect have been found. Moreover,
we have generalized this method to realize ground-state
cooling of multiple mechanical modes, which was achieved
by introducing the auxiliary cavity mode and phonon-hopping
couplings between nearest-neighboring mechanical modes.
We also describe the physical mechanism for breaking
the dark-state effect in the “N’-type four-level atomic
system. Our results pave a way toward the demonstration of
macroscopic quantum coherence and quantum manipulation
in multiple-mechanical-mode optomechnical systems.
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