
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum dynamics of cold atomic gas with SU(1,1)
symmetry

Jing Zhang, Xiaoyi Yang, Chenwei Lv, Shengli Ma, and Ren Zhang
Phys. Rev. A 106, 013314 — Published 22 July 2022

DOI: 10.1103/PhysRevA.106.013314

https://dx.doi.org/10.1103/PhysRevA.106.013314


Quantum Dynamics of Cold Atomic Gas with SU(1, 1) Symmetry

Jing Zhang,1, 2 Xiaoyi Yang,1, 2 Chenwei Lv,3, ∗ Shengli Ma,1, 2, † and Ren Zhang1, 2, ‡

1School of Physics, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
2Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices,

Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
3Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA

(Dated: July 11, 2022)

Motivated by recent advances in quantum dynamics, we investigate the dynamics of the system
with SU(1, 1) symmetry. Instead of performing the time-ordered integral for the evolution operator
of the time-dependent Hamiltonian, we show that the time evolution operator can be expressed
as a SU(1, 1) group element. Since the SU(1, 1) group describes the “rotation” on a hyperbolic
surface, the dynamics can be visualized on a Poincaré disk, a stereographic projection of the upper
hyperboloid. As an example, we present the trajectory of the revival of Bose-Einstein condensation
and that of the scale-invariant Fermi gas on the Poincaré disk. Further considering quantum gases in
an oscillating lattice, we also study the dynamics of the system with time-dependent single-particle
dispersion.

I. INTRODUCTION

The study of quantum dynamics has attracted exten-
sive recent interests in cold atom physics. One of the
prominent advantages of cold atom physics is the flexi-
bility in quantum manipulation. Both the single-particle
Hamiltonian and the pairwise interaction can be precisely
controlled by external fields [1, 2]. Using the optical lat-
tice and Feshbach resonance, one can tune the single-
particle dispersion and the interaction strength, respec-
tively. As a result, quantum dynamics in cold atomic
gases can be studied in a controllable manner.

Recently, an experimental group from Chicago discov-
ered a series of intriguing dynamics in Bose gases by im-
plementing an oscillating interaction, such as the Bose
fireworks [3] and the revival of Bose-Einstein condensa-
tion (BEC) [4, 5]. In a quasi-two-dimensional potential,
the spatial configuration of a Bose gas can be manipu-
lated. For instance, the box potential [6, 7], circle po-
tential [8], and triangle potential [9] have been realized.
The experimental group from ENS observed that BEC
in the circle and triangle potential revives after an ap-
propriate time [9], which is quite counterintuitive as the
initial state of a many-body system usually does not re-
vive. For Fermi gas in a harmonic trapping potential with
unitary or without interaction, the system size shows a
discrete scaling law when the trapping frequency varies in
a proper way. This phenomenon is named as “Efimovian
expansion” [10–12]. These experiments are quite distinct
in the aspects of statistics, dimensionality, and extra con-
finement. However, they share the common feature that
the dynamics can be captured by the SU(1, 1) group.

It is instructive to compare the SU(1, 1) and SU(2)
group [13]. Similar to SU(2), the SU(1, 1) group is gener-

ated by three operators K̂0, K̂1 and K̂2 which satisfy the
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commutation relation [K̂1, K̂2] = −iK̂0, [K̂0, K̂1] = iK̂2

and [K̂2, K̂0] = iK̂1 [14, 15]. It is known that SU(2)
group describes the rotation on a Bloch sphere, while the
SU(1, 1) group describes the “rotation” on a hyperbolic
surface [16, 17]. Using the commutation relation, one

can show that K̂0 generates the usual rotation around
a particular axis, say, the z-axis. K̂1 and K̂2 generate
the pseudo-rotation (or boost) along the y- and x-axis,
respectively. To be specific,

e−iθK̂0K̂1(2)e
iθK̂0 = K̂1(2) cos θ + (−)K̂2(1) sin θ; (1)

e−iθK̂1K̂2(0)e
iθK̂1 = K̂2(0) cosh θ − K̂0(2) sinh θ; (2)

e−iθK̂2K̂0(1)e
iθK̂2 = K̂0(1) cosh θ + K̂1(0) sinh θ, (3)

where θ is the (pseudo-)rotation angle [14]. With the
aid of this geometric picture, the quantum dynamics can
be visualized on the Poincaré disk, a stereographic pro-
jection of upper hyperboloid. It provides a straightfor-
ward intuition of the quantum dynamics of a many-body
system. The studies on the dynamics of BEC and the
breathing mode in quantum gases are underpinned by the
SU(1, 1) group [18–28], and it can be visualized for arbi-
trary initial state [29, 30]. As such, it is natural to gen-
eralize the geometric visualization to more systems, the
dynamics of which are governed by the SU(1, 1) group.

Another benefit of implementing the SU(1, 1) group
is the simplification of the calculation for the quan-
tum dynamics, even when the Hamiltonian is time-
dependent [31]. The conventional wisdom for evaluating
the quantum evolution is to perform the time-ordered
integral, which is numerically time-consuming. The an-
alytical treatment is only available when the interaction
is perturbative. Nevertheless, when the Hamiltonian is
expressed as the linear combination of the SU(1, 1) gen-
erators, the evolution operator becomes a SU(1, 1) group
element. As such, the evolution can be obtained analyt-
ically, which enables us to investigate the quantum dy-
namics in a generic manner.

As of now, the dynamics dominated by the manipula-
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tion of the pairwise interaction and the external potential
have been intensively studied. A natural question arises.
What happens if the single-particle dispersion is time-
dependent? This can be achieved by considering cold
atoms in a periodic driven optical lattice with oscillat-
ing depth. As a result, the bandwidth of a tight-binding
model becomes time-dependent. If low-energy physics is
concerned, a time-dependent effective mass will dominate
the dynamics [32].

The arrangement of this manuscript is as follows. In
Section II, we present the general formalism for the quan-
tum dynamics with SU(1, 1) symmetry. In Section III,
the geometric visualization for BEC and scale-invariant
Fermi gases are shown. Then, the dynamics of quantum
gases in an oscillating optical lattice is studied in Section
IV. At last, we summarize our results in Section V.

II. GENERAL FORMULISM

In this manuscript, the Hamiltonian we are considering
is of the following generic form

Ĥ(t) = α(t)K̂0 + β(t)K̂1, (4)

where α(t) and β(t) are time-dependent. The absence

of K̂2 does not affect the generality, since an extra term

γ(t)K̂2 could be removed by e−i arctan(γ(t)/β(t))K̂0 . For

different systems, the definition of K̂i varies. To study
the dynamics, the most direct approach is to evaluate

the evolution operator Û(t, 0) = T̂ exp
(
−i
∫ t
0
Ĥ(τ)dτ

)
,

where T̂ denotes the time-ordering operator. However,
this method becomes formidable in the many-body sys-
tem, due to the exponentially increase of the Hilbert
space dimension. Since the commutation relation is
closed, the evolution operator can be written as [31]

Û(t, 0) = eζ+(t)K̂+eK̂0 ln η(t)eζ−(t)K̂− , (5)

where ζ±(t) and η(t) are functions of α(t), β(t), and

K̂± ≡ K̂1 ± iK̂2 are the ladder operators. To be spe-

cific, we define |k, j〉 as the common eigenstates of K̂0

and the Casimir operator Ĉ = K̂2
0 − K̂2

1 − K̂2
2 , that is,

K̂0|k, j〉 = j|k, j〉 and Ĉ|k, j〉 = k(k − 1)|k, j〉. It can be

proved that K̂±|k, j〉 ∝ |k, j ± 1〉. The requirement that

〈k, j|K̂∓K̂±|k, j〉 ≥ 0, i.e., j(j ± 1) − k(k − 1) ≥ 0 indi-
cates that j is bounded from below with jmin = k. The
Hilbert space spanned by {|k, k〉, K̂+|k, k〉, K̂2

+|k, k〉, ...}
constitutes a representation of the SU(1, 1) group. In
this manuscript, we focus on this representation and de-
note the ground state of K̂0 as |k, k〉.

To determine the coefficients ζ±(t) and η(t), we could
solve the differential equation of the evolution operator
i∂tÛ(t, 0) = Ĥ(t)Û(t, 0), which can be recast as

∂tÛ(t, 0)

Û(t, 0)
= −iα(t)K̂0 −

i

2
β(t)(K̂+ + K̂−). (6)

This approach is straightforward but formidable in the
many-body system. It is straightforward to prove the
following equation from Eq. (5),

∂tÛ(t, 0)

Û(t, 0)
=

1

η(t)

[
∂η(t)

∂t
− 2ζ+(t)

∂ζ−(t)

∂t

]
K̂0

+

[
∂ζ+(t)

∂t
− ζ+(t)

η(t)

∂η(t)

∂t
+
ζ+(t)2

η(t)

∂ζ−(t)

∂t

]
K̂+

+
1

η(t)

∂ζ−(t)

∂t
K̂−. (7)

For the detailed derivation, please refer to Appendix A.
Comparing the right hand side of Eq. (6) and Eq. (7), we
immediately obtain the following set of equations,

−iα(t) =
1

η(t)

[
∂η(t)

∂t
− 2ζ+(t)

∂ζ−(t)

∂t

]
; (8)

− i
2
β(t) =

∂ζ+(t)

∂t
− ζ+(t)

η(t)

∂η(t)

∂t
+
ζ+(t)2

η(t)

∂ζ−(t)

∂t
; (9)

− i
2
β(t) =

1

η(t)

∂ζ−(t)

∂t
. (10)

This set of equations plays a central role in the study
of quantum dynamics. In the following sections, we
will apply these results to different cases. Solving this
set of algebraic equations under the initial conditions
ζ±(0) = 0, η(0) = 1 and implementing the evolution op-
erator defined in Eq. (5) to the initial state, the dynamics
of a system can be obtained. The initial time is set as
t0 = 0. We would like to point out that our approach is
valid for any system with the Hamiltonian of the form in
Eq. (4), and is independent of the dimensionality, statis-
tics, and interaction strength.

In case that the initial state |ψi〉 = |k, k〉 is the ground

state of K̂0, K̂−|ψi〉 = 0, the evolution operator can be

further simplified as Û(t, 0) = η(t)keζ+(t)K̂+ . The effect
of the evolution operator then becomes the same as a dis-

placement operator D̂(ξ(t)) = exp
(
ξ(t)K̂+ − ξ∗(t)K̂−

)
with ζ+(t) = ξ(t)

|ξ(t)| tanh |ξ(t)|. Then the coherent state of

SU(1, 1) group [16]

|ζ+(t), k〉 =
(
1− |ζ+(t)|2

)k ∞∑
n=0

1

n!
ζn+(t)K̂n

+|k, k〉, (11)

can be represented by a point on the Poincaré disk [29,
30]. As a result, the evolution of a series of systems with
SU(1, 1) symmetry can be visualized on the Poincaré
disk. In the next section, we use two examples to demon-
strate this visualization.

III. QUANTUM DYNAMICS OF
BOSE-EINSTEIN CONDENSATION AND

SCALE-INVARIANT FERMI GAS

In this section, we implement the approach described
in Section II to the bosonic and fermionic system. The
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FIG. 1. Quantum dynamics of Bose-Einstein condensation under the oscillating s-wave scattering length. Oscillation schemes
(I) and (II) are schematically shown in (a1) and (b1), respectively. (a2) and (b2): The respective resonant mode particle
number as a function of time. Here we define the resonant mode as ~2q2res/(2m) =

(
1/2 + 3∆2/8

)
~ω with ω being the

oscillating frequency. The non-monotonic profile indicates BEC revives, and the revival is perfect under the scheme (II). (a3)
and (b3) are the visualizations of the quantum dynamics on Poincaré disk. For both schemes, the start point is the disk center.
However, the ending point for scheme (I) is not the disk center and the ending point for scheme (II) is the disk center. The
similar calculation for the non-resonant mode are shown in (a4,a5,b4,b5). Here, ζ+ is dimensionless. In our calculation, the
momentum of the non-resonant mode is q = 0.99qres, and the interaction strength is g0n0 = 0.02~ω. Nq,max is the maximum
of Nq for the resonant mode.

revival of BEC and Efimovian expansion in the scale-
invariant Fermi gas can be readily obtained, and evo-
lutionary trajectories of the systems are shown on the
Poincaré disk.

A. Revival of BEC

We start with the revival of BEC with the oscillat-
ing scattering length. In Ref. [4], the authors observed
that the nonzero momentum particle number Nq expo-
nentially increases when the s-wave scattering length as
is sinusoidally varying. After some time, the phase of as
suddenly changes by π, and Nq begins to decrease, that
is, BEC begins to revive. The following theoretical work
proposed a more efficient revival protocol by turning off
the interaction for a while but keeping the phase invari-
ant, which is named as the “Many-Body Echo” [26]. The
SU(1, 1) echo, a counterpart of the spin echo [33, 34],
has been proposed and explains the experimental ob-
servation [30]. The underlying reason for the revival of
BEC is the SU(1, 1) symmetry of the Bogoliubov Hamil-
tonian that describes Bose gases with weak interaction.
Specifically, the Bogoliubov Hamiltonian is written as

ĤBog = g(t)N2

2V +
∑

q 6=0

(
Ĥq

Bog(t)− εq+g(t)n0

2

)
with

Ĥq
Bog(t) =

(εq + g(t)n0)

2

(
â†qâq + â−qâ

†
−q

)
+
g(t)n0

2

(
â†qâ
†
−q + âqâ−q

)
, (12)

where â†q and âq are the creation and annihilation opera-
tor of bosons with momentum q, respectively. g(t) =
4π~2as(t)/m denotes the interaction strength, εq =
~2q2/(2m), where m is the atomic mass. N and V are
the particle number and system volume, respectively. n0
is the zero-momentum particle density. Now we define
the generators as follows [14],

K̂0 =
1

2

(
â†qâq + â−qâ

†
−q

)
; (13)

K̂1 =
1

2

(
â†qâ
†
−q + âqâ−q

)
; (14)

K̂2 =
1

2i

(
â†qâ
†
−q − âqâ−q

)
, (15)

and the Casimir operator is written as Ĉ = 1
4 (â†qâq −

â†−qâ−q)− 1
4 . In our case, â†qâq = â†−qâ−q, and the good

quantum number associated with Ĉ is k = 1/2. With
the aid of Eqs.(13-15), the Bogoliubov Hamiltonian can
be recast as

Ĥq
Bog(t) = 2 [εq + g(t)n0] K̂0 + g(t)n0

(
K̂+ + K̂−

)
.

(16)

As such, the approach presented in Section II is appli-
cable to this system, and α(t) = 2 [εq + g(t)n0], β(t) =
2g(t)n0. Substituting the expression of α(t) and β(t)
into Eqs. (8-10) and using the initial condition ζ±(0) =
0, η(0) = 1, we shall obtain the evolution operator at any
time.

Considering the initial state in the experiment as a con-
densate at the zero momentum, we could geometrize the
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dynamics on the Poincaré disk. Specifically, the initial

state can be written as |ψi〉 =
(
â†q=0

)N
|0〉 with N be-

ing the particle number. Then the time-dependent wave
function becomes a coherent state

|ψ(t)〉 = |ζ+(t),
1

2
〉 =

(
1− |ζ+(t)|2

) 1
2 eζ+(t)K̂+ |ψi〉, (17)

which can be represented by a point on the Poincaré disk.
Due to the pairwise interaction, the BEC is excited and
the nonzero momentum particle number N̂q = K̂0 − 1

2
can be obtained straightforwardly

〈ψ(t)|N̂q|ψ(t)〉 =
1

2

(
1 + |ζ+(t)|2

1− |ζ+(t)|2

)
− 1

2
. (18)

In Fig.1, we present the dynamics of BEC under two
different types of time-dependent interaction strength. In
the first scheme, the interaction is sinusoidally oscillating
with a frequency of ω, and after a few periods, say nT
with T = 2π/ω, the phase of g(t) suddenly changes by π,
as schematically plotted in Fig. 1(a1). We define the reso-
nance mode via ~2q2res/(2m) =

(
1/2 + 3∆2/8

)
~ω, where

∆= g0n0/~ω, and g0 is the oscillation amplitude. The
particle number Nq of the resonant mode increases ex-
ponentially at the early time. When the phase changes
by π, Nq begins to decrease, and at t = 2nT , it drops
to a small but nonzero value, as shown in Fig. 1(a2).
On the contrary, in the second scheme, the interaction
is turned off for a period of T/2 at t = nT , then oscil-
lates again with the same phase, as schematically shown
in Fig. 1(b1). It is found that at t = (2n + 1/2)T , Nq

is vanishing small as shown in Fig. 1(b2), which means
that BEC perfectly revives in the latter scheme.

These two schemes can be visualized on the Poincaré
disk. Starting with the ground state of K̂0 means that
the initial points is the disk center. The Hamiltonian
in Eq.(12) is the linear combination of K̂0 and K̂1 that
generate rotation and boost, respectively. Thus, the
points represented the instant state on the disk will ro-
tate around the disk center and move outwards to the
boundary of the disk, as illustrated by the black curves
in Fig. 1(a3) and (b3). In the first scheme, the point be-
gins to rotate around and moves inwards to the center of
the disk when the phase changes at t = nT . At t = 2nT ,
it does not stop at the center of the disk as shown in
Fig. 1(a3), which indicates that the system does not re-
vive. On the contrary, in the second scheme, when the
interaction is turned off for a period of T/2, the point
rotates by π around the center of the disk, indicated
by the red curve in Figs. 1(b1-b3). Then it begins to
rotate around and move towards the center. Finally,
it goes back to the disk center, which implies that the
system perfectly revives. For the non-resonant mode,
the scheme above does not provide revivals as shown
in Figs. 1(a4,a5,b4,b5). The revival requires a different
waiting time when the interaction is turned off [29, 30].

B. Quantum dynamics in Scale-Invariant Fermi gas
in harmonic trap

We consider the Fermi gas in 3D, and firstly focus on
the two-body problems. For two fermions of spin ↑ and
spin ↓ in harmonic potential with time-dependent trap-
ping frequency, the free Hamiltonian is written as

Ĥ2b(t) = − ~2

2m
(∇2

r1 +∇2
r2) +

1

2
mω(t)2(r21 + r22), (19)

where m is the atomic mass, and ω(t) denotes the time-
dependent trapping frequency. r1(2) is the coordinate.
We define the center of mass (CoM) and relative coordi-
nates as R = (r1 + r2)/2 and r = r1 − r2, respectively.
Here, we adopt the Bethe-Peierls boundary condition to
incorporate the two-body interaction [35]

ψ(rij → 0) ∝ 1

rij
− 1

as
, (20)

where as indicates the s-wave scattering length. as → 0
and as → ∞ correspond to non-interacting and unitary
limit, respectively.

Due to the CoM Hamiltonian is not affected by the
pairwise interaction, we focus on the relative motion, and
the wave function is written as ψ(r, t). Since the angular
momentum is conserved in this system, we could define a
function u(r, t) = rφ(r, t) that solves Schrödinger equa-

tion i~∂tu(r, t) = Ĥu(r, t), where the time-dependent
Hamiltonian is written as

Ĥ(t) = − ~2

2µ

[
d2

dr2
− `(`+ 1)

r2

]
+

1

2
µω(t)2r2, (21)

φ(r, t) = ψ(r, t)/Ylm(θ, ϕ) is the radical wavefunction, µ
is the reduced mass, and ` is the good quantum number
of angular momentum. Now we define a set of generators
as follows,

K̂0~ω0 =− ~2

4µ

(
∂2

∂r2
− `(`+ 1)

r2

)
+

1

4
µω2

0r
2; (22)

K̂1~ω0 =− ~2

4µ

(
∂2

∂r2
− `(`+ 1)

r2

)
− 1

4
µω2

0r
2; (23)

K̂2~ω0 =
~ω0

2i

(
r
∂

∂r
+

1

2

)
, (24)

where ω0 ≡ ω(t0) denotes the trapping frequency at t =
t0 with t0 being the initial time.

It is straightforward to prove that the operators in
Eqs. (22-24) satisfy the commutation relation of the
SU(1, 1) generators, and the Casimir operator is writ-

ten as Ĉ = `(` + 1)/4 − 3/16. For the s-wave case
(` = 0), the good quantum number for the Casimir is
k = 3/4 or k = 1/4. They are the ground state energy

of K̂0~ω0 in Eq.(22) without interaction or with unitary
interaction, respectively. To be specific, (I): for k = 3/4,

ufr(r) ∝ re−µω0r
2/(2~) solves K̂0ufr(r) = (3/4)ufr(r) un-

der the boundary condition ufr(r → ∞) → 0. As such,
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in the limit of r → 0, ufr(r)
r → 1 + O(r2), which is the

short range boundary condition of two non-interacting

particles. (II): for k = 1/4, uint(r) ∝ e−µω0r
2/(2~)

solves K̂0uint(r) = (1/4)uint(r) under the boundary con-
dition uint(r → ∞) → 0. In the limit of r → 0, we

have uint(r)
r → 1

r + O(r), which is short range bound-
ary of two particles with unitary interaction. As a re-
sult, case (I) and (II) correspond to non-interacting and
unitary interacting Fermi gas in a harmonic trap with
frequency of ω0, respectively. For both cases, the in-
teraction, that can be simulated by the pseudo-potential
(4π~2as/m)δ(r)∂rr [36], is invariant under scale transfor-
mation r → Ωr with Ω being an arbitrary real number.
As a result, scale-invariant Fermi gas refers to that with-
out interaction or with unitary interaction.

Now we consider the quantum dynamics of the scale-
invariant Fermi gas. To this end, we firstly recast the
Hamiltonian in Eq.(21) as

Ĥ(t)

~ω0
=

(
1 +

ω(t)2

ω2
0

)
K̂0 +

(
1− ω(t)2

ω2
0

)
K̂1. (25)

The generic approach for the quantum dynamics in Sec-
tion II then is applicable to this system with α(t) =
1 + ω(t)2/ω2

0 and β(t) = 1− ω(t)2/ω2
0 . Substituting α(t)

and β(t) into Eqs.(8-10) and imposing the initial con-
dition ζ±(0) = 0, η(0) = 1, we can obtain the evolution

operator Û(t, 0). If the initial state were φi(r) = ufr(r)
r or

uint(r)
r , the time-dependent wave function then is written

as

φ(r, t) = η(t)
3(1)
4 eζ+(t)K̂+φi(r), (26)

and the quantum dynamics can be visualized on the
Poincaré disk characterized by ζ+. For the case that

the initial state is not the ground state of K̂0, but the
ground state of system with trapping frequency ω̃0, the
initial states for the noninteracting and unitary gas can
be obtained by a dilation

rφ̃i(r) = e−iθK̂2ufr(int)(r) (27)

with θ = ln (ω0/ω̃0). Then the time-dependent wave
function can be obtained

rφ(r, t) =Û(t, 0)e−iθK̂2ufr(int)(r)

=eζ̃+(t)K̂+eK̂0 ln η̃(t)eζ̃−(t)K̂−ufr(int)(r)

=η̃(t)
3(1)
4 eζ̃+(t)K̂+ufr(int)(r), (28)

where Û(t, 0) is the evolution operator defined in Eq.(5).
To prove the second line, we have used the Baker-
Campbell-Hausdorff formula. A straightforward algebra

shows that

ζ̃+(t) =
ζ+(t) cosh θ

2 − [η(t)− ζ−(t)ζ+(t)] sinh θ
2

cosh θ
2 + ζ−(t) sinh θ

2

; (29)

ζ̃−(t) =
ζ−(t) cosh θ

2 + sinh θ
2

cosh θ
2 + ζ−(t) sinh θ

2

; (30)

√
η̃(t) =

√
η(t)

cosh θ
2 + ζ−(t) sinh θ

2

. (31)

For details, please refer to Appendix B. As a result, if
the initial state is not the ground state of K̂0, the dy-
namic of scale-invariant Fermi gas can be visualized on
the Poincaré disk that is characterized by ζ̃+, instead of
ζ+. From Eqs.(29-31), we see that (1): when θ = 0,

i.e., ω̃0 = ω0, ζ̃±(t) = ζ±(t) and η̃±(t) = η±(t); (2):

at the initial time t = 0, ζ̃±(0) = ∓ tanh(θ/2) and
η̃(0) = 1/ cosh(θ/2). Before further proceeding, an in-
tuitive physical picture will be helpful. ω̃0 = ω0 means
that the initial state is the ground state of the initial
harmonic trap, while ω̃0 > (<)ω0 means that the ground
state size of the initial harmonic trap is larger(smaller)
than the initial state size.

By expressing the time-dependent wavefunction in
terms of SU(1, 1) coherent state, we can obtain the ex-
pectation value of r̂2

〈r̂2〉fr(int)(t) =

〈
ζ̃+(t),

1(3)

4

∣∣∣∣ r̂2 ∣∣∣∣ζ̃+(t),
1(3)

4

〉
=

2

µω2
0

〈
ζ̃+(t),

1(3)

4

∣∣∣∣ K̂0 − K̂1

∣∣∣∣ζ̃+(t),
1(3)

4

〉
=

3(1)

2

~
µω0

1 + |ζ̃+(t)|2 − 2<[ζ̃+(t)]

1− |ζ̃+(t)|2
. (32)

At the initial time t = 0, 〈r̂2〉fr(int)(0) = 3(1)
2

~
µω̃0

charac-

terizes the cloud size in a harmonic trap of frequency ω̃0.
Since the interaction does not affect the CoM motion,
the CoM wave function will always be of free form with
k = 3/4. Following the same derivation, we have

〈R̂2〉(t)
〈R̂2〉(0)

=
ω̃0

ω0

1 + |ζ̃+(t)|2 − 2<[ζ̃+(t)]

1− |ζ̃+(t)|2
. (33)

It is obvious that the CoM and relative motion have the
same dynamical behavior. As such, we conclude that the
cloud size as a function of time will also obey Eq.(33). We
would like to point out that our approach can be applied
to the study of dynamics under arbitrary form of ω(t) and
particle number. The expectation values for observables
that are expressed as K̂v

−K̂
w
0 K̂

p
+ can be readily obtained,

where v, w, p are arbitrary non-negative integers [37].
Now we consider a special case that the time-

dependent trapping frequency is ω(t) = 1/(
√
λt) with

λ being a dimensionless parameter. We denote the ini-
tial time as t0 and use initial frequency ω(t0) to define
the generators in Eqs.(22-24), i.e., ω0 = ω(t0). In Fig. 2,
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FIG. 2. Quantum dynamics of scale-invariant Fermi gas induced by the time-dependent harmonic trap. The frequency varies
as ω(t) = 1/(

√
λt). (a1,a2): The initial state is the ground state of the initial Hamiltonian. On the Poincaré disk, the starting

point locates at the center of the disk, and 〈r̂2〉(t) exhibit a discrete scaling law. (b1,b2): The initial state is in a loosely
confined harmonic potential. The starting point is not the center of the disk, and the discrete scaling law disappears. (c1,c2):
The initial state is in a tightly confined harmonic potential. Similar to the previous case, the starting point is not the center
of the disk and the discrete scaling law disappears. Here ζ̃+ is dimensionless.

we illustrate the quantum dynamics starting with differ-
ent initial Hamiltonians and the visualization of quan-
tum dynamics on the Poincaré disk characterized by ζ̃+.
When the initial state is the ground state of the ini-
tial harmonic trap, i.e., ω̃0 = ω0, our results show that
the cloud size expands when the trapping frequency be-
comes smaller. Moreover, a series of plateaus appear
for 〈r̂2〉(t), the corresponding times of which obey a dis-

crete scaling law ti+1/ti = e2π/s0 with s0 =
√

4/λ− 1,
as shown in Fig. 2(a). This phenomenon has been ob-
served and named as “Efimovian expansion” [10]. On
the Poincaré disk, the dynamics trajectory forms a series
of similar semicircles, and the initial point is the disk
center. The ending point locates at the boundary of the
disk, which implies that the cloud size becomes infinitely
large. When the initial state is not the ground state of
the initial harmonic trap, that is, the ground state size
of the initial harmonic trap is either smaller (ω0 > ω̃0) or
larger (ω0 < ω̃0) than the initial state size, the expecta-
tion value 〈r̂2〉 grows. But on top of the profile a series of
local minima instead of plateaus appears. The discrete
scaling law also disappears, as shown in Figs. 2(b,c). On
the Poincaré disk, the dynamics trajectory forms a string-
like shape. The starting point is not the disk center. This
is due to the fact that the starting point for these two

cases is related to the disk center by a dilation e−iθK̂2 .
The ending points also locate at the boundary of the disk,
the same as the former case.

IV. QUANTUM DYNAMICS IN OSCILLATING
OPTICAL LATTICE

In the previous two sections, we have investigated the
quantum dynamics induced by a time-dependent inter-
action strength and an external trapping potential. For
cold atoms in an optical lattice, the effective mass is mod-
ified by the distorted dispersion. Considering Bose gas
condensed at the bottom of the s-band, the effective mass
can be written as

m∗i = ~2
(
∂2εq
∂q2i

)−1 ∣∣∣∣
qi=0

, i = x, y, z, (34)

where εq denotes the dispersion. For the tight binding
model, we have εq = −

∑
i=x,y,z ti cos(qia) with ti be-

ing the tunneling strength along the i-direction. Since ti
is determined by the lattice depth that can be manipu-
lated time-dependently, the dispersion varies for different
lattice depth, and so does the effective mass m∗i (t) [38].
Similar to the case in Sec III, we consider the Bose gases
with weak interaction, and the system is described by the
Bogoliubov Hamiltonian that can be written as [26, 30]

Ĥq
Bog(t) =

1

2

(
~2q2

2m∗(t)
+ gn0

)(
â†qâq + â−qâ

†
−q

)
+
gn0
2

(
â†qâ
†
−q + âqâ−q

)
, (35)

then we define α(t) = ~2q2

m∗(t) + 2gn0, and β(t) = 2gn0.

Upon substituting α(t) and β(t) into Eqs. (8-10), the
dynamics of our system can be obtained.

Here we assume that the optical lattice depth varies
as V (t) = V0 sin2(ωt). As such, the kinetic energy can
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FIG. 3. Quantum dynamics of Bose gas in an oscillating op-
tical lattice. Only the particles near the resonant mode are
excited. In our calculation, we set gn0=0.1~ω. The color bar
represents the normalized particle number Nq/Nq,max in the
q-mode, where Nq,max is the maximum of Nq for the resonant
mode.

be obtained by exact diagonalization, and varies with
a single frequency. Then the time-dependent effective
mass can be obtained via Eq.(34). V0 denotes the max-
imal lattice depth and ER =~2π2/(2ma2) is the recoil
energy, m is the mass of the particle and a is half the
wavelength. Similar to Eq.(18), the particle number
of the q-mode can be readily obtained. In Fig. 3, we
present particle number with nonzero momentum as a
function of evolution time. It is clear that only a par-
ticular mode qres ≈ 1.455

√
mω/~ is excited by the oscil-

lation, where qres is defined as the resonance mode via
~2q2res/(2m̄∗) = n~ω. m̄∗ denotes the mean value of the
varying effective mass, and n is an integer. Here we have
shown the case of n = 1, and the resonant mode with
n ≥ 2 can also be observed but with a decreased strength.

In addition, we have also studied the interaction effect
on the resonant mode. We only consider the weak in-
teraction, and the mean-field Bogoliubov theory holds.
As illustrated in Fig. 4, our results show that (1): The
stronger the interaction is, the more particles are excited
in the resonant mode, which makes sense by referring to
Eq.(35). (2): When the interaction strength increases,
the resonant mode moves towards the lower momentum,
as shown in the inset. Similar results also exist for the
resonant mode with n ≥ 2.

V. CONCLUSION & OUTLOOK

In summary, we studied the quantum dynamics of the
system with the SU(1, 1) symmetry. Instead of perform-
ing the time-ordering evolution, the dynamics can be ob-
tained by solving a set of algebraic equations. The evo-

/ /q mω 

0 4 RV E=

,m
ax

(
)/

N
t

N
q

q

/
/

q
m ω



0 /n ωg

0 /n ωg

0 /n ωg

0 /n ωg

FIG. 4. Interaction effect on the resonant mode. The inter-
action enhances the excitation of the resonant mode. Inset:
The interaction shifts the resonant mode toward the lower
momentum. In our calculation, we take shot for the particle
number Nq at t = 50T . V0 denotes the lattice depth at the be-
ginning and ER is the recoil energy. Nq,max is the maximum
of particle number for gn0 = 0.16~ω at t = 50T .

lution operator can be expressed as an element of the
SU(1, 1) group, so that the wave function can be visual-
ized on the Poincaré disk, a prototype of the hyperbolic
surface. Taking Bose and scale-invariant Fermi gas as ex-
amples, we demonstrate this approach. Our method can
readily reproduce the previous results. The dynamics of
BEC and scaling invariant Fermi gas are studied. The re-
vival of BEC and Efimovian expansion can be obtained
in a simpler way. We also provide an intuitive geomet-
ric picture of various quantum dynamical systems, that
is, the dynamics can be visualised on a Poincaré disk.
The quantum dynamics of Bose gas in oscillating optical
lattice have also been studied. In this system, the ef-
fective mass is time-dependent and the resonant mode is
determined by the mean value of the effective mass. The
interaction effect on the resonant mode is also studied.

We would like to point out that our method can also
be implemented to the few-body system, such as the
study of the dynamics in the three-body problem [39–
41]. By characterizing how strong the broken of the
SU(1, 1) symmetry is, our method may also be applied
to study the quantum anomaly [42–47]. For instance, for
three identical bosons in a harmonic trap, the Hamilto-
nian can be expressed by generators of SU(1, 1) group.
While the dynamics is predicted by Eqs. (8-10), the short
range boundary condition breaks the SU(1, 1) symmetry
and leads to the deviation from the predicted trajectory.
Since our method does not depend on the configuration
of the spatial confinement, it can also be implemented to
the study of the parametric excitation in BEC [48] or the
quantum enhanced sensing [49].
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Appendix A: Derivation of Eqs.(8-10)

In this appendix, we show the detailed derivation of
the Eqs.(8-10) in the main text. The evolution operator
satisfies the following equation

∂tÛ(t, 0)

Û(t, 0)
= −iα(t)K̂0 −

i

2
β(t)(K̂+ + K̂−). (A1)

Since the commutation relations of K0,1,2 are closed, we
can express the evolution operator in the normal-ordered
form

Û(t, 0) = eζ+(t)K̂+eK̂0 ln η(t)eζ−(t)K̂− , (A2)

which means

∂tÛ(t, 0) =
∂ζ+ (t)

∂t
K̂+e

ζ+(t)K̂+eK̂0 ln η(t)eζ−(t)K̂−

+η (t)
−1 ∂η (t)

∂t
eζ+(t)K̂+K̂0e

K̂0 ln η(t)eζ−(t)K̂−

+
∂ζ− (t)

∂t
eζ+(t)K̂+eK̂0 ln η(t)K̂−e

ζ−(t)K̂− . (A3)

For further proceeding, we need to calculate

g1(t) = eζ+(t)K̂+K̂0, (A4)

g2(t) = eK̂0 ln η(t)K̂−, (A5)

g3(t) = eζ+(t)K̂+K̂−. (A6)

To be specific, it is straightforward to prove the following
identity

dg1(t)

dt
= eζ+(t)K̂+K̂+K̂0 = eζ+(t)K̂+(K̂0K̂+ − K̂+)

= g1(t)K̂+ − eζ+(t)K̂+K̂+. (A7)

Under the initial condition that g1(0) = K̂0, we find

g1(t) = (K̂0 − ζ+ (t) K̂+)eζ+(t)K̂+ . (A8)

Utilizing the same method, we have

g2(t) = η (t)
−1
K̂−e

K̂0 ln η(t). (A9)
and

g3(t) =
[
K̂− − 2ζ+ (t) K̂0 + ζ+ (t)

2
K̂+

]
eζ+(t)K̂+ .

(A10)
As a result, we have

∂tÛ(t, 0)

Û(t, 0)
=
∂ζ+ (t)

∂t
K̂+ + η (t)

−1 ∂η (t)

∂t

[
K̂0 − ζ+ (t) K̂+

]
+ η (t)

−1 ∂ζ− (t)

∂t

[
K̂− − 2ζ+ (t) K̂0 + ζ+ (t)

2
K̂+

]
=

[
∂ζ+(t)

∂t
− ζ+(t)

η(t)

∂η(t)

∂t
+
ζ+(t)2

η(t)

∂ζ−(t)

∂t

]
K̂+

+
1

η(t)

[
∂η(t)

∂t
− 2ζ+(t)

∂ζ−(t)

∂t

]
K̂0 +

1

η(t)

∂ζ−(t)

∂t
K̂−.

(A11)

Comparing with Eq.(A1), we obtain Eqs.(8-10) in the
main text,

−iα(t) =
1

η(t)

[
∂η(t)

∂t
− 2ζ+(t)

∂ζ−(t)

∂t

]
; (A12)

− i
2
β(t) =

∂ζ+(t)

∂t
− ζ+(t)

η(t)

∂η(t)

∂t
+
ζ+(t)2

η(t)

∂ζ−(t)

∂t
;

(A13)

− i
2
β(t) =

1

η(t)

∂ζ−(t)

∂t
. (A14)

Appendix B: Derivation of Eqs.(29-31)

In this part, we present a detailed derivation for
Eqs.(29-31) in the main text. To this end, we choose
the non-unitary representation of the SU(1, 1) group.

Specifically, K̂0 = σ̂0/2 and K̂± = iσ̂± = i(σ̂1 ± iσ̂2)/2.
σ0,1,2 are Pauli matrices. It can be readily checked that
this definition satisfies the communation relation of the
SU(1, 1) algebra. Then the operator in Eq.(28) can be
rewritten as
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Û(t, 0)e−iθK̂2 = eζ+(t)K̂+eK̂0 ln η(t)eζ−(t)K̂−e−iθK̂2 = eζ+(t)iσ̂+eln η(t)σ̂0/2eζ−(t)iσ̂−eθσ̂2/2

=
1 + σ̂0

2

[
[η(t)− ζ−(t)ζ+(t)] cosh θ

2 − ζ+(t) sinh θ
2√

η(t)

]
+

1− σ̂0
2

[
cosh θ

2 + ζ−(t) sinh θ
2√

η(t)

]

+ iσ̂+

[
ζ+(t) cosh θ

2 − [η(t)− ζ−(t)ζ+(t)] sinh θ
2√

η(t)

]
+ iσ̂−

[
ζ−(t) cosh θ

2 + sinh θ
2√

η(t)

]
(B1)

Using the same representation, we have

eζ̃+(t)K̂+eK̂0 ln η̃(t)eζ̃−(t)K̂− = eζ̃+(t)iσ̂+eln η(t)σ̂0/2eζ−(t)iσ̂−

=
1 + σ̂0

2

η̃(t)− ζ̃+(t)ζ̃−(t)√
η̃(t)

+
1− σ̂0

2

1√
η̃(t)

+ ζ̃+(t)η̃(t)−1/2iσ̂+ + ζ̃−(t)η̃(t)−1/2iσ̂−

+ σ̂0

[
sinh

ln η̃(t)

2
− 1

2
ζ̃+(t)ζ̃−(t)η̃(t)−1/2

]
(B2)

As a result, by comparing the respective terms in
Eq.(B1) and Eq.(B2), we find

1√
η̃(t)

=
cosh θ

2 + ζ−(t) sinh θ
2√

η(t)
; (B3)

ζ̃+(t)√
η̃(t)

=
ζ+(t) cosh θ

2 − [η(t)− ζ−(t)ζ+(t)] sinh θ
2√

η(t)
;

(B4)

ζ̃−(t)√
η̃(t)

=
ζ−(t) cosh θ

2 + sinh θ
2√

η(t)
. (B5)

After some straightforward algebra, we obtain Eqs.(29-

31) in the main text,

ζ̃+(t) =
ζ+(t) cosh θ

2 − [η(t)− ζ−(t)ζ+(t)] sinh θ
2

cosh θ
2 + ζ−(t) sinh θ

2

; (B6)

ζ̃−(t) =
ζ−(t) cosh θ

2 + sinh θ
2

cosh θ
2 + ζ−(t) sinh θ

2

; (B7)

√
η̃(t) =

√
η(t)

cosh θ
2 + ζ−(t) sinh θ

2

. (B8)
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