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Abstract  

The coherent population trapping (CPT) effect is used for making compact atomic clocks. There 

are two types of CPT clocks: the one in which the Raman beams are applied continuously and 

the one in which two CPT pulses separated by a dark period are applied (Ramsey scheme). It is 

obvious that the technique of spin squeezing can only be applied to the Ramsey CPT clock to 

enhance the sensitivity. However, it is not apparent how to adapt to the CPT clock the protocols 

for the microwave clock using one-axis-twist squeezing (OATS), since the Ramsey CPT clock is 

not trivially equivalent to the Ramsey microwave clock. In this paper, we show explicitly how to 

adapt two protocols using OATS, namely the Schrödinger cat state protocol (SCSP) and the 

generalization thereof, and the echo squeezing protocol (ESP), to the CPT clock. The ESP 

magnifies the phase shift by a factor of eN , while the SCSP magnifies the phase shift by a 

factor of 2N , making it able to achieve a higher sensitivity in the presence of excess noise.   

1. Introduction 

In an alkali atom-based clock employing the process of coherent population trapping (CPT), two 

laser beams are used to excite a resonant Raman transition that couples the two hyperfine ground 



states [1,2,3,4,5,6,7].  Fundamentally, it is similar to a microwave atomic clock.  However, the 

use of lasers to excite the microwave transition makes it unnecessary to use microwave fields 

directly.  As a result, it is possible to realize a CPT clock with very small form factors [5,6].  For 

example, the only chip-scale atomic clock available commercially is a CPT clock [8].  As such, 

there is a significant interest and on-going effort in further development of the CPT clock, using 

Rb or Cs [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23].  In particular, efforts are currently 

underway to make compact CPT clocks using cold atoms released from a magneto-optical trap 

[14,24,25]. The sensitivity of a CPT-based clock is expected to be similar to that of a microwave 

clock, for similar number of atoms for interrogation.  There is some concern that fluctuations in 

light shifts in a CPT clock may limit its sensitivity; however, significant work has been carried 

out to suppress this effect strongly [14,26,27,28].  The current CPT clocks are generally not 

limited by the quantum projection noise.  For example, the cold atom-based CPT clock reported 

in Ref. [14], which makes use of 5 million atoms, reports that the sensitivity achieved at one 

second averaging time is lower than the standard limit of the quantum projection noise by a 

factor of 50.  Conventional techniques of spin squeezing that only suppresses the quantum 

projection noise is thereby unlikely to improve the sensitivity of a such a clock.  However, 

recently developed protocols [ 29 , 30 , 31 ], based on one-axis-twist squeezing (OATS) 

[32,33,34,35,36,37,38], makes use of phase magnification rather than suppression of quantum 

noise for enhancing sensitivity. When such a protocol is employed, it is possible to increase the 

sensitivity of a sensor even when the excess noise is significantly larger than the standard limit of 

the quantum projection noise.  As such, there is an interest in exploring the use of this type of 

spin-squeezing protocols for enhancing the sensitivity of CPT based atomic clocks.  



To investigate the feasibility of applying spin squeezing to a CPT clock, it is necessary to 

distinguish between two types of CPT clocks, namely the type in which the Raman beams are 

applied continuously (single zone scheme) and the type in which two CPT pulses separated by a 

dark period are applied (Ramsey scheme). The CPT process itself makes use of spontaneous 

emission, which is a highly incoherent process, while the process of ideal spin squeezing makes 

use of a fully coherent non-linear atom-field interaction. For the CPT clock employing the single 

zone scheme, spontaneously emission is continuously present if the clock frequency is detuned, 

leaving no time for the coherent process of spin squeezing. On the contrary, in the Ramsey CPT 

clock, there is a dark period between the two CPT pulses during which the atoms are coherent. 

Consequently, spin squeezing can be applied to the CPT clock to enhance the sensitivity. 

Nevertheless, the adaptation necessary for the CPT clock is not apparent because the Ramsey 

CPT clock is not trivially equivalent to the Ramsey conventional microwave clock.  It is well 

known [39] that there is an important difference between the dark state produced at the end of 

the saturating CPT pulse (which is the first of the two CPT pulses) and the state produced with a 

microwave π/2 pulse.  To illustrate this difference, we adopt the notation that all atoms are 

represented as pseudo-spins, with the z -directions being the two hyperfine ground states used 

for the clock transition.  Under the microwave excitation with all the pseudo-spins starting in the 

z-direction, the π/2 pulse produces a state which is aligned in the y-direction (in the rotating wave 

frame).  However, after a saturating CPT pulse that produces the dark state, the pseudo-spins are 

aligned in the x-direction (in the same rotating wave frame).   

 This difference has a significant consequence for adapting the protocols using one-axis-

twist squeezing (OATS) to the CPT clock, because the pairing of the orientation of the pseudo-

spins and the rotation axis of all the pulses will considerably affect the degree of achievable 



enhancement in sensitivity. One example is the choice of the rotation axis of the auxiliary and 

the inverse auxiliary pulses. The explicit OATS protocols we have considered in this manuscript, 

namely the Schrödinger cat state protocol (SCSP) [29], the generalization thereof [31], and the 

echo squeezing protocol (ESP) [30], employ auxiliary rotations and inversions of the rotations.  

As we have also shown in Ref. [29] and [31], different axes must be used for these auxiliary 

rotations and inverse rotations for different parities of the number of atoms for achieving the 

Heisenberg limit using the SCSP.  For the ESP [30], non-zero signal will be observed only for 

one choice of the rotation axis of the auxiliary and the inverse auxiliary rotations. Zero signal 

will be obtained if the wrong rotation axis is chosen. 

Given these facts, it is not a priori clear how the protocols of interest (namely the SCSP, 

the generalization thereof, and the ESP) need to be modified so that they can produce optimal 

enhancement in sensitivity for the CPT clock.  Answering this question quantitatively is the main 

contribution of and the primary motivation for this paper.  

The rest of the paper is organized as follows.  In Section 2, we review the conventional 

Ramsey CPT clock. In Section 3, we propose a more efficient optical pumping scheme for the 

first CPT pulse. In Section 4, we show the application of the Schrödinger cat state protocol and 

the generalization thereof to the CPT clock. In Section 5, we show the application of the echo 

squeezing protocol to the CPT clock, followed by the conclusion and discussion in Section 6.  

2. Conventional CPT clock 

Before we discuss the conventional CPT atomic clock, we first review a two-level system in 

order to establish our language and notation for the remainder of the manuscript. A two-level 



system is equivalent to a spin-1/2 spinor, with the spin operator  , ,x y zs s ss . The two 

eigenstates of zs  are denoted as   and   with eigenvalues of 1 2  and  1 2 . The state of a 

two-level system can be described by a point on the Bloch sphere.  A point on the Bloch sphere 

can be characterized by two angle parameters:   and  . The j-th spinor in the state 

corresponding to such a point on the Bloch sphere is defined as [32]

     i, cos 2 e sin 2j jj

       . A coherent spin state (CSS) characterized by the 

parameters   and   is defined as a state of N atoms with each atom in the state  ,
j

  , that is 

 
1

, ,
N

j
j

   


 .  

In the conventional CPT clock, we use nominally three-level atoms and a pair of Raman 

beams.  The three states consist of two ground states, denoted as   and  , and an excited 

state, denoted as e .  The   and   are the 0Fm   Zeeman sublevels in the two hyperfine 

states of an alkali atom.  Each Raman beam couples one of the ground states to the excited state, 

which can decay to the two ground states, as well as the other Zeeman sublevels. There are 

potential complications due to the presence of the 0Fm   sublevels in the ground states and 

multiple Raman transition channels. We will discuss these issues in Section 3.  

Under the electric-dipole approximation and the rotating-wave approximation, the Raman 

interaction in the rotating-wave basis can be described by a Hamiltonian in the basis of {  , e ,

 } ( 1 ), as follows 
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Here,    
 

   is the difference detuning, and   2  
 

   is the common detuning, 

where   
 

 is the detuning for the laser field coupling the     to the excited state, 
 


 

 

is the Rabi frequency of the Raman beam coupling  (  ) to the excited state, and 0  is the 

initial phase difference between Raman beams. The scheme is illustrated in Figure 1 (a). 

 

Figure 1:  (a) Scheme of the Raman beams for CPT. We use nominally three-level atoms and a pair of Raman beams.  

The three states consist of two ground states, denoted as   and  , and an excited state, denoted as e .  The 

  and   are the 0Fm   Zeeman sublevels in the two hyperfine ground states of an alkali atom.  Each Raman 

beam couples one of the ground states to the excited state, which can decay to the two ground states, as well as the 

other Zeeman sublevels. Here,    
 

   is the difference detuning, and   2  
 

   is the common 

detuning, where   
 

 is the detuning for the laser field coupling the     to the excited state, 
 


 

 is the 

Rabi frequency of the Raman beam coupling  (  ) to the excited state (b) Husimi quasi-probability distribution 

for the CPT dark state of the Raman beams for 0 0  . 



 If 0  , this Hamiltonian has an eigenstate of the form  0i
,0, e

 
 

 , which is a 

superposition of only   and  .  Because this state is not coupled to the excited state, it is 

called a dark state. We can see that the relative phase between   and   in this dark state is 

0π  , where 0  is the initial (time-independent) relative phase between the Raman beams. We 

assume without loss of generality that 0 0  . For simplicity of analysis, we further assume that 

 
 
 . In this case, the dark state expressed with the Bloch sphere coordinates is 

π
, π

2
, 

which is an eigenstate of xs , with an eigenvalue of  1 2 .  This is shown in Figure 1(b), where 

we have plotted the Husimi Quasi-Probability Distribution (QPD) for the spinors.  The 

orthogonal state, called the bright state, has coordinates 
π

,0
2

, which is also an eigenstate of xs

with an eigenvalue of 1 2 .   

  In a typical Ramsey CPT clock, the atoms are subjected to two pulses separated in time.  

The duration of the first one, called the saturating pulse, is chosen to be long enough to ensure 

that the system is optically pumped into the dark state completely. The time scale for pumping 

all the atoms to the CPT dark state is about  
1

210 2π 1.6 μs 


  for   , where   is the 

Rabi frequency of the transition from the bright state to the excited state, and   is the decay rate 

of the excited state.  This occurs independent of the initial state of the atoms.  The operation of 

the Ramsey CPT clock is restricted to values of   much smaller than the rate of optical pumping 

into the dark state, so that the assumption of the system being fully in the dark state at the end of 

the first pulse remains valid.   



It should be noted that the dark state resulting from the first pulse in the Ramsey CPT 

clock can also be generated using a microwave field only, if all atoms are initially in, for 

example, the   state.  To generate the state 
π

, π
2

 with the microwave field resonant with the 

energy difference between   and  , we would need to apply a π/2-pulse corresponding to 

the Hamiltonian 
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where m 90   is the initial (time-independent) phase of the microwave field.  Physically, this 

means that the initial phase of the microwave field must differ from the initial phase difference 

between the two Raman beams by 90°, as demonstrated experimentally by us previously [39].  

An important consequence of this fact is that phases of the pulses in various versions of the 

OATS protocols designed for the microwave clock must be modified to adapt to the CPT clock.  

As mentioned earlier, this modification is not trivial, due to the presence of auxiliary rotations 

and inversions thereof in the versions of the OATS protocols of interest. We will specify shortly 

the modifications necessary for these protocols. 

For the Ramsey CPT Clock, the first saturating pulse is followed by a dark period. With 

0 
 
  , the Hamiltonian for the dark zone in the basis of {   ,  } is then zs  , and the 

corresponding propagator is  exp i zs t .  Thus, during the dark period the state will rotate 

around the z-axis of the Bloch sphere if the difference detuning   is non-zero.   The final state 

after the dark period, for duration T , is 
π

, π
2

T .  The second pulse in the Ramsey CPT clock 



serves as a probe to detect the population of the bright state 
π

,0
2

 [40].  This is equivalent to 

measuring the operator xS , defined as the sum of the single atom spin operator xs  of all the 

atoms. Therefore, no additional probe beam is needed, contrary to the conventional microwave 

Ramsey atomic clock.  The signal is proportional to    2 cosxS N T  , where N is the 

number of atoms.  The standard deviation of xS , representing the quantum projection noise 

(QPN) [41], is  22Δ 2 sinx x xS S S N T   . As such, the QPN-limited uncertainty in 

the measurement of the clock detuning can be expressed as  
1

Δ Δx xS S NT 


    . It 

should be noted that the corresponding QPN-limited uncertainty for the detuning of a 

microwave-based Ramsey clock has the same expression.  The stability represented by this 

expression is the so-called standard quantum limit (SQL). 

It is well known that by making use of entangled states it is possible to exceed the SQL, 

and the upper bound of sensitivity is the Heisenberg Limit, which represents an improvement in 

clock stability by a factor of N .  For a clock employing a hundred million atoms, for example, 

this would represent an enhancement in sensitivity by a factor of ten thousand.  In recent years, 

significant investigations, theoretically as well as experimentally, have been carried out to 

explore the feasibility of enhancing the sensitivity of microwave-based Ramsey clocks beyond 

the SQL, using the technique of spin-squeezing [32].   To date, the best result achieved is a 

suppression of signal variance by a factor of ~100, which represents an improvement in 

sensitivity by a factor of 10 [42].  While this is far below the Heisenberg limit, efforts are 

continuing to identify a realistic technique that would lead to a much larger degree of 

enhancement in sensitivity.  In particular, we have recently shown that using the OATS 



employing an optical cavity, it may be possible to achieve a sensitivity close to the Heisenberg 

limit, even in the presence of significant excess noise due to cavity decay and residual 

spontaneous emission [29].  In Ref. [29], we considered the application of this technique to an 

atomic interferometer and a microwave-based Ramsey clock.  We now show that, indeed, this 

approach can also be applied to the Ramsey CPT clock, with proper adaptations. 

3. Optical pumping scheme for maximizing the CPT clock signal 

Before presenting the details of how to apply spin-squeezing to the Ramsey CPT clock, 

we address the issues pertaining to the presence of 0Fm   Zeeman substates and multiple 

Raman transition channels, as alluded to earlier.  In the case of a conventional Ramsey CPT 

clock, these issues simply affect the overall fringe contrast in most case, and therefore not 

necessarily critical.  However, when considering the use of spin-squeezing, the existence of the 

additional Zeeman sublevels and Raman transitions must be addressed carefully, since the spin-

squeezing process must address the quantum state of all the atoms.    

During the saturating pulse, some atoms will be pumped to the 0Fm   Zeeman substates 

in both hyperfine levels. Conventionally, one uses a bias magnetic field to prevent the 0Fm   

sublevels in the ground states from contributing to the final signal, thus sacrificing the atoms lost 

to these sublevels.  Here, we propose a scheme of applying two optical pumping beams 

throughout the saturating pulse to prevent such a loss. To illustrate this concept, we consider as 

an example the 87 Rb  system shown in Figure 2(a).  The two optical pumping beams are both π-

polarized.  The first one (red arrows) is resonant with the transition from 1F   to 1F   in the 

D1 manifold, and the second one (blue arrows) is resonant with the transition from 2F   to 



2F  , also in the D1 manifold. Noting that the π-transition is forbidden for any 0Fm   Zeeman 

substates if Δ 0F  , we can see that in the presence of these two optical pumping beams only, 

the 0Fm   Zeeman substates of both 1F   and 2F   hyperfine ground states are decoupled 

from any excited Zeeman sublevel.  Thus, all atoms would end up in these Zeeman sublevels due 

to spontaneous emission, in the limit where we can ignore collisional decay from these states.  

While there are other optical pumping schemes that would achieve the same goal for some 

particular alkali atom, the approach described here would work for any alkali atom.  

 

Figure 2: Optical pumping scheme for 
87 Rb . Two π-polarized optical pumping beams are applied. The red arrows 

show the optical pumping beam resonant with the transition from 1F   to 1F   in the D1 line, and the blue 

arrows show the beam resonant with the transition from 2F   to 2F   in the D1 line. In (a) the dashed black 

arrows show the decay channel to the 0Fm   Zeeman substates in the ground state. Other decay channels are not 

shown here. In (b), no decay channel is shown. The green arrows are the CPT Raman beams. 

 

Consider next the presence of the two laser beams to be used for generating the CPT dark 

state, as shown in Figure 2(b).  Specifically, we consider the case where these two beams are 

each right circularly polarized, and tuned to the 1F   to 2F   and the 2F   to 2F   

transitions in the D1 manifold.  The three-level system involving the two 0Fm   ground Zeeman 

sublevels now involve the 1Fm   Zeeman sublevel of the 2F   hyperfine state as the excited 



state.  As such, the CPT dark state, being a superposition of the two 0Fm   ground Zeeman 

sublevels in the ground state, would be a stable dark state containing all the atoms at the end of 

the saturating pulse.   

We should note that in this discussion we have ignored the off-resonant three-level 

system resulting from the coupling of the two 0Fm   ground Zeeman sublevels to the 1Fm   

Zeeman sublevel of the 1F   hyperfine state.  However, it is easy to see that the CPT dark state 

corresponding to the case where  2, 1FF m    is the excited state is identical to the one 

corresponding the case where 1, 1FF m    is the excited state, since the ratios of the dipole 

matrix elements (including signs) for the two legs of the Raman transition are identical in these 

two cases [43].  Furthermore, we note that the frequency separation (815 MHz) between the 

1F   and 2F   state is very large compared to typical Rabi frequencies, and use of cold 

atoms with a very small Doppler shift spread is envisioned for the spin-squeezed CPT clock. 

Therefore, in modeling the behavior of this system, it is adequate to consider only the three-level 

system in which the excited state is the 2, 1FF m    Zeeman sublevel. We assume that the 

beam constituting one leg of the Raman excitation is off-set phase locked to the beam on the 

other leg, by using a reference voltage-controlled oscillator (VCO).  In what follows, we will 

refer to this as the clock VCO.  Nominally, its frequency is tuned to the energy difference 

between the 2, 0FF m   state and the 1, 0FF m   state.  During the operation of the CPT 

clock, the frequency of this VCO will be stabilized using a feedback signal, and the output of this 

VCO will represent the CPT clock.  Furthermore, we note that the generation of the CPT dark 

state would occur independent of the initial populations of the Zeeman sublevels and the 

coherence condition of the atoms in the 5S1/2 state [40].   



4. Schrödinger cat CPT clock 

There are many different definitions of a Schrödinger cat state in the context of entangled 

optical fields and in the arena of spin squeezed atomic states.  Here, we define the Schrödinger 

cat (SC) state as one that is a maximally entangled state represented by a superposition of two 

orthogonal coherent spin states (CSS).  The orientation of the SC state depends on the nature of 

the two CSS’s [29,44].  For example, a z-directed SC state is a superposition of a state in which 

all atoms are in the   state, and another state in which all atoms are in the   state.   It has 

been shown [29,44,45,46 ,47,48 ,49] that such an SC state can be generated with OATS.  

However, the orientation of the SC state depends on the parity of N [29,44].  As such, any 

protocol involving the SC state generated in this manner must have a specified parity.  For 

experiments involving a few ions, for example, this is not a problem [47,49].  However, it can be 

a real challenge for a clock employing a larger number of neutral atoms.  Consider, for example, 

a scheme wherein the atoms are first caught in a MOT and then released for interrogation.  In 

this case, the parity of N is expected to be random, with equal probability of being even or odd. 

In a pair of recent papers [29,44], we have shown how to overcome this problem.  Specifically, 

we have shown that if a protocol is designed for a particular parity, the derivative of the signal 

for the other parity with respect to the difference detuning is either zero or negligibly small 

(depending on which version of the detection scheme is used).  As a result, the net effect of the 

randomness of the parity is a reduction in the number of atoms by a factor of 2.  Thus, we show 

that under ideal condition, the sensitivity is enhanced by a factor of 2N , which is the 

Heisenberg limit within a factor of 2 .  In Refs. [29] and [44], we considered two different 



systems: a light pulse atomic interferometer and a microwave clock. We now show how to 

modify this scheme for the CPT clock. 

The steps in the protocol for the SC-CPT clock are illustrated schematically in Figure 3. 

The pulse sequence is shown in Figure 3 (a), and the Husimi QPDs after each step are shown in 

Figure 3 (b). For the Schrödinger cat CPT clock (SC-CPT clock), the first step is the preparation 

of the atoms in the CPT dark state, using a saturating pulse of the Raman beams.  As noted above, 

this dark state can be expressed as the coherent spin state denoted as 
π

, π
2

.   

 Here, for concreteness, we have assumed that prior to the start of the saturating CPT 

pulse (shown in the first block in Figure 3(a)), the atoms are all in the   state, as shown in 

Figure 3(b1).  However, as discussed earlier, the system would evolve into the CPT dark state, as 

shown in Figure 3 (b2), regardless of the initial state.  After the atoms are prepared in the CPT 

dark state, we squeeze them with the one-axis-twist Hamiltonian, 
2

zH S , as indicated in the 

second block in Figure 3(a), for a period of time, t , such that π 2t   , to generate a 

Schrödinger cat (SC) state, which is shown in Figure 3(b3). One-axis-twist squeezing can be 

realized using a cavity, as mentioned in the introduction. We have shown an estimation of the 

squeezing time needed for producing the Schrödinger cat state in Appendix A of Ref. [29]. In 

that example,  c 2   is set at 100 (where c  is the detuning of the probe beam to the cavity 

resonant frequency and   is the cavity decay rate), the mode area is chosen to be (200 µm)2, and 

the cavity mirror transmittivity to be 410 , which corresponds to a single atom cooperativity of 

0.9. Under these conditions, an input power of 10 mW will give a value of the parameter in the 

Hamiltonian of 
1100 μs  . In this case, the interaction time needed for producing the 



Schrödinger state, which requires π 2  , is 0.15 μs . This state has the form 

 
21 π π

,0 1 i , π
2 22

N 
  

 
 for even N, and  

21 π π π 3π
, 1 i ,

2 2 2 22

N 
  

 
 for odd N.  In the 

experimental situation envisioned here, atoms will be released from a trap before applying the 

first CPT pulse.  As such, N will be even or odd with equal probability when the experiment is 

repeated many times.  We will address the issue of what the net enhancement in sensitivity 

would be when averaging over both the even-N and odd-N trials later.  In what follows, we first 

constrain our discussion of the protocol that is optimized for odd N, to be followed by a summary 

of what would happen under this protocol for the case of even N.  Of course, it is also possible to 

construct a protocol that is optimized for even N, and determine the behavior of that protocol for 

the case of odd N.  The results of these two protocols are essentially symmetric.   

Upon completion of the one-axis-twist squeezing process with π 2  , the state (for odd 

N) is maximally entangled, and can be thought of as a Schrödinger cat state in the y-direction, as 

indicated in Figure 3 (b3).  However, in order to generate the desired N-fold phase amplification, 

it is necessary to have a Schrödinger cat state in the z-direction [29,44].  This is easily done by 

applying an auxiliary rotation.  Specifically, we apply a pulse, as shown in the third block of 

Figure 3(a), that rotates the quantum state around the x-axis by an angle of π/2.  This π/2-pulse 

can be realized using a resonant microwave field, or, equivalently, a pair of two-photon resonant 

Raman beams that are highly detuned optically [40]; the choice of either approach would be 

dictated by experimental constraints.  For concreteness of discussion, we will assume that a 

microwave field would be used for this purpose.  This microwave field will have to have the 

same phase as that of the clock VCO [50].  The resulting state, shown in Figure 3 (b4), is 



expressed as  
 1 21

1 i
2

N    
 

 where    
1

N

j

     .  This is followed by a dark 

period of duration T, which can be represented by the propagator  exp i zTS .  At the end of 

the dark period, the state, shown in Figure 3(b5), becomes  
 1 2 i1

1 ie
2

N N T    
 

.  

Before further processing, it is necessary to reverse the action of the auxiliary rotation.  This is 

accomplished by applying another microwave π/2-pulse, indicated by the fourth block in Figure 

3(a), that is out of phase with respect to the field used for the auxiliary rotation (or, equivalently, 

a 3π/2-pulse with a field that is in phase with the field used for the auxiliary rotation).  The 

propagator for this anti-auxiliary-rotation pulse can be expressed as   exp i π 2 xS . The 

resulting state is shown in Figure 3(b6).  Finally, it is also necessary to undo the effect of the 

squeezing pulse.  This is accomplished by applying an un-squeezing pulse corresponding to 

 π 2    [51].  Experimentally, the reversal of the sign is produced by changing the sign of 

the detuning of the OATS probe beam with respect to the cavity resonance.  The resulting state, 

shown in Figure 3(b7), can be expressed as  
 1 21 π π

sin ,0 1 cos , π
2 2 2 22

NN T N T  
  

 
. 

Once this is completed, we apply the second CPT pulse, indicated by the last block in Figure 3(a), 

to measure the operator xS [ 52 ]. Noting the relations 
π π

,0 ,0
2 2 2

x

N
S  ,  

π π
, π , π

2 2 2
x

N
S   , and 

π π
, π ,0 0

2 2
 , it is easy to show that 

 
2 2π π π π
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2 2 2 2 2 2 2 2 2

x
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and 
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 (4) 

 In the absence of the additional pulses used for squeezing, auxiliary rotation, anti-

auxiliary-rotation and unsqueezing, that is, for a conventional Ramsey CPT clock, it is well 

known that the resulting signal can be expressed as    2 cosxS N T  , and that the noise 

can be expressed as  Δ 2 sinxS N T , assuming perfect quantum efficiency of detection.  

For the Schrödinger cat state protocol (SCSP), the phase shift caused by the clock detuning 

would be magnified by a factor of N , and the noise at zero detuning would be magnified by a 

factor of N [29]. In the absence of excess noise, the uncertainty of the measurement is 

 
1

Δ Δ x xS S NT


   , which reaches the Heisenberg limit. As shown in Ref. [31], the 

phase magnification of a protocol indicates its ability to enhance the sensitivity in the presence of 

excess noise comparable or even larger than the standard limit of the quantum projection noise. 

Due to a phase magnification by a factor of N , the SCSP for odd N  can enhance the sensitivity 

substantially even in the presence of significant excess noise. 

If the value of N is even (while still using the protocol optimized for odd N), in the 

proximity of zero difference detuning, the signal can be approximated as [29,44] 

 2 cosxS N N T  , and the standard deviation of xS  can be approximated as 

 Δ 2 sinxS N N T .  Therefore, the uncertainty of the measurement is  
1

Δ NT


 , 

which is the standard quantum limit. The average signal of both even- and odd-N cases (while 



still using the protocol optimized for odd N)  is  even odd
2x x xS S S  , corresponding to 

an average phase magnification of 2N , and the average variance of xS  is 

   
2 22

even odd
Δ Δ Δ 2x x xS S S  

 
. The uncertainty of the measurement including the same number 

of the even- and odd-N trials is  
1 2

2 2Δ 2N N T


  
 

, which is approximately  
1

2 NT


 

for 1N  [53]. With an average phase magnification of 2N , the SCSP is still very robust 

against excess noise even if both the odd- and even-N cases are considered.  We get essentially 

the same result if we consider a protocol that is optimized for even N. 

Although the SCSP has the advantage of high robustness, the Schrödinger cat (SC) state 

is very fragile against collisions with background atoms, thus potentially requiring the use of a 

cryogenically cooled vacuum chamber.  As such, it is likely that the initial realization of a spin-

squeezed CPT clock will make use of the SCSP with a value of the squeezing parameter that is 

far smaller than the value needed for realizing the SC state because, as we have shown in Ref. 

[31], the fragility of the spin-squeezed system (characterized by the reduction in the fringe 

contrast in the final signal as a result of collisions with background atoms) increases 

monotonically with increasing value of   (up to π 2  ). In Ref. [31], we show that for the 

SCSP with a value of   much smaller than π/2 (as small as 4 2 N ), the sensitivity can still 

approach the Heisenberg limit, within a factor of 2 , for either parity of N.  We recall from the 

preceding discussion that, for the case of the SCSP with π 2  , the enhancement in sensitivity 

achievable is also smaller than the Heisenberg limit by a factor of 2  when averaged over odd 

and even values of N.  Thus, in fact, the SCSP achieves the same sensitivity (namely the 

Heisenberg limit within a factor of 2 ) for a broad range of values of  :  from 4 2 N  to π/2.   



 

 

Figure 3: Schrödinger cat CPT clock (SC-CPT clock) protocol. (a) Pulse sequence of the SC-CPT clock. The first 

block is the combination of the saturating pulse and the two optical pumping beams. The second block is the 

squeezing pulse; the third block is the auxiliary pulse; the fourth block is the anti-auxiliary pulse; the fiftth block is 

the unsqueezing pulse. The last block is the probe pulse. The states before and after each pulse are labeled from  to 

. The Husimi quasi-probability distributions of the states  to  are plotted in (b). (b1) All the atoms are in the 

  state initially. (b2) All atoms pumped into the CPT dark state after the saturating pulse. (b3) y-directed 

Schrödinger cat state generated by one-axis-twist squeezing. (b4) z-directed Schrödinger cat state after the auxiliary 

rotation. (b5) z-directed Schrödinger cat state with a phase shift after the dark period. (b6) y-directed the Schrödinger 

cat state with the phase shift after the anti-auxiliary rotation. (b7) State after the unsqueezing pulse. 

 



The key difference between the SCSP with a small value of  and the SCSP with 

π 2   is in the degree of robustness against excess noise.  As shown in detail in Ref. [31], the 

degree of robustness for the SCSP protocol gradually increases with increasing values of  .   

We discuss next the possibility of using the echo squeezing protocol (ESP), which can also 

approach the Heisenberg limit of sensitivity, within a factor of e , for a very small value of the 

squeezing parameter.  We will then discuss the comparative advantages and disadvantages of the 

SCSP with a small value of   and the ESP, regarding the flexibility of operating parameters and 

robustness against excess noise. 

5. Echo-squeezed CPT clock  

The so-called echo squeezing protocol (ESP) [30, 54] can also enhance the sensitivity of the 

CPT clock to approach the Heisenberg limit.   Briefly, the steps of the ESP are similar to that of 

the Schrödinger cat sate protocol (SCSP). However, the few differences in steps between the 

ESP and the SCSP result in significant distinctions in behavior between these two protocols. 

Those distinctions will be summarized at the end of this section.  The protocol for the echo-

squeezed CPT clock (ES-CPT clock) is illustrated in Figure 4.  We have shown the steps in 

Figure 4(a), and the corresponding Husimi QPD in Figure 4(b).  As can be seen, the steps before 

the detection are the same as those for the SC-CPT clock (for odd values of N) except that in the 

ES-CPT protocol the optimal value of the squeezing parameter   is 1 N , which, for a 

typically expected value of N of experimental interest, is very small.  At the detection stage of 

the ES-CPT protocol, we detect the population of atoms in the state 
π π

,
2 2

 with the Raman 



 

 

Figure 4: Echo squeezing CPT clock (ES-CPT clock) protocol. (a) The pulse squence for the  ES-CPT protocol, 

which  is the same as that for the SC-CPT clock in structure, but differ in some ways.  A key differences between the 

ES-CPT and the SC-CPT are the values of µ for the squeezing and unsqueezing pulses.  Furthermore, the phase of 

the probe pulse for the ES-CPT is different from that used for the SC-CPT, corresponding to detection of different 

quantum states.  The optimal value of the echo squeezing protocol is arccot 2N   , which is approximately 

1 N  in the limit 𝑁 ≫ 1.  (b) The corresponding Husimi QPDs, which are drastically different from those for the 

SC-CPT. 



beams, which is equivalent to measuring the operator yS .  This is different from the SC-CPT 

protocol, for which we measure the state 
π

,0
2

, which is equivalent to measuring the operator 

xS .   In practice, this means that for the ES-CPT protocol, the phase of the clock VCO at the 

detection stage is ninety degrees shifted from that of the saturating pulse, as indicated in the last 

block of Figure 4(a).  While the two protocols are similar in appearance, the quantum states 

during the intermediate steps are drastically different when compared to the SC-CPT with 

π 2  , as can be seen from the Husimi QPDs illustrated in Figure 4 (b).  However, as we have 

shown in Ref. [31] in a more generalized context, the intermediate states for the SC-CPT with a 

very small value of   would be quite similar to those for the ES-CPT. 

The sensitivity enhancement achievable by the echo squeezing protocol has also been 

investigated in detail [30]. As mentioned above, the optimal value of the squeezing protocol is 

arccot 2N   , which is approximately 1 N  in the limit 𝑁 ≫ 1. The uncertainty of the 

measurement with the optimal value of µ is   21 sin cosNN N   , which is approximately 

 
1

Δ e NT


  for 𝑁 ≫ 1; this represents a sensitivity of the Heisenberg limit within a factor 

of e . 

The signal of the ES-CPT clock 
yS  with respect to the phase shift T  is plotted in Figure 

5.  Here, the solid curve is the signal of the ES-CPT clock for N = 41, while the dashed curve 

shows the signal for the corresponding conventional CPT clock. The signal of the ES-CPT has a 

periodicity of π, in contrast to the periodicity of 2π for the conventional CPT clock.  



To discuss the enhancement in sensitivity under this protocol, and compare it with that for 

the conventional CPT clock in a transparent manner, it is useful to recall first the process used 

for determining the frequency shift in a conventional clock.  As can be seen from the dotted trace 

in Figure 5, the signal for the CPT clock has a minimum when the phase-shift, or, equivalently, 

the detuning of the clock away from atomic resonance, is zero.  If there is a shift in the central 

frequency of the VCO away from its ideal value that is resonant with the clock transition, the 

position of the signal minimum will shift.  To determine the value of this shift, it is customary 

and optimal to use what can be called the hopping technique (which amounts to a square-wave 

modulation), as discussed in detail in Refs. [31] and [41].  Specifically, in this technique, the 

signal is measured at two frequencies (as indicated by the two vertical dotted lines in Figure 5) 

that are shifted in opposite directions away from the stationary value of the clock VCO 

frequency.  The amplitudes of these frequencies are chosen such that the corresponding values of 

the phase shift (i.e., T ) are π 2 .  The difference between these two measurements is 

considered the effective signal.  Of course, if the stationary value of the clock VCO frequency is 

exactly on resonance, this signal will be null.  However, if the stationary value of the clock VCO 

frequency shifts due to some unwarranted perturbation, the signal will be positive or negative, 

depending on the sign of the shift, thereby making it possible to determine the magnitude and 

sign of the shift.  In practice, this signal is fed back to the clock VCO to keep it null-valued 

during the operation of the clock, thereby locking the stationary value of the clock VCO 

frequency to the atomic resonance. 

Thus, the operator that is measured under the hopping technique for the conventional CPT 

clock can be expressed as    c π 2 π 2 2x xS S T S T       , where we have inserted the 

division by two in order to enable the proper comparison with the ES-CPT protocol.  Then the 



signal can be written as  c 2 sinS N T , and the noise can be expressed as

       
2 2

cΔ Δ π 2 Δ π 2 2 2 sinx xS S S N T       
 

. For convenience, we define a 

phase magnification factor (PMF) in a manner so that for the conventional CPT clock it has the 

value of unity at 0  .  It is easy to see that this is satisfied if the PMF is defined as 

 c 2T S N ; here, we have used the short-hand notation that f f     . From the 

expression above, it is easy to see that the corresponding noise at 0   is 2N .  

Consider next the protocol for the ES-CPT clock.  In this case, we note that the signal is 

already asymmetric around 𝛿 = 0.  As such, it is not necessary to apply the hopping technique in 

this case.  Instead, the signal of the ES-CPT clock is simply 
yS , and the noise is Δ yS . At 

0  , the phase magnification factor (PMF) is thus     22 1 sin cosN

T yS N N      

[30], and the noise is 2N  [30]. This PMF reaches its maximum value at arccot 2N   . 

For 𝑁 ≫ 1,  the optimal value of 𝜇  is approximately 1 N  and the maximum PMF is 

approximately eN  . Therefore, compared to the conventional CPT clock, the enhancement in 

sensitivity for the ES-CPT clock originates solely from phase magnification, by a factor of 

eN , with the noise remaining unchanged.  This aspect of the echo squeezing protocol 

(considered for a conventional microwave clock) was noted earlier in Ref. [30] and [54].  

However, in these references, the actual shape of the fringes for the echo squeezing protocol was 

not shown.   



 

Figure 5. Signal of the ES-CPT clock (solid) and the conventional CPT clock (dashed) for N = 41. For the latter, it is 

customary and optimal to use what can be called the hopping technique, under which the signal is measured at two 

frequencies (vertical dotted line) that are shifted in opposite directions away from the stationary value of the clock 

VCO frequency.  The amplitudes of these frequencies are chosen such that the corresponding values of the phase 

shift (i.e., T ) are π 2 .  For the former, the hopping technique is not necessary since the signal is already 

asymmetric around the center.  

We can now compare the behavior of these two protocols, and identify the differences 

between them.  First, unlike the SCSP, the ESP produces the same result for either parity of N.  

Second, the maximum ideal enhancement in sensitivity under the ESP is lower than the 

Heisenberg limit by a factor of e , and this occurs for the optimal value of 1 N   for 𝑁 ≫

1, while for the SCSP the maximum ideal enhancement in sensitivity, when averaged over both 

even-N and odd-N trials, is lower than the Heisenberg limit by a factor of 2 , for a broad range 

of values of  , with the lowest value being 4 2 N .  We note that the averaging over the two 

parities of  N is only required for the SCSP for values of   very close to π/2 [namely, for 



 π 2 2 π 2N    ]; for other values of   that also yield the same sensitivity π/2 [namely, 

for  4 2 π 2 2N N   ], the signals are insensitive to the parity of N, thus requiring no 

averaging.  Third, the sensitivities of these two protocols in the presence of potential excess 

noise including the one generated by the cavity-based OATS process are drastically different.  

This is because the optimal ESP magnifies the phase shift by a factor of eN  while the SCSP 

with π 2   magnifies it by a factor of N.  As a result, the net enhancement in sensitivity 

achievable for the SCSP with π 2  , in the presence of the noise due to the cavity-based 

OATS process as well as any other potential excess noise, is much greater than the same for the 

ESP [29]. However, since the SCSP with π 2   requires a much larger value of the squeezing 

parameter  , and the Schrödinger cat state is very fragile against collisions with background 

atoms, it might be of greater practical interest to use the generalization of the SCSP [31], which 

works for a broad range of values of   [namely,  4 2 π 2 2N N   ]. As we have 

shown in Ref. [31], while any value of   in this range yields the same ideal enhancement in 

sensitivity, independent of the parity of N, the PMF increases monotonically with increasing   

(compensated by similarly increasing noise magnification).  As such, the actual enhancement in 

sensitivity that can be achieved with the generalized SCSP, when taking into account the 

presence of the noise due to the cavity-based OATS process as well as any other potential excess 

noise, is expected to increase monotonically with   (up to π 2  ). On the other hand, as we 

have shown in Ref. [31], the fragility of the spin-squeezed system (characterized by the reduction 

in the fringe contrast in the final signal as a result of collisions with background atoms) increases 



monotonically with increasing value of   (up to π 2  ).  Thus, the optimal choice of    to be 

used, for the generalized SCSP, would depend on the expected rate of collisional loss. 

The sensitivity in the presence of excess noise can be expressed as 2 2

QPN ESPMF S S  . 

The lowest excess noise reported for the cold-atom-based CPT clock of Ref. [14], which does 

not employ spin squeezing, is 50 N  with 65 10N   . The corresponding sensitivity [i.e., 

 
1

T


 ] is then 45 . For the ESP, the denominator of the sensitivity expression does not change 

while the numerator is increased by a factor of e 1360N  , which represents the net 

enhancement in sensitivity over what was observed in this experiment, under ideal conditions.  

The net sensitivity is enhanced to a value of 445 1356 6.1 10   , which is ~27.3 times the 

standard quantum limit.  For the SCSP with π 2  , we have PMF 2N  and 
QPN 2S N  . 

Accordingly, the net sensitivity is enhanced to 0.9995 2N , very close to the maximum 

achievable sensitivity. The net enhancement in sensitivity over what was observed in the 

experiment would thus be 47.85 10 , if the squeezing process is ideal.  Of course, the excess 

noise introduced by the squeezing process may limit the maximum enhancement achievable, as 

discussed further in the next section. 

6. Conclusion and discussion 

The technique of spin squeezing can be applied to the Ramsey CPT clock but cannot be used for 

the continuous light CPT clock. Nevertheless, the adaptation necessary for the CPT clock is not 

obvious because the Ramsey CPT clock is not trivially equivalent to the conventional Ramsey 

microwave clock.  It is well known that there is an important difference between the dark state 



produced at the end of the saturating CPT pulse (which is the first of the two CPT pulses) and the 

state produced with a microwave π/2 pulse. The concrete protocols we describe are the 

Schrödinger cat CPT (SC-CPT) scheme, the generalization thereof for a broad range of values of 

the squeezing parameter,  , and the echo squeezing CPT (ES-CPT) scheme. The SC-CPT clock 

and the generalization thereof can reduce the uncertainty of the measurement of the frequency by 

a factor of 2N , and the ES-CPT clock by a factor of eN .  Thus, they both can get close to 

the Heisenberg limit in the absence of excess noise.  However, in the presence of excess noise, 

the SC-CPT clock for π / 2   can achieve a much higher sensitivity than the ESP does because 

it magnifies the phase shift to a much greater extent.  Furthermore, the generalized form of the 

SC-CPT clock can achieve the Heisenberg limit of sensitivity, within a factor of 2 , for a wide 

range of values of the squeezing parameter, ranging from 4 2 N   to π 2  .  We have 

also shown that the robustness of the generalized SC-CPT clock against excess noise, including 

those from the squeezing process itself, increases monotonically with the squeezing parameter.  

At the same time, the fragility of the squeezed quantum state, against collisions with background 

atoms, also increases monotonically with the squeezing parameter.  As such, the optimal value of 

the squeezing parameter to be used for the SC-CPT clock would depend on the expected degree 

of collisional loss in the experiment.  

 The effect of the noise induced by the cavity-based one-axis-twist squeezing process, in 

the case of the Schrödinger cat state protocol, can be found in Ref. [29], and would be applicable 

for the same protocol applied to the CPT clock. Specifically, for a single-atom cooperativity of 

0.9, corresponding to the particular set of operating parameters mentioned in Section 4, and one 

million atoms, the enhancement of sensitivity, as seen from the lower left graph of Fig. 6 in Ref. 



[29] is ~28.4 dB, which is only 1.6 dB below the Heisenberg limit of 30 dB [ 55 ]. The 

corresponding noise analysis in the case of the echo squeezing protocol is shown in Ref. [30]. 

For the same parameters, the enhancement of sensitivity, as seen from the lower-left graph of Fig. 

4 in Ref. [30], is ~12.5 dB, which is ~17.5 dB below the Heisenberg limit of 30 dB. As discussed 

in detail in Ref. [29], the Schrödinger cat state protocol is more resistant to any excess noise, 

including those resulting from non-idealities of the cavity-induced squeezing process.  This is 

due to the fact that the quantum projection noise in this case is amplified by a factor of N , 

thus dwarfing the effect of other noise.  Of course, this increase in the quantum noise is counter-

balanced by the fact that the phase is magnified by a factor of N, with the net enhancement in 

sensitivity being N .  For the generalized form of the SC-CPT clock with a value of the 

squeezing parameter ranging from 4 2 N   to π 2  , the suppression of the effect of the 

excess noise from the squeezing process would increase monotonically with the value of  .  The 

actual degree of enhancement achievable for π 2   requires extensive numerical modeling, 

which will be carried out in the near future.   

Compared to the microwave clock, the CPT clock may experience additional sources of 

noise.  The most important source of such additional noise is the light shift [26,40].  The absolute 

light shift can be expressed as 
2 2  , where   is the one-photon Rabi frequency and   is the 

common detuning. Thus, fluctuations in the laser intensity and the frequency can cause errors in 

the measured clock frequency.  In Refs. [26,40], it has been shown that the light shift can be 

virtually eliminated if the populations of the two ground states before the initial CPT pulse are 

equal.  Furthermore, a high degree of intensity and frequency stabilizations of the lasers can also 



suppress the light shift, to an arbitrarily small value in principle.  All these techniques for 

suppressing the light shift are fully compatible with the squeezing protocols presented here. 
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