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Transitions of many-particle quantum systems between distinct phases at absolute-zero temper-
ature, known as quantum phase transitions, require an exacting treatment of particle correlations.
In this work, we present a general quantum-computing approach to quantum phase transitions that
exploits the geometric structure of reduced density matrices. While typical approaches to quantum
phase transitions examine discontinuities in the order parameters, the origin of phase transitions—
their order parameters and symmetry breaking—can be understood geometrically in terms of the
set of two-particle reduced density matrices (2-RDMs). The convex set of 2-RDMs provides a
comprehensive map of the quantum system including its distinct phases as well as the transitions
connecting these phases. Because 2-RDMs can potentially be computed on quantum computers at
non-exponential cost, even when the quantum system is strongly correlated, they are ideally suited
for a quantum-computing approach to quantum phase transitions. We compute the convex set of 2-
RDMs for a Lipkin-Meshkov-Glick spin model on IBM superconducting-qubit quantum processors.
Even though computations are limited to few-particle models due to device noise, comparisons with
a classically solvable 1000-particle model reveal that the finite-particle quantum solutions capture
the key features of the phase transitions including the strong correlation and the symmetry breaking.

I. INTRODUCTION

Phase transitions such as the melting of ice arise from
thermal fluctuations [1]. Even at absolute zero in the ab-
sence of thermal fluctuations, transitions between phases,
known as quantum phase transitions (QPTs), can oc-
cur from quantum fluctuations arising from the uncer-
tainty relations [2–4]. Importantly, these quantum fluc-
tuations and their associated phase transitions are sig-
nificant for a range of temperatures beginning at abso-
lute zero. An understanding of these transitions is crit-
ical to addressing outstanding problems in the study of
magnetic insulators [5–7], electron gases [8–11], heavy-
fermion compounds [12–14], and high temperature super-
conductors [15–21]. Experimental realizations of QPTs
often involve laser traps of individual atoms and ions [22–
27], or the synthesis of exotic materials [28–30] requiring
significant investment in experimental setups and synthe-
sis techniques. The advent of cloud-accessible quantum
computing devices [31], which allow for a significant de-
gree of control over the preparation of an experimental
quantum system, provides a promising new avenue for
the exploration of highly correlated systems [32–35] and
QPTs [36].

In this work, we present a novel quantum-computing
approach to quantum phase transitions that exploits the
geometric structure of two-particle reduced density ma-
trices (2-RDMs). Traditional approaches to QPTs are
typically framed in terms of the many-particle wave func-
tions of ground and excited states [2–4], which are read-
ily prepared on hybrid quantum-classical computers but
not easily measured in their entirety due to their expo-
nential scaling with the number of particles. Quantum
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computers allow us to directly probe the polynomially
scaling 2-RDM by tomography [37] without classical stor-
age of the exponentially scaling many-particle wave func-
tion [34, 37, 38], which potentially enables the treatment
of significantly larger systems. A 2-RDM-based analysis
for QPTs on quantum computers could enable the study
of QPTs for larger system sizes than either classical 2-
RDM methods [39–42] or wave-function-based modeling
on quantum devices.

Traditional wave function analysis of QPTs relies on
finding discontinuities in the ground-state energy, but
this method can miss important system symmetries. A
complementary analysis based on 2-RDMs developed by
Erdahl and Jin [39] and Gidofalvi and Mazziotti [40, 41]
characterizes QPTs in terms of the geometric set of 2-
RDMs, particularly the movement of the ground-state 2-
RDM between different phases. Separate work, inspired
by the link between bipartite entanglement and QPTs,
found that changes in individual elements of the 2-RDM
set can also indicate critical phenomenon [43]. Addi-
tional work in this field by Zauner and Verstraete [42]
found that a geometric analysis of the ground-state set
of 2-RDMs provides a powerful visualization of symme-
try breaking and phase transitions in both classical and
quantum systems

In contrast to the traditional description of phase tran-
sitions, 2-RDM theory provides a generalizable geometric
framework for quantum phase transitions in terms of the
convex set of 2-RDMs that has two important advan-
tages: (1) based on a quantum information perspective,
the 2-RDM theory relies upon the state space of all two-
body observables rather than a specific Hamiltonian to
examine the transition, and (2) it reduces the analysis of
an infinite space of Hamiltonians to the study of recogniz-
able features like planes or ruled surfaces in the finite and
convex set of 2-RDMs. Such a three-dimensional analy-
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sis allows for visualizing a greater swath of the space of
all possible Hamiltonians than traditional single-order-
parameter or energy-level analysis. While sharing many
of the same observables as the conventional analysis, the
geometric perspective in a reduced state space creates
a powerful, general framework for studying and under-
standing quantum criticality.

Using the Lipkin-Meshkov-Glick (LMG) spin
model [44], we show that even with Noisy Intermediate-
Scale Quantum (NISQ) devices [45], the signature
features of the quantum phase transition are captured
from the measured set of 2-RDMs. LMG is a widely used
bench marking system for many-body approximation
methods [46–48] and has been extensively studied
for its phase behavior [40, 49–53]. Using the unitary
transformations available to a quantum computer, a
simulated finite-particle LMG system is manipulated
through several critical regions. Tomography of the
system is used to determine the ground-state set of
2-RDMs [34, 37, 38, 54], which reveals discontinuities
in the system’s order parameters. Additionally, the
geometry of the ground-state set provides evidence of
symmetry breaking on the NISQ devices [40, 55].

II. THEORY

A. Reduced Density Matrix

RDM mechanics is an alternative to the wave func-
tion mechanics traditionally used in quantum molecular
studies [56, 57]. Because the fundamental interactions in
electronic systems are pairwise, the energies and proper-
ties of such systems are computable from a knowledge of
the 2-RDM. The 1- and 2-RDMs are obtained by inte-
grating the density matrix, |ψ〉 〈ψ|, over N − 1 or N − 2
particles where the elements of the 1- and 2-RDMs are
given in the second-quantization formalism by

1Di
j = 〈ψ| â†i âj |ψ〉 (1)

2Dij
kl = 〈ψ| â†i â

†
j âlâk |ψ〉 (2)

in which âi and â†i are the fermionic annihilation and
creation operators for the spin-orbital i. These pairs of
operators can be expressed as strings of Pauli matrices,
which are directly measurable on the quantum computer
[34]. The resulting 2-RDMs, according to Rosina’s
theorem, completely characterize the ground-state
energy and order parameters of a system with only
pairwise interactions [58, 59], circumventing the need
for a full wave-function description of the system, which
could require significantly more measurements on a
NISQ device [60] increasing error and computational
time. Discontinuities in the individual order parameters
obtained from the 2-RDM as the system’s Hamiltonian
is manipulated, can be used to find critical points [40, 55].

Three-dimensional graphical analysis of the set of 2-
RDMs allows for the identification and classification of
the system’s critical points, as well as direct observa-
tion of symmetry breaking. Additionally, as these graphs
are 3-D slices of the total RDM set, their construction
only requires a subset of 2-RDM elements, potentially al-
lowing for a further pruning of necessary measurements.
In the thermodynamic limit, first-order QPTs appear as
planes or discontinuities in the extremal or ground-state
values of the 2-RDM, which can be identified with no
knowledge of the Hamiltonian of the system. In sys-
tems with more than three degrees of freedom within the
RDM, maximizing the size of these discontinuous regions,
by changing which 3D slice is taken, will indicate the or-
der parameter with maximum symmetry breaking, and
provides a systematic way to discover symmetry break-
ing in a system [42]. Second-order QPTs manifest as re-
gions where the extremal values of the 2-RDM set change
rapidly with changes in the Hamiltonian parameters or
the curvature becomes discontinuous [40, 42]. To solidify
these concepts, we analyze the LMG system through the
lens of RDM mechanics.

B. The Lipkin-Meshkov-Glick Model

The Lipkin-Meshkov-Glick (LMG) model system con-
sists of two energy levels separated by ε each containing
N -degenerate states. There are N fermions in the sys-
tem, with a coupling parameter, λ, that scatters pairs of
particles between the levels. A configuration of the sys-
tem is characterized by two quantum numbers: σ = ±1
indicating the energy level and p = {0, ..., N} specifying
the state within that level [44]. In the second quantiza-
tion formalism, the LMG Hamiltonian is:

Ĥ =
1

2
ε
∑
pσ

σâ†pσâpσ+

1

2
λ
∑
pp′σ

â†pσâ
†
p′σâp′−σâp−σ. (3)

In order to solve for the LMG eigenstates exactly, it is
helpful to reduce the degrees of freedom of the problem
through incorporation of the system’s symmetries into
the Hamiltonian through a quasi-spin formalism. This
formalism recognizes that the LMG two-level system is
analogous to a system comprised of N two-spin-state par-
ticles, with a Hamiltonian:

Ĥ = εĴz +
1

2
λ(Ĵ2

+ + Ĵ2
−) (4)

using the traditional spin operators

Ĵ+ =
∑
p

â†p,+1âp,−1, Ĵ− =
∑
p

â†p,−1âp,+1,

and
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Figure 1. The Convex Hull of the 2-RDMs of the 1000-Particle
Lipkin Model. The cyan and green coloring distinguish the 2
ruled surfaces of the convex set, which contain lines parallel
to the 〈Ĵz〉 and 〈Ĵ2

+ + Ĵ2
−〉 axes respectively. The line, traced

by the black points, that separates the two ruled surfaces
contains the set of ground-state 2-RDMs. These points are
projected into the 〈Ĵz〉-〈Ĵ2

+ + Ĵ2
−〉 plane as represented by a

series of blue dots. The lines along the green surface, show the
steps of a trajectory along the edges of the set as λ is taken
from infinity to zero while ε = ±1. All axes are in atomic
units.

Ĵz =
1

2

∑
pσ

σâ†pσâpσ (5)

In this quasi-spin formalism, p and σ indicate the particle
and the Z-component of its spin, respectively. Writing
the Hamiltonian in the |j, jz〉 basis, reveals a block diag-
onal matrix, which can be diagonalized at a much lower
computational cost than the original 2N×2N matrix [44].
The 2-RDM for the LMG system in this formalism is
completely defined by the three expectation values 〈Ĵz〉,
〈Ĵ2

z 〉, 〈Ĵ2
+ + Ĵ2

−〉 [61]. Therefore the extremal points of
this set can be visualized in a space defined by these pa-
rameters.

C. Convex Hull of Ground-State Set of 2-RDMs

The convex hull of the ground-state set of 2-RDMs
for the 1000-particle LMG system can be seen in Fig.
1, which was obtained through the exact diagonalization
of the Hamiltonian. This representation gives geometric
insight into both general properties of the 2-RDM and
more specific properties of the LMG system, and serves
as a reference in the geometric analysis of noisier results
from simulations of the LMG system on NISQ devices.

Figure 2. Symmetry Breaking of the 〈Ĵz〉 Order Parameter
in the 1000-Particle Lipkin Model. The black and grey lines
show the change in 〈Ĵz〉, in atomic units, as λ is changed for
systems with a positive and negative value of ε, respectively.

Figure 3. Symmetry Breaking of the 〈Ĵ2
+ + Ĵ2

−〉 axis in the
1000-Particle Lipkin Model. The black and grey lines show
the change in 〈Ĵ2

+ + Ĵ2
−〉, in atomic units, as ε is changed for

systems with a positive and negative value of λ, respectively.

The ground-state 2-RDMs lie on the boundary of the
convex set while excited-state 2-RDMs generally lie in-
side the convex set. This plot also reveals the existence of
two ruled surfaces, colored green and blue, indicating two
forms of symmetry breaking in the system. Points along
the lines of the ruled surfaces are ground states of the
Hamiltonian with all of the same order parameters ex-
cept for the parameter with an axis parallel to the lines.
This indicates that there is symmetry breaking in the
system [42]. The green surface has lines parallel to the

〈Ĵz〉 axis, which for ε 6= 0 indicates a breaking of the spin
flip symmetry of the ground state in regions with small
λ [62]. This manifests as the ground state preferring ei-
ther an all up or all down spin configuration based on
the value of ε. Figure 2 captures this symmetry breaking
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Figure 4. The 2-RDM for the 1000-Particle Lipkin Model.
The black line shows the extremal or ground state values of
the 2-RDM set. The black and grey circles show the trajectory
of the 2-RDM along the boundary of the set as λ is brought
from infinity to zero with ε either being greater, for black, or
less, for grey, than zero. All axes are in atomic units.

by demonstrating how the order parameter 〈Ĵz〉 changes
with λ for systems with positive and negative values of
ε. These systems are identical for large λ values, but as
ε becomes a more significant contribution to the Hamil-
tonian, a symmetry-breaking divergence occurs between
the two systems. The blue surface with lines parallel
to the 〈Ĵ2

+ + Ĵ2
−〉 indicates another symmetry breaking,

where the ground state has either a positive or negative
eigenvalue for 〈Ĵ2

+ + Ĵ2
−〉. This eigenvalue reflects the

parity of the ground-state wave function. Figure 3 shows
the divergence of the positive and negative λ symmetry
invariant systems as the Hamiltonian is tuned from an ε-
to a λ-dominated region at ε ≈ 1. Figures 2 and 3 also
both contain sharp changes in the curvature at λ, ε ≈ 1.
These sharp changes or discontinuities in the derivatives
of the order parameters are signs of a second-order QPT.
Signatures of these QPTs can also be found in the set of
2-RDMs.

The hull plot, Fig. 1, contains a projection of the 2-
RDM into the 〈Ĵz〉 - 〈Ĵ2

+ + Ĵ2
−〉 plane, which is seen in

more detail in Fig. 4. This 2D representation contains
two trajectories of 2-RDMs as λ is taken from ∞ → 0
for positive and negative values of ε. The plot demon-
strates that the systems start from the same symmetry
invariant 2-RDM at λ =∞, but diverge radically for in-
finitesimally small positive and negative values of ε. This
graph also shows the presence of a second-order phase
transition around λ = 1. From λ = 0 → 1 the 2-RDM
barely changes, but suddenly after λ = 1 the 2-RDM
begins to move very rapidly along the boundary of the
set, before decelerating again near the apex of the curve.

Figure 5. The Convex Hull of the 3-Particle Lipkin Model
2-RDMs. The black line outlines the edges of the exact set of
2-RDMs, while the inner shape is the convex hull of the QC
results. A projection of the QC results is shown by a blue
scatter plot. The cyan and green coloring distinguish the
2 ruled surfaces of the convex set. The lines along the green
surface connect points of constant λ with ±ε with the distance
between lines decreasing for greater values of λ. Experimental
results were obtained from ibmq quito quantum computers
[31] using the circuit found in Fig. 11. All axes are in atomic
units.

This “acceleration” of the 2-RDM is characteristic of a
second-order phase transition [40, 42]. For finite-particle
LMG systems, this acceleration is not as rapid as it is for
the system in the thermodynamic limit, where the speed
of the 2-RDM diverges, but a finite signature of this QPT
is still present [40, 53, 63].

The quasi-spin formalism for the LMG system can be
mapped onto the two-state qubit system of a quantum
computer (QC), where the traditional computational ba-
sis is |↑〉 = |0〉 and |↓〉 = |1〉 [64]. Therefore each quasi-
particle in the LMG system or equivalently each pair of
pth states is represented by a qubit on the QC. Quantum
computers also offer the ability to generate arbitrary in-
teractions between particles including the two spin flip
interaction of the LMG system (Circuit Details can be
found in Appendix A). Measurement of the 2-RDM can
then be used to identify the presence of a QPT through
the methods previously discussed.

III. RESULTS

Evidence of a QPT on a quantum computer is obtained
from a 3-qubit simulation of the LMG system by mea-
suring elements of the system’s ground state 2-RDMs.
The system is simulated by the circuit in Appendix Fig.
11 for ε = ±1 and λ ∈ [-25,25]. The experimentally
gathered convex hull for this system can be seen in Fig.



5

Figure 6. Comparison of Experimental 2-RDMs with Ex-
act for 3 qubits. Experimental results were obtained from
ibmq quito quantum computer [31]. λ, 〈Ĵz〉, 〈Ĵ2

+ + Ĵ2
−〉 are in

reference to Eq. 4. All axes are in atomic units.

Figure 7. Gradient of 〈Ĵz〉 for Lipkin Model on 3-Qubit Cir-
cuit. Grey shading shows one standard deviation from the
average of ten experimental measurements of 2**13 shots.
These results were obtained from the circuit in Fig. 11 on
the imbq quito quantum computer [31]. λ and 〈Ĵz〉 are in
reference to Eq. 4 and plotted in atomic units.

5, with the exact results outlining a larger, but similar
hull. This contraction is typical in quantum comput-
ing experiments [38] due to systematic errors like qubit
crosstalk, T1 and T2 relaxation times, and gate errors.
Specifically, T1 errors greatly contribute to the contrac-
tion of the set. T1 error or bit flipping populates states
with lower 〈J2

z 〉 values as those states are mixed spin.

〈Ĵ2
+ + Ĵ2

−〉 = 〈J2
x−J2

y 〉 values suffer from this same error.

Measurement of 〈J2
x/y〉 requires a rotation of the X or

the Y component of the spin to the Z-axis (see Appendix

B for details on measurement of the RDM), thus T1 re-
laxation populating mixed spin states will also decrease
〈J2
x/y〉. Simulations on ideal quantum computers, which

only include random noise, indicate that as systematic
errors are decreased this contraction will also subside (ad-
ditional analysis of the contraction of the set on multiple
NISQ devices can be found in the SI). The hull, Fig. 5,
shows many of the interesting features that were present
in the infinite dimensional case, Fig. 1, including the two
ruled surfaces that indicate symmetry breaking in the
system without any reference to the underlying Hamilto-
nian. However, in this figure a new plane parallel to the
〈Ĵz〉 - 〈Ĵ2

+ + Ĵ2
−〉 plane appears due to the finite size and

odd number of particles in the system. The 4 vertices of
this plane are degenerate 2-RDMs corresponding to the
limits (ε, λ)→ [(0+, > 0), (0+, < 0), (0−, > 0), (0−, < 0)])
which are all within the disordered phase of the Lipkin
Model. This discontinuity in the order parameters be-
tween these degenerate states tells of a actual level and
an avoided-level crossing as ε and λ, respectively, flip
signs.

The plot contains lines of constant λ, which become
more tightly spaced as λ goes to infinity, which suggests
the presence of a finite signature of a second-order QPT.
This signature can be seen in Figs. 6 and 7. Figure
6 demonstrates acceleration of the ground-state 2-RDMs
along the boundary of the convex set of 2-RDMs between
the aligned and disordered spin regions [40]. Despite the
contraction of the set in this Figure, the change in 〈Jz〉
with respect to λ is nearly identical to the exact results
as seen in Fig. 7 showing the finite-particle signature of a
second-order QPT. Note that due to the smaller particle
number, the sudden acceleration at small values of λ is
less pronounced than in the thermodynamic limit shown
in Fig. 4, but the deceleration for large values of λ is the
same.

The convex hull of the 4-qubit 2-RDM can be seen in
Fig. 8. This hull differs immediately from the 3-qubit
hull as it lacks the plane indicative of a first-order QPT
due to the even number of qubits in the system. The lines
along the hull illustrating the movement of 2-RDMs as λ
is increased also appear to no longer be parallel with each
other or the 〈Ĵz〉 axis. This asymmetry is reflected in the
2D projection which can be seen more clearly in Fig. 10.
The asymmetry across the 〈Jz〉 axis arises primarily due
to T1 relaxation. T1 relaxation to the ground state of
the qubit, |0〉, results in a shift towards larger 〈Jz〉 val-
ues due to mapping of the quasi-spin formalism to the
qubits as discussed in the theory section. T1 relaxation
also explains why the effect is less drastic in the 3-qubit
results, as shorter circuits are less prone to this form of
decoherence. This shift has an even more dramatic effect
on the 〈J2

z 〉 values as seen in Figure 8. The exact results
in the Figure demonstrate the approach to a symmetry-
invariant 2-RDM as λ → ∞, something lacking in the
3-qubit case. The experimental results are slightly offset
from one another but still seem to approach a symmetry
invariant 2-RDM. The characteristic acceleration and de-



6

Figure 8. The Convex Hull of the 4 Particle Lipkin Model
2-RDMs. The black line outlines the edges of the exact set of
2-RDMs, while the inner shape is the convex hull of the QC
results. A projection of the QC results is shown by a blue
scatter plot. The cyan and green coloring distinguish the
2 ruled surfaces of the convex set. The lines along the green
surface connect points of constant λ with ±ε with the distance
between lines decreasing for greater values of λ. Experimental
results were obtained from ibmq quito quantum computers
[31] using the circuit found in Fig. 12. All axes are in atomic
units.

Figure 9. Gradient of 〈Ĵz〉 for Lipkin Model on 4-Qubit Cir-
cuit. Grey shading shows one standard deviation from the av-
erage of five experimental measurements 2**13 shots. These
results were obtained from the ibmq quito quantum computer
[31] using the circuit found in Fig. 12. QASM results are from

the IBM QASM simulator. λ and 〈Ĵz〉 are in reference to Eq.
4 and plotted in atomic units.

celeration of the 2-RDMs is also apparent in the Figure.
This behavior is confirmed in Figure 9, where the data
qualitatively matches the exact results peaking at λ = 1,
indicating the finite-particle signature of a phase transi-
tion in the system.

Figure 10. Comparison of Experimental 2-positive 2-RDMs
with Exact for 4 qubits. Experimental results were obtained
from ibmq quito quantum computer [31]. λ, 〈Ĵz〉, 〈Ĵ2

+ + Ĵ2
−〉

are in reference to Eq. 4. All axes are plotted in atomic units.

IV. DISCUSSION AND CONCLUSIONS

Wave-function-based methods typically characterize
QPTs by showing discontinuities in the energy surface,
but can miss important symmetries of the system as well
as require a prohibitively large number of measurements
on a noisy quantum device increasing both computational
time and error. In contrast, 2-RDM analysis takes advan-
tage of the pairwise nature of interactions to decrease the
number of measurements on a quantum computer nec-
essary to describe a QPT, and utilizes the geometry of
the convex set to demonstrate symmetry breaking in the
system without any reference to the underlying Hamil-
tonian. Here we demonstrate the 2-RDM approach to
QPTs on NISQ simulators and devices by computing the
finite-particle signatures of the QPT in the Lipkin model.

When the scattering potential is increased in the Lip-
kin model, taking the system from an ordered to disor-
dered region, the ground-state 2-RDM rapidly acceler-
ates along the boundary of the set in the critical region.
Because the 2-RDM contains information for all of the
one- and two-body operators, its movement along the
boundary of the set reflects the change in order parame-
ters of the ground state, providing signatures of a QPT.
Therefore, measurements showing discontinuities in this
movement allow for recovery of critical behavior with-
out any reference to the wave function [40]. The Lipkin
model, shown for the 3- and 4-particle systems, has ruled
surfaces on the convex hull of the set of ground-state 2-
RDMs, where the lines along these ruled surfaces connect
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degenerate states with different values of an order param-
eter reflecting symmetry breaking [42].

While the Lipkin model has exact solutions, the
methodology outlined could be combined with quan-
tum eigensolvers, in particular the variational quantum
eigensolver (VQE) or the contracted quantum eigensolver
(CQE) for resolving ground-state 2-RDMs [65], to arrive
at solutions for systems where the exact ground states
are unknown from classical computations. NISQ devices
with around 50 qubits would be able to explore systems
that are well beyond the exactly solvable limit of clas-
sical devices and would strain many approximate meth-
ods. Studying real systems, like potential candidates for
superconductors or exciton condensates, would be possi-
ble with VQE or CQE which are able to effectively cap-
ture long-range order due to their basis in 2-RDM the-
ory, and being quantum chemical methods they are easily
transferable to different models. These results underscore
the advantages of 2-RDM analysis on NISQ devices by
demonstrating the reduced tomography costs relative to
wave function methods and by utilizing the geometry of
the ground-state set of 2-RDMs to resolve both symme-
try breaking and phase transitions in the LMG model.
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Appendix A: Circuit Details

The circuits developed in this article are for the 3- and
4-particle LMG systems where the σ = ±1 LMG pair
of spin orbitals, p (see Eq 4), are represented by the |0〉
and |1〉 states of the pth qubit respectively. The experi-
mental expectation values result from averaging 5 × 214

and 5× 213 measurements of each relevant Pauli strings
(see Appendix B) on the quantum devices for the 3 and
4-qubit circuits respectively. The circuit for the 3-qubit
system can be found in Fig. 11. The first step is to
rotate the state vector from the |000〉 configuration to
the |111〉 or all down “spin” configuration using X -gates
(following the computer science tradition in naming |0〉
the excited state) [64]. The following unitary and CNOT
gates rotate the |111〉 state into

α1 |001〉+ α2 |010〉+ α3 |100〉+ β |111〉 . (A1)

where each coefficient is a function of the rotation angles
of the unitary gates. By solving the Hamiltonian exactly,

Figure 11. 3-Qubit Experimental Circuit. Measurement of
this circuit only provides the z -component of the qubit ex-
pectation value. The determination of the x or y components
of the expectation value requires an application of the H gate
or the S† then H gates, respectively, immediately before the
measurement step of the circuit. X is the X -gate, U is the
traditional 2-D rotation matrix, the 2-qubit gates are CNOT
gates, and the final gate is a measurement.

Figure 12. 4-Qubit Experimental Circuit. Measurement of
this circuit only provides the z -component of the qubit ex-
pectation value. The determination of the x or y components
of the expectation value requires an application of the H gate
or the S† then H gates, respectively, immediately before the
measurement step of the circuit.X is the X -gate, U is uni-
tary rotation matrix (see supplemental), the 2-qubit gates
are CNOT gates, and the final gates are measurements of the
qubits.

the ground-state coefficients are known, so it is possible
to solve a system of equations for the rotation angles.
With the correct selection of rotations for the U -gates,
the resulting state is the lowest energy eigenvector of the
Lipkin Hamiltonian with coefficients dependent on the
parameter λ.

The 4-qubit circuit, Fig. 12, is constructed similarly
to the 3-qubit circuit, with an initial rotation to an all
“down spin” state, and a series of rotations to the lowest
energy eigenstate:

α |0000〉+ β(|0011〉+ |0101〉+ |1001〉+
|1010〉+ |1100〉) + γ |1111〉 (A2)

These circuits were developed with the goals of mini-
mizing the number of CNOT gates, which are the largest
sources of error in quantum computations, and satisfying
the connectivity of the IBM computers ibmq belem, and
imbq quito running on the Falcon r4T processor [31]. Un-
like an ideal QC, these systems can only perform CNOT
gates between a subset of their qubits. CNOT gates that
are not native to the machine can be decomposed into
native CNOT gates, but this process can add a signifi-
cant number of extra 2-qubit gates, which increases noise
and hence the error of the results.

The unitary circuit referenced in Figs. 11 and 12, can
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be decomposed into the basis gates:

In matrix notation

√
X =

1

2

[
1 + i 1− i
1− i 1 + i

]
(A3)

−RZ(θ) = Rz(θ + π) =

[
1 0
0 eθ+π

]
(A4)

Z = Rz(3π) =

[
1 0
0 −1

]
(A5)

The resulting unitary matrix has the property that

U†MU = R†MR (A6)

where

R =

[
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

]
(A7)

which is the classic two-dimensional rotation matrix and
M is any arbitrary matrix.

Appendix B: RDM Reconstruction

The energy expectation value of the Lipkin system can
be written as a function of the 1- and 2-RDMs as

〈Ĥ〉 =
1

2
ε
∑
pσ

σ 1Dp
p +

1

2
λ
∑
pq

2Dpq
pq (B1)

These elements can be constructed from linear combi-
nations of expectation values of at most pairs of Pauli
strings [34] as seen below:

1Dp
p = 〈σzp〉 (B2)

2Dpq
pq = 〈σxpσxq〉 − 〈σypσyq〉 (B3)

Figures 11 and 12 illustrate how to determine the expec-
tation values for z -Pauli strings, but the reconstruction
of the RDM requires measurement of any combination of
Pauli strings. Measuring the x and y component of a spe-
cific qubit can be accomplished by inserting a Hadamard
or the adjoint phase gate (S†) then a Hadamard gate,
respectively, before collapsing the wave function through
measurement. This allows for the measurement of any
combination of pairs of expectation values.
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