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In strongly interacting systems with a separation of energy scales, low-energy effective Hamiltoni-
ans help provide insights into the relevant physics at low temperatures. The emergent interactions
in the effective model are mediated by virtual excitations of high-energy states: For example, virtual
doublon-hole excitations in the Fermi-Hubbard model mediate antiferromagnetic spin-exchange in-
teractions in the derived effective model, known as the t− J − 3s model. Formally this procedure is
described by performing a unitary Schrieffer-Wolff basis transformation. In the context of quantum
simulation, it can be advantageous to consider the effective model to interpret experimental results.
However, virtual excitations such as doublon-hole pairs can obfuscate the measurement of physical
observables. Here we show that quantum simulators allow one to access the effective model even
more directly by performing measurements in a rotated basis. We propose a protocol to perform
a Schrieffer-Wolff transformation on Fermi-Hubbard low-energy eigenstates (or thermal states) to
dynamically prepare approximate t−J−3s model states using fermionic atoms in an optical lattice.
Our protocol involves performing a linear ramp of the optical lattice depth, which is slow enough
to eliminate the virtual doublon-hole fluctuations but fast enough to freeze out the dynamics in
the effective model. We perform a numerical study using exact diagonalization and find an optimal
ramp speed for which the state after the lattice ramp has maximal overlap with the t−J−3s model
state. We compare our numerics to experimental data from our Lithium-6 fermionic quantum gas
microscope and show a proof-of-principle demonstration of this protocol. More generally, this proto-
col can be beneficial to studies of effective models by enabling the suppression of virtual excitations
in a wide range of quantum simulation experiments.

I. INTRODUCTION

In recent years, quantum simulation experiments
have been established as a valuable tool to investi-
gate strongly correlated quantum many-body sys-
tems. Using the microscopic control of quantum
simulators, Hamiltonians can be engineered in ex-
periments and complex non-local correlators can be
studied via site-resolved measurements. Further,
quantum simulators also enable basis transforma-
tions to be engineered to effectively perform mea-
surements in different bases to reveal the underlying
physics. A canonical example of a basis transfor-
mation performed in cold-atom experiments is via
time-of-flight imaging, which allows measurements
in the momentum basis rather than the position ba-
sis. In a similar vein, measurement of off-diagonal
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observables may be possible using a local unitary
transformation realized via time-evolution under a
quenched Hamiltonian such as in Refs. [1–3]. Mea-
surements may also be performed in a randomized
basis by applying local Haar-random unitary trans-
formations to extract higher-order observables such
as in Refs. [4, 5].

In a quantum system with strong interactions, a
basis transformation of particular interest is one that
traces out the fast timescales in the system, revealing
a low-energy effective model. Such effective models
are frequently encountered in particle physics and
studies of strongly correlated electronic systems, and
can greatly facilitate physical insights, since they di-
rectly represent the relevant emerging interactions.

From a theoretical perspective, an effective model
can be obtained from a system with a separation
of energy-scales via the Schrieffer-Wolff transforma-
tion [6], which involves a unitary transformation
Û = eiŜ to make the Hamiltonian block diagonal
in the new basis. Importantly, new effective inter-
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actions emerge due to virtual excitations of high en-
ergy states when the original Hamiltonian is written
in the dressed basis.

In the context of quantum simulation, it can
be advantageous to consider the effective model to
interpret the experimental results. Examples in-
clude spin-exchange interactions in the strongly-
interacting regime of the Bose- and Fermi-Hubbard
model [7], as well as the realization of an effec-
tive U(1) gauge field, starting from a Bose-Hubbard
model [8]. However, if experimental measurements
are performed in the original basis, the measured
state could lie outside the low-energy sector due to
quantum fluctuations (virtual excitations). Quan-
tum simulation experiments are now exploring new
regimes and access novel observables, such as spin-
charge correlations [9, 10], with increasing accuracy.
Details of the measurement procedure are therefore
becoming more and more important. In order to ac-
curately measure observables in the effective model,
and thus avoid undesired virtual occupations, mea-
surements should ideally be performed in the dressed
basis, which is experimentally quite challenging in
general.

In this work, we propose a protocol and demon-
strate a proof-of-principle experiment to perform
this required transformation from dressed to origi-
nal basis, which dynamically eliminates virtual ex-
citations thereby implementing approximately the
Schrieffer-Wolff transformation eiŜ to a quantum
state before performing measurements. In partic-
ular, we focus on the case of using the Schrieffer-
Wolff transformation to study the t− J − 3s model,
which is the low-energy effective model of the doped
Fermi-Hubbard Hamiltonian for large interaction
strengths. However, our protocol can be readily gen-
eralized to other systems.

The Fermi-Hubbard model, which is believed to
constitute a minimal model for the physics of the
cuprate materials, contains only two terms in the
Hamiltonian – tunneling of fermions to neighboring
lattice sites with amplitude t and interaction energy
U between fermions on the same site:

ĤFH = −t
∑

〈i,j〉,σ=↑,↓

ĉ†i,σ ĉj,σ + h.c.+ U
∑
i

n̂i,↑n̂i,↓,

(1)
where ĉi,σ is a bare annihilation operator for a
fermion with spin σ in a Wannier orbital on lattice
site i and n̂i,σ = ĉ†i,σ ĉi,σ is the number operator. De-
spite its apparent simplicity, theoretical and numeri-
cal studies of the Fermi-Hubbard model have shown
to be prohibitively difficult in two or more dimen-
sions due to its strong correlations and large entan-

glement. It can however be realized experimentally
with ultracold atoms in optical lattices. Experimen-
tal studies with fermionic quantum gas microscopes
have started to explore the physics of the Fermi-
Hubbard model in regimes that are extremely diffi-
cult to simulate on classical computers [11–18].

A low-energy effective Hamiltonian, called the
t − J − 3s Hamiltonian, can be derived from the
Hubbard Hamiltonian in the limit of large interac-
tion energy U � t via the Schrieffer-Wolff transfor-
mation [19]. This allows one to exclude states with
doubly occupied sites and thus significantly reduces
the Hilbert space dimension of the model (3N vs.
4N without taking symmetries into account). The
derived t− J − 3s Hamiltonian is given by [20]

Ĥt−J−3s = P̂s

(
Ĥt + ĤQHM + Ĥ3s

)
P̂s, (2)

where P̂s is a projection operator onto the subspace
containing no doubly occupied sites, and

Ĥt = −t
∑
〈i,j〉,σ

c̃†i,σ c̃j,σ + h.c.

ĤQHM =
J

2

∑
〈i,j〉

(
ˆ̃
Si · ˆ̃

Sj −
1

4
ˆ̃ni ˆ̃nj

)

Ĥ3s = −J
8

i 6=k∑
〈i,j〉,〈j,k〉

[∑
σ

(ˆ̃c†i,σ
ˆ̃ck,σ ˆ̃nj)− ˆ̃c†iσ

ˆ̃ck · ˆ̃c†jσˆ̃cj

]

where ˆ̃ci,σ is the dressed fermionic operator which
is related to the bare fermionic operator via the
Schrieffer-Wolff transformation, ˆ̃ci,σ = e−iŜ ĉi,σe

iŜ .
The operator Ŝ is defined exactly as in [19]. Here
J = 4t2/U is the super-exchange energy, ˆ̃

Si =
ˆ̃c†i,aσa,b

ˆ̃ci,b is a spin operator on site i defined in
terms of the dressed fermionic operators, and ˆ̃ni is
a dressed particle density operator on site i. Note
that the three-site term Ĥ3s is often neglected to
simplify the effective model. However, we use the
full Ĥt−J−3s Hamiltonian since Ĥ3s appears at the
same order as ĤQHM in t/U in the expansion.

The t − J − 3s model is also believed to contain
much of the essential physics of the cuprate ma-
terials. In addition, the reduced Hilbert space di-
mension facilitates numerical studies of the model.
There have been extensive theoretical and numeri-
cal studies of the t − J and t − J − 3s model over
the years, see e.g. [21–26], which renders quantum
simulation of this model particularly interesting.

Additionally, the t − J − 3s model does not dis-
play the quantum fluctuations in the Fermi-Hubbard

2



model that cause virtual excitations of holes and
doublons, i.e. doubly occupied sites. Close to half-
filling, these fluctuations appear as virtual doublon-
hole pairs that can still be observed experimentally,
for example in density snapshots obtained by quan-
tum gas microscopy [27, 28]. The presence of virtual
doublons and holes may obfuscate the density distri-
bution of the system especially at low doping, such
as in studies of single holes injected in a Mott insu-
lator [14, 16, 29] and studies of spin-charge as well as
charge-charge correlations at finite doping [10]. In
such cases it can therefore be desirable to eliminate
virtual density excitations by studying the simpler
t− J − 3s model.

Here we propose a protocol to perform an approx-
imate Schrieffer-Wolff transformation in a Fermi-
Hubbard simulator via an optical lattice ramp which
suppresses doublon-hole fluctuations and enables
one to approximate correlators of the t − J − 3s
model. The rest of this paper is organized as fol-
lows. In section II, we explain the details of the pro-
tocol involving the optical lattice ramp. In section
III, we present a simple two-site model which ana-
lytically explains the suppression of virtual doublon-
hole pairs after the ramp. We also present numeri-
cal results and experimental data for larger system
sizes. In section IV, we examine the spin correlations
after the lattice ramp and its implications to ther-
mometry. In section V, we examine how the lattice
ramp time-evolution operator effectively implements
the approximate Schrieffer-Wolff transformation. In
section VI, we end with a conclusion and outlook.

II. PROTOCOL

In the following section we explain the details of
the protocol. Our goal is to dynamically map the
dressed basis onto the original basis, so that we can
measure observables of the effective model in the
natural basis of the full model as long as their ground
states are adiabatically connected. In the case of the
t − J − 3s model, this corresponds to mapping ˆ̃ci,σ
onto ĉi,σ (see eq. 2). Our protocol to perform this
mapping (ˆ̃ci,σ → ĉi,σ) involves a slow linear ramp of
the optical lattice depth at the end of an experimen-
tal shot, followed by the usual fluorescence imaging
sequence. The protocol is schematically illustrated
in Fig. 1. The linear ramp at a certain optimal
speed acts as an approximate Schrieffer-Wolff trans-
formation on low energy Fermi-Hubbard eigenstates
and suppresses the doublon-hole fluctuations. This
approximately maps the Fermi-Hubbard eigenstates

FIG. 1. Schematic of the protocol: (a) The protocol in-
volves a linear ramp of the optical lattice depth V (τ)
at a rate α ≡ dV/dτ , followed by an imaging sequence
to measure correlators. Colors indicate different ramp
speeds. (b) If the lattice ramp is very fast, i.e. dia-
batic, then the initial low-temperature Fermi-Hubbard
state with doublon-hole virtual excitations and antifer-
romagnetic spin order is effectively frozen and remains
the same after the ramp. If the lattice ramp is very slow,
i.e. adiabatic, the quantum state flows towards vanishing
virtual excitations but also possibly modified spin order.
In the intermediate regime, for an optimal ramp speed
virtual excitations are suppressed while also maintaining
spin order, approximately mapping the initial state onto
the effective model. See text for details.

onto corresponding eigenstates of the t−J−3smodel
- as long as the ground states of the Hubbard and
t − J − 3s models are adiabatically connected and
there is no significant contribution from higher or-
der terms in t/U that were neglected in deriving the
effective t − J − 3s model. These t − J − 3s model
eigenstates can then be imaged in the natural basis
of Fermi-Hubbard experiments.

The lattice ramp results in a ramp of the Hamil-
tonian parameters. Increasing the strength of the
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lattice potential V0 increases the localization of the
Wannier functions, leading to a reduced tunneling
amplitude t. Simultaneously, the increased localiza-
tion also increases the interaction strength U . As
a result, U/t increases and J/t decreases. In par-
ticular, the Hamiltonian parameters t and U scale
as

t

Er
' 4√

π

(
V

Er

)3/4

exp
(
−2
√
V/Er

)
(3)

U

Er
'
√

8

π
kLa

(
V

Er

)3/4

, (4)

where V is the lattice depth, the recoil energy Er =
~2k2

L/2m sets the energy scales of particles in the
lattice and kL = 2π/λL is the laser wavevector. For
a detailed derivation see Ref. [30, 31] and references
therein.

The effect of ramping the Hamiltonian parame-
ters can be understood intuitively for the two ex-
tremal ramp speeds. Suppose the initial state is a
low-energy Fermi-Hubbard eigenstate |Ψ〉. If U/t is
increased instantaneously to U/t→∞, the quantum
state has no time to evolve and remains an eigenstate
of the original Fermi-Hubbard model at finite U/t.
This “lattice freeze” is generally performed in cold
atom experiments prior to performing single-site re-
solved measurements, for example in [16]. In the
opposite limit, if U/t is increased fully adiabatically
(i.e. slowly compared to all the many-body energy
gaps), then the state adiabatically follows the in-
stantaneous eigenstates towards the U/t→∞ limit
which qualitatively changes the nature of the state
in general (with the exception of the insulating half-
filled ground state).

For intermediate ramp speeds, the time-evolution
of |Ψ〉 can be better understood by writing it in the
time-dependent basis

∣∣∣φ̃i(τ)
〉
defined as,∣∣∣φ̃i(τ)

〉
= eiŜ( t(τ)

U(τ) ) |φi〉 , (5)

where {|φi〉} is the Fock basis of the original
fermionic operators of Fermi-Hubbard model. Note

that by definition,
∣∣∣φ̃i(τ = 0)

〉
= e

iŜ
(
t0
U0

)
|φi〉 are

the Fock states of the dressed operators ˆ̃c†j,σ of the
t − J − 3s Hamiltonian. Also note that at the end
of the ramp,

∣∣∣φ̃i(τ →∞)
〉

= eiŜ( tU→0) |φi〉 = |φi〉

since e−iŜ(t/U) → 1̂ as t/U → 0. The state |Ψ(τ)〉
can be expanded in this basis as

|Ψ(τ)〉 =
∑
i

βi(τ)
∣∣∣φ̃i(τ)

〉
, (6)

where βi(τ) are the time-dependent coefficients. As
the lattice depth is ramped up, the state evolves
in two ways: the coefficients {βi} evolve and the
dressed basis states {

∣∣∣φ̃i(τ)
〉
} themselves evolve. If

the lattice ramp is fast compared to t and J , the
coefficients {βi(τ)} of the dressed basis can be con-
sidered essentially frozen since their dynamics is gov-
erned by the t−J−3s Hamiltonian. Within the low-
energy Hilbert space this corresponds to the diabatic
limit. Additionally, if the ramp is slow with respect
to U which is the typical gap separating the low-
energy sector from higher-energy sectors, the dressed
basis states {

∣∣∣φ̃i(τ)
〉
} evolve adiabatically and flow

towards t/U → 0 where they get mapped onto the
original basis states {|φi〉}. When both conditions
on the ramp speed are satisfied, the final state can
be approximated as:

|Ψ′〉 ≈ eiϕΨ

∑
i

βi(0) |φi〉 = eiϕΨeiŜ(t0/U0) |Ψ〉 (7)

where eiϕΨ describes an overall dynamical phase
picked up during the ramp and eiŜ(t0/U0) is the
Schrieffer-Wolff transformation corresponding to the
initial tunnelling to interaction ratio.

Thus if the ramp speed is slow compared to U
but fast compared to t and J , then the lattice ramp
approximately acts as a Schrieffer-Wolff transforma-
tion on Fermi-Hubbard low-energy eigenstates, map-
ping them (up to order t/U) onto corresponding
eigenstates of the t − J − 3s model written in the
original basis. This allows for approximate measure-
ments of observables of the t− J − 3s model in the
natural basis of the Fermi-Hubbard simulator.

III. ELIMINATING DOUBLON-HOLE
PAIRS

In this section, we examine how the lattice ramp
suppresses virtual doublon-hole fluctuations. The
population of virtual doublons tells us about how
close the dressed operators c̃i,σ are to original op-
erators ci,σ. If the population of virtual doublons
vanishes, the dressed basis gets mapped onto the
original basis. We use the case of two fermions in
a double-well potential (half-filling) to derive an ap-
proximate anayltical result for the doublon popu-
lation after the lattice ramp. We also numerically
study larger 1D and 2D systems and compare to ex-
perimental data for 2D systems.

For the double-well system, the Hamiltonian is il-
lustrated in Fig. 2(a). The Hilbert space of interest
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FIG. 2. (a) Doublon density 〈ρ̂D〉 after the lattice ramp for the double-well case plotted as a function of ramp speed α.
Comparison of the analytical approximation of Eq. 9 (dashed lines) with numerical simulations (solid lines) for initial
U/t = 8 (purple, upper) and U/t = 16 (brown, lower). Vertical dash-dotted lines indicate the critical ramp speed α∗

from Eq. 10 below which the doublon density is strongly suppressed. The double-well Fermi-Hubbard Hamiltonian
is schematically shown in the inset. (b) Doublon density 〈ρD〉 vs. normalized ramp speed α/α∗ for U/t = 8. Solid
lines are numerical results for a 12-site system at half-filling - 1D chain with periodic boundary conditions (orange
dashed line) and 2D cluster, 4× 3 (green solid line). Experimental data points at half-filling shown in gray markers.
The dashed line indicates the imaging fidelity limit to measuring doublon density in the experimental snapshots.

with total spin S = 0 contains one spin up and one
spin-down particle and is spanned by the four states
{|LL〉 , |LR〉 , |RL〉 , |RR〉} written following the con-
vention of [32]. Further, examining the symmetries
of the Hamiltonian (see Appendix A), we can see
that the dynamics of the system lie in a two dimen-
sional Hilbert space spanned by the two spin-singlet
states:

|Ψs〉 =
|LR〉+ |RL〉√

2
(singlet state)

|Ψdh〉 =
|LL〉+ |RR〉√

2
(symm. doublon-hole state)

(8)

For U/t > 0, the ground state of the double-well
system is predominantly the singlet state |Ψs〉 with a
small admixture of the symmetric doublon-hole state
|Ψdh〉 of order (t/U)2. If we start in the ground state
with a finite U/t and adiabatically increase U/t →
∞, the system flows towards a purely singlet state
with a vanishing doublon density.

When the lattice depth is ramped up linearly
in time (which is non-adiabatic, due to the expo-
nential dependence of tunneling on lattice depth),
the system does not perfectly follow the instanta-
neous ground state of the system. We can ana-
lytically solve the resulting dynamics in the two
dimensional Hilbert space by making the follow-
ing approximations. First, we Taylor-expand U/t

as a function of time to linear order and cast the
problem into a Landau-Zener-like problem (see Ap-
pendix A). Then we derive an analytical result for
the state after a linear lattice ramp, when starting
from the Fermi-Hubbard ground state with a given
U0/t0. We compute the doublon density defined as
〈ρ̂D〉 = 1/N

∑N
i 〈ni↑ni↓〉 in the state after the ramp

for a given ramp speed α ≡ dV/dτ :

〈ρ̂D〉 ≈
|β(0)
dh |2

2

α2

α2 + (α∗)2
. (9)

where |β(0)
dh |2 is the probability of the symmetric

doublon-hole state for the initial Hamiltonian pa-
rameters U0, t0 and

α∗ = U0

√
V0Er

[
1 + 8

( t0
U0

)2
]

(10)

is a critical lattice ramp speed where the doublon
density has an inflection point. The Landau-Zener
calculation predicts that in the adiabatic limit, i.e.
ramp speed α → 0, the doublon density 〈ρ̂D〉 van-
ishes quadratically with α. In the opposite limit
of an instantaneous lattice ramp, α → ∞ the dou-
blon density converges to its value in the ground
state |β(0)

dh |2/2. The crossover in the behavior from
quadratic to asymptotic occurs at a critical ramp
speed α = α∗ ∼ U

√
V0Er.

In Fig. 2(a), we compare the analytical result
(dashed lines) with a numerical simulation of the full
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lattice ramp in the double well system without any
approximations (solid lines) for two different initial
values of U0/t0 = 8 (purple, upper), and U0/t0 = 16
(brown, lower). Here and in the following, the ini-
tial lattice depth is V0 = 8Er to match the experi-
mental values of [12], and the final lattice depth is
Vfinal = 48Er. Increasing the value of Vfinal does not
affect the numerical results. The critical ramp speed
α∗ is marked with dash-dotted vertical lines.

The analytical results match asymptotically with
the full numerics in both limits α→∞ (the doublon
density is frozen to its value before the ramp) and
α→ 0 (the doublon density adiabatically vanishes).

For a given value of U0/t0, the crossover between
adiabatic and frozen regime occurs at a larger α in
the numerical results compared to the analytical for-
mula. This discrepancy can be attributed to the dif-
ferent effective ramps realized by the two models:
U/t(τ) increases linearly with time in the analyti-
cal approximation, whereas V (τ) increases linearly
in the numerical model, resulting in an exponential
ramp of U/t(τ) according to Eqs. 3 and 4. We expect
the analytical result to be a good approximation to
the numerics because most of the dynamics occur
very early in the ramp where we can linearize the
Hamiltonian parameters.

Next, we extend our numerical simulations to sys-
tems of up to 12 sites by computing the Fermi-
Hubbard ground state using exact diagonalization
(ED) and by evolving it according to Hamiltonian
(1) with time-dependent parameters (3) and (4).
Here and henceforth U0/t0 = 8 [12] (see Appendix
B for details). Fig. 2(b) shows results obtained at
half-filling with one-dimensional chains and periodic
boundary conditions (orange dashed line) as well as
two-dimensional 4 × 3 clusters with open boundary
conditions (green solid line).

The doublon density after the lattice ramp is plot-
ted as a function of the normalized ramp speed α/α∗
with α∗ defined in Eq. 10 to compare timescales
with the double-well case. For large ramp speeds α,
the doublon density reaches its ground-state value,
which partially depends on the lattice coordination
number and is different in the double-well, 1D and
2D cases. Remarkably, the crossover speed α/α∗ ∼ 1
below which doublon density vanishes is in good
qualitative agreement with the double well case.
This suggests that the time and energy scales deter-
mining doublon suppression are mostly determined
by the initial Hamiltonian parameters and are rel-
atively independent of system size. Further, we
also performed numerics for systems away from half-
filling with low hole doping and found similar dou-
blon density suppression. We explore this further in

the next section.
We also compare our numerics to experimen-

tal data from our Lithium-6 Fermi-Hubbard quan-
tum simulator [12, 33], shown with gray markers
in Fig. 2(b). The experimental data is for a spin-
balanced mixture at half-filling with a system size of
∼ 370 sites. The tunnelling is set to t = 0.90(2) kHz
and interaction strength is tuned using a Feshbach
resonance to give U/t = 8.1(2). The system is loaded
into a lattice of depth 7.5(1)Er, where Er = 25.6
kHz, and the lattice is then ramped up by a factor
of 8 at varying ramp speeds to freeze the tunnelling.
The fastest ramp shown corresponds to a ramp du-
ration of 50µs, while the slowest one corresponds to
10ms. In the experimental snapshots, doublons and
holes both appear as empty lattice sites as a result of
the parity projection in the imaging scheme [33, 34].
The doublon density is extracted from the density
snapshots by assuming that doublons and holes are
equally likely since the system is at half-filling.

The experimental data points are consistent with
the 2D numerics (green solid line). The larger crit-
ical speed compared to the numerical data may be
explained by technical limitations on the ramp rate
of the lattice depth, leading to deviations from a lin-
ear ramp at the shortest ramp times and to an over-
estimation of the effective ramp speed. We find that
the experimentally obtained doublon density reduces
with the ramp speed α on a similar timescale as the
2D numerics. For the experimental data, the density
converges to about 1% which is consistent with the
imaging fidelity of approximately 98% during these
experiments.

IV. SPIN CORRELATIONS

In this section, we examine the spin correlation
functions in the state after the lattice ramp and com-
pare to correlations in the t − J − 3s model. As
spin correlations are strongly affected by the pres-
ence of virtual doublon-hole excitations, they act as
a proxy for how well the lattice ramp implements the
Schrieffer-Wolff transformation on the initial state.
In addition we also study the effect of hole-doping
on the lattice ramp protocol.

In the presence of hole-dopants, the dynamics
during the lattice ramp are qualitatively different
than the two-site case or the half-filling case. In
particular, for half-filling the low energy effective
Hamiltonian for Fermi-Hubbard model is simply the
Heiseneberg term HQHM from Eq. (2) - the tun-
neling Ht and 3-site term H3s terms vanish at half-
filling since there are no holes in the system. As a
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result, the effective Hamiltonian has a single param-
eter J and thus the eigenstates and their ordering
do not depend on the value of J but only the sign
(which is always positive here). On the other hand,
in the presence of hole-doping, all three terms of Eq.
(2) play a role. Thus we expect to see some com-
peting time-scales from the adiabaticity of the ramp
and the energy scales of the effective Hamiltonian.

In Fig. 3(a), we show the nearest-neighbor spin
correlation 〈Ψramp| Ŝzi Ŝzj |Ψramp〉C of the state after
the lattice ramp as a function of the ramp speed
α and for different hole-dopings δ. The nearest-
neighbor spin correlations are negative, which con-
firms the presence of anti-ferromagnetic order ex-
pected close to half-filling due to a positive superex-
change coupling J . The spin correlations are ex-
pected to decrease with hole-doping as mobile holes
tend to disrupt the antiferromagnetic order [9, 12].
To facilitate comparison between doping levels, we
normalize correlations with the absolute value of the
correlator | 〈Ψt−J | Ŝzi Ŝzj |Ψt−J〉C | in the t − J − 3s
model ground state, and further normalize the ramp
speed α by the critical ramp speed α∗ from the
double-well case (Eq. (10)).

At non-zero hole-doping δ > 0, the magnitude of
the negative correlations shows a maximum at ramp
speeds close to the critical ramp speed, α ∼ α∗. The
correlations for this ramp speed are about & 85% of
the value in the ground state of the t−J −3s model
for the finite system size of 4 × 3 sites. Further,
we point out that these correlations are significantly
modified from the correlations in the initial state,
i.e. the ground state of the Fermi-Hubbard model.
The Fermi-Hubbard ground state correlations can
be seen as the asymptotic limit of α→∞.

The presence of a maximum in the correlations
can be explained as the result of two competing ef-
fects. On the one hand, decreasing the ramp speed
from the instantaneous ramp limit α→∞ decreases
the density of doublon-hole pairs, as observed in
Fig. 2. This effect contributes to decreasing the lo-
cal magnetization on neighboring sites and therefore
to increasing the magnitude of the spin correlations
as α is decreased. On the other hand, in the adia-
batic regime α < α∗ the quantum state follows the
instantaneous ground state of the Hamiltonian dur-
ing the ramp. In the fully adiabatic limit α → 0,
the final state is described by a Hamiltonian with
U/t→∞, i.e. J/t→ 0 and no spin correlations are
present due to the Nagaoka effect [35]. In this case,
increasing α towards α∗ increases the magnitude of
the correlations.

The half-filled case δ = 0 [blue circles in Fig. 3(a)]

FIG. 3. (a) Normalized spin correlation func-
tion (z - component) for nearest neighbors
〈Ŝz

i Ŝ
z
j 〉ramp/|〈Ŝz

i Ŝ
z
j 〉t−J | plotted as a function of

normalized ramp speed α/α∗ from numerical simula-
tions at zero temperature. Colors (markers) indicate
different doping levels. Dashed line indicates the
normalized t − J model correlator. Spin correlations
are normalized by the magnitude of the t − J − 3s
model correlators to plot different doping levels on the
same plot. System size is 12-sites (4 × 3). (b) Spin
correlation function for nearest neighbors 〈Ŝi · Ŝj〉C
at finite temperature. Solid lines indicate numerical
results for a 9-site (3 × 3) system at half-filling with
temperatures ranging from T/t = 0 at the bottom
(purple) to T/t = 0.5 at the top (red). U0/t0 = 8 for
both plots.

is a special case as mentioned before. The effec-
tive Hamiltonian is simply the Heisenberg Hamilto-
nian ĤQHM and its ground state is independent of
the magnitude of J with constant, non-zero nearest-
neighbor correlations, even in the limit J/t → 0.
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When approaching the adiabatic limit α → 0,
doublon-hole pairs get increasingly suppressed and
there is no competing Nagaoka effect. Thus nearest-
neighbor spin correlations monotonically increase in
magnitude with decreasing ramp speed α and con-
verge to their expectation value in the Heisenberg
model.

Numerical simulations so far considered initial
states at zero temperature, i.e. the ground states
of the Fermi-Hubbard model. We now examine the
case of finite-temperature ensembles in the Fermi-
Hubbard model with temperatures T below the ini-
tial interaction energy U0 at half-filling. We perform
full ED in a smaller system of 3 × 3 sites, simu-
late the time-evolution for the lowest ∼ 150 eigen-
states (from each magnetization sector) and average
over the thermal ensemble by assigning appropriate
Boltzmann weights to each state (see Appendix B
for details). As shown in Fig. 3(b) for T/t ∈ [0, 0.5],
temperature leads to an expected decrease of the
nearest-neighbor spin correlations after the lattice
ramp. Furthermore, spin correlations monotonically
increase in magnitude by up to 25% for decreasing
ramp speed α/α∗, similar to the T = 0, δ = 0 case
in Fig. 3(a).

In quantum gas microscope experiments, single-
site resolved measurements are performed after
ramping up the lattice potential used for quan-
tum simulation to much larger depths in order to
ensure loss-less fluorescence imaging. Our simu-
lations indicate that finite ramp speeds can lead
to an overestimation of nearest-neighbor spin cor-
relations and an underestimation of doublon-hole
densities in Fermi-Hubbard systems close to half-
filling. Taking into account these effects is therefore
crucial to accurately estimate temperature in such
systems, which often relies on comparing spin-spin
or density-density correlation observables with nu-
merical data obtained for example through Numeri-
cal Cluster Linked Expansion (NLCE) or Quantum
Monte Carlo (QMC) methods [12, 28].

V. ANALYSIS OF THE LATTICE RAMP
UNITARY

In this section we take a more careful look
at the unitary operator describing time-evolution
during the lattice ramp and how it is related
to the Schrieffer-Wolff transformation. For a
given ramp speed α, we define the time-evolution
operator of the lattice ramp as Ûramp(α) =

T
[

exp
{

(−i
∫ τ

0
dτ ′ĤFH(τ ′))

}]
.

FIG. 4. (a) Fidelity of mapping to the t− J − 3s model
ground state starting from the Fermi-Hubbard ground
state, defined as F = |

〈
ΨtJ

0

∣∣ Ûramp(α) |Ψ0〉 |2. Solid
lines show numerical results for a 12 site cluster (4× 3)
with colors (markers) indicating different doping levels.
Dashed lines indicate the squared overlap of the initial
state with the t − J ground state, i.e. |〈ΨtJ

0 |Ψ0〉|2. (b)
Comparison of the optimal lattice ramp unitary Ûopt

ramp

and the Schrieffer-Wolff unitary transformation eiŜ for
low energy eigenstates of the Fermi-Hubbard model. Fi-
delity F1 (blue circles) shows how close Ûramp and eiŜ are
when acting on Fermi-Hubbard eigenstates, F2 (orange
triangles) shows the fidelity of mapping to a t − J − 3s
eigenstate when starting from the corresponding Fermi-
Hubbard low-energy eigenstate, and F3 (green crosses)
shows the squared overlap of t− J − 3s eigenstates and
corresponding Fermi-Hubbard eigenstates. U0/t0 = 8 for
both plots.

To probe the fidelity of the unitary operator at
zero temperature, T = 0, we compute the state over-
lap defined as F = |

〈
ΨtJ

0

∣∣ Ûramp(α) |Ψ0〉 |2 where∣∣ΨtJ
0

〉
is the t−J−3s ground state, |Ψ0〉 is the Fermi-

Hubbard ground state (initial state) and Ûramp(α)
is the lattice ramp time evolution operator. This fi-
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delity is shown in Fig. 4(a) as a function of ramp
speed α and doping δ (solid lines). Dashed lines in-
dicate the squared overlap of the initial state with
the t − J − 3s ground state, i.e. |〈ΨtJ

0 |Ψ0〉|2. For
computing the overlap, the t− J − 3s model ground
state is written in terms of the bare fermionic oper-
ators ĉi,σ rather than the dressed operators ˆ̃ci,σ, i.e.
the t − J − 3s ground state written in the Fermi-
Hubbard basis since this is the target state at the
end of the ramp.

The results are qualitatively similar to the nearest-
neighbor spin correlations shown in Fig. 3(a). Very
fast ramps α � α∗ have no effect on the state
and thus the overlap is given by that of the Fermi-
Hubbard ground state with the t − J − 3s model
ground state. For non-zero dopings δ > 0, the over-
lap vanishes in the adiabatic limit α� α∗. Remark-
ably, it reaches a maximum at αopt ≈ 0.4α∗, within
an order of magnitude of the critical ramp speed
predicted for the double-well case. The peak value
is comparatively large (above 80% for the 12-site sys-
tem considered here). As discussed in Sec. IV, the
case of half-filling is special since the t−J−3s model
ground state becomes independent of |J/t| then. As
a result, the squared overlap with the t − J − 3s
ground state monotonically increases to near unity
with decreasing ramp speed. These results quanti-
tatively show that the lattice ramp protocol dynam-
ically maps the Fermi-Hubbard ground state onto
the t− J − 3s model ground state close to the crit-
ical ramp speed α∗, allowing for measurements of
t− J − 3s observables in the Fermi-Hubbard basis.

We now numerically examine the relation be-
tween the Schrieffer-Wolff unitary transformation
eiŜ and the lattice ramp time-evolution operator
Ûramp. Starting from a low energy eigenstate of
the Fermi-Hubbard model |Ψn〉, by definition, the
state after the ramp is given by |Ψ′〉 = Ûramp |Ψn〉.
The overlap of this ramped state with a Schrieffer-
Wolff transformed initial state tells us the fidelity of
performing the Schrieffer-Wolff transformation using
the lattice ramp. We call this fidelity F1 defined as
F1 = | 〈Ψn| e−iŜÛopt

ramp |Ψn〉 |2.
Further, the overlap of the ramped state with the

corresponding t−J−3s eigenstate
∣∣ΨtJ

n

〉
tells us the

fidelity of preparing a t−J−3s eigenstate using this
protocol, which we call F2 = |

〈
ΨtJ
n

∣∣ Ûopt
ramp |Ψn〉 |2.

Note that F2 is different from F1 because the
Schrieffer-Wolff transformation is only perturbative
to order (t/U). As a result, even a perfect Schrieffer-
Wolff unitary will only map a Fermi-Hubbard eigen-
state onto the corresponding t − J − 3s eigenstate
within O((t/U)2). To quantify this fidelity, we de-

fine F3 = |
〈
ΨtJ
n

∣∣ eiŜ |Ψn〉 |2 which tells us how close
a Schrieffer-Wolf transformed Fermi-Hubbard eigen-
state is to the corresponding t− J − 3s eigenstate.

In Fig. 4(b), we plot the fidelity F1 (blue circles) as
a function of energy En for the optimal ramp speed
αopt = 0.4α∗. We work with a small system size (8
sites, one-hole dopant) where the unitary operators
can be fully computed. We find that the fidelity
F1 is quite high (above 90% for this system) for all
low-energy eigenstates with energy, En − E0 ≤ t.

We also plot the fidelity F2 (orange triangles) of
preparing a t − J − 3s eigenstate starting from a
Fermi-Hubbard eigenstate and find F2 is above 90%
for most of the low-energy eigenstates, with some
outliers above 80%. Similarly, we plot F3 (green
crosses) and find a strong correlation between F3

and F2. This implies that the variation in the fidelity
F2 of preparing t − J − 3s eigenstates comes from
the intrinsic variation between the eigenstates of the
t−J−3smodel and the Schrieffer-Wolff transformed
Fermi-Hubbard eigenstates.

The numerical evidence from Fig. 4 verifies that
the lattice ramp unitary acts like a Schrieffer-Wolff
transformation with high fidelity for not just the
ground state but also for low-energy eigenstates and
thermal states, and can be used to prepare the
t− J − 3s model eigenstates (or thermal states).

VI. CONCLUSION AND OUTLOOK

In this work, we proposed a protocol for mea-
suring observables of low-energy effective models in
quantum simulators by performing a ramp of Hamil-
tonian parameters that executes an approximate
Schrieffer-Wolff basis rotation. We focused on the
case of the t−J − 3s model derived from the Fermi-
Hubbard model. In this case, the ramp of Hamil-
tonian parameters is performed by linearly increas-
ing the lattice depth in time at an optimal ramp
speed αopt. Using a simplified analytical model,
numerical evidence as well as existing experimental
data we demonstrated how the lattice ramp elim-
inates virtual doublon-hole fluctuations, increases
spin-spin correlations in the system and executes an
approximate Schrieffer-Wolff transformation, map-
ping the initial Fermi-Hubbard eigenstate onto the
corresponding t−J−3smodel eigenstate. This map-
ping is possible in regimes where the (ground) states
of the effective (t − J − 3s) and microscopic (Hub-
bard) Hamiltonians are adiabatically connected.

While we discussed our protocol for studying ob-
servables in the effective model at equilibrium, we
believe it can also be generalized for experiments
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studying non-equilibrium physics. For an out-of-
equilibrium initial state, for the case of the Fermi-
Hubbard and t − J − 3s models, we may be able
to modify this protocol to separate the freezing of
atomic motion from the elimination of doublon-hole
fluctuations. For example, one could first use an en-
ergy offset on neighboring lattice sites to freeze the
atomic motion as shown in [36], followed by the slow
lattice ramp to eliminate doublon-hole fluctuations.
The generalization to complex non-equilibrium ini-
tial states remains to be explored in future work.

The proposed protocol can also be applied in a
larger range of systems whenever effective interac-
tions are induced through virtual higher-order pro-
cesses. Examples include U(1) lattice gauge theories
in Bose-Hubbard systems [8], ring-exchange interac-
tions [37], and Z2 lattice gauge theories with super-
conducting qubits [38].
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Appendix A: Analytical Half-Landau Zener Formula

Our goal in this section is to analytically calculate the effect of a linear ramp of lattice depth on the
quantum state of a two-site Fermi-Hubbard system. Starting from the ground state of the two-site system,
as the lattice depth is increased, the Hamiltonian parameters U and t evolve in time and the state undergoes
dynamics. If the change in Hamiltonian parameters is Taylor-expanded and linearized in time and the initial
lattice depth is sufficiently deep, we can make use of the Landau-Zener formalism to solve the dynamics.

However, our case is different from the usual Landau-Zener problem involving an avoided crossing because
in our case, the Hamiltonian parameters always remain on one side of the avoided crossing (U/t goes from
U0/t0 > 0 to U/t→∞). The lattice ramp is thus more like the latter half of a Landau-Zener problem.

Consider the Hamiltonian of the two-site Fermi-Hubbard system at half-filling (2 particles):

Ĥ = −t(τ)
∑
σ

(
c†LσcRσ + c†RσcLσ

)
+ U(τ)

∑
i={L,R}

n̂i↑n̂i↓. (A1)

We first find the ground state of the Hamiltonian for U > 0. Considering the spin rotation and inversion
symmetries of the system, the eigenstates of the Hamiltonian are also total spin eigenstates (singlet or
triplet) and have a defined parity (even or odd). In the spin triplet sector, we find three eigenstates of the
Hamiltonian, all with zero energy. In spin singlet sector, there are three states each with exactly one spin
up particle and one spin-down particle. These states are spanned by the basis states:

B =
{
|φ0〉 =

1√
2

(|LR〉+ |RL〉) =
1√
2

(
ĉ†L↑ĉ

†
R↓ + ĉ†R↑ĉ

†
L↓

)
|vac〉 ≡ |Ψs〉 ,

|φ1〉 =
1√
2

(|LL〉+ |RR〉) =
1√
2

(
ĉ†L↑ĉ

†
L↓ + ĉ†R↑ĉ

†
R↓

)
|vac〉 ≡ |Ψdh〉 ,

|φ2〉 =
1√
2

(|LL〉 − |RR〉) =
1√
2

(
ĉ†L↑ĉ

†
L↓ − ĉ

†
R↑ĉ
†
R↓

)
|vac〉

}
.

(A2)

We have conveniently chosen these basis states to be parity eigenstates. We can see that |φ0〉 and |φ1〉 are
even parity states while |φ2〉 is the only odd parity eignestate in this spin sector. Thus |φ2〉 must be an
eigenstate of the Hamiltonian and has energy E2 = U (can be easily verified). The remaining two states are
coupled by the Hamiltonian and form a simple two-level system. Diagonalizing the two-dimensional Hilbert
space, we find the eigenstates of the Hamiltonian are given by:

|ψ0〉 = cos θ |Ψs〉+ sin θ |Ψdh〉 , E0 =
1

2
(U −

√
U2 + 16t2), (A3)

|ψ1〉 = sin θ |Ψs〉 − cos θ |Ψdh〉 , E1 =
1

2
(U +

√
U2 + 16t2) (A4)

tan θ =
(−U +

√
U2 + 16t2)

4t
(A5)

For repulsive interactions U > 0, E0 < 0 < E2 < E1. Thus |ψ0〉 has the lowest energy out of all 6 states in
the full two-site Hamiltonian, i.e. |ψ0〉 is the ground state.

Now we consider time dependent tunneling t(τ) and interactions U(τ) dependent on the lattice depth
V (τ). The initial state of the system is the ground state |ψ0〉. As U and t vary in time τ , the Hamiltonian
mixes the state in the two-dimensional Hilbert space of |φ0〉 and |ψ1〉. Let us write the solution as

|Ψ(τ)〉 = a0(τ) |φ0〉+ a1(τ) |φ1〉 , a0(0) = a0
0 = cos θ, a1(0) = a0

1 = sin θ, (A6)

where θ is the same is in eq. (A3).
To cast the Hamiltonian into the same form as the Landau-Zener Hamiltonian, we rescale eq. (A1) by

t(τ). Further, we also rescale time by t(τ) to recover the usual Schrodinger equation.

i
1

t(τ)
∂τ |ψ(τ)〉 =

Ĥ(τ)

t(τ)
|ψ(τ)〉 ⇒ i∂τ̃ |ψ(τ̃)〉 = H̃(τ̃) |ψ(τ̃)〉 (A7)
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where H̃(τ̃) = Ĥ
t(τ) and we introduce τ̃(τ) such that 1

t(τ)∂τ ≡ ∂τ̃ . The tunneling parameter is time dependent,
therefore the re-scaling is not simply linear. However, since the majority of the change occurs when U/t is
small at the start of the ramp, we can linearize the rescaling by Taylor-expanding around τ = 0.

∂τ̃

∂τ
= t(τ)⇒ τ̃(τ) =

∫ τ

0

dτ ′t(τ ′) ' t0τ, t0 = t(0) (A8)

From the Schrodinger equation, we get the following coupled differential equations:

i∂τ̃a0 = −ga1

i∂τ̃a1 = −ga0 +
U (τ̃)

t (τ̃)
a1.

(A9)

where g = 2 is the time-independent coupling parameter obtained by rescaling the Hamiltonian by the
tunnelling strength. When ~ is set to 1, g and 2 are interchangeable. However, it is useful to use g instead of
the numerical value 2 in our solution because we can later restore ~ via g = 2~ and recover unit-ful quantities.

The lattice depth is linearly ramped up with a ramp speed α ≡ dV/dτ . In particular, V (τ) = V0 +ατ . As
lattice depth is increased, the fraction U

t increases exponentially in time (see eqs. (3) and (4)). Since most
of the dynamics occur very early in the lattice ramp, we can Taylor-expand U/t as a function of time and
only keep up to linear order terms (to make use of the Landau Zener solution later on):

U

t
(τ) =

kLa√
2

exp


2

√
V (τ)

Er

 (A10)

≈ U0

t0
+

[
d

dτ

(
U

t

)]
τ=τ0

(τ − τ0) (A11)

=
U0

t0
+
U0

t0

1√
ErV (τ0)

[
d

dτ
V (τ)

]
τ=τ0

(τ − τ0) (A12)

=
U0

t0
+
U0

t20

α√
ErV (τ0)

τ̃ (A13)

≡ U0

t0
+ αLZ τ̃ . (A14)

Here we define a rescaled ramp speed αLZ given by

αLZ =
U0

t20

α√
ErV (τ0)

(A15)

To eliminate the constant offset in U
t (τ), we define τ∗ = τ̃ + τ∗0 where τ∗0 = 1

αLZ
U0

t0
such that U/t = αLZτ

∗.
The 2nd order differential equation for c3 can then be written as

ä1 + iαLZ τ̃ ȧ1 + (g2 + iαLZ)a1 = 0, (A16)

where ȧ1 = da1

dτ∗ . We can eliminate the ȧ1 term by going to the rotating frame, a1(τ∗) = ã1(τ∗)e−i
αLZ

4 (τ∗)2

.
The differential equation becomes

¨̃a1 +

(
g2 +

iαLZ
2

+
α2
LZ

4
(τ∗)2

)
ã1 = 0. (A17)

From here we use the linear transformation τ∗ → z(τ∗) = ei
π
4 (αLZ)1/2τ∗ to obtain the standard form of the

parabolic cylinder equations [39, Ch. 12]

d2

dz2
ã1(z)− ã1(z)

(
1

4
z2 + a

)
= 0, (A18)
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with a = ig2

αLZ
− 1

2 . There are two linear independent even and odd solutions to this differential equation
given by the confluent hypergeometric functions M [39, 40]

even: f1(z) = e−
1
4 z

2

M

(
1

2
a+

1

4
,

1

2
,

1

2
z2

)
odd: f2(z) = ze−

1
4 z

2

M

(
1

2
a+

3

4
,

3

2
,

1

2
z2

) (A19)

Thus the coefficient ã1(z) = Ã1f1(z) + Ã2f2(z) is the superposition of these two solutions where Ã1

and Ã2 are given by the initial conditions of the problem. Going back to the original frame, we have
a1(z) = Ã1f1(z)e−

z2

4 + Ã2f2(z)e−
z2

4 . If U0/t0 is sufficiently large, |z| is always large throughout the ramp.
In this case, it is possible to write out an analytical expression for the asymptotic behaviour of the solutions
eq. (A19) for large z. This series expansion of the confluent hypergeometric functions for large |z| is given
by [39, Ch. 13.7]:

M
(
ã, b̃, z̃

)
∼ Γ(b̃)

(
eiπãz̃−ã

Γ(b̃− ã)
+
ez̃ z̃ã−b̃

Γ(ã)

)
. (A20)

We plug this asymptotic expansion into the even and odd solutions eq. (A19), absorb all constants into new
coefficients B1 to B4 and find:

f1(z) = e−
1
4 z

2

M

(
ig2

2αLZ
,

1

2
,
z2

2

)
⇒ f1(z) ≈ B1e

(
− z24 −

ig2

αLZ
ln |z|

)
+
B2

z
e

(
z2

4 + ig2

αLZ
ln |z|

)
(A21)

f2(z) = ze−
z2

4 M

(
ig2

2αLZ
+

1

2
,

3

2
,
z2

2

)
⇒ f2(z) ≈ B3e

(
− z24 −

ig2

αLZ
ln |z|

)
+
B4

z
e

(
z2

4 + ig2

αLZ
ln |z|

)
(A22)

Writing out a1(τ∗) using these asymptotic expansions, we get

a1(τ∗) = A1e
− iαLZ2 (τ∗)2

e
− ig2

αLZ
ln (
√
αLZτ

∗)
+A2

1

τ∗
e
ig2

αLZ
ln (
√
αLZτ

∗) (A23)

where we defined new constants A1 = (Ã1B1 + Ã2B3) and A2 = (Ã1B2 + Ã2B4) e
−iπ/4
√
αLZ

. We can now obtain
the full solution by solving for A1 and A2. The first constraint on A1 and A2 comes from the initial state
being the ground state:

a1(τ = 0) = a0
1

⇒ a0
1 = A1e

− iαLZ2 (τ∗0 )2

e
− ig2

αLZ
ln (
√
αLZτ

∗
0 )

+A2
1

τ∗0
e
ig2

αLZ
ln (
√
αLZτ

∗
0 )

⇒ A2
1

τ∗0
e
ig2

αLZ
ln (
√
αLZτ

∗
0 )

= a0
1 −A1e

− iαLZ2 (τ∗0 )2

e
− ig2

αLZ
ln (
√
αLZτ

∗
0 ) (A24)
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And the 2nd constraint on A1 and A2 is given by the equation of motion, eq. A9:[
∂a1

∂τ∗

]
τ∗0

= iga0
0 − i

U0

t0
a0

1

⇒
(
iga0

0 − i
U0

t0
a0

1

)
= −A1e

− iαLZ2 (τ∗0 )2

e
− ig2

αLZ
ln (
√
αLZτ

∗
0 )

(
iαLZτ

∗
0 +

ig2

αLZ

1

τ∗0

)
+A2

1

τ∗0
e
ig2

αLZ
ln (
√
αLZτ

∗
0 )

(
ig2

αLZ

1

τ∗0
− 1

τ∗0

)
(A25)

⇒
(
iga0

0 − i
U0

t0
a0

1

)
− a0

1

(
ig2

αLZ

1

τ∗0
− 1

τ∗0

)
= −A1e

− iαLZ2 (τ∗0 )2

e
− ig2

αLZ
ln (
√
αLZτ

∗
0 )

(
iαLZτ

∗
0 +

2ig2

αLZ

1

τ∗0
− 1

τ∗0

)

⇒ A1e
− iαLZ2 (τ∗0 )2

e
− ig2

αLZ
ln (
√
αLZτ

∗
0 )

=

(
iga0

0 − iU0

t0
a0

1

)
− a0

1

(
ig2

αLZ
1
τ∗0
− 1

τ∗0

)
(
iαLZτ∗0 + 2ig2

αLZ
1
τ∗0
− 1

τ∗0

) (A26)

⇒ A2
1

τ∗0
e
ig2

αLZ
ln (
√
αLZτ

∗
0 )

=
iga0

0 + ig2

αLZ
1
τ∗0
a0

1(
iαLZτ∗0 + 2ig2

αLZ
1
τ∗0
− 1

τ∗0

) (A27)

In the second step eq. (A25) we plugged in the relation given by eq. (A24). This fully specifies the solution
for all times.

For our purposes, we are interested in the density of doublons in the system defined as

〈ρ̂D〉 =
1

N

∑
i

〈Ψ| n̂i↑n̂i↓ |Ψ〉,

where N is the number of sites and index i runs over all lattice sites. For the two-site system, N = 2 and
i ∈ {L,R}. Conveniently in our chosen basis, 〈φ0| ρ̂D |φ0〉 = 0 and 〈φ1| ρ̂D |φ1〉 = 1/2. Thus the doublon
density is simply given by 〈ρD〉 = |c1|2/2, i.e. half the population of the state |φ1〉. Knowing the full solution
to a1(τ), we can easily compute the doublon density as a function of time. In particular, at the end of the
ramp, τ∗ →∞. Hence, the doublon density at the end of the ramp is given by

〈ρ̂D〉 =
1

2
|a1(τ∗ →∞)|2 =

1

2
|A1|2 (A28)

since the term with A2 falls off as 1/τ∗ and vanishes for large τ∗. Simplifying the expression in eq. (A26),
we find:

|A1|2 =

(
a0

1αLZ
t20
U2

0

)2

+ a2
0

(
1 + g2 t20

U2
0

)2
(
a0

1

a0
0
−

g
t0
U0

1+g2
t20
U2

0

)2

(
αLZ

t20
U2

0

)2

+
(

1 + 2g2 t20
U2

0

)2 . (A29)

We wish to show that the 2nd term in the numerator of eq. (A29) can be neglected when U0 � t0. To see
this, we first identify a0

1/a
0
0 = tan θ where θ is given by eq. (A3). We can then Taylor expand the 2nd term

in orders of t0/U0 when t0 � U0:a0
1

a0
0

−
g t0U0

1 + g2 t20
U2

0

2

=

 (−1 +
√

1 + 16
t20
U2

0

4t0
U0

−
2t0
U0

1 + 4
t20
U2

0

2

≈
(
−32

t50
U5

0

+O

(
t60
U6

0

))2

(A30)

Thus the 2nd term in the numerator of eq. (A29) is of the order O((t0/U0)10) and can thus be neglected
when U0 � t0. Plugging in the value of αLZ in terms of the ramp speed α, we find

|A1|2 ≈ (a0
1)2 α2

α2 + U2
0ErV0

(
1 +

8t20
U2

0

)2 . (A31)
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We define a critical ramp speed α∗ where |A1|2 has an inflection point:

α∗ = U0

√
ErV0

(
1 +

8t20
U2

0

)
(A32)

This gives us the doublon density 〈ρ̂D〉 as a function of ramp speed α as:

〈ρ̂D〉 =
(a0

1)2

2

α2

α2 + (α∗)2
. (A33)
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Appendix B: Numerical simulations

The numerical simulations in this work were performed using code developed in house in the Python pro-
gramming language. The numerical libraries Numpy and Scipy were heavily used for efficient computations,
as well as python multiprocessing to parallelize computations across CPU cores. In addition, we used Cython
to precompile python functions into C-code to greatly speed up key functions that required branching (loops,
if statements). With this code, we are able to study systems of up to 14 sites in the Fermi-Hubbard model
on a standard desktop computer.

We work in the fixed particle number and fixed magnetization sector, i.e. fixed N↑ and N↓. The Hilbert
space dimension of the largest magnetization sector scales as ∼ 22N/N . In the fixed magnetization sectors,
all operators in the Hilbert space can be constructed from the generalized “hopping" operators ĉ†iσ ĉjσ which
conserve spin and particle number. All terms in the Hamiltonian as well as all observables can be represented
as sparse matrices using a matrix representation of these hopping operators. We choose the Fock basis of
the Fermi-Hubbard model as the basis for writing out explicit matrix representations of operators in our
numerical simulations. Since we are working with fermionic particles, we need to be careful about the order
of the creation operators ĉ†iσ used to define the Fock basis states. To be consistent, we use the rule that
all spin-up operators lie to the left of spin-down operators and the site indices are arranged in ascending
order. Once we compute matrix representations of the hopping operators, we no longer have to worry
about fermionic signs, since the hopping operators ĉ†iσ ĉjσ behave as bosons (they contain an even number of
fermions).

1. Two site numerics

For Fig. 2(b), we simulate the two-site Fermi-Hubbard system at half-filling using exact-diagonalization
(ED) and time-evolution with the time-dependent Fermi-Hubbard Hamiltonian (eq. (A1)). Throughout this
work we use an initial lattice depth of V initial

0 = 8Er. We calculate tunnelling strength t and interaction
U from the lattice depth V0 using eqs. (3) and (4). We tune the initial ratio U0/t0 by varying the s-wave
scattering length a from eq. (4). We can treat a as a free parameter because in experiment, we can vary the
scattering length using a Feshbach resonance. We work with two different values of the initial interaction
to tunnelling ratio U0/t0 = 8 and U0/t0 = 16. We find the ground state of the Fermi-Hubbard Hamiltonian
using ED and use that as the initial state. We ramp up the lattice depth linearly in time at a rate α up to
a final lattice depth V final

0 = 48Er again to match the conditions of [12]. We calculate the doublon-density
in the final state by directly computing the expectation value of the doublon operator in the final state.

2. Ground state numerics

For Figs. 2(c), 3(a) and 4(a), we work with system size of 12 sites in a 1D periodic chain or 2D cluster (4×3,
periodic along x and open boundary conditions along y). We use the ground state of the Fermi-Hubbard
Hamiltonian with U0/t0 = 8 as the initial state. The ground state is numerically computed using a built-in
sparse diagonalization algorithm (scipy.linalg.sparse.eigsh) based on the Lanczos method [41]. To perform
the time-evolution with the time-dependent Fermi-Hubbard Hamiltonian, we trotterize the time-evolution
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operator as

Ûramp = T

[
exp

{(
−i
∫ τ

0

dτ ′ĤFH(τ ′)

)}]

≈
τ/∆τ∏
n=0,

τ ′=n τ
∆τ

exp
{(
−i∆τĤFH(τ ′)

)}

≈
τ/∆τ∏
n=0,

τ ′=n τ
∆τ

exp

{(
− i∆τ

2
Ĥint(τ

′)

)}
exp
{(
−i∆τĤkin(τ ′)

)}
exp

{(
− i∆τ

2
Ĥint(τ

′)

)}
(B1)

where Ĥkin and Ĥint represent the kintetic energy and interaction term of the Fermi-Hubbard Hamilto-
nian given by the first and second term of eq. (1) respectively. Since we perform the numerical simu-
lations in the Fock basis of the Fermi-Hubbard Hamiltonian, Ĥint is a diagonal operator and thus so is
exp
{(
− i∆τ2 Ĥint(τ

′)
)}

. On the other hand, Ĥkin is off-diagonal in the Fock basis. Instead of computing the

full matrix corresponding to exp
{(
−i∆τĤkin(τ ′)

)}
, we directly compute the action of the operator on the

wavefunction using built-in sparse matrix functions (scipy.sparse.linalg.expm_multiply). We choose a step
size ∆τ small enough that the trotter error is negligible which is confirmed by checking convergence of the
wavefunction as a function of decreasing step size.

We also make comparisons of the time-evolved Fermi-Hubbard state with the ground state of the t−J−3s
model. The ground state of the t − J − 3s model (see eq. (2)) is numerically computed using sparse
diagonalization by writing the t − J − 3s Hamiltonian in the Fermi-Hubbard Fock basis (i.e. replacing c̃iσ
with ciσ). We use the Fermi-Hubbard basis to write the t− J − 3s Hamiltonian since the goal of the lattice
ramp protocol is to perform the Schrieffer-Wolff basis rotation which maps ˆ̃ciσ → ĉiσ.

3. Finite temperature numerics

In Fig. 3(b), we perform numerical simulations at finite temperature T � U0 in a system of 3 × 3 sites
at half filling and with open boundary conditions. For the finite temperature computations, the initial state
of the system would be a thermal ensemble of the Fermi-Hubbard model with eignestate populations given
by the Boltzmann distribution. Furthermore, we need to consider eigenstates of the Hamiltonian in all the
magnetization sectors, not just the largest sector as is the case for the ground state.

We perform wavefunction time-evolution as opposed to density matrix time-evolution because of computer
memory constraints. For each magnetization sector, we use ED to find all the eigenstates in that sector. We
can use full ED since the Hilbert space is small enough for a 3×3 system. Starting with a given eigenstate |Ψn〉
with energy En, we perform the numerical time-evolution same as described above and compute observables
〈Ô〉n in this time-evolved state. We then assign the observable 〈Ô〉n a coefficient Pn given by the Boltzmann
weight of the eigenstate |Ψn〉, i.e. Pn = e−EnT /Z(T ) where T is the temperature of the initial state and
Z(T ) is the partition function for that temperature. We sum up the contributions from the lowest ∼ 150
eigenstates from each magnetization sector to compute the observable in the finite temperature time-evolved
state. We find that ∼ 150 states were enough for the numerical results to converge.

For Fig. 3(b), we plot the full 〈Ŝi · Ŝj〉 spin correlator instead of just the z-component 〈Szi Szj 〉 because
for a fixed magnetization sector, the z-component correlator is non-monotonic with respect to temperature.
While the Fermi-Hubbard Hamiltonian has SU(2) total spin rotation symmetry, by choosing to work in a
fixed magnetization sector, we break the SU(2) symmetry and only make use of the U(1) symmetry arising
from charge conservation. For ground state numerics, it is still sufficient to only look at 〈Szi Szj 〉 correlations
since in that case, 〈Ŝzi Ŝzj 〉 = 〈Ŝxi Ŝxj 〉 = 〈Ŝyi Ŝ

y
j 〉 = 〈Ŝi · Ŝj〉/3.
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