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Quantum time dynamics (QTD) is considered a promising problem for quantum supremacy on
near-term quantum computers. However, QTD quantum circuits grow with increasing time simula-
tions. This study focuses on simulating the time dynamics of 1D integrable spin chains with nearest
neighbor interactions. We have proved the existence of a reflection symmetry in the quantum circuit
employed for simulating the time evolution of certain classes of 1D Heisenberg model Hamiltoni-
ans by virtue of the quantum Yang-Baxter equation, and how this symmetry can be exploited to
compress and produce a shallow quantum circuit. With this compression scheme, the depth of the
quantum circuit becomes independent of step size and only depends on the number of spins. We
show that the depth of the compressed circuit is rigorously a linear function of the system size for
the studied Heisenberg model Hamiltonians in the present work. As a consequence, the number
of CNOT gates in the compressed circuit only scales quadratically with the system size, which al-
lows for the simulations of time dynamics of very large 1D spin chains. We derive the compressed
circuit representations for different special cases of the Heisenberg Hamiltonian. We compare and
demonstrate the effectiveness of this approach by performing simulations on quantum computers.

I. INTRODUCTION

Simulation of statistical mechanical models is a vital
application for classical and quantum computing [1]. It
is also well known that the partition function of a d+ 1-
dimensional classical system can be mapped to the par-
tition function of a d-dimensional quantum system [2–
4]. This deep classical to quantum connection can give
insights into quantum universality classes using appro-
priate classical counterparts. It might allow one to use
these effective models to study critical points and phase
transitions of magnetic systems, where the spins of the
magnetic systems are treated quantum mechanically.

Quantum Ising and Heisenberg models [5] represent
some of the simplest models that can describe the behav-
ior of magnetic systems. However, 2D- and 3D-quantum
lattice simulations remain challenging for classical com-
puting. A possible solution is to use quantum computing,
given that it is only natural to simulate quantum systems
with quantum computers, as suggested by Benioff [6] and
Feynman [7]. The idea of using quantum computing on
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quantum devices is compelling since it paves the way for
systematic improvements of quantum technologies. The
exploration of this approach is at the core of several re-
search efforts in quantum information sciences [8]. In
particular, the development of new generations of quan-
tum models and associated simulations on existing and
upcoming noisy intermediate-scale quantum (NISQ) [9]
devices is of special interest.

Quantum integrable systems [5, 10] typically refer to
systems where the dynamics are two-body reducible. Put
another way, even though the Hilbert space increases ex-
ponentially with increasing system size in these systems,
the two-body reducibility, in combination with the al-
gebraic Bethe ansatz [5, 11, 12], can be used to obtain
explicit solutions, under certain conditions, by solving a
set of nonlinear equations that scales only linearly with
system size. The quantum Yang-Baxter equation(YBE)
or star-triangle relation [10, 13–15] is a consequence of
this factorization. The algebraic formulation of quan-
tum integrable systems makes them ideal tools to study
a broad range of low-dimension physical models. His-
torically, the isotropic interacting quantum spin chain,
or Heisenberg model [16], was the first quantum inte-
grable system, whose exact eigenstates were obtained
through the Bethe ansatz approach as a superposition
of plane waves [11, 17–21]. Other quantum integrable
models include the Lieb-Liniger model [22, 23], Hubbard
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model [24], Calogero–Sutherland model [5, 25–29], mod-
els from quantum field theory such as the sine-Gordon
model [30, 31], and several subclasses of the Heisenberg
model (e.g., XXZ model) [16, 32].

An important open question in quantum integrable
systems is time evolution, or the response dynamics
where the system responds to a change of parameters.
This problem requires sufficiently accurate control of the
time evolution of the system, which is governed by the
time-dependent Schrödinger or Dirac equation of the
quantum state in the Hilbert space. The time evolu-
tion problem is also closely related to the computation
of the asymptotic state of quantum integrable models,
or in a more general sense the thermalization and er-
godic/nonergodic behaviors of these models. Several con-
jectures have been proposed in this context [33–35]. For
example, in the Heisenberg spin chain, quantum quenches
of the XXZ model have been studied by embedding the
generalized Gibbs ensemble hypothesis into the quantum
transfer matrix framework [36, 37]. Nevertheless, these
studies are still far from conclusive. Other types of quan-
tum integrability are known in explicitly time-dependent
quantum problems, such as the driven Tavis–Cummings
model [38, 39].

Quantum circuits representing quantum time dynam-
ics (QTD) are well known to grow with increasing time
simulations. In the present era of noisy quantum com-
puters, circuits must be as shallow as possible for mean-
ingful results. With this as the overarching theme, we
focus on QTD of 1D integrable spin chains with nearest-
neighbor interactions. In particular, noticing the differ-
ence between the integrability using Bethe ansatze and
the integrability via mapping to free fermions, as a pre-
liminary step our present work is only focused on cir-
cuit compression technique for accurately and efficiently
simulating the time dynamics of free fermions on noisy
quantum device. We show how the quantum YBE can
be used to compress and produce a shallow quantum cir-
cuit, where the depth becomes independent of step size
and depends only on the number of spins. The depth of
the compressed circuit is rigorously a linear function of
the system size for the studied Heisenberg model Hamil-
tonians in the present work. As a consequence, the num-
ber of CNOT gates in the compressed circuit only scales
quadratically with the system size. This allows for sim-
ulations of time dynamics of very large 1D spin chains.
Compressed circuit representations are derived for differ-
ent special cases of the Heisenberg Hamiltonian.

As a proof of principle, we demonstrate the effective-
ness of this approach by performing simulations of the
Heisenberg XY model (or XY model, in brief) on quan-
tum devices. The time evolution of the XY model is an
active area of research and has been approached from
many directions. Verstraete and co-workers [40] uti-
lized the quantum Fourier transform with the Bogoliubov
transformation to perform time dynamics efficiently on a
quantum computer. Besides, we note that there are also
several other approaches reported recently for compress-

ing quantum circuits for dynamics using both integrable
and non-integrable models [41–45]. For example, in a
similar study to this work, Bassman and co-workers [46–
48] reported simulations of the XY model by conjectur-
ing the relationship between the reflection symmetry and
YBE-like “turn over” operation and provided numerical
evidence for the transformation. However, no connection
to the YBE was made. Here, we not only recognize the
connection, but also rigorously derive the analytical ex-
pressions and compressed circuit representations for dif-
ferent special cases of the Heisenberg Hamiltonian. This
connects our work to the broader and deeper context of
the YBE duality and integrable quantum computation.
For the rest of this paper we will tacitly assume the quan-
tum YBE and omit quantum for brevity.

II. THEORY

For completeness, we start by reviewing relevant back-
ground material, with a brief introduction to the Heisen-
berg Hamiltonian, quantum time dynamics, and the
Yang–Baxter equation.

A. Heisenberg Hamiltonian

The Heisenberg Hamiltonian [49–51] is widely used to
study magnetic systems, where the magnetic spins are
treated quantum mechanically. The Hamiltonian, includ-
ing only spin-spin interactions, can be written as

Ĥ = −
∑

α

{Jα
N−1∑

i=1

σαi ⊗ σαi+1}, (1)

where α sums over {x, y, z}, the coupling parameter
Jα denotes the exchange interaction between nearest-
neighbour spins along the α−direction, and σαi is the
α-Pauli operator on the ith spin. Interaction with the
magnetic field can be included in this Hamiltonian as

Ĥin(t) = Ĥ − hβ(t)

N∑

i=1

σβi , (2)

where hβ(t) is the time amplitude of the external mag-
netic field along the β ∈ {x, y, z} direction. Several vari-
ations of this model are known in the literature, which
are categorized depending on the relation between Jx, Jy,
and Jz. This Heisenberg Hamiltonian represents quanti-
ties based on the electronic structure of the system, where
the Coulomb interaction and hopping are mapped onto
spin variables [52, 53]. A simple variant of the Heisen-
berg model is the 1D XY model that was first introduced
and solved by Lieb, Schultz, and Mattis [54] in the ab-
sence of a magnetic field and later by Katsura [55, 56] and
Niemeijer [57] in a finite external field. The XY model
describes a 1D lattice with spin variables labeling every
lattice point. The spins are limited to interact only with
their nearest neighbors in an anisotropic way.
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B. Time Evolution

Quantum state evolution [58, 59] is governed by the
Schrödinger or Dirac equation

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 . (3)

The solution to this equation can be expressed as

|ψ(t)〉 = e−iĤt/~ |ψ(0)〉 , (4)

where e−iĤt/~ is the evolution operator. In the 1D
Heisenberg model, with the exception of N = 2, all the
elements in the Hamiltonian do not commute with each
other, and hence the exponential of Ĥ cannot be written
as a product of exponentials. For N = 2,

e−iĤt/~ =
∏

α

eiJαt(σ
α
1 ⊗σ

α
2 )/~, (5)

where each term is straightforward to evaluate, as shown
below.

eiJxt(σ
x
1⊗σ

x
2 )/~ =




cos(θx) 0 0 i sin(θx)
0 cos(θx) i sin(θx) 0
0 i sin(θx) cos(θx) 0

i sin(θx) 0 0 cos(θx)




eiJyt(σ
y
1⊗σ

y
2 )/~ =




cos(θy) 0 0 −i sin(θy)
0 cos(θy) i sin(θy) 0
0 i sin(θy) cos(θy) 0

−i sin(θy) 0 0 cos(θy)




eiJzt(σ
z
1⊗σ

z
2 )/~ =




eiθz 0 0 0
0 e−iθz 0 0
0 0 e−iθz 0
0 0 0 eiθz




(6)
Here, θα = tJα/~. For N = 3, some terms do not com-
mute. For instance, if p12 represents the Heisenberg in-
teraction (Eq. (5)) between spins 1 and 2 and p23 repre-
sents interaction between spins 2 and 3, then p12 does not
commute with p23. As a result, one cannot decompose
the time evolution operator as a product of two-body
evolution operators. The Trotter decomposition can be
used to rewrite the time evolution operator in terms of
two-body components as follows:

e−iĤt/~ =
[(∏

α

eiθα(σ
α
1 ⊗σ

α
2 ⊗1)/n

)
×
(∏

α

eiθα(1⊗σ
α
2 ⊗σ

α
3 )/n

)]n

+O(t/n),
(7)

where the error scales linearly with the time step, namely,
t/n, which can be a significant source of error. This can
be mitigated by taking a smaller step size. However, this
results in an overall increase in the computation cost. As

analyzed in Refs. 60, 61, for the Heisenberg model Hamil-
tonian, the gate complexity associated with the quantum
simulation employing product formulas scales as O(t2/ε)
and O(52kt1+1/2k/ε1/2k) for 1st order and 2k-th order,
respectively, with t representing the simulation time and
ε the allowed error. The desired upper bounds, includ-
ing analytic, minimized, and empirical bounds, on the
allowed error ε has been extensively explored and dis-
cussed previously (see Refs. 60–64) for choosing a rea-
sonable n-segment such that the asymptotic complexity
of the production formula algorithm can be improved. In
a more general sense, one can also explore other routes
to balance accuracy and computation cost. For example,
extending the evolution operator to systems with N > 3,
one can observe two major commuting families as shown
in Fig.1. All elements in the orange family commute,
and all elements in the blue family commute. Therefore
the evolution operator can be written as a product of
exponentials within the families without Trotter decom-
position.

FIG. 1. 1D spin chain showing two families (orange and blue)
in which all elements in each family commute within that
family.

C. Yang–Baxter Equation

The Yang–Baxter equation was introduced indepen-
dently in theoretical physics by Yang [13] in the late
1960s and by Baxter [65] in statistical mechanics in the
early 1970s. This relation has also received much atten-
tion in many areas of theoretical physics, classification
of knots, scattering of subatomic particles, nuclear mag-
netic resonance, and ultracold atoms and, more recently,
in quantum information science [66–71].

The YBE connection to quantum computing origi-
nates from investigating the relationship between topo-
logical entanglement, quantum entanglement, and quan-
tum computational universality. Of particular interest
is how the global topological relationship in spaces (e.g.,
knotting and linking) corresponds to the entangled quan-
tum states and how the CNOT gate, for instance, can in
turn be replaced by another unitary gate R to maintain
universality. It turns out these unitary R gates, which
serve to maintain the universality of quantum computa-
tion and also serve as solutions for the condition of topo-
logical braiding, are unitary solutions to the YBEs [14]
Briefly, the relation is a consistency or exchange condi-
tion that allows one to factorize the interactions of three
bodies into a sequence of pairwise interactions under cer-
tain conditions. Formally, this can be written as

(R⊗1)(1⊗R)(R⊗1) = (1⊗R)(R⊗1)(1⊗R, ) (8)

where the R operator is a linear mapping R : V ⊗ V →
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V ⊗ V defined as a twofold tensor product generalizing
the permutation of vector space V . In circuit language,R
represents a parametrized unitary gate. In particular, al-
though there existsR gate structures of higher dimension
[72], we limit our discussion of R in the present context
as a two-qubit gate parametrized by a phase factor and
a rotation (see e.g. Eq. (12)). This relation also yields
a sufficiency condition for quantum integrability in 1D
quantum systems and provides a systematic approach to
construct integrable models. Since a detailed discussion
of this topic is beyond the scope of this paper, we refer
the reader to more comprehensive works and reviews on
the subject [10, 14].

III. CIRCUIT REPRESENTATION OF THE
TIME EVOLUTION OPERATOR

Since the evolution operator is a unitary matrix, there
exists a quantum circuit that can perform this operation
efficiently on a quantum computer. First, we will find
the quantum circuit for two spins and later extend it to
N spins with nearest-neighbor interactions in 1D. Each
spin can be mapped to a qubit, and the evolution of the
spin system can be mapped to a quantum circuit. Using
Eqs. (5) and (6), we have∏
α=x,y,z

eiJαt(σ
α
1 ⊗σ

α
2 )/~ =


eiθz cos(γ) 0 0 ieiθz sin(γ)

0 e−iθz cos(δ) ie−iθz sin(δ) 0
0 ie−iθz sin(δ) e−iθz cos(δ) 0

ieiθz sin(γ) 0 0 eiθz cos(γ),


(9)

where γ = θx − θy and δ = θx + θy. The optimal circuit
for this matrix is∏
α

eiJαt(σ
α
1 ⊗σ

α
2 )/~ =

• Rx(2θx) H • S H • Rx(−π/2)

Rz(−2θz) Rz(−2θy) Rx(π/2)

(10)

The evolution operator for any time step can be rep-
resented by using this circuit. In addition, it is also a
constant depth circuit for each time step since the num-
ber of one- and two-qubit gates does not increase with
the time step. The quantum circuit for a spin chain with
more than two spins in 1D can be derived by using Eq.
(10) and the Trotter decomposition.

Two commuting families of operators exist, as shown in
Fig. 2, as orange and blue two-qubit gates, respectively.
The accuracy of the simulation for a given time depends
on the Trotter step (t/n). As a consequence of Trot-
terization, the quantum circuit for time evolution grows
linearly with the time step. Figure 2 shows the quantum
circuit for a given time t using n Trotter steps. Each
Trotter step is composed of a bilayer of two-qubit gates.
The first layer acts on the first two qubits, followed by
the third and then the fourth qubits and so on. Orange

n times

= = ∏eiJαΔt(σα⨂σα)/ℏ

N qubits = N spins

FIG. 2. Quantum circuit for time evolution of N spins, com-
posed of n alternative layers using the Trotter approximation.

rectangles in Fig. 2 represent the first layer. The second
layer of two-qubit gates starts from the second qubit and
acts on the next two qubits. Blue rectangles in Fig. 2
represent the second layer. Both orange and blue rect-
angles combine to form an alternative layer, covering all
possible nearest-neighbor interactions.

IV. CIRCUIT COMPRESSION USING THE
YANG–BAXTER EQUATION

In Section III we showed the generalized circuit for
time evolution of N spins in 1D. In this section we will
utilize the YBE to simplify the generalized quantum cir-
cuit for arbitrary time steps. First, we will show the
existence of a unique reflection symmetry for a quantum
circuit composed of alternative layers. Next, we will show
the merge identity for two-qubit gates. We will also show
how reflection symmetry combined with the merge iden-
tity allows for the compression of a quantum circuit of
any length to a finite depth.

A. Reflection Symmetry and Merge Identity

The evolution operator for the Heisenberg Hamiltonian
on two qubits is given by Eq. ( 9). When there are
two evolution operators with different parameters on the
same two qubits, they can be merged and represented via
a single operator as shown below:

Rij(θ1x, θ1y, θ1z).Rij(θ2x, θ2y, θ2z) = Rij(θ1x + θ2x, θ
1
y + θ2y, θ

1
z + θ2z).

(11)

In the rest of this article we will call Eq. (11) the merge
identity. Diagrammatic representation of the YBE is
shown in the top panel of Fig. 6, where Rij represents
the operator acting on i, j qubits. By using this symme-
try repeatedly, one can prove the existence of reflection
symmetry in n qubits composed of n/2 alternative lay-
ers (see the proof in Appendix A). The bottom panel
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where each term is straightforward to evaluate as shown below

eiJxt(sx
1⌦s x

2 )/h̄ =

0
B@

cos(qx) 0 0 isin(qx)
0 cos(qx) isin(qx) 0
0 isin(qx) cos(qx) 0

isin(qx) 0 0 cos(qx)

1
CA

eiJyt(s y
1⌦s y

2 )/h̄ =

0
B@

cos(qy) 0 0 �isin(qy)
0 cos(qy) isin(qy) 0
0 isin(qy) cos(qy) 0

�isin(qy) 0 0 cos(qy)

1
CA

eiJzt(s z
1⌦s z

2)/h̄ =

0
BB@

eiqz 0 0 0
0 e�iqz 0 0
0 0 e�iqz 0
0 0 0 eiqz

1
CCA

(6)
where, qa = tJa/h̄. For N = 3, there are terms that do not
commute. For instance, if p12 represents the Heisenberg in-
teraction (Eq. (5)) between spins 1 and 2 and p23 represents
interaction between spins 2 and 3, then p12 does not com-
mute with p23. As a result, one cannot decompose the time
evolution operator as a product of two-body evolution oper-
ators. The Trotter decomposition can be used to rewrite the
time evolution operator in terms of two-body components as
follows,

e�iĤt/h̄ =
⇥�

’
a

eiqa (sa
1 ⌦sa

2 ⌦1)/n�⇥
�
’
a

eiqa (1⌦sa
2 ⌦sa

3 )/n�⇤n

+O(t/n)
(7)

where the error scales linearly with time step i.e. t/n, which
can be a significant source of error. This can be mitigated by
taking a smaller step size. However, this results in an overall
increase in the computation cost. Therefore, there is a need to
balance accuracy and computation cost.

Extending the evolution operator to systems with N > 3,
one can observed that there are two major commuting fami-
lies as shown in Fig.1. All elements in the orange family com-
mute and all elements in blue family commute. Therefore the
evolution operator can be written as a product of exponentials
within the families without Trotter decomposition.

FIG. 1. 1D-spin chain showing two families (orange and blue) spin
interaction which commute within family.

C. Yang-Baxter Equation

The Yang-Baxter equation (YBE) was introduced indepen-
dently in theoretical physics by Yang [13] in the late 1960s,
and by Baxter [76] in statistical mechanics in the early 1970s.
This relation has also received much attention in many ar-
eas of theoretical physics, classification of knots, scattering

of subatomic particles, nuclear magnetic resonance, ultracold
atoms, and more recently in quantum information science
[77–82].

The YBE connection to quantum computing originates
from the pursuit of figuring out the relationship between topo-
logical entanglement, quantum entanglement, and quantum
computational universality. In particular, how the global topo-
logical relationship in spaces (e.g. knotting and linking) cor-
responds to the entangled quantum states, and how the CNOT
gate, for instance, can in turn be replaced by another unitary
gate R to maintain universality. It turns out these unitary R
gates that serve to maintain the universality of quantum com-
putation and also as solutions for the condition of topological
braiding are unitary solutions to the YBEs [14] Briefly, the re-
lation is a consistency or exchange condition that allows one
to factorize the interactions of three bodies into a sequence of
pairwise interactions under certain conditions. Formally, this
can be written as

(R⌦1)(1⌦R)(R⌦1) = (1⌦R)(R⌦1)(1⌦R) (8)

where the R operator is a linear mapping R : V ⌦V !V ⌦V
defined as a two-fold tensor product generalizing the permu-
tation of vector space V . This relation also yields a sufficiency
condition for quantum integrability in one dimensional quan-
tum systems, and provides a systematic approach to construct
integrable models. Since a detailed discussion of this topic is
beyond the scope of this paper, we refer the reader to more
comprehensive works and reviews on the subject [10, 14].

III. CIRCUIT REPRESENTATION OF THE TIME
EVOLUTION OPERATOR

Since the evolution operator is a unitary matrix, there exists
a quantum circuit that can perform this operation efficiently
on a quantum computer. First, we will find the quantum cir-
cuit for two spins and later extend it to N spins with nearest
neighbour interactions in one dimension. Each spin can be
mapped to a qubit and the evolution of the spin system can be
mapped to a quantum circuit. Using Eq. (5) and (6)

’
a=x,y,z

eiJa t(s a
1 ⌦s a

2 )/h̄ =

0
BB@

eiqz cos(g) 0 0 ieiqz sin(g)
0 e�iqz cos(d ) ie�iqz sin(d ) 0
0 ie�iqz sin(d ) e�iqz cos(d ) 0

ieiqz sin(g) 0 0 eiqz cos(g)

1
CCA

(9)

where, g = qx � qy and d = qx + qy. Optimal circuit for the
above matrix is

’
a

eiJa t(s a
1 ⌦s a

2 )/h̄ =

• Rx(2qx) H • S H • Rx(�p/2)

Rz(�2qz) Rz(�2qy) Rx(p/2)

(10)
The evolution operator for any time step can be represented
using the above circuit. In addition, it is also a constant depth
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eiJxt(sx
1⌦s x

2 )/h̄ =

0
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0 isin(qx) cos(qx) 0

isin(qx) 0 0 cos(qx)

1
CA
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1⌦s y

2 )/h̄ =

0
B@
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1
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1⌦s z

2)/h̄ =

0
BB@
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1
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and by Baxter [76] in statistical mechanics in the early 1970s.
This relation has also received much attention in many ar-
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comprehensive works and reviews on the subject [10, 14].

III. CIRCUIT REPRESENTATION OF THE TIME
EVOLUTION OPERATOR

Since the evolution operator is a unitary matrix, there exists
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where, qa = tJa/h̄. For N = 3, there are terms that do not
commute. For instance, if p12 represents the Heisenberg in-
teraction (Eq. (5)) between spins 1 and 2 and p23 represents
interaction between spins 2 and 3, then p12 does not com-
mute with p23. As a result, one cannot decompose the time
evolution operator as a product of two-body evolution oper-
ators. The Trotter decomposition can be used to rewrite the
time evolution operator in terms of two-body components as
follows,
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where the error scales linearly with time step i.e. t/n, which
can be a significant source of error. This can be mitigated by
taking a smaller step size. However, this results in an overall
increase in the computation cost. Therefore, there is a need to
balance accuracy and computation cost.

Extending the evolution operator to systems with N > 3,
one can observed that there are two major commuting fami-
lies as shown in Fig.1. All elements in the orange family com-
mute and all elements in blue family commute. Therefore the
evolution operator can be written as a product of exponentials
within the families without Trotter decomposition.
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C. Yang-Baxter Equation

The Yang-Baxter equation (YBE) was introduced indepen-
dently in theoretical physics by Yang [13] in the late 1960s,
and by Baxter [76] in statistical mechanics in the early 1970s.
This relation has also received much attention in many ar-
eas of theoretical physics, classification of knots, scattering

of subatomic particles, nuclear magnetic resonance, ultracold
atoms, and more recently in quantum information science
[77–82].

The YBE connection to quantum computing originates
from the pursuit of figuring out the relationship between topo-
logical entanglement, quantum entanglement, and quantum
computational universality. In particular, how the global topo-
logical relationship in spaces (e.g. knotting and linking) cor-
responds to the entangled quantum states, and how the CNOT
gate, for instance, can in turn be replaced by another unitary
gate R to maintain universality. It turns out these unitary R
gates that serve to maintain the universality of quantum com-
putation and also as solutions for the condition of topological
braiding are unitary solutions to the YBEs [14] Briefly, the re-
lation is a consistency or exchange condition that allows one
to factorize the interactions of three bodies into a sequence of
pairwise interactions under certain conditions. Formally, this
can be written as

(R⌦1)(1⌦R)(R⌦1) = (1⌦R)(R⌦1)(1⌦R) (8)

where the R operator is a linear mapping R : V ⌦V !V ⌦V
defined as a two-fold tensor product generalizing the permu-
tation of vector space V . This relation also yields a sufficiency
condition for quantum integrability in one dimensional quan-
tum systems, and provides a systematic approach to construct
integrable models. Since a detailed discussion of this topic is
beyond the scope of this paper, we refer the reader to more
comprehensive works and reviews on the subject [10, 14].

III. CIRCUIT REPRESENTATION OF THE TIME
EVOLUTION OPERATOR

Since the evolution operator is a unitary matrix, there exists
a quantum circuit that can perform this operation efficiently
on a quantum computer. First, we will find the quantum cir-
cuit for two spins and later extend it to N spins with nearest
neighbour interactions in one dimension. Each spin can be
mapped to a qubit and the evolution of the spin system can be
mapped to a quantum circuit. Using Eq. (5) and (6)
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FIG. 3. (a) Quantum circuit representation of the YBE for
three qubits. (b) Reflection symmetry is achieved by using
the YBE four times on four qubits (action of YBE on which
triplets is shown by black dots).

of Fig. 6 shows how reflection symmetry is achieved for
four qubits using the YBE three times.

Reflection symmetry combined with the merge identity
allows for the compression of N alternative layers of gates
to N/2 alternative layers for N qubits. Figure 4 shows
the use of reflection symmetry combined with the merge
identity for four qubits. A third alternative layer can
be merged into the previous two layers. Therefore, any
number of alternative layers can be compressed into two
alternative layers.

FIG. 4. Compression scheme for 4 qubits. Reflection symme-
try exists with two layers of alternative gates. Addition of a
third layer can be absorbed into the two layers by recursive
usage of reflection symmetry (red bracket) via the YBE and
merge identity (black dotted box).

B. Algebraic Condition for Reflection Symmetry

In the preceding section we showed that reflection
symmetry is a sufficient condition for performing circuit
compression. An interesting follow-up question is “How

would one know whether reflection symmetry can be
applied to a quantum dynamics simulation of a given
Hamiltonian?” To answer this question, one needs to
show whether algebraic relations of phases and rotations
exist before and after the reflection. Given a general time
propagator such as (9), however, an exhaustive search
and rigorous proof appear challenging. Because of the
lack of rigorous algebraic relations, YBE-like relations
can only be conjectured, as shown in previous work (see,
for example, 46), thus making the compression of the
circuit a heuristic process. In this section we show that
some algebraic relations can be obtained rigorously for
at least a few special cases of (9). In particular, we
propose the following theorem.

Theorem I Given the time evolution operator that takes
the following form,

R(γ, δ) =




eiδ cos(γ) 0 0 ieiδ sin(γ)
0 e−iδ cos γ ie−iδ sin γ 0
0 ie−iδ sin γ e−iδ cos γ 0

ieiδ sin(γ) 0 0 eiδ cos(γ)


 ,

(12)

the following YBE holds

(R(γ1, δ1)⊗ 1)(1⊗R(γ2, δ2))(R(γ3, δ3)⊗ 1)

= (1⊗R(γ4, δ4))(R(γ5, δ5)⊗ 1)(1⊗R(γ6, δ6))
(13)

if and only if the following 16 relations between the γ’s
and δ’s are satisfied:

sγ2cγ1−γ3cδ1−δ3sδ2 = cγ5sγ4+γ6sδ4+δ6cδ5 (14)

cγ2cγ1−γ3cδ1+δ3sδ2 = cγ5cγ4+γ6sδ4+δ6cδ5 , (15)

−sγ2cγ1+γ3sδ1−δ3cδ2 = cγ5sγ4−γ6cδ4+δ6sδ5 , (16)

cγ2cγ1+γ3sδ1+δ3cδ2 = cγ5cγ4−γ6cδ4+δ6sδ5 , (17)

sγ2cγ1+γ3cδ1−δ3cδ2 = cγ5sγ4+γ6cδ4+δ6cδ5 , (18)

cγ2cγ1+γ3cδ1+δ3cδ2 = cγ5cγ4+γ6cδ4+δ6cδ5 , (19)

−sγ2cγ1−γ3sδ1−δ3sδ2 = cγ5sγ4−γ6sδ4+δ6sδ5 , (20)

cγ2cγ1−γ3sδ1+δ3sδ2 = cγ5cγ4−γ6sδ4+δ6sδ5 , (21)

sγ2sγ1+γ3cδ1−δ3cδ2 = sγ5sγ4+γ6cδ4−δ6cδ5 , (22)

cγ2sγ1+γ3cδ1+δ3cδ2 = sγ5cγ4+γ6cδ4−δ6cδ5 , (23)

sγ2sγ1−γ3sδ1−δ3sδ2 = sγ5sγ4−γ6sδ4−δ6sδ5 , (24)

−cγ2sγ1−γ3sδ1+δ3sδ2 = sγ5cγ4−γ6sδ4−δ6sδ5 , (25)

−sγ2sγ1−γ3cδ1−δ3sδ2 = sγ5sγ4+γ6sδ4−δ6cδ5 , (26)

−cγ2sγ1−γ3cδ1+δ3sδ2 = sγ5cγ4+γ6sδ4−δ6cδ5 , (27)

−sγ2sγ1+γ3sδ1−δ3cδ2 = sγ5sγ4−γ6cδ4−δ6sδ5 , (28)

cγ2sγ1+γ3sδ1+δ3cδ2 = sγ5cγ4−γ6cδ4−δ6sδ5 , (29)

where sp and cp denote sin (p/2) and cos (p/2), respec-
tively.

The proof of Theorem I is straightforward but
lengthy and tedious if one expands both sides of Eq. (13)
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and performs a term-by-term comparison. For simplic- ity, a more compact representation of Eqs. (14-29) can
be expressed as




cγ1−γ3sδ2
cγ1+γ3cδ2
−sγ1−γ3sδ2
sγ1+γ3cδ2







cδ1−δ3sγ2
cδ1+δ3cγ2
−sδ1−δ3sγ2
sδ1+δ3cγ2




T

=



cγ5sδ4+δ6
cγ5cδ4+δ6
sγ5sδ4−δ6
sγ5cδ4−δ6






sγ4+γ6cδ5
cγ4+γ6cδ5
sγ4−γ6sδ5
cγ4−γ6sδ5




T

, (30)

Based on this theorem, we show explicitly in Table I the
YBE analysis for six free-fermion Hamiltonians where the
reflection, as the preprocessing step prior to the compres-
sion, is accomplished algebraically. Here, the Hamilto-
nian operator Ĥ takes at most two terms from the set
{HX , HY , HZ}, where

HX = −
n−1∑

j=1

Jxσ
x
j σ

x
j+1, (31)

HY = −
n−1∑

j=1

Jyσ
y
j σ

y
j+1, (32)

HZ = −
n−1∑

j=1

Jzσ
z
jσ

z
j+1. (33)

In practice, the algebraic relations between rotations
and phases can be further simplified since we care about
only one solution (not all the solutions) that satisfies

these algebraic relations. For example, for Ĥ = HX ,
an apparent solution is to let γ6 = 0 (such that γ4 = γ2)

and γ5 = γ1 + γ3. Also, for Ĥ = HX + HZ , if we do
not consider the edge cases (that lead to singularities in
the sine and cosine functions), (γi, δi) (i = 4, 5, 6) can
be obtained from the following simplified trigonometric
relations:

tan([γ4 + γ6]/2) = tan(γ2/2)
cos([δ1 − δ3]/2)

cos([δ1 + δ3]/2)
, (34)

tan([γ4 − γ6]/2) = − tan(γ2/2)
sin([δ1 − δ3]/2)

sin([δ1 + δ3]/2)
, (35)

tan([δ4 + δ6]/2) = tan(δ2/2)
cos([γ1− γ3]/2)

cos([γ1 + γ3]/2)
, (36)

tan([δ4 − δ6]/2) = tan(δ2/2)
sin([γ1− γ3]/2)

sin([γ1 + γ3]/2)
, (37)

tan(γ5/2) = tan([γ1 + γ3]/2)
cos([δ4 + δ6]/2)

cos([δ4 − δ6]/2)
,

(38)

tan(δ5/2) = − tan([δ1 + δ3]/2)
cos([γ4 + γ6]/2)

cos([γ4 − γ6]/2)
.

(39)

V. TIME DYNAMICS ON A QUANTUM
DEVICE

As a proof of concept and to highlight the impact
of compressed circuits on a real noisy quantum device
(IBM-Manila, average CNOT error∼ 10−3, average read-
out error ∼ 10−2 and 8192 shots), we performed a time
dynamics simulation of the XY Hamiltonian with three
spins. We computed the time-dependent staggered mag-
netization, ms(t), which can be connected to the antifer-
romagnetism and ferrimagnetism in materials as follows:

ms(t) =
1

N

∑

i

(−1)i 〈σz(t)〉 . (40)

The initial state is the ground state (Neél state) of the
XY Hamiltonian, defined as Ψ0 = |↑↓↑↓ ... ↑↓〉. The stag-
gered magnetization of the Neél state is one. We per-
formed the time evolution for 2.5 units of time with a
Trotter step size of 0.025 units.
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FIG. 5. Comparison of time dynamics for 3 spins with the XY
(Jx = −0.8 and Jy = −0.2) Heisenberg Hamiltonian on the
IBM (Manila) device (8,192 shots) with and without compres-
sion. Results from the Qiskit simulator serve as a baseline.
Note that for simulating the XY model, each two-qubit gate
includes two CNOTs, therefore the compressed circuit for the
simulation only includes six CNOTs constituting three layers
in comparison with 400 CNOTs without compression.

Figure 5 shows the evolution of the staggered magne-
tization for three spins with parameters Jx = −0.8 and
Jy = −0.2. We choose different parameters for Jx and Jy
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Hamiltonian Time Propagator Time Propagator Circuit Necessary Conditions for YBE

HX e−itHX/~ = R(γ, δ = 0) • Rx(−2γ) • sγ2cγ1+γ3 = cγ5sγ4+γ6 , cγ2cγ1+γ3 = cγ5cγ4+γ6
sγ2sγ1+γ3 = sγ5sγ4+γ6 , cγ2sγ1+γ3 = sγ5cγ4+γ6

HY e−itHY /~ = U1R(γ, δ = 0)U†1
Rz(π/2) • Rx(−2γ) • Rz(−π/2)

Rz(π/2) Rz(−π/2)

Same as above

HZ e−itHZ/~ = R(γ = 0, δ) • •

Rz(−2δ)

cδ1+δ3sδ2 = sδ4+δ6cδ5 , sδ1+δ3cδ2 = cδ4+δ6sδ5
cδ1+δ3cδ2 = cδ4+δ6cδ5 , sδ1+δ3sδ2 = sδ4+δ6sδ5

HX +HY
e−it(HX+HY )/~ = U2R(τ, φ)U†2 Rx(π/2) • Rx(−2τ) • Rx(−π/2)

Rx(π/2) Rz(−2φ) Rx(−π/2)

(τ, φ)-relation is analogous to Eqs. (14-29)
τ = γ + δ, φ = γ − δ

HX +HZ e−it(HX+HZ)/~ = R(γ, δ) • Rx(−2γ) •

Rz(−2δ)

Eqs. (14-29)

HY +HZ e−it(HY +HZ)/~ = U1R(γ, δ)U†1
Rz(π/2) • Rx(−2γ) • Rz(−π/2)

Rz(π/2) Rz(−2δ Rz(−π/2)

Eqs. (14-29)

TABLE I. YBE analysis for six free-fermion Hamiltonians. U1 = Rz(π/2) ⊗ Rz(π/2) and U2 = Rx(π/2) ⊗ Rx(π/2). The
possible extension to Heisenberg model Hamiltonians with a transverse field is briefly discussed in Appendix B

to make the system anisotropic. The first component in
Fig. 5 is the exact evolution of staggered magnetization
for the XY model, which serves as a reference. The sec-
ond component is a simulation using the Qiskit simulator
with no noise, which provides the estimation for running
this evolution on a noise-free quantum computer. The
third component is the simulation result from the com-
pressed circuit, which captures the dynamics for almost
every time step. The compressed circuits are produced by
repeated use of the YBE and merge identity. In contrast,
results from a run on the same device with IBM-compiled
circuits deviate quickly after the third time step. This
comparison shows the impact of compressed circuits on
a noisy quantum computer.

The compressed circuit simulation on a noisy quantum
device shows an exceptional match with the exact evo-
lution of staggered magnetization between steps 20 and
80. Also, the staggered magnetizations at the initial (¡ 20
steps) and the last (¿ 80 steps) phases are similar in mag-
nitude. Nevertheless, the amount of quantum error and
its type are different in the two observations. At the ze-
roth step, the error mainly comes from state preparation.
At the last step, however, other errors from state evolu-
tion enter and make large deviations from the exact stag-
gered magnetization on top of the state preparation error.
Depolarization noise converts a pure state to a maximally
mixed state. Staggered magnetization for the maximally
mixed state is zero. It is evident for uncompressed cir-
cuits, where staggered magnetization after the tenth step
reaches zero and stays there for later steps. Therefore,

depolarization noise favors states that have a staggered
magnetization of zero. It is also the main contributor to
the unparalleled overlap of simulation results from com-
pressed circuits and exact evolution. The compressed cir-
cuits will overlap more with exact evolution, irrespective
of Jx and Jy, because of small depth. The results ob-
tained from compressed circuits have controllable errors
due to Trotter decomposition. The absolute error can be
reduced with a smaller step size. However, a small step
size increases the number of alternative layers, which can
be compressed by using our scheme to make it polyno-
mial depth again. Therefore, our scheme is implicitly an
error mitigation technique, which allows for significantly
reducing quantum circuit depth, and (together with other
error mitigation techniques) for systematic convergence
to the exact answer without increasing the circuit size.
The only bottleneck is preprocessing of the circuit on a
classical computer (see Appendix A for detailed analysis).
Performing the YBE combined with the merge identity
is computationally straightforward because of analytical
expressions that we have derived. We note, however, that
multiple time usages of both can make the compression
scheme computationally expensive for a large number of
qubits. Computational complexity analysis for our com-
pression scheme is currently being pursued and will be
the subject of a future paper.
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VI. CONCLUSIONS AND OUTLOOK

We have shown how the YBE can be utilized to com-
press and produce a shallow quantum circuit for efficient
time dynamics simulations of 1D lattice spin chains with
nearest-neighbor interactions on real quantum comput-
ers. The depth of quantum circuits for each time step
is independent of time and step size and depends only
on the number of spins. In particular, the depth of the
compressed circuit is rigorously a linear function of the
system size for the studied Heisenberg model Hamiltoni-
ans, and the number of CNOT gates in the compressed
circuit only scales quadratically with system size. This
allows for simulations of time dynamics of very large 1D
spin chains. Moreover, we derived the compressed circuit
representations for different special cases of the Heisen-
berg Hamiltonian. To demonstrate the efficacy of the
developed technique, we performed a time dynamics sim-
ulation of three spins on an IBM quantum computer and
compared both compressed and uncompressed quantum
circuits. The results for the first time confirmed the su-
periority of the YBE formulation to perform dynamics
for a large number of steps, and connected our work to
the broader and deeper context of the YBE duality and
integrable quantum computation.

A promising application of this technique is to explore
the compression of any circuit as part of the circuit com-
pilation step. The general nature of the technique sug-
gests that it could work for any circuit containing re-
peating gate motifs. It could be used, for example, to
compress certain types of graph instances to solve com-
binatorial optimization problems using QAOA [73]. In
particular, certain ZZ gate (a combination of CNOT ,
Rz, and CNOT gates) motifs could be compressed. An-
other aspect of YBE compression scheme is the control
of Trotter error. Smaller step size result in smaller trot-
ter error, which result in large number of trotter steps.
This compression scheme allows to compress to a con-
stant number of trotter steps, which only depends on
system size. It is very much evident in Fig. 5, where for
any time and any step size it only requires three trotter
step for time evolution of 3-spin system.

We have noticed some other techniques developed for
the quantum simulation of the time evolution of model
Hamiltonian reporting similar performance. For exam-
ple, in the post-quench dynamics simulations of the Lieb-
Schultz-Mattis model using an adaptive variational ap-
proach [74], a quadratic scaling of the number of CNOTs
with number of qubits is observed. Similar performance
has also been reported where the disentanglement of the
1D XY model Hamiltonian is achieved by resorting to
Fourier and Bogoliubov transformations [40], and the
depth of the circuit grows as O(N logN).

Finally, it is worth pointing out that in this paper we
are still dealing with the integrable models, for which
classical approaches such as the time-dependent den-
sity matrix renormalization group (t-DMRG) [75–77] has
shown to be time efficient (i.e. the computation time

and memory scale as polynomial functions of physical
time in the thermodynamic limit). Specifically, stud-
ies by Prosen and Žnidarič have shown that the scal-
ing of the classical computation resources for simulations
of quantum 1D lattices with local interactions is closely
connected to the integrability of the Hamiltonian. [77]
Therefore, it does not make sense to discuss the quan-
tum advantage (i.e., a substantial computational advan-
tage of quantum computing over classical computing) at
the present stage. However, our work provides a path
for efficient simulations of certain classes of integrable
Hamiltonians, which is a stepping stone for demonstrat-
ing quantum advantage on NISQ devices where quantum
dynamics of more complex (non-integrable) quantum sys-
tems has been proposed as a prime candidate. The reason
why it has not been achieved yet is that NISQ devices
are currently only able to simulate circuits reliably on
shallow depth circuits. The YBE technique presented in
this work is a potential direction to solve this problem,
thus bringing the ability to solve practical problems one
step closer on quantum computers.
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Appendix A: The proof of vertical/horizontal
reflection symmetry in the quantum circuit

employed for simulating the time evolution of 1D
Heisenberg model with Hamiltonian defined in

Table. I

In the main text, we have demonstrated a vertical re-
flection symmetry, i.e. the three-site YBE relation, exists
for three-layer in the circuit structure used for simulat-
ing the time evolution of the three-spin Heisenberg model
with Hamiltonian defined in Tab. I. In addition, we have
demonstrated that a horizontal reflection symmetry re-
lation, derived from the three-spin YBE relation, exists
for the four-layer circuit structure used for simulating the
time evolution of the four spin Heisenberg model. Here,
we show that a vertical or horizontal reflection symmetry
exists for the N -layer (N ≥ 3 can be an arbitrarily large
integer) in the similar circuit structure used for simulat-
ing the time evolution of Heisenberg model Hamiltonian
defined in Table. I governing the N -spin system. Explic-
itly, as shown in Fig. 6, when N is even, a horizontal
reflection exists, and when N is old, a vertical reflection
exists.
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FIG. 6. Reflection symmetry of the quantum circuit employed
for simulating the time evolution of Heisenberg model Hamil-
tonian defined in Table. I. (a) When the number of qubits
N is even, there exists a vertical symmetry for the first N
layers of the circuit, and (b) when the N is odd, there exists
a horizontal symmetry for the first N layers of the circuit.

The proof for the existence of a reflection relation can
be shown by induction where for 3- and 4-spin systems
the vertical and horizontal reflections are already known
and shown in the main text. If we assume for the (N−1)-
spin system that a reflection (either vertical or horizon-
tal) exists for every (N − 1)-layer in its time evolution
circuit, we then only need to prove that a reflection re-
lation also exists for every N -layer in the time evolution
circuit for the N -spin system. To see that, we can trans-
form the corresponding circuit structure in three steps,
which are showed diagrammatically in Fig. 7 and inter-
preted as follows.

• Step 1. As shown in Fig. 7a, in this step the two-
qubit gates in the top row can be consecutively
moved (as seen from the orange arrow) to the right
and tucked between the two-qubit gates in the last
layer. From the r.h.s of Fig. 7a, this step can phys-
ically be viewed as “downfolding” the propagation
of the N -qubit system over N∆t time into the prop-
agation of the (N−1)-qubit system over (N−1)∆t
multiplied by the propagation of the N -qubit sys-
tem over one time step ∆t.

• Step 2. As shown in Fig. 7b, since we have assumed
the existence of the reflection symmetry in the time
evolution circuit for (N − 1)-spin system, this re-
flection can then be directly applied to obtain the
r.h.s of Fig. 7b.

• Step 3. As shown in Fig. 7c, finally by perform-
ing consecutive three-spin YBE backwards we can
move the two-qubit gates in the original last layer
(denoted by the blue blocks) back to the top row,
and the resulting circuit structure exhibits a re-

flected circuit structure compared with the original
circuit (i.e. l.h.s of Fig. 7a).

FIG. 7. A diagrammatic proof of the reflection symmetry in
the quantum circuit employed for simulating the time evo-
lution of 1D Heisenberg model with Hamiltonian defined in
Table. I. Here, the blue blocks denote the original two-qubit
gates, the green blocks denote the two-qubit gates after YBE
transformation, and the red dashed blocks denote the des-
tinations that are connected by dashed arrow curves to the
highlighted blue blocks after performing consecutive three-
spin YBE transformations. The orange arrow indicates the
direction for moving the two-qubit gates in each step.

Remarkably, in the above proof we have utilized the
three-site YBE transformations consecutively in Steps 1
and 3. The consecutive three-site YBE transformation
can be viewed as a “long distance” YBE. To see how
it works, take a 10-qubit time evolution circuit as an
example, as can be seen from Fig. 8, eight consecutive
three-site YBE operations can be performed in order to
move a top left two-qubit gate to a bottom right position.
In general, we can see for a two-qubit gate being moved
from qubits i and i+1 to qubits j and j+1 (j 6= i) through
the diagonal direction, a total of ‖j−i‖ consecutive three-
site YBE operations would be needed.

Regarding the scaling of the reflection operation for
the N -layer time evolution circuit of an N -qubit system,
there are N − 1 two-qubit gates need to be moved back
and forth between the side layer and the top layer in

Steps 1 and 3, which contributes to N(N−1)
2 three-site

YBE operations. Since Step 2 indicates a recursion, the
total number of three-site YBE operations in all three
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FIG. 8. In the time evolution circuit of a 10-qubit Heisen-
berg model, the top left two-qubit (blue block highlighted by
red frame) gate can be gradually moved downward to the bot-
tom right position (denoted by the dashed red block) through
eight consecutive three-site YBE operations (labelled by cir-
cled numbers). As a result of the eight consecutive three-site
YBE operations, all the two-qubit gates in the diagonal di-
rection (included in the red dashed frame on the r.h.s.) need
to update their rotations and phase factors.

steps scales as

O(N2) +O((N − 1)2) + · · · = O(N3). (A1)

It is worth mentioning that the actual time for executing
the reflection operation can be reduced by exploiting the
parallel operations (i.e. simultaneously performing mul-
tiple three-site YBE reflection operations), or by directly
figuring out the algebraic relations corresponding to the
consecutive three-site YBE operations over a large num-
ber of qubit sites to bypass the intermediate operations.

Appendix B: Extension to simulating the time
evolution of 1D Heisenberg model with a transverse

field

It is possible to employ our YBE circuit compression
technique for some model Hamiltonians with a transverse
field. Take XX+Z model as an example, since the XX+Z
model Hamiltonian can be written as

H = HXX +HZ (B1)

with

HXX = Jx
∑

i

(σxi σ
x
i+1 + σyi σ

y
i+1),

HZ = hz
∑

i

σzi ,

[HXX , HZ ] = 0,

there will be no Trotter error in the following decompo-
sition

e−iHt = e−iHXXte−iHZt = e−iHZte−iHXXt, (B2)
from which we can see

[e−iHXXt, e−iHZt] = 0. (B3)

Therefore, as shown in Fig. 9 the time evolution circuit
for the XX+Z model can be equivalently transformed
through consecutive swaps between blue and green gate
layers to a circuit for pure XX model plus a single Rz
layer. We notice that a similar “turn over” transforma-

FIG. 9. Circuit compression for XX+Z model. Two-qubit
gates for XX interaction are denoted by blue blocks, and single
qubit Rz gates are denoted by green blocks. Note that blue
and green blocks commute.

tion for model Hamiltonians with a transverse field has
been reported in Ref. [47], while the YBE transforma-
tion for other models with a transverse field are currently
under exploration.
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