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We report a precision measurement of a tune-out wavelength for 87Rb using circularly polarized
light. A tune-out wavelength characterizes a zero in the electric polarizability of the atom. For
circularly polarized light, the total polarizability depends on both the scalar and vector polariz-
ability components. This shifts the location of the tune-out wavelength and makes it sensitive to
different combinations of atomic dipole matrix elements than the scalar polarizability alone. Using
σ− polarized light with a purity of 0.9931(1), we observe a tune-out wavelength of 785.1522(3) nm,
which agrees with theoretical expectations when small contributions from the core electrons and
off-resonant valence states are taken into account.

A tune-out wavelength describes a light frequency at
which an atom or molecule in a given state experiences
zero energy shift from an optical field, due to cancellation
of the positive and negative shifts from nearby blue- and
red-detuned electronic transitions [1, 2]. Tune-out wave-
lengths find applications in experiments involving multi-
ple species, where it can be useful to apply an energy shift
to one species without affecting another [3, 4]. Tune-out
wavelength measurements are also useful in their own
right because they provide information about the dipole
matrix elements of the target particle that may not oth-
erwise be easily accessible. Knowledge of dipole matrix
elements is important for many reasons, including the in-
terpretation of parity violation experiments, accurate es-
timation of black-body radiation shifts in atomic clocks
[5, 6], and as benchmarks for atomic theory calculations.
These benefits have prompted a series of precise tune-
out-wavelength measurements in alkali and other atoms
[3, 7? –16]. These experiments have mainly focused on
zeros of the scalar electric polarizability of the atoms.
However, additional information can be obtained from
the vector character of the polarizability, which is exhib-
ited through a dependence on the optical polarization of
the applied light [12, 13, 16]. We here explore this polar-
ization dependence through a precise measurement of a
vector tune-out wavelength.

Vector tune-out measurements are useful both for trap-
ping applications and for fundamental atomic physics.
For applications, they add flexibility by allowing the
tune-out value to be adjusted [4]. For instance, the D-
line scalar tune-out wavelength for Rb is fixed at 790.032
nm, but by adjusting the light polarization, the tune-out
wavelength can be set anywhere between 785.112 nm and
the D1 line at 794.978 nm. This flexibility can make it
easier to satisfy other experimental requirements. It can
also be useful that vector fields cause the tune-out wave-
length to depend on the magnetic sublevel of the particle
[12, 13, 17].

In regards to fundamental physics, precise measure-
ments of the polarization allows resolution of contribu-
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tions to the atomic polarizability from different angular
momentum states. For instance, interpreting alkali atom
parity violation amplitudes in terms of nuclear physics
parameters requires knowledge of the nS1/2 ↔ nP1/2

dipole matrix elements [18, 19]. Vector tune-out mea-
surements can allow the P1/2 matrix elements to be
constrained separately from the P3/2 matrix elements,
whereas a purely scalar measurement depends jointly
on both P1/2 and P3/2 elements [20]. Although parity-
violation experiments do not generally focus on Rb, we
expect that precise measurements in Rb could help im-
prove theoretical calculation methods which would be ap-
plicable to similar atoms like Cs or Fr.

The theoretical framework for vector tune-out wave-
lengths is well understood [21–24]. However, making a
precise comparison between theory and measurement re-
quires careful control of both the light polarization and
the alignment of the laser beam axis to the quantizing
magnetic field. The measurement reported here has a
wavelength precision of order 1 pm, and agrees to this
level with theoretical expectations. At this precision, the
measurement is sensitive to small effects including the po-
larizability of the ionic core and contributions from far
off-resonant valence states. With realistic improvements
in precision and by combining tune-out measurements for
different states, the technique could provide constraints
on important dipole matrix elements and yield accuracies
better than the best current theoretical uncertainties.

The energy shift of a particle in an optical field E can
be expressed as

U = −1

2
α〈E2〉 = − 1

2ε0c
αI, (1)

where α is the electric polarizability, I is the light inten-
sity, c is the speed of light, and ε0 is the electric con-
stant. (The next-order term in the expansion is an esti-
mated 107 times smaller for the maximum intensity used
here.) The polarizability depends on both the frequency
ω and the polarization state ε̂ of the light. For an atom
in ground hyperfine state |n, J, F,m〉, a spherical tensor
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decomposition gives [22, 23]

α = α(0) − α(1)S3k̂ · b̂
m

2F

+ α(2)

[
3|ε̂ · b̂|2 − 1

2

]
3m2 − F (F + 1)

F (2F − 1)
, (2)

where the α(i) parameters are the scalar, vector, and ten-
sor polarizability components, for i = 0, 1, and 2, respec-
tively. Here the light field is taken as a plane wave propa-

gating in direction k̂, with complex polarization vector ε̂.
The atomic states are defined relative to a magnetic field

pointing in direction b̂. The parameter S3 = i(ε̂∗× ε̂)·k̂ is
the fourth Stokes parameter for the light, with S3 = ±1
for σ∓ circularly polarized light. Our measurements use
the 5S1/2 ground state of 87Rb, with F = m = 2.

In the case of an alkali atom, the polarizability com-
ponents can be separated into a contribution from the
valence electron, a contribution from the core electrons,
and a term reflecting interactions between the valence
electron and the core. The valence contribution can be
calculated using perturbation theory as a sum over ex-
cited P states |n′, J ′, F ′,m′〉. We measure the tune-out
wavelength near the 5P1/2 and 5P3/2 states, so it is neces-
sary to account for the hyperfine splittings of these states
in order to achieve sufficient precision. For higher-lying
states, the hyperfine shifts can be neglected since the po-
larizability contributions are much smaller. We therefore
express the polarizability as

α(i) = α(i)
c + α(i)

cv + α
(i)
5P + α

(i)
v′ (3)

where αc denotes the core contribution, αcv the core-
valence interaction, α5P the contribution from the 5P
states, and αv′ the contribution from other valence states.
Furthermore, the core contribution has only a scalar com-
ponent i = 0, since the core is spherically symmetric. We

also neglect the tensor components α
(2)
cv and α

(2)
v′ since

they are of order 10−5 au or smaller. The remaining
valence contributions are then [23]:

α
(0)
5P =

2

~
1√
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∑
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|d′|2ω′

ω′2 − ω2
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F F ′ F

}
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FIG. 1: (color online) Electric polarizability of 87Rb in the
F = 2, m = 2 ground state, as a function of optical wave-
length. The red curve shows the case of linearly polarized
light, and exhibits a tune-out wavelength near 790 nm. The
blue curve shows the case of σ− polarized light, with a tune-
out wavelength near 785 nm.
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Here ω is the light frequency, and ω′ is the transition
frequency from |5S1/2, F 〉 to |n′PJ′ , F ′〉. We neglect Zee-
man shifts since they are small (about 30 MHz) com-
pared to our measurement precision (about 150 MHz).
The arrays in braces are Wigner 6-j symbols. The re-
duced matrix elements are d′ ≡ 〈5S1/2||d||n′PJ′〉, and in
the α5P terms we use

C ′ = (−1)F+F ′+1(2F + 1)(2F ′ + 1)

{
F 1 F ′

J ′ I J

}2

(9)

with nuclear angular momentum I = 3/2.

We take α
(0)
c = 9.116(9) from Ref. [25], and α

(0)
cv =

−0.37(4) and α
(1)
cv = −0.04(4) from Ref. [20]. For

the 5P states we use d5P1/2
= 4.234(2) and the ratio

d5P3/2
/d5P1/2

= 1.99217(3) from [11]. For higher-lying
valence states we use the matrix elements tabulated in
[11]. With these values, we can calculate the net polariz-
ability α for given values of the experimental parameters

S3, k̂ · b̂, and ε̂ · b̂. Figure 1 shows how α varies with
wavelength for the cases of linear and σ− polarized light.
The tune-out wavelength is located where α = 0. Ta-
ble I lists the various contributions to α at the tune-out
wavelength for σ− polarized light.

The experimental apparatus consists of a Bose-
Einstein condensate interferometer similar to that of
Ref. [11]. We use small condensates of about 104 atoms,
which provide good phase coherence and well-localized
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Term Value (au) Term Value (au)

α
(0)
5P 12347.7(4)(11.6) α

(1)

v′ 0.2(1)

α
(1)
5P 24716.8(4)(23.3) α

(0)
c 9.12(1)

α
(2)
5P -0.044 α

(0)
cv -0.37(4)

α
(0)

v′ 2.0(1) α
(1)
cv -0.04(4)

TABLE I: Contributions to the total polarizability α at the
tune-out wavelength λ = 785.112 nm for ideal σ− polarized
light with S3 = k̂ · b̂ = 1, ε̂ · b̂ = 0. Values in parentheses
show the estimated errors. In the case of the α5P contribu-
tions, the first parentheses show the uncertainty arising from
the uncertainty in the ratio of the d5P1/2 to d5P3/2 matrix ele-
ments. The second parentheses show the uncertainty from the
d5P1/2 element itself, which is large but correlated among the
different components, and therefore has negligible impact on

the value of the tune-out wavelength. Uncertainty in the α
(2)
5P

contribution is negligible since the term itself is very small.

wave-packets. The atoms are confined in a weak mag-
netic trap, with harmonic oscillation frequencies of 5.1,
1.1 and 3.2 Hz along the x, y and z directions respec-
tively. The z direction is vertical. The trap uses the
time-orbiting potential (TOP) technique, with a bias
field of 21.4 G rotating in the xz plane at frequency
Ω = 2π × 12.8 kHz. The TOP trap is completed us-
ing a linear quadrupole field oscillating in phase with the
bias, and also a weaker spherical quadrupole oscillating
at 1 kHz.

The interferometer operation is described in Ref. [? ].
An off-resonant standing-wave laser along the y axis of
the trap applies velocity kicks in units of vB = 2~k/m =
11.8 mm/s via Bragg scattering. The interferometer uses
a total of four Bragg pulses. At time t = 0, an ini-
tial pulse splits the condensate into wave packets moving
at ±vB . At time t = 10 ms, the laser is applied again
so as to reverse the atoms’ motion. The packets then
pass through each other with minimal interactions, and
at t = 30 ms a third laser pulse reverses the motion again.
Finally at t = 40 ms, the packets are overlapped, initial
splitting pulse is reapplied, and the wave packets are re-
combined. A fraction N0/N of the atoms are brought
back to rest in the center of the trap, with signal

S =
N0

N
=

1

2
[1 + V cos(φ+ φr)]. (10)

Here the wave packets have developed a phase difference
φ, the phase of the recombination pulse relative to the
initial splitting pulse is φr, and the visibility is V = 0.7.
The fraction of atoms at rest is detected by absorption
imaging after a short time of flight. We set φr ≈ π/2
by shifting the frequency of the Bragg laser prior to the
final pulse.

A Stark phase shift φ is applied by directing a second
laser beam, traveling along z, onto one arm of the in-
terferometer. The beam is focused to a waist of about
50 µm, which is smaller than the maximum wave-packet
separation of 240 µm and comparable to the wave-packet

size of 40 µm. The Stark beam is derived from an
MBR Ti:Sapphire laser. This is an improvement over
the tapered amplifier used in our previous work [11],
since the Ti:Sapphire laser is not expected to contain
a significant amount of amplified spontaneous emission
light at other frequencies. The Stark beam is applied
for 20 ms at the start of the interferometer, so that one
packet passes through it twice. This leads to a phase
φ =

∫
αI dt/(2ε0~c) which the interferometer detects.

To control the vector portion of the polarizability, we
use a pair of acousto-optic modulators to pulse the Stark
beam synchronously with the rotating bias field, such
that the light is on only when the field points along z.
Two modulators are used to provide an extinction ratio
better than 60 dB. The Stark beam is aligned to the field
by tuning to the D1 resonance at 795 nm and setting
the polarization state to σ+. When the laser is opti-
mally aligned to the magnetic field, the m = 2 atoms
scatter no light since there is no m = 3 state in the D1
hyperfine manifold. Details of this measurement are pro-
vided in Ref. [26]. From the residual scattering rate, the

alignment error δθ between k̂ and ẑ is constrained to be
less than 16 mrad. In the interferometry experiments,
the duration of the pulses is τ = 5 µs, and the angle

between k̂ and b̂ varied during the pulse as the field ro-
tated at frequency Ω. This gives an average value for

k̂ · b̂ of (2/Ωτ) sin(Ωτ/2) cos δθ = 0.99321(6), where the
uncertainty reflects the angular misalignment. It is im-
portant that the shape and duration of the light pulse are
well characterized, since they impact the time average of

k̂ · b̂. We monitor the pulse during the experiment using a
fast photodiode, and errors from the non-uniformity and
from variations in τ are about an order of magnitude
smaller than that from the alignment. The integrated

value of ε̂ · b̂ in the tensor term can also be calculated as
Ω2τ2/48 = 3.3 × 10−3, but this is insignificant because
the tensor component α(2) is much smaller than the vec-
tor component α(1).

It is also critical to control the light polarization accu-
rately. We set the polarization close to circular using a
calcite polarizer, two wave plates, and a Fresnel rhomb,
as described in [26]. The wave plates provide a small cor-
rection to the Fresnel rhomb to account for polarization
distortions in the vacuum window and other optics. The
polarization can be set accurately using again the pho-
ton scattering measurements at 795 nm, but the mirrors
that direct the beam onto the atoms are slightly chro-
matic and the polarization is not sufficiently preserved
when the Stark laser is scanned to the tune-out wave-
length at 785 nm. Instead, we optimize the polarization
by setting the laser slightly blue of the tune-out wave-
length, and adjusting the wave plates to minimize the
interferometer phase φ. Since the tune-out wavelength is
as blue as possible for σ− polarized light, this optimizes
the polarization at the atoms. The wave plate angles
could be set to an accuracy of about 0.5◦, from which we
determine S3 = 0.99988(12).

To perform the measurement, we set the Stark laser to
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FIG. 2: Tune-out measurement data. For each of the points in
the main graph, an interferometric measurement is performed
to determine κ = φ/P , where φ is the interferometer phase
and P is the peak power of the Stark beam pulses. The inset
graphs show example plots of the interferometer signal vs.
power, from which κ is determined via a fit to the form of
Eq. (10). The scatter of the points illustrates our typical
measurement noise, and the error bars for κ are estimated as
the offset needed to double the goodness of fit parameter χ2.
The κ data in the main graph are fit to a line, and the x-
intercept of 785.1525 nm is taken as the tune-out wavelength
value.

a series of wavelengths near 785 nm, and at each wave-
length we vary the pulse power P to scan φ and trace
out an interference curve. Example data are shown as
insets in Fig. 2. We assume φ = κP and fit the trace
data to obtain a value for κ. The main graph of Fig. 2
shows that near 785 nm, κ is a linear function of wave-
length which crosses zero at 785.1525(5) nm. Here the
uncertainty is primarily from noise in the linear fit, but
also includes the 0.15 nm uncertainty in our wave meter
calibration. A second independent measurement yielded
a consistent value of 785.1519(4) nm, so we report the
average of these results as λ0 = 785.1522(3) nm.

In comparison, using the the experimental estimates

for k̂ · b̂ and S3 in conjunction with the theoretical val-
ues from Table I, we calculate an expected tune-out
value of 785.1538(9) nm, which is about 2σ different
from our measurement. The optical polarization is the
largest source of uncertainty in the calculated value, with
the alignment error and atomic parameters contributing
about half as much. Table II summarizes the main con-
tributions to the uncertainties of the measurement and
calculation. Our result is consistent with that obtained
by Wen et al. [16], who found λ0 = 785.146(12) nm for
σ− polarized light.

Although the discrepancy between our measurement
and calculation is not large enough to be significant, the
sign is interesting, since larger-than-estimated errors in
the polarization or alignment would result in a measure-

Source δλ0 (pm) δα (au)

Measurement total: 0.46 1.2

Statistical 0.43 1.1

Wavemeter 0.15 0.4

Calculation total: 0.88 2.2

Atomic parameters 0.35 0.9

Polarization 0.70 1.8

Alignment 0.35 0.9

Pulse length 0.06 0.2

Pulse symmetry 0.06 0.2

TABLE II: Sources of error in the tune-out wavelength mea-
surement and calculation. For each contribution, the impact
is given both as the uncertainty δλ0 in the tune-out wave-
length and as the uncertainty in the value δα of the polariz-
ability at the measured tune-out wavelength. These are re-
lated using the calculated derivative |dα/dλ| = 2.527 au/pm.
The uncertainty contribution labeled as ‘atomic parameters’
refers to the values in Table I. The division between ’Mea-
surement’ and ’Calculation’ is based on the uncertainties af-
fecting the actual tune-out value measured in the experiment,
and those affecting what we expect to observe given our ex-
perimental setup.

ment redder than expected, whereas our result is bluer.
If we assume that the Stark beam parameters are perfect
and account only for the rotation of the bias field during
the Stark pulses, we would expect a tune-out wavelength
of 785.1530(4) nm, still about 2σ redder than observed.
This could suggest an inaccuracy in the atomic parame-
ters of Table I, and motivates further investigations.

For atom-trapping applications, the level of precision
demonstrated here shows how accurately a vector tune-
out application can be implemented. For instance, in the
conditions of our experiment, a rubidium atom in the
F = 2,m = 1 state would experience a total polarizabil-
ity α of 6222 au. This can be compared to a residual
polarizability δα of 2 au for an F = 2,m = 2 atom. The
ratio α/δα = 3 × 103 indicates how strongly the m = 1
atom can be manipulated before the m = 2 atom is af-
fected.

In terms of atomic physics, we see that the precision
demonstrated here is already sufficient to distinguish the
larger non-5P contributions to the net polarizability. If,

for instance, the core contribution α
(0)
c + α

(0)
cv were ex-

cluded from the calculation, the expected tune-out wave-
length would shift by about 4σ. Our measurement thus
tests the theory in a non-trivial way, but with reasonable
increases in precision, it could provide a more meaning-
ful comparison. For instance, with a factor of five im-

provement the experiment would be sensitive to the α
(0)
cv

core-valence interaction, which has not previously been
experimentally observed. With a factor of fifty improve-
ment, the experimental precision would exceed the theo-
retical precision in most cases. This would be particularly
interesting for the αv′ terms, where the theoretical un-
certainty is dominated by the contribution from the high
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n′ Rydberg tail. This same contribution is the largest
source of uncertainty in the relationship between mea-
sured atomic parity violation amplitudes and the weak
mixing angle of the standard model [19], so providing a
precise benchmark via the polarizability can be expected
to help improve the parity violation interpretation.

Improvement by a factor of fifty is experimentally fea-
sible. We have previously demonstrated a scalar tune-out
measurement with an uncertainty of 0.035 pm, which
was limited primarily by statistics [11]. Improvement
to 0.01 pm should involve no new challenges. The vec-
tor measurement is more difficult due to the require-
ment for polarization control, but many of the limita-
tions encountered here could be resolved for atoms con-
fined in an optical trap rather than a TOP trap, since
it would then be possible to use a static bias field and
a continuous-wave Stark beam. This would allow sig-
nificantly higher average power to be applied to the
atoms, so that the polarization and alignment optimiza-
tions could be made more precise. Recent experiments at
Los Alamos National Laboratory have demonstrated an
optically trapped atom interferometer with performance
comparable to that used here [27]. An optical trap may
also benefit from being able to use different Zeeman lev-
els. We therefore argue that reaching experimental pre-
cision comparable to the theoretical precision is likely
achievable.

Looking forward to such experiments, it will be nec-
essary to distinguish the various contributions to α so
that, for instance, the Rydberg tail contribution can be
isolated from the core-valence interaction. This can be
achieved by comparing tune-out measurements near dif-

ferent states, such as the 6P states near λ = 420 nm
for Rb. The core and Rydberg contributions have differ-
ent frequency dependencies, allowing their impact to be
resolved [20]. Further, since the J = 1/2 and J = 3/2
states contribute differently to the scalar and vector com-
ponents of αv′ in Eqs. (7) and (8), these two contribu-
tions can be distinguished as well. The parity violation
interpretation depends only on the J = 1/2 matrix ele-
ments. We therefore expect vector measurements to be
an important component of this approach.

In summary, we have carried out a precise measure-
ment of a vector tune-out wavelength, for near-circularly-
polarized light. We show that the polarization and align-
ment factors can be controlled with 10 ppm precision,
even in the rotating magnetic field of a TOP trap. The
1 ppm precision that we obtain in the wavelength is sim-
ilar to that of many scalar tune-out measurements, but
the vector character provides both more utility and more
information. We believe that this work illustrates the
feasibility and utility of precise vector tune-out measure-
ments, and we hope that our results stimulate further im-
provements to the point that the method becomes useful
for interpreting parity violation and other experiments
that rely on atomic dipole matrix elements.
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