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Synchronisation in quantum systems has been largely driven by specific examples of frequency en-
trainment as well as mutual synchronisation. Here we study quantum synchronisation as a Liouville
space perturbation theory. We begin by clarifying the role of centers, symmetries and oscillating
coherences in the context of quantum synchronisation. We then analyse the eigenspectrum of the
Liouville superoperator generating the dynamics of the quantum system and determine the condi-
tions under which synchronisation arises. We apply our framework to derive a powerful relationship
between energy conservation, degeneracies and synchronisation in quantum systems. Finally, we
demonstrate our approach by analysing two mutually coupled thermal machines and prove that
non-degenerate thermal networks cannot be simultaneously energy conserving and synchronous.

INTRODUCTION

In analogy to classical synchronisation, quantum syn-
chronisation stands for the adjustment of rhythms of
self-sustained oscillators under the effect of weak cou-
pling or an external drive [1]. Given the ubiquity of syn-
chronisation in the classical world [1, 2], quantum syn-
chronisation has garnered increasing interest. Initially,
systems whose mean-field dynamics resembled classical
dynamical systems were the primary focus of investiga-
tion [3–16]. Following this, the notion of synchronisation
was soon extended to genuinely quantum systems with
no classical counterparts [17–19] and experimentally ob-
served in [20, 21]. The primary concern of the early
studies of quantum synchronisation was to motivate a
system-specific measure of synchronisation and demon-
strate that such measure attains a finite value in some
region of the parameter space, effectively demonstrat-
ing that synchronisation is possible even in the quantum
regime. A typical first step to study synchronization in
both classical and quantum systems involves establishing
a valid limit cycle dynamics in the absence of perturba-
tion (driving/coupling) [22]. A valid limit cycle possesses
at least one neutral free phase (in sense of [17], for other
definition see [23]) and the oscillations are robust to ex-
ternal perturbation.

What has been lacking thus far is a systematic study
of the specific structure of perturbative driving or cou-
pling that could bring about quantum synchronisation.
In classical and hence in quantum dynamics, there are
slightly different but related definitions of synchronisa-
tion [1, 24–26]. In this manuscript, we begin by clari-
fying various definitions of synchronisation in quantum
systems and then construct a systematic perturbation
theory in Liouville space to understand steady state syn-
chronisation. We prove a powerful relationship between
the energy structure of the physical systems and their
interactions that may prevent the systems from synchro-
nising. Finally, we apply our framework to the example of

two coupled thermal machines and show that a network
of non-degenerate thermal machines cannot be simulta-
neously energy conserving and synchronized.

We consider the Lindblad master equation given by

ρ̇ = −i[H0, ρ] +
∑
k

D[Ok]ρ, (1)

where H0 is the bare Hamiltonian of the system and
D[Ok]ρ = OkρO†k −

1
2{O

†
kOk, ρ} models the baths at-

tached to the system with ρ being the state of entire
system. The steady state ρss of the evolution in Eq. (1)
satisfies ρ̇ss = 0 which can either contain coherences or
be diagonal in the eigenbasis of bare Hamiltonian H0.
We note that quasi-probability distribution functions cor-
responding to diagonal states are not localized whereas
steady states with coherence are localized in phase space.
We hence focus on the diagonal steady states though
more general definitions of limit-cycles can be accom-
modated [22]. Diagonal limit cycles arise naturally in
systems coupled to thermal baths [19]. The lack of off-
diagonal terms in this basis signifies the absence of any
phase-locking, either to an external drive or between sys-
tems. Perturbative driving or coupling to other systems
may give rise to synchronisation as verified by phase-
space based measures [10, 17, 18, 27, 28]. A common
feature of all such measures is that they detect synchro-
nisation for steady states which contain finite off-diagonal
terms, pointing at a relationship between coherence gen-
eration and synchronisation. This relationship was solid-
ified by the fact that the relative entropy of coherence
Scoh [29] is a suitable measure of synchronisation [22].

Classical dynamics is strongly affected by constraints
placed on Hamiltonian or on dissipative evolution. For
instance, the constraint that phase space volume is con-
served implies that Hamiltonian systems cannot have at-
tractors. In the quantum context, a natural question that
arises is how constraints placed on Hamiltonian or Lind-
bladian evolution affect quantum synchronisation. The
question is important because quantum information the-
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oretic tasks often are accompanied by a fixed resource
constraint, which then affects the underlying dynamics
in a non-trivial manner. An example of such a resource
constraint is the demand that the coupling between ther-
mal machines should be energy conserving. We begin
by clarifying the role of the quantum analogues of fixed
points and centers to quantum synchronisation, following
which we present a Liouville space perturbation analysis
of synchronisation. We then present a theorem relating
the structure of the synchronising perturbation to energy
conservation. We study an example of coupled thermal
machines to exemplify our theorem.

LIOUVILLE EIGENSPECTRUM &
SYNCHRONISATION

Consider the Lindblad master equation in Liouville
form namely

|ρ̇(t)〉〉 = L|ρ(t)〉〉, (2)

where L is the Liouville superoperator and |ρ(t)〉〉 is
the corresponding Liouville state [30–32]. Eigenvalues
of Liouville superoperators are complex numbers λµ =
αµ+ iβµ with physical density matrices corresponding to
αµ ≤ 0. Eigenvalues having αµ < 0 have been useful in
discussing transient sychronisation [33–35]. Whereas the
steady state of this master equation is given by αµ = 0,
with non-zero βµ indicating oscillating coherences. Be-
fore we discuss steady state synchronisation in the con-
text of the Liouvillian eigenspectrum, we note that a pre-
requisite for phase-space based measure of synchronisa-
tion is the existence of a self-sustained oscillator with
a valid limit-cycle corresponding to an observable free
phase. This disqualifies linear quantum systems and also
precludes a discussion of qubit synchronisation [18]. In
classical mechanics, a stable limit-cycle is first established
for a non-linear system possessing free phase with neu-
tral stability, which is then synchronised even by a per-
turbative drive or coupling [1]. Following these lines, the
limit-cycle in the quantum context can be established by
proving that the unperturbed Liouvillian L0 has a diag-
onal steady state [18, 19, 22]. Once the limit cycle is
established, the system is typically perturbed by an ex-
ternal drive or coupling to another system, which we rep-
resent by εLV . Such a perturbation can either produce
steady state coherence (λk = 0 with the corresponding
eigenket having non-zero coherences) or oscillating co-
herences (λµ = ±iβµ). As discussed below, we show
that while steady state coherence can be used to define a
phase space based measure of synchronisation, the case
of oscillating coherences is more subtle.

Alternative to the phase space-based measures, one
could start with two or more systems whose uncoupled
dynamics have steady state oscillating coherences and de-
mand that the oscillations determined by the imaginary

eigenvalues adjust their rhythms due to coupling [36].
This phenomenon, shown in Fig. 1 restricts the under-
lying limit cycles to themselves be oscillating coherences
[37, 38] and hence can include certain qubit models. We
note that the classical analogue of oscillating coherences
is centers in classical two-dimensional flows [25], which
are also complex conjugate pairs of imaginary eigenval-
ues. Since centers do not represent either a stable limit
cycle or a neutral free phase, they fall outside the scope
of this manuscript.

Another issue that arises in defining synchronisation
around centers relates to the information preserving na-
ture of the dynamics. Genuine limit cycle dynamics in-
volves a basin of attraction, wherein any dynamics that
starts in the basin ends up on the limit cycle. Thus clas-
sical limit cycle dynamics does not preserve initial condi-
tions and flows to a unique asymptotic state. This is not
the case for quantum dynamics which lead to oscillating
coherences, which can arise with strong or weak symme-
tries [39] or when the Lindbladian pumps the quantum
system to a subspace with Hamiltonian dynamics [40].
For Lindblad dynamics with strong symmetries (i.e., ex-
istence of unitary S such that [S,H] = 0 and [S,Ok] = 0),
the dimensionality of the Liouville subspace Lss is de-
termined by the number of unique eigenvalues of S and
subspaces with Lss ≥ 2 are known to be information
preserving [41]. For all of these reasons we refer to the
phenomenon involving multiple oscillating coherences as
undergoing coherence synchronisation in general [42] and
use the phrase phase synchronisation for models where
the underlying dynamics exhibits a stable limit cycle and
a neutral free phase. We note that the general theory of
phase ordering of oscillating coherences remains an open
problem.

Finally we note that the presence of degeneracies has
a profound effect on the entire dynamics that has to be
carefully reconciled. Lindblad-type master equations are
derived under the Born-Markovian Secular (BMS) ap-
proximation [43] which may not hold in the presence of
degeneracies and can hence modify the underlying master
equation dramatically [44, 45].

PERTURBATION OF LIMIT CYCLE
OSCILLATORS

We add a perturbation whose strength is moderated
by ε to make the total Liouville super-operator take the
form L = L0 + εLV , where L0 = LH0

+LD is the unper-
turbed Liouville super-operator and LV is an arbitrary
perturbation in Liouville space. In general L is not Her-
mitian (L† 6= L) and has different left (|lµ〉〉) and right
(|rµ〉〉) eigenvectors [46] such that

L|rµ〉〉 = λµ|rµ〉〉, L†|lµ〉〉 = (λµ)∗|lµ〉〉. (3)
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FIG. 1. Two different dynamical phenomena that can cause
adjustment of rhythms: The first phenomenon is phase syn-
chronisation caused by the development of steady state co-
herences due to driving or coupling and is indicated by the
matrix whose corresponding eigenvalue is zero. The second
is a phase ordering phenomenon which we refer to as coher-
ence synchronisation, caused by the adjustment of oscillating
coherences (blue and red sinusoidal waves indicates the os-
cillation of ) indicated by the arrows pulling the imaginary
eigenvalues closer to each other. A(t) depicts the time depen-
dence of a local observable of the system under investigation.

These eigenvectors do not form an orthonormal basis.
For small ε we can expand the eigenvectors (|rµ〉〉, |lµ〉〉)
and eigenvalues (λµ) in term of the unperturbed eigen-

vectors (|r(0)µ 〉〉, |l(0)µ 〉〉) and eigenvalues (λ
(0)
µ ) as follows:

λµ = λ(0)µ + ελ(1)µ + ε2λ(2)µ + . . . (4)

|rµ〉〉 = |r(0)µ 〉〉+ ε|r(1)µ 〉〉+ ε2|r(2)µ 〉〉+ . . . , (5)

and likewise for |lµ〉〉. Since perturbation strength ε need
to be small, we restrict ourselves to the first order per-
turbation by only retaining linear terms in ε. Therefore,
using the above set of equations in Eq. (3) and equating
first order terms in ε we get

L0|r(1)µ 〉〉+ LV |r(0)µ 〉〉 = λ(0)µ |r(1)µ 〉〉+ λ(1)µ |r(0)µ 〉〉. (6)

The perturbation εLV can have three distinct possible
effects on the unperturbed steady state which we discuss
for completeness. The first effect of perturbation is that
it can change the eigenvectors keeping the corresponding

eigenvalues same [46]. Assuming λ
(1)
µ = 0 and collecting

terms for |r(1)µ 〉〉, Eq. (6) reduces to

(L0 − λ(0)µ )|r(1)µ 〉〉 = −LV |r(0)µ 〉〉. (7)

Multiplying the above equation with the (L0 − λ
(0)
µ )+

from left gives the first order correction to corresponding
eigenvector

|r(1)µ 〉〉 = −(L0 − λ(0)µ )+LV |r(0)µ 〉〉, (8)

where O+ is the Moore-Penrose pseudo-inverse[47] of op-
erator O. Now the first order perturbation to the steady

state (lets |ρ(1)ss 〉〉 ≡ |r(1)0 〉〉) having eigenvalue λ
(0)
0 = 0,

reduces to

|ρ(1)ss 〉〉 = (−L+
0 LV )|ρ(0)ss 〉〉, (9)

where |ρ(0)ss 〉〉 ≡ |r(0)0 〉〉 is the steady state of L0. Depending

on the form of LV new steady state |ρss〉〉 = |ρ(0)ss 〉〉 +

|ρ(1)ss 〉〉 can contain coherences and we can observe steady
synchronisation for such perturbation.

Alternatively, the perturbation εLV can change the
eigenvalue keeping the eigenvector unchanged. Since we
are interested in steady state synchronisation, we restrict

ourselves to the case where λ
(1)
µ can only take on an imag-

inary contribution, which we prove to be unphysical. Us-

ing |r(1)µ 〉〉 = 0 in Eq. (9) we will get

LV |r(0)µ 〉〉 = λ(1)µ |r(0)µ 〉〉. (10)

First order correction to the eigenvalue can be calculated

by multiplying Eq. (10) with
∑
ν〈〈l

(0)
ν | to get

λ(1)µ =

∑
ν〈〈l

(0)
ν |LV |r(0)µ 〉〉∑

ν〈〈l
(0)
ν ||r(0)µ 〉〉

. (11)

Since the underlying limit-cycle states are diagonal, when
complex eigenvalues arise in the Liouville spectrum, they
appear as complex-conjugate pairs and hence at least two
steady states with eigenvalues iβ and −iβ will arise with
corresponding Liouville eigenvectors |ρ+〉〉 and |ρ−〉〉. Note
that the steady state is going to be a linear combination
of both the states i.e. |ρ〉〉 = eiβt|ρ+〉〉 + e−iβt|ρ−〉〉. For
ρ to be a valid density matrix it needs to be Hermitian,
implying (ρ−)† ≡ ρ+ and since ρ− and ρ+ are diagonal
density matrices, ρ− ≡ ρ+. This cannot be true as one
eigenvector cannot have two different eigenvalues, which
concludes the proof. A third possible effect of perturba-
tion can be change in both eigenvalues and eigenvectors
simultaneously. This in general leads to oscillating co-
herences, which are outside the scope of this manuscript.

We further simplify Eq. (9) to understand the coher-
ence generation by expanding L+

0 as a sum of L+
H0

and
another term we denote by X(H0,D). The pseudoinverse
of the sum of two matrices A and B can be used to define
a new operator X(A,B), given by the relation

(A+B)+ = A+ +X(A,B). (12)

Using the property of pseudoinverse we can write,

(A+ +X(A,B))(A+B) = I, (13)

where I is the identity operator. Using A+A = IA, the
identity in the non-singular subspace of A, Eq. (13) can
be rewritten as

I = IA +A+B +X(A,B)(A+B). (14)
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After rearranging Eq. (14) we get

X(A,B) = (δI −A+B)(A+B)+, (15)

where δI = I − IA. Using Eq. (12) and Eq. (15) we
can write L+

0 = L+
H0

+ X(H0,D) where X(H0,D) ≡ (δI −
L+
H0
LD)(LH0

+ LD)+. Hence Eq. (9) can be re-written
as follows

|ρ(1)s 〉〉 = −(L+
H0

+X(H0,D))LV |ρ(0)s 〉〉

= −L+
H0
LV |ρ(0)s 〉〉 −X(H0,D)LV |ρ(0)s 〉〉. (16)

This equation forms the basis of our analysis of the rela-
tionship between coherence, degeneracies and given con-
straints on the system. Since the unperturbed steady
state has the interpretation of the underlying limit cycle
state, we demand that L0 does not generate any coher-
ences.

ENERGY CONSERVATION & DEGENERACIES

Typical constraints on coupled quantum systems in a
thermodynamic setting is to demand energy conserving
interactions so that the coupling is not associated with
the work output of the thermal machine. To understand
role of energy conservation in coherence generation, we
constrain the generic LV to be a Hamiltonian coupling V .
Energy conservation requires [H0, V ] = 0. We now prove
a theorem relating coherence generation, energy conser-
vation and degeneracy of the system for open quantum
system dynamics. We also present the closed system ana-
logue of this theorem for pedagogical clarity in Section
A of the Supplementary Material [48], which includes
Refs.[49–54].

Theorem. In an open quantum system whose dynam-
ics is described by a Markovian master equation with a
non-degenerate energy spacings, energy conserving inter-
actions cannot generate phase synchronisation.

The proof follows from the fact that coherence gener-
ation costs energy in non-degenerate systems [55] and it
has been shown that l1-norm of coherence is directly re-
lated to synchronisation [19]. This can also be seen struc-
turally using Liouvillian perturbation theory discussed in
last section, specifically following Eq. (16).

If the bare Hamiltonian is non-degenerate, both H0

and V need to be diagonal in the same basis to commute.
On the other hand, ifH0 has degeneracies, the interaction
V can be off-diagonal in the degenerate subspace of H0

and still be energy conserving. Hence the corresponding
super-operator LV will also be off-diagonal only in the de-
generate subspace of LH0

and hence [LH0
,LV ] = 0. This

means that though LV can be off-diagonal, LH0 and LV
can share the eigenbasis of LV . As LV is off-diagonal,

LV |ρ(0)ss 〉〉 ≡ |ρ̃ss〉〉 can create coherences. Since LH0 is

diagonal, the pseudoinverse L+
H0

=
∑
j Λ+

j |Λj〉〉〈〈Λj | is

also diagonal where Λ+
j = 0 for Λj = 0 and Λ+

j = Λ−1j
for non-zero Λj . Therefore the term L+

H0
|ρ̃s〉〉 can affect

coherences only up to a multiplicative factor, whereas

−X(H0,D)LV |ρ
(0)
ss 〉〉 can generate coherences. This shows

that both terms in Eq. (16) are capable of generating
coherences. Hence the presence of degeneracies in the
bare Hamiltonian can impact coherence generation and
synchronisation.

Our analysis can be extended to study any other con-
straint besides the energy conservation. Let us consider
that bare Hamiltonian H0 commutes with an additional
symmetry operator S. Now conservation of such sym-
metry requires the perturbation V to commute with the
operator S. Let LH0 ,LS and LV be the Liouvillian su-
peroperators corresponding to H0, S and V respectively.
Following from Eq. (16), generation of coherence depends
on whether LH0

commutes with LV or not. Specifically
there can be only two cases: First is where [LH0 ,LS ] = 0
and both share the same eigenbasis. This implies that
either both of them are diagonal and non-degenerate or
they have degeneracy in the same subspace. In such a
case [LH0

,LV ] = 0 and the same analysis applies as be-
fore. In second a case, [LH0

,LS ] = 0 but the two Li-
ouville superoperators do not share the same eigenbasis.
This could happen when both LH0 and LS are diago-
nal but have degeneracy in different subspaces so that a
given off-diagonal operator LV will commute with either
one of them. Commutation of LS requires [LS ,LV ] = 0
which leads to [LH0

,LV ] 6= 0 in our case. In such case
coherences will always be generated following Eq. (16).
An example for such a case will be where two spins
having bare Hamiltonian H0 = σAZ + σBZ conserve the
symmetry S = σAZ ⊗ σBZ such that [H0, S] = 0. Here
σX = |1〉〈2| + H.c. is the usual Pauli matrix and like-
wise σZ . Furthermore, H0 and S both are diagonal but
have degeneracy in different subspace. Now interaction
term V = σAX ⊗ σBX will conserve the symmetry S but
will not commute with bare Hamiltonian H0 as a result
of which coherences will be generated in the eigenbasis
of H0 following Eq. (16).

SYNCHRONISATION OF COUPLED THERMAL
MACHINES

Consider the synchronization of two mutually coupled
thermal machines shown in Fig. 2(a). The two 3-level
systems are described by bare Hamiltonian H0 = σA22 +
(1 + Ω)σA33 + (Ω + ∆)σB22 + (1 + Ω)σB33 where σij = |i〉〈j|.
They are mutually coupled with each other by interac-
tion Hamiltonian of the form V = σA23σ

B
21 + σA12σ

B
32 + h.c.

which is energy conserving interaction for ∆ = 0. We
note that the eigenvalues and eigenvectors of total Hamil-
tonian H = H0 + εV change abruptly as soon as we turn



5

FIG. 2. (a) Two coupled heat engines described by Eq. (17) with parameter values given as Ω/γh = 40, γh = γ
(A,B)
h = 0.01,

γc = γ
(A,B)
c = 10γh, n̄

(A,B)
c ≈ 10−3 and n̄

(A,B)
h = 1. Plots for steady state (b) synchronization measure Scoh(ρ)/max[Scoh(ρ)]

and (c) output power P/max[|P |] for a given range of coupling strength ε and detuning ∆ where max[Scoh(ρ)] ≈ 0.001 and
max[|P |] ≈ 1.8× 10−6. It can be seen that coherence uncouples from power at the point of degeneracy.

on the perturbative interaction ε. Since it is well known
[56, 57] that local master equations describe the ther-
modynamics of such systems more faithfully, we describe
the dynamics of the coupled thermal machine in Fig. 2
by the master equation

ρ̇ = −i[H0 + εV, ρ] +
∑
i=A,B

(Di
h[ρ] + Di

c[ρ]), (17)

where Di
h(c)[ρ] ≡ γih(c)n̄

i
h(c)D[σi32]ρ + γih(c)(1 +

n̄ih(c))D[σi23]ρ represents the system i = (A,B) coupled

to hot (cold) bath at temperature T ih(c). The individual
systems do not have any degeneracies and the full bare
Hamiltonian has a degeneracy of degree 3 corresponding
to the eigenvalue 1 + Ω. The interaction Hamiltonian
V is off-diagonal only in the degenerate subspace, hence
[H0, V ] = 0 which results in [LH0 ,LV ] = 0. It can be
inferred from Eq. (16) that steady state will contain co-
herences and hence phase localization will be observed
in this case. For ∆ 6= 0 the degeneracy is lifted and
[LH0

,LV ] 6= 0, resulting in energy not being conserved
anymore. Hence a direct consequence of our theorem is
the observation that coherence generation in this case
costs energy.

Let us study the mutual synchronization for this sys-
tem. When the thermal engines are not coupled (ε = 0)
then the steady states of individual systems under the
effects of their thermal bath are diagonal and hence both
systems are in a corresponding limit cycle state. We
use the relative entropy of synchronisation [22] ΩR(ρ) =
Scoh(ρ) = S(ρdiag) − S(ρ) which measures the distance
to the nearest diagonal limit cycle state using relative en-
tropy measure [22]. The synchronization measure Scoh(ρ)
in Fig. 2(b) displays the typical Arnold tongue behaviour
which confirms that steady state mutual synchronization
exists between two thermal engines.

Power is given by P = −iTr([H, ρ]H0) [53]. Hence
power for the given system having a steady state ρss =

∑9
i,j=1 ρ

ss
ij |i〉〈j| is given by P = 2ε∆ Im[ρss35 +ρss75], where

|i〉 denotes the global basis states, see Section B of
the Supplementary Material [48]. Steady state is given

by ρss = ρ
(0)
ss + ρ

(1)
ss where ρ

(0)
ss is the eigenstate cor-

responding to zero eigenvalue of unperturbed Liouvil-

lian superoperator L0 and ρ
(1)
ss is the first order correc-

tion due to LV which is obtained from Eq. (16). The
heat current from hot (cold) bath is given by Jh(c) =∑
i=A,B Tr(Di

h(c)[ρ]H0), see Section B of the Supplemen-

tary Material [48]. Power is plotted as a function of cou-
pling strength ε and detuning parameter ∆ in Fig. 2(c).
For the values of parameters given in Fig. 2, Jh ≥ 0 and
Jc ≤ 0 where equality holds only in the absence of cou-
pling ε = 0.

Now from Fig. 2, one can observe that for energy
conserving case given by ∆ = 0, the power output is
zero while the synchronization measure is non-zero which
means that coherences are generated in the absence of
power. For finite detuning, energy is no longer conserved
and coherences are generated at the cost of power. For
∆ < 0, power is negative while Jh ≥ 0 and Jc ≤ 0 which
means that coupled system behaves like a thermal engine
and power is generated. Power is positive for positive
detuning ∆ > 0 which means that power is being con-
sumed by the system while coherence is being generated
as a result of energy non-conservation. For ∆ > 0 the
coupled system acts as a dissipator or heater. This ex-
ample demonstrates our argument that non-degenerate
quantum thermal machines cannot be synchronised by
energy conserving interactions. We emphasize that co-
herent power uncouples from quantum synchronisation in
the presence of degeneracies since there is zero work cost
to create degenerate coherences. Several other examples
of coupled thermal machines and quantum synchronous
systems can be understood within this framework, as pre-
sented in Section C of the Supplementary Material.
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CONCLUSIONS

The literature on quantum synchronisation thus far
has been lead by system specific examples. In this
manuscript, we go beyond such an approach and discuss a
Liouville space perturbation theoretic approach to study
phase-space based measures of steady state synchronisa-
tion. Unlike previous approaches, we highlight methods
to detect emergent synchronicity by analysing the differ-
ent parts of the Liouville superoperator. While quantum
synchronisation of underlying limit cycle oscillators can
be understood in terms of steady state coherences under
coupling, we also clarified the role of centers, symme-
tries and oscillating coherences in this context. Finally,
we show that degeneracies have a strong role to play in
the relationship between thermodynamic quantities such
as coherent power and quantum synchronisation. While
our local master equation approach is well motivated,
the analysis needs to be reconsidered if the BMS condi-
tion no longer applies [58–62]. Our example illustrates
that while coupled thermal machines can always be syn-
chronised, there is a finite cost to doing so outside of a
degenerate manifold. This method can further be used
to understand and subsequently design quantum thermal
machines and quantum synchronising systems. Our ap-
proach can be applied to systematically study quantum
synchronisation in the perturbative regime and will find
applications in future quantum technologies.
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monte, and R. Fazio, Physical Review Letters 121,
035301 (2018).

[38] A. Riera-Campeny, M. Moreno-Cardoner, and A. San-
pera, Quantum 4, 270 (2020).
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